Directory of Open Access Journals (Sweden)
Vijay K. Garg
1998-01-01
reason for the discrepancy on the pressure surface could be the presence of unsteady effects due to stator-rotor interaction in the experiments which are not modeled in the present computations. Prediction using the two-equation model is in general poorer than that using the zero-equation model, while the former requires at least 40% more computational resources.
Two-equation modeling of turbulent rotating flows
Cazalbou, Jean-Bernard; Chassaing, Patrick; Dufour, Guillaume; CARBONNEAU, Xavier
2005-01-01
The possibility to take into account the effects of the Coriolis acceleration on turbulence is examined in the framework of two-equation eddy-viscosity models. General results on the physical consistency of such turbulence models are derived from a dynamical-system approach to situations of time-evolving homogeneous turbulence in a rotating frame. Application of this analysis to a (k,epsilon) model fitted with an existing Coriolis correction [J. H. G. Howard, S. V. Patankar, and R. M. Bordynu...
Two-equation turbulence modeling for 3-D hypersonic flows
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Numerical study of two equation turbulence models for subchannel thermal hydraulics
Energy Technology Data Exchange (ETDEWEB)
Nazififard, Mohammad; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)
2012-10-15
The need for more accurate computational methods for the analysis of nuclear reactor systems has generated rising interests for computational fluid dynamics (CFD) and growing range of applications of commercial CFD software. This study presents results of the sensitivity analysis using the two equation turbulence models for several grid configurations. The Turbulence Enhanced Mixing Analysis (TEMA) result contributes further to turbulent convective heat transfer mechanisms in a subchannel of a square array rod bundle.
A near-wall two-equation model for compressible turbulent flows
Zhang, H. S.; So, R. M. C.; Speziale, C. G.; Lai, Y. G.
1992-01-01
A near-wall two-equation turbulence model of the k-epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K-omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper.
Heat Transfer on a Film-Cooled Rotating Blade Using a Two Equation Turbulence Model
Garg, Vijay K.
1998-01-01
A three-dimensional Navier-Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley's q-omega turbulence model. Results are also compared with those obtained by Garg and Abhari (1997) using the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for both the turbulence models. At the leading edge, the B-L model yields a better comparison than the q-omega model. On the pressure surface, however, the comparison between the experimental data and the prediction from either turbulence model is poor. A potential reason for the discrepancy on the pressure surface could be the presence of unsteady effects due to stator-rotor interaction in the experiments which are not modeled in the present computations. Prediction using the two-equation model is in general poorer than that using the zero-equation model, while the former requires at least 40% more computational resources.
Institute of Scientific and Technical Information of China (English)
Pascale KULISA; Cédric DANO
2006-01-01
Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- l model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k- l model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k- l models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.
Dynamic Stall Prediction of a Pitching Airfoil using an Adjusted Two-Equation URANS Turbulence Model
Directory of Open Access Journals (Sweden)
Galih Bangga
2017-01-01
Full Text Available The necessity in the analysis of dynamic stall becomes increasingly important due to its impact on many streamlined structures such as helicopter and wind turbine rotor blades. The present paper provides Computational Fluid Dynamics (CFD predictions of a pitching NACA 0012 airfoil at reduced frequency of 0.1 and at small Reynolds number value of 1.35e5. The simulations were carried out by adjusting the k − ε URANS turbulence model in order to damp the turbulence production in the near wall region. The damping factor was introduced as a function of wall distance in the buffer zone region. Parametric studies on the involving variables were conducted and the effect on the prediction capability was shown. The results were compared with available experimental data and CFD simulations using some selected two-equation turbulence models. An improvement of the lift coefficient prediction was shown even though the results still roughly mimic the experimental data. The flow development under the dynamic stall onset was investigated with regards to the effect of the leading and trailing edge vortices. Furthermore, the characteristics of the flow at several chords length downstream the airfoil were evaluated.
Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade
Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)
2001-01-01
Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.
Garg, Vijay K.; Ameri, Ali A.
1997-01-01
A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely, the VKI rotor with six rows of cooling holes, including three rows on the shower head and the C3X vane with nine rows of holes, including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence model specifically, Coakley's q-omega model, Chien's k-epsilon model and Wilcox's k-omega model with Menter's modifications, have been compared with the experimental data of Camci and Arts for the VKI rotor, and of Hylton et al. for the C3X vane along with predictions using the Baldwin-Lomar (B-L) model taken from Garg and Gaugler. It is found that for the cases considered here the two equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooled holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-omega and k-epsilon models need 40% more computer time than the B-L model the k-omega model requires at least 65% more time because of the slower rate of convergence. It is found that the heat transfer coefficient exhibit a strong spanwise as well as streamwise variation for both blades and all turbulence models.
Heat Transfer on a Film-Cooled Rotating Blade Using a Two-Equation Turbulence Model
Vijay K Garg
1998-01-01
A three-dimensional Navier–Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only filmcooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley's q-ω turbulence model. Res...
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in
Navier-Stokes turbine heat transfer predictions using two-equation turbulence
Ameri, Ali A.; Arnone, Andrea
1992-01-01
Navier-Stokes calculations were carried out in order to predict the heat transfer rates on turbine blades. The calculations were performed using TRAF2D which is a two-dimensional, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using q-omega and k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a non-periodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the Rocketdyne Space Shuttle Main Engine (SSME) high pressure fuel turbine. The comparison with the experimental results, although generally favorable, serves to highlight the weaknesses of the turbulence models and the possible areas of improving these models for use in turbomachinery heat transfer calculations.
A Note on Two-Equation Closure Modelling of Canopy Flow
DEFF Research Database (Denmark)
Sogachev, Andrey
2009-01-01
The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric...
A Note on Two-Equation Closure Modelling of Canopy Flow
DEFF Research Database (Denmark)
Sogachev, Andrey
2009-01-01
The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric...
DEFF Research Database (Denmark)
Sogachev, Andrey; Kelly, Mark C.; Leclerc, Monique Y.
2012-01-01
A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of gri...
Turbulence modelling; Modelisation de la turbulence isotherme
Energy Technology Data Exchange (ETDEWEB)
Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....
PARAMETER ESTIMATION OF ENGINEERING TURBULENCE MODEL
Institute of Scientific and Technical Information of China (English)
钱炜祺; 蔡金狮
2001-01-01
A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-ε two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-ε two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.
1991-10-01
and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also
Implementation of two-equation soot flamelet models for laminar diffusion flames
Energy Technology Data Exchange (ETDEWEB)
Carbonell, D.; Oliva, A.; Perez-Segarra, C.D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, Colom 11, E-08222, Terrassa (Barcelona) (Spain)
2009-03-15
The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)
The Use of DNS in Turbulence Modeling
Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)
1997-01-01
The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.
DEFF Research Database (Denmark)
Fuhrman, David R.; Fredsøe, Jørgen; Sumer, B. Mutlu
2009-01-01
A numerical model solving incompressible Reynolds-averaged Navier-Stokes equations, combined with a two-equation k-omega turbulence closure, is used to study converging-diverging effects from a sloping bed on turbulent (oscillatory) wave boundary layers. Bed shear stresses from the numerical model...
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
This thesis addresses stochastic modelling of turbulence with applications to wind energy in mind. The primary tool is ambit processes, a recently developed class of computationally tractable stochastic processes based on integration with respect to Lévy bases. The subject of ambit processes...... stochastic turbulence model based on ambit processes is proposed. It is shown how a prescribed isotropic covariance structure can be reproduced. Non-Gaussian turbulence models are obtained through non-Gaussian Lévy bases or through volatility modulation of Lévy bases. As opposed to spectral models operating...... is dissipated into heat due to the internal friction caused by viscosity. An existing stochastic model, also expressed in terms of ambit processes, is extended and shown to give a universal and parsimonious description of the turbulent energy dissipation. The volatility modulation, referred to above, has...
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Evaluation of Turbulence Models in Gas Dispersion
Moen, Alexander
2016-01-01
Several earlier model validation studies for predicting gas dispersion scenarios have been conducted for the three RANS two-equation eddy viscosity turbulence models, the standard k-ε (SKE), Re- Normalisation group k-ε (RNG) and Realizable k-ε (Realizable). However, these studies have mainly validated one or two of the models, and have mostly used one simulation case as a basis for determining which model is the best suited for predicting such scenarios. In addition, the studies have shown co...
Davit, Y.
2012-07-26
In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.
Variational Estimation of Wave-affected Parameters in a Two-equation Turbulence Model
2014-01-01
time 2 intervals within the assimilation window, where ijT , and obsT are the simulated and 3 observed temperature at location i and time level j. N...16 downwelling. Journal of Physical Oceanography, 32: 2171-2193. 17 Agrawal, Y.C., Terray, E.A., Donelan, M.A., Hwang, P.A., Williams , A. J...Y., Drennan, W.M., Kahma, K., Williams III, A. 7 J., Hwang, P., Kitaigorodskii, S. A., 1996. Estimates of kinetic energy 8 dissipation under
Analysis of wall-function approaches using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Albets-Chico, X.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor, Universitat Politecnica de Catalunya (UPC), ETSEIAT, C/ Colom, 11, 08222 Terrassa (Barcelona) (Spain); Bredberg, J. [Multi-physics/CFD Epsilon, HighTech AB Lindholmspiren 9, SE-41756 Gothenburg (Sweden)
2008-09-15
This paper focuses the attention on the drawbacks and abilities of wall-function techniques through an analysis of well-known wall-functions from literature. Besides this, some deeper analysis of these tools by means of physical and numerical considerations are carried out in order to improve their limitations when they are applied to predict heat transfer and fluid flow. Accuracy, grid-sensitivity, numerical behaviour and verification of numerical simulations are key aspects in this paper. The main purpose is to obtain tools which are able to predict both fluid flow and heat transfer with low CPU time consumption, reduced grid-sensitivity and a relatively good accuracy. (author)
Chaynikov, S.; Porta, G.; Riva, M.; Guadagnini, A.
2012-04-01
We focus on a theoretical analysis of nonreactive solute transport in porous media through the volume averaging technique. Darcy-scale transport models based on continuum formulations typically include large scale dispersive processes which are embedded in a pore-scale advection diffusion equation through a Fickian analogy. This formulation has been extensively questioned in the literature due to its inability to depict observed solute breakthrough curves in diverse settings, ranging from the laboratory to the field scales. The heterogeneity of the pore-scale velocity field is one of the key sources of uncertainties giving rise to anomalous (non-Fickian) dispersion in macro-scale porous systems. Some of the models which are employed to interpret observed non-Fickian solute behavior make use of a continuum formulation of the porous system which assumes a two-region description and includes a bimodal velocity distribution. A first class of these models comprises the so-called ''mobile-immobile'' conceptualization, where convective and dispersive transport mechanisms are considered to dominate within a high velocity region (mobile zone), while convective effects are neglected in a low velocity region (immobile zone). The mass exchange between these two regions is assumed to be controlled by a diffusive process and is macroscopically described by a first-order kinetic. An extension of these ideas is the two equation ''mobile-mobile'' model, where both transport mechanisms are taken into account in each region and a first-order mass exchange between regions is employed. Here, we provide an analytical derivation of two region "mobile-mobile" meso-scale models through a rigorous upscaling of the pore-scale advection diffusion equation. Among the available upscaling methodologies, we employ the Volume Averaging technique. In this approach, the heterogeneous porous medium is supposed to be pseudo-periodic, and can be represented through a (spatially) periodic unit cell
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
a substantial role in the mixing. In the first part of the report the theoretical bask for the partial differential equations which govern turbulent flows and the transport of matter is derived. The background for one- and two-equation turbulence models is reviewed and formulated both in a general way...
A stability condition for turbulence model: From EMMS model to EMMS-based turbulence model
Zhang, Lin; Wang, Limin; Li, Jinghai
2013-01-01
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the heterogeneous structural parameters of turbulence to be optimized. We call this model the `EMMS-based turbulence model', and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced con...
Energy Technology Data Exchange (ETDEWEB)
Dano, C.
2003-01-15
The objective of this thesis is to evaluate k-e, k-l and k-w low Reynolds two equation turbulence models for. A quadratic nonlinear k-l model is also implemented in this study. We analyze the two equation turbulence models capacity to predict the turbomachinery flows and the wakes. We are interested more particularly in the unsteady three dimensional configuration with rotor-stator interactions. A Gaussian distribution reproduces the upstream wake. This analysis is carried out in term of prediction quality but also in term of numerical behavior. Turbines and compressors configurations are tested. (author)
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Review and assessment of turbulence models for hypersonic flows
Roy, Christopher J.; Blottner, Frederick G.
2006-10-01
Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed
Structure and modeling of turbulence
Energy Technology Data Exchange (ETDEWEB)
Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)
1995-12-31
The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).
Modelling the dynamics of turbulent floods
Mei, Z; Li, Z; Li, Zhenquan
1999-01-01
Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.
Tan, Carlos Antonio R.; Capuno, Joseph J.
2012-01-01
The treatment of drinking water is advocated to reduce the incidence of child diarrhea. However, evaluating the impact of water treatment with only observational data leads to biased estimates since it could be the occurrence of child diarrhea that induced the household to treat their drinking water. To deal with the possible simultaneity between the treatment of drinking water and the incidence of child diarrhea, we specify non-recursive two-equation causal models and apply it on a sub-sampl...
PDF turbulence modeling and DNS
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Turbulence Models of Hydrodynamic Lubrication
Institute of Scientific and Technical Information of China (English)
张直明; 王小静; 孙美丽
2003-01-01
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang' s combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.
Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence
Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto
1990-01-01
The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance, a co....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence.......A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal...
An improved turbulence model for rotating shear flows*
Nagano, Yasutaka; Hattori, Hirofumi
2002-01-01
In the present study, we construct a turbulence model based on a low-Reynolds-number non-linear k e model for turbulent flows in a rotating channel. Two-equation models, in particular the non-linear k e model, are very effective for solving various flow problems encountered in technological applications. In channel flows with rotation, however, the explicit effects of rotation only appear in the Reynolds stress components. The exact equations for k and e do not have any explicit terms concerned with the rotation effects. Moreover, the Coriolis force vanishes in the momentum equation for a fully developed channel flow with spanwise rotation. Consequently, in order to predict rotating channel flows, after proper revision the Reynolds stress equation model or the non-linear eddy viscosity model should be used. In this study, we improve the non-linear k e model so as to predict rotating channel flows. In the modelling, the wall-limiting behaviour of turbulence is also considered. First, we evaluated the non-linear k e model using the direct numerical simulation (DNS) database for a fully developed rotating turbulent channel flow. Next, we assessed the non-linear k e model at various rotation numbers. Finally, on the basis of these assessments, we reconstruct the non-linear k e model to calculate rotating shear flows, and the proposed model is tested on various rotation number channel flows. The agreement with DNS and experiment data is quite satisfactory.
Energy Technology Data Exchange (ETDEWEB)
Harrach, R.J.; Rogers, F.J.
1981-09-01
Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy epsilon and average degree of ionization Z-bar*, as functons of temperature T and density rho. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in epsilon and the full range of Z-bar* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of epsilon(T) agree to within +- 30% over nearly the full range in T for densities below about 1 g/cm/sup 3/. Similarly, the two models predict values of Z-bar*(T) which track each other fairly well; above 20 eV the discrepancy is less than +- 20% fpr rho< or approx. =1 g/cm/sup 3/. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.
Harrach, Robert J.; Rogers, Forest J.
1981-09-01
Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play...... a substantial role in the mixing. In the first part of the report the theoretical bask for the partial differential equations which govern turbulent flows and the transport of matter is derived. The background for one- and two-equation turbulence models is reviewed and formulated both in a general way...
Numerical experiments modelling turbulent flows
Directory of Open Access Journals (Sweden)
Trefilík Jiří
2014-03-01
Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
O'Neill, D P; Peng, T; Payne, S J
2009-01-01
A model is presented that is an alternative approach to the bio-heat equation for use in radio frequency heating of the liver. The model comprises both a tissue subvolume and a blood subvolume. Separate bio-heat equations are determined for each subvolume, but with an additional term exchanging heat between them, thus creating a coupled system. The derivation for the two coupled differential equations is outlined and sample simulations are presented to demonstrate the importance of considering the two subvolumes separately, even when the blood subvolume is a small fraction of the tissue subvolume.
Near-wall modelling of compressible turbulent flows
So, Ronald M. C.
1990-01-01
Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.
Helicity Transfer in Turbulent Models
Biferale, L; Toschi, F
1998-01-01
Helicity transfer in a shell model of turbulence is investigated. We show that a Reynolds-independent helicity flux is present in the model when the large scale forcing breaks inversion symmetry. The equivalent in Shell Models of the ``2/15 law'', obtained from helicity conservation in Navier-Stokes eqs., is derived and tested. The odd part of helicity flux statistic is found to be dominated by a few very intense events. In a particular model, we calculate analytically leading and sub-leading contribution to the scaling of triple velocity correlation.
Simulation and modeling of turbulent flows
Gatski, Thomas B; Lumley, John L
1996-01-01
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
On the modeling of wave-enhanced turbulence nearshore
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
A Generic Length-scale Equation For Second-order Turbulence Models of Oceanic Boundary Layers
Umlauf, L.; Burchard, H.
A generic transport equation for a generalized length-scale in second-order turbulence closure models for geophysical boundary layers is suggested. This variable consists of the products of powers of the turbulent kinetic energy, k, and the integral length-scale, l. The new approach generalizes traditional second-order models used in geophysical boundary layer modelling, e.g. the Mellor-Yamada model and the k- model, which, however, can be recovered as special cases. It is demonstrated how this new model can be calibrated with measurements in some typical geophysical boundary layer flows. As an example, the generic model is applied to the uppermost oceanic boundary layer directly influenced by the effects of breaking surface waves. Recent measurements show that in this layer the classical law of the wall is invalid, since there turbulence is dominated by turbulent transport of TKE from above, and not by shear-production. A widely accepted approach to describe the wave-affected layer with a one-equation turbulence model was suggested by Craig and Banner (1994). Here, some deficien- cies of their solutions are pointed out and a generalization of their ideas for the case of two-equation models is suggested. Direct comparison with very recently obtained measurements of the dissipation rate, , in the wave-affected boundary layer with com- puted results clearly demonstrate that only the generic two-equation model yields cor- rect predictions for the profiles of and the turbulent length scale, l. Also, the pre- dicted velocity profiles in the wave-affected layer, important e.g. for the interpretation of surface drifter experiments, are reproduced correctly only by the generic model. Implementation and computational costs of the generic model are comparable with traditonal two-equation models.
Evaluation of Eddy Viscosity Models in Predicting Free- Stream Turbulence Penetration
Directory of Open Access Journals (Sweden)
M. Kahrom
2013-01-01
Full Text Available Turbulence schemes have long been developed and examined for their accuracy and stability in a variety of environments. While many industrial flows are highly turbulent, models have rarely been tested to explore whether their accuracy withstands such augmented free-stream turbulence intensity or declines to an erroneous solution. In the present study, the turbulence intensity of an air flow stream, moving parallel to a flat plate is augmented by the means of locating a grid screen at a point at which Rex=2.5×105 and the effect on the flow and the near-wall boundary is studied. At this cross section, the turbulence intensity is augmented from 0.4% to 6.6% to flow downstream. Wind tunnel measurements provide reference bases to validate the numerical results for velocity fluctuations in the main stream and at the near-wall. Numerically, four of the most popular turbulence models are examined, namely the oneequation Spalart-Almaras, the two equation Standard k , the two equation Shear Stress Transport and the anisotropy multi equation Reynolds Stress Models (RSM. The resulting solutions for the domain are compared to experimental measurements and then the results are discussed. The conclusion is made that, despite the accuracy that these turbulence models are believed to have, even for some difficult flow field, they fail to handle high intensity turbulence flows. Turbulence models provide a better approach in experiments when the turbulence intensity is at about 2% and/or when the Reynolds number is high.
Low Reynolds number turbulence modeling of blood flow in arterial stenoses.
Ghalichi, F; Deng, X; De Champlain, A; Douville, Y; King, M; Guidoin, R
1998-01-01
Moderate and severe arterial stenoses can produce highly disturbed flow regions with transitional and or turbulent flow characteristics. Neither laminar flow modeling nor standard two-equation models such as the kappa-epsilon turbulence ones are suitable for this kind of blood flow. In order to analyze the transitional or turbulent flow distal to an arterial stenosis, authors of this study have used the Wilcox low-Re turbulence model. Flow simulations were carried out on stenoses with 50, 75 and 86% reductions in cross-sectional area over a range of physiologically relevant Reynolds numbers. The results obtained with this low-Re turbulence model were compared with experimental measurements and with the results obtained by the standard kappa-epsilon model in terms of velocity profile, vortex length, wall shear stress, wall static pressure, and turbulence intensity. The comparisons show that results predicted by the low-Re model are in good agreement with the experimental measurements. This model accurately predicts the critical Reynolds number at which blood flow becomes transitional or turbulent distal an arterial stenosis. Most interestingly, over the Re range of laminar flow, the vortex length calculated with the low-Re model also closely matches the vortex length predicted by laminar flow modeling. In conclusion, the study strongly suggests that the proposed model is suitable for blood flow studies in certain areas of the arterial tree where both laminar and transitional/turbulent flows coexist.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Environmental forecasting and turbulence modeling
Hunt, J. C. R.
This review describes the fundamental assumptions and current methodologies of the two main kinds of environmental forecast; the first is valid for a limited period of time into the future and over a limited space-time ‘target’, and is largely determined by the initial and preceding state of the environment, such as the weather or pollution levels, up to the time when the forecast is issued and by its state at the edges of the region being considered; the second kind provides statistical information over long periods of time and/or over large space-time targets, so that they only depend on the statistical averages of the initial and ‘edge’ conditions. Environmental forecasts depend on the various ways that models are constructed. These range from those based on the ‘reductionist’ methodology (i.e., the combination of separate, scientifically based, models for the relevant processes) to those based on statistical methodologies, using a mixture of data and scientifically based empirical modeling. These are, as a rule, focused on specific quantities required for the forecast. The persistence and predictability of events associated with environmental and turbulent flows and the reasons for variation in the accuracy of their forecasts (of the first and second kinds) are now better understood and better modeled. This has partly resulted from using analogous results of disordered chaotic systems, and using the techniques of calculating ensembles of realizations, ideally involving several different models, so as to incorporate in the probabilistic forecasts a wider range of possible events. The rationale for such an approach needs to be developed. However, other insights have resulted from the recognition of the ordered, though randomly occurring, nature of the persistent motions in these flows, whose scales range from those of synoptic weather patterns (whether storms or ‘blocked’ anticyclones) to small scale vortices. These eigen states can be predicted
Kim, S.-W.; Chen, C.-P.
1988-01-01
The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Development of a One-Equation Transition/Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
EDWARDS,JACK R.; ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.; HASSAN,HASSAN A.
2000-09-26
This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.
Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Estimation of Wind Turbulence Using Spectral Models
DEFF Research Database (Denmark)
Soltani, Mohsen; Knudsen, Torben; Bak, Thomas
2011-01-01
The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind....... In this paper, a method is presented for estimation of the turbulence. The spectral model of the wind is used in order to provide the estimations. The suggested estimation approach is applied to a case study in which the objective is to estimate wind turbulence at desired points using the measurements of wind...... speed outside the wind field. The results show that the method is able to provide estimations which explain more than 50% of the wind turbulence from the distance of about 300 meters....
Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)
2002-01-01
The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
Comparison of turbulent particle dispersion models in turbulent shear flows
Directory of Open Access Journals (Sweden)
S. Laín
2007-09-01
Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.
Turbulence modelling of thermal plasma flows
Shigeta, Masaya
2016-12-01
This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.
Helicity statistics in homogeneous and isotropic turbulence and turbulence models
Sahoo, Ganapati; Biferale, Luca
2016-01-01
We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small-scales, i.e. chiral terms are always subleading and they are well captured by a dimensional argument plus a small anomalous correction. We confirm these findings with numerical study of helical shell models at high Reynolds numbers.
Helicity statistics in homogeneous and isotropic turbulence and turbulence models
Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca
2017-02-01
We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, A
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Modelling turbulence in the outer heliosphere
Macek, Wieslaw
2016-07-01
Turbulence is complex behaviour that is ubiquitous both in laboratory and astrophysical magnetized plasmas. Notwithstanding the progress in simulation of turbulence in various continuous media, its mechanism is still not sufficiently clear. Therefore, following the basic idea of Kolmogorov, some phenomenological models of scaling behaviour have been proposed, including fractal and multifractal modelling, that can reveal the intermittent character of turbulence. Based on wealth of data provided by deep spacecraft missions including Voyager 1 and 2, these models show that the turbulence in the entire heliosphere is intermittent and multifractal. Moreover, the degree of multifractality decreases with the heliocentric distance and is modulated by the phases of the solar cycles, also beyond the heliospheric termination shock, i. e. in the heliosheath. However, in the very local interstellar medium beyond the heliopause turbulence becomes rather weak and less intermittent, as shown by recent measurements from Voyager 1. This suggests that the heliosphere is immersed in a relatively quiet environment. Hence these studies of turbulence, especially at the heliospheric boundaries, demonstrate that the outer heliosphere provides an interesting possibility to look into turbulence in various media.
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Regularization of turbulence - a comprehensive modeling approach
Geurts, B. J.
2011-12-01
Turbulence readily arises in numerous flows in nature and technology. The large number of degrees of freedom of turbulence poses serious challenges to numerical approaches aimed at simulating and controlling such flows. While the Navier-Stokes equations are commonly accepted to precisely describe fluid turbulence, alternative coarsened descriptions need to be developed to cope with the wide range of length and time scales. These coarsened descriptions are known as large-eddy simulations in which one aims to capture only the primary features of a flow, at considerably reduced computational effort. Such coarsening introduces a closure problem that requires additional phenomenological modeling. A systematic approach to the closure problem, know as regularization modeling, will be reviewed. Its application to multiphase turbulent will be illustrated in which a basic regularization principle is enforced to physically consistently approximate momentum and scalar transport. Examples of Leray and LANS-alpha regularization are discussed in some detail, as are compatible numerical strategies. We illustrate regularization modeling to turbulence under the influence of rotation and buoyancy and investigate the accuracy with which particle-laden flow can be represented. A discussion of the numerical and modeling errors incurred will be given on the basis of homogeneous isotropic turbulence.
Aerodynamic Noise Prediction Using stochastic Turbulence Modeling
Directory of Open Access Journals (Sweden)
Arash Ahmadzadegan
2008-01-01
Full Text Available Amongst many approaches to determine the sound propagated from turbulent flows, hybrid methods, in which the turbulent noise source field is computed or modeled separately from the far field calculation, are frequently used. For basic estimation of sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations (turbulent noise source field. A simple and easy to use stochastic model for generating turbulent velocity fluctuations called continuous filter white noise (CFWN model was used. This method based on the use of classical Langevian-equation to model the details of fluctuating field superimposed on averaged computed quantities. The resulting sound field due to the generated unsteady flow field was evaluated using Lighthill's acoustic analogy. Volume integral method used for evaluating the acoustic analogy. This formulation presents an advantage, as it confers the possibility to determine separately the contribution of the different integral terms and also integration regions to the radiated acoustic pressure. Our results validated by comparing the directivity and the overall sound pressure level (OSPL magnitudes with the available experimental results. Numerical results showed reasonable agreement with the experiments, both in maximum directivity and magnitude of the OSPL. This method presents a very suitable tool for the noise calculation of different engineering problems in early stages of the design process where rough estimates using cheaper methods are needed for different geometries.
A compressible near-wall turbulence model for boundary layer calculations
So, R. M. C.; Zhang, H. S.; Lai, Y. G.
1992-01-01
A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects.
A simple model for turbulence intermittencies
Rimbert, Nicolas
2009-01-01
Whether turbulence intermittencies shall be described by a log-Poisson, a log-stable pdf or other distributions is still debated nowadays. In this paper, a bridge between polymer physics, self-avoiding walk and random vortex stretching is established which may help in getting a new insight on this topics. Actually a very simple relationship between stability index of the stable law and the well known Flory exponent stemming from polymer physics is established. Moreover the scaling of turbulence intermittencies with Reynolds number is also obtained and the overall picture is very close to Tennekes' simple model for the fine scale structure of turbulence [Phys. Fluids, 11, 3 (1968)] : vortex tubes of Kolmogorov length width are bend by bigger vortices of Taylor length scale. This thus results in both a simple and sound model with no fitting parameter needed.
Institute of Scientific and Technical Information of China (English)
LIN Zhenhua; ZHAO Dongliang; SONG Jinbao
2011-01-01
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also analyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method.The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.
Alpha models and boundary-layer turbulence
Cheskidov, Alexey
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.
TWO MODIFICATORY K-ε TURBULENCE MODELS FOR TURBULENT SWIRLING FLOWS
Institute of Scientific and Technical Information of China (English)
Wang Ze; Liu Wei-ming
2003-01-01
Since the standard K-ε model used to predict the strongly swirling flow leads to a large deviation from experimental results, it is necessary to introduce modification to the standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulent length scale modification conception, we present two modified K-ε models. To investigate the behaviour of the modified turbulence models, they are used to predict two representative turbulent swirling flows. The computational results, after compared with the experimental data, show that the modified K-ε models substantially improve the prediction of the standard K-ε model for the turbulent swirling flows.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Nonlinear turbulence models for predicting strong curvature effects
Institute of Scientific and Technical Information of China (English)
XU Jing-lei; MA Hui-yang; HUANG Yu-ning
2008-01-01
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.
Hill, Jon; Piggott, M. D.; Ham, David A.; Popova, E. E.; Srokosz, M. A.
2012-10-01
Research into the use of unstructured mesh methods for ocean modelling has been growing steadily in the last few years. One advantage of using unstructured meshes is that one can concentrate resolution where it is needed. In addition, dynamic adaptive mesh optimisation (DAMO) strategies allow resolution to be concentrated when this is required. Despite the advantage that DAMO gives in terms of improving the spatial resolution where and when required, small-scale turbulence in the oceans still requires parameterisation. A two-equation, generic length scale (GLS) turbulence model (one equation for turbulent kinetic energy and another for a generic turbulence length-scale quantity) adds this parameterisation and can be used in conjunction with adaptive mesh techniques. In this paper, an implementation of the GLS turbulence parameterisation is detailed in a non-hydrostatic, finite-element, unstructured mesh ocean model, Fluidity-ICOM. The implementation is validated by comparing to both a laboratory-scale experiment and real-world observations, on both fixed and adaptive meshes. The model performs well, matching laboratory and observed data, with resolution being adjusted as necessary by DAMO. Flexibility in the prognostic fields used to construct the error metric used in DAMO is required to ensure best performance. Moreover, the adaptive mesh models perform as well as fixed mesh models in terms of root mean square error to observation or theoretical mixed layer depths, but uses fewer elements and hence has a reduced computational cost.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
, that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...
Iterative solvers for Navier-Stokes equations: Experiments with turbulence model
Energy Technology Data Exchange (ETDEWEB)
Page, M. [IREQ - Institut de Recherche d`Hydro-Quebec, Varennes (Canada); Garon, A. [Ecole Polytechnique de Montreal (Canada)
1994-12-31
In the framework of developing software for the prediction of flows in hydraulic turbine components, Reynolds averaged Navier-Stokes equations coupled with {kappa}-{omega} two-equation turbulence model are discretized by finite element method. Since the resulting matrices are large, sparse and nonsymmetric, strategies based on CG-type iterative methods must be devised. A segregated solution strategy decouples the momentum equation, the {kappa} transport equation and the {omega} transport equation. These sets of equations must be solved while satisfying constraint equations. Experiments with orthogonal projection method are presented for the imposition of essential boundary conditions in a weak sense.
Direct numerical simulations and modeling of a spatially-evolving turbulent wake
Cimbala, John M.
1994-01-01
Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with
ON THE EDDY VISCOSITY MODEL OF PERIODIC TURBULENT SHEAR FLOWS
Institute of Scientific and Technical Information of China (English)
王新军; 罗纪生; 周恒
2003-01-01
Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account.
SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES
Institute of Scientific and Technical Information of China (English)
ZENG Zhuo-xiong; ZHOU Li-xing; LIU Zhi-he
2006-01-01
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingharn fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.
Leith diffusion model for homogeneous anisotropic turbulence
Rubinstein, Robert; Clark, Timothy; Kurien, Susan
2016-11-01
A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
Energy Technology Data Exchange (ETDEWEB)
Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)
2017-04-26
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.
Oude Nijhuis, A.C.P.; Krasnov, O.K.; Unal, C.M.H.; Russchenberg, H.W.J.; Yarovoy, A.
2015-01-01
Homogeneous isotropic turbulence (HIT) models are compared, with respect to optimization of turbulence remote sensing. HIT models have different applications such as load calculation for wind turbines (Mann, 1998) or droplet track modelling (Pinsky and Khain, 2006). Details of vortices seem of less
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The engineering computation of turbulent flows is mainly based on turbulence modeling,however,accurate aerothermal computation of hypersonic turbulent boundary layers is still a not well-solved problem. Aerothermal computation for turbulent boundary layers on a supersonic or hypersonic blunt cone with small bluntness is done firstly by using both direct numerical simulation and BL model,and seven different cases are investigated. Then the results obtained by the two methods are compared,and the reason causing the differences is found to be the incorrect assumption in the turbulence modeling that the ratio between eddy heat conductivity and eddy viscosity is constant throughout the whole boundary layer. Based on certain theoretical arguments,a method of modifying the expression of eddy heat conductivity in the region surrounding the peak location of the turbulent kinetic energy is proposed,which is verified to be effective,at least for the seven cases investigated.
Modeling Rotating Turbulent Flows with the Body Force Potential Model.
Bhattacharya, Amitabh; Perot, Blair
2000-11-01
Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept-wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
An Improved Model for the Turbulent PBL
Cheng, Y.; Canuto, V. M.; Howard, A. M.; Hansen, James E. (Technical Monitor)
2001-01-01
Second order turbulence models of the Mellor and Yamada type have been widely used to simulate the PBL. It is however known that these models have several deficiencies. For example, they all predict a critical Richardson number which is about four times smaller than the Large Eddy Simulation (LES) data, they are unable to match the surface data, and they predict a boundary layer height lower than expected. In the present model, we show that these difficulties are all overcome by a single new physical input: the use of the most complete expression for both the pressure-velocity and the pressure-temperature correlations presently available. Each of the new terms represents a physical process that, was not accounted for by previous models. The new model is presented in three different levels according to Mellor and Yamada's terminology, with new, ready-to-use expressions for the turbulent, moments. We show that the new model reproduces several experimental and LES data better than previous models. As far as the PBL is concerned, we show that the model reproduces both the Kansas data as analyzed by Businger et al. in the context of Monin-Obukhov similarity theory for smaller Richardson numbers, as well as the LES and laboratory data up to Richardson numbers of order unity. We also show that the model yields a higher PBL height than the previous models.
A three-dimensional turbulent compressible flow model for ejector and fluted mixers
Rushmore, W. L.; Zelazny, S. W.
1978-01-01
A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.
MHD Turbulent Mixing Layers: Equilibrium Cooling Models
Esquivel, A; Cho, J; Lazarian, A; Leitner, S N
2006-01-01
We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.
Representing Turbulence Model Uncertainty with Stochastic PDEs
Oliver, Todd; Moser, Robert
2012-11-01
Validation of and uncertainty quantification for extrapolative predictions of RANS turbulence models are necessary to ensure that the models are not used outside of their domain of applicability and to properly inform decisions based on such predictions. In previous work, we have developed and calibrated statistical models for these purposes, but it has been found that incorporating all the knowledge of a domain expert--e.g., realizability, spatial smoothness, and known scalings--in such models is difficult. Here, we explore the use of stochastic PDEs for this purpose. The goal of this formulation is to pose the uncertainty model in a setting where it is easier for physical modelers to express what is known. To explore the approach, multiple stochastic models describing the error in the Reynolds stress are coupled with multiple deterministic turbulence models to make uncertain predictions of channel flow. These predictions are compared with DNS data to assess their credibility. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Achieving Fast Reconnection in Resistive MHD Models via Turbulent Means
Lapenta, Giovanni
2011-01-01
Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation of resistive MHD. We consider the relation between the Lazarian & Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
A kinetic model of plasma turbulence
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature
Turbulent convection model in the overshooting region: II. Theoretical analysis
Zhang, S Q
2012-01-01
Turbulent convection models are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied in calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of turbulent convection models, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the turbulent convection model in the overshooting region, and find some important properties of the convective overshooting: I. The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations $k$, $\\bar{u_{r}'T'}$, and $\\bar{T'T'}$ are only determined by the ...
Model of non-stationary, inhomogeneous turbulence
Bragg, Andrew D.; Kurien, Susan; Clark, Timothy T.
2017-02-01
We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1-35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model.
Axisymmetric Vortex Simulations with Various Turbulence Models
Directory of Open Access Journals (Sweden)
Brian Howard Fiedler
2010-10-01
Full Text Available The CFD code FLUENT^{TM} has been applied to a vortex within an updraft above a frictional lower boundary. The sensitivity of vortex intensity and structure to the choice of turbulent model is explored. A high Reynolds number of 10^{8} is employed to make the investigation relevant to the atmospheric vortex known as a tornado. The simulations are axisymmetric and are integrated forward in time to equilibrium. In a variety of turbulence models tested, the Reynolds Stress Model allows for the greatest intensification of the vortex, with the azimuthal wind speed near the surface being 2.4 times the speed of the updraft, consistent with the destructive nature of tornadoes. The Standard k-e Model, which is simpler than the Reynolds Stress Model but still more detailed than what is commonly available in numerical weather prediction models, produces an azimuthal wind speed near the surface of at most 0.6 times the updraft speed.
Heat Transfer on a Film-Cooled Rotating Blade Using Different Turbulence Models
Garg, Vijay K.
1999-01-01
A three-dimensional Navier Stokes code has been used to compute the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region. using Wilcox's k-omega model, Coakley's q-omega model, and the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for all the turbulence models. At the leading edge, the B-L model yields a better comparison than tile two-equation models. On the pressure surface however the comparison between the experimental data and the prediction from the k-omega model is much better than from the other two models. Overall, the k-omega model provides the best comparison with the experimental data. However, the two-equation models require at least 40% more computational resources than the B-L model.
Turner, A J; Gogoberidze, G; Chapman, S C
2012-02-24
Single point spacecraft observations of the turbulent solar wind flow exhibit a characteristic nonaxisymmetric anisotropy that depends sensitively on the perpendicular power spectral exponent. We use this nonaxisymmetric anisotropy as a function of wave vector direction to test models of MHD turbulence. Using Ulysses magnetic field observations in the fast, quiet polar solar wind we find that the Goldreich-Sridhar model of MHD turbulence is not consistent with the observed anisotropy, whereas the observations are well reproduced by the "slab+2D" model. The Goldreich-Sridhar model alone cannot account for the observations unless an additional component is also present.
Toward Better Modeling of Supercritical Turbulent Mixing
Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth
2008-01-01
study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.
Comparison of turbulent models in the case of a constricted tube
Directory of Open Access Journals (Sweden)
Elcner Jakub
2017-01-01
Full Text Available The validation of a proper solution is an indispensable phase of every numerical simulation. Nowadays, many turbulent models are available, whose application leads to slightly different solution of flow behaviour depending on the boundary conditions of a specific problem. It is essential to select the proper turbulence model appropriate for the given situation. The aim of this study is to select the most suitable two-equation eddy-viscosity model, which can be further used during calculations of airflow in human airways. For this purpose, geometry of a constricted tube with well-documented experimental measurements was chosen. The flow in the constricted tube was calculated using Spallart-Almaras, k-omega, k-epsilon and SST model approach using commercial software. The outcome of the comparison is a choice of the suitable model which is capable of simulating the transition of the boundary layer from laminar to turbulent flow. This transition typically arises in the upper part of the respiratory system, where the airways are constricted, specifically in the area, where the oral cavity continues through the glottis to trachea. The simulations were performed in a commercial solver Star-CCM+.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the standark κ-ε turbulence model,a new compressible κ-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and aplied to the simulation of 3D transonic turbulent flows in a nozzle and a cascade.The Reynolds averaged N-S equations in generalized curvilinear coordinates are solved with implementation of the new model,the high resolution TVD scheme is used to discretize the convective terms.The numerical results show that the compressible κ-ε odel behaves well in the simulation of transonic internal turbulent flows.
Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling
Shih, Tsan-Hsing; Lumley, John L.
1992-01-01
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.
Estimation of Wind Turbulence Using Spectral Models
DEFF Research Database (Denmark)
Soltani, Mohsen; Knudsen, Torben; Bak, Thomas
2011-01-01
The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind. In thi...
Parallel Lagrangian models for turbulent transport and chemistry
Crone, Gilia Cornelia
1997-01-01
In this thesis we give an overview of recent stochastic Lagrangian models and present a new particle model for turbulent dispersion and chemical reactions. Our purpose is to investigate and assess the feasibility of the Lagrangian approach for modelling the turbulent dispersion and chemistry
Institute of Scientific and Technical Information of China (English)
L(U) Lin; LI Yucheng; CHEN Bing
2006-01-01
The mechanism of local scour around submarine pipelines is studied numerically based on a renormalized group (RNG) turbulence model. To validate the numerical model, the equilibrium profiles of local scour for two cases are simulated and compared with the experimental data. It shows that the RNG turbulence model can give an appropriate prediction for the configuration of equilibrium scour hole, and it is applicable to this situation. The local scour mechanism around submarine pipelines including the flow structure, shear stress distribution and pressure field is then analyzed and compared with experiments. For further comparison and validation, especially for the flow structure, a numerical calculation employing the large eddy simulation (LES) is also conducted. The numerical results of RNG demonstrate that the critical factor governing the equilibrium profile is the seabed shear stress distribution in the case of bed load sediment transport, and the two-equation RNG turbulence model coupled with the law of wall is capable of giving a satisfying estimation for the bed shear stress. Moreover, the piping phenomena due to the great difference of pressure between the upstream and downstream parts of pipelines and the vortex structure around submarine pipelines are also simulated successfully, which are believed to be the important factor that lead to the onset of local scour.
Testing turbulent closure models with convection simulations
Snellman, J E; Mantere, M J; Rheinhardt, M; Dintrans, B
2012-01-01
Aims: To compare simple analytical closure models of turbulent Boussinesq convection for stellar applications with direct three-dimensional simulations both in homogeneous and inhomogeneous (bounded) setups. Methods: We use simple analytical closure models to compute the fluxes of angular momentum and heat as a function of rotation rate measured by the Taylor number. We also investigate cases with varying angles between the angular velocity and gravity vectors, corresponding to locating the computational domain at different latitudes ranging from the pole to the equator of the star. We perform three-dimensional numerical simulations in the same parameter regimes for comparison. The free parameters appearing in the closure models are calibrated by two fit methods using simulation data. Unique determination of the closure parameters is possible only in the non-rotating case and when the system is placed at the pole. In the other cases the fit procedures yield somewhat differing results. The quality of the closu...
Algebraic Turbulence-Chemistry Interaction Model
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
Numerical modelling of a turbulent bluff-body flow with Reynolds stress turbulent models
Institute of Scientific and Technical Information of China (English)
LI Guoxiu; Dirk ROEKAERTS
2005-01-01
Numerical modelling of a turbulent bluff-body flow has been performed using differential Reynolds stress models (DRSMs). To clarify the applicability of the existing DRSMs in this complex flow, several typical DRSMs, including LRR-IP model, JM model, SSG model, as well as a modified LRR-IP model, have been validated and evaluated. The performance difference between various DRSMs is quite significant. Most of the above mentioned DRSMs cannot provide overall satisfactory predictions for this challenging test case. Motivated by the deficiency of the existing approaches, a new modification of LRR-IP model has been proposed. A very significant improvement of the prediction of flow field is obtained.
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
Modelling of the decay of isotropic turbulence by the LES
Energy Technology Data Exchange (ETDEWEB)
Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)
2011-12-22
This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.
Optical Turbulence Characterization at LAMOST Site: Observations and Models
Liu, L -Y; Yao, Y -Q; Vernin, J; Chadid, M; Wang, H -S; Yin, J; Wang, Y -P
2015-01-01
Atmospheric optical turbulence seriously limits the performance of high angular resolution instruments. An 8-night campaign of measurements was carried out at the LAMOST site in 2011, to characterize the optical turbulence. Two instruments were set up during the campaign: a Differential Image Motion Monitor (DIMM) used to measure the total atmospheric seeing, and a Single Star Scidar (SSS) to measure the vertical profiles of the turbulence C_n^2(h) and the horizontal wind velocity V(h). The optical turbulence parameters are also calculated with the Weather Research and Forecasting (WRF) model coupled with the Trinquet-Vernin model, which describes optical effects of atmospheric turbulence by using the local meteorological parameters. This paper presents assessment of the optical parameters involved in high angular resolution astronomy. Its includes seeing, isoplanatic angle, coherence time, coherence etendue, vertical profiles of optical turbulence intensity _n^2(h)$ and horizontal wind speed V(h). The median...
The Quasilinear Premise for the Modeling of Plasma Turbulence
Howes, Gregory G; TenBarge, Jason M
2014-01-01
The quasilinear premise is a hypothesis for the modeling of plasma turbulence in which the turbulent fluctuations are represented by a superposition of randomly-phased linear wave modes, and energy is transferred among these wave modes via nonlinear interactions. We define specifically what constitutes the quasilinear premise, and present a range of theoretical arguments in support of the relevance of linear wave properties even in a strongly turbulent plasma. We review evidence both in support of and in conflict with the quasilinear premise from numerical simulations and measurements of plasma turbulence in the solar wind. Although the question of the validity of the quasilinear premise remains to be settled, we suggest that the evidence largely supports the value of the quasilinear premise in modeling plasma turbulence and that its usefulness may also be judged by the insights gained from such an approach, with the ultimate goal to develop the capability to predict the evolution of any turbulent plasma syst...
On specification of initial conditions in turbulence models
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-12-01
Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.
Assessment of turbulence models for pulsatile flow inside a heart pump.
Al-Azawy, Mohammed G; Turan, A; Revell, A
2016-02-01
Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with
Towards a general turbulent combustion model for spark ignition engines
Energy Technology Data Exchange (ETDEWEB)
Naji, H.; Said, R.; Borghi, R.P.
1989-01-01
The prediction of combustion within spark ignition engines needs to take into account the interaction of turbulent fluctuations. Previous attempts at this used a model in which the chemical processes were supposed infinitely fast and the combustion was controlled by turbulent mixing only. This paper describes their progress in extending such models in two directions.
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokio, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 816-8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2001-03-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is placed on understanding of effects on turbulence characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
RECENT PROGRESS IN NONLINEAR EDDY-VISCOSITY TURBULENCE MODELING
Institute of Scientific and Technical Information of China (English)
符松; 郭阳; 钱炜祺; 王辰
2003-01-01
This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model.The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance.
Spectral Characteristics of Atmospheric Turbulence Model
Institute of Scientific and Technical Information of China (English)
GuojunXINShida; LIUShikouLIU; 等
1996-01-01
In this paper,KdV-Burgers equation can be regarded as the normal equation of atmospheric turbulence in the stable boundary layer.On the basis of the travelling wave analytic solution of KdV-Burgers equation,the turbulent spectrum is obtained.We observe that the behavior of the spectra is consistent with actual turbulent spectra of stable atmospheric boundary layer.
Energy Technology Data Exchange (ETDEWEB)
Besnard, D. (Los Alamos National Lab., NM (United States) CEA Centre d' Etudes de Limeil, 94 - Villeneuve-Saint-Georges (France)); Harlow, F.H.; Rauenzahn, R.M.; Zemach, C. (Los Alamos National Lab., NM (United States))
1992-06-01
This study gives an updated account of our current ability to describe multimaterial compressible turbulent flows by means of a one-point transport model. Evolution equations are developed for a number of second-order correlations of turbulent data, and approximations of the gradient type are applied to additional correlations to close the system of equations. The principal fields of interest are the one- point Reynolds tensor for variable-density flow, the turbulent energy dissipation rate, and correlations for density-velocity and density- density fluctuations. This single-field description of turbulent flows is compared in some detail to two-field flow equations for nonturbulent, highly dispersed flow with separate variables for each field. This comparison suggests means for improved modeling of some correlations not subjected to evolution equations.
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Institute of Scientific and Technical Information of China (English)
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
SIMULATION OF NOx FORMATION IN TURBULENT SWIRLING COMBUSTION USING A USM TURBULENCE-CHEMISTRY MODEL
Institute of Scientific and Technical Information of China (English)
周力行; 乔丽; 张健
2003-01-01
A unified second-order moment (USM) turbulence-chemistry model for simulating NOx formation in turbulent combustion is proposed.All of correlations,including the correlation of the reaction-rate coefficient fluctuation with the concentration fluctuation,are closed by the transport equations in the same form.This model discards the approximation of series expansion of the exponential function or the approximation of using the product of several 1-D PDF's instead of a joint PDF.It is much simpler than other refined models,such as the PDF transport equation model and the conditional moment closure model.The proposed model is used to simulate methane-air swirling turbulent combustion and NOx formation.The prediction results are in good agreement with the experimental results.
Regularization of turbulence - a comprehensive modeling approach
Geurts, Bernard J.
2011-01-01
Turbulence readily arises in numerous flows in nature and technology. The large number of degrees of freedom of turbulence poses serious challenges to numerical approaches aimed at simulating and controlling such flows. While the Navier-Stokes equations are commonly accepted to precisely describe fl
Turbulent Combustion Modeling Advances, New Trends and Perspectives
Echekki, Tarek
2011-01-01
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...
Multiscaling in superfluid turbulence: A shell-model study
Shukla, Vishwanath; Pandit, Rahul
2016-10-01
We examine the multiscaling behavior of the normal- and superfluid-velocity structure functions in three-dimensional superfluid turbulence by using a shell model for the three-dimensional (3D) Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations. Our 3D-HVBK shell model is based on the Gledzer-Okhitani-Yamada shell model. We examine the dependence of the multiscaling exponents on the normal-fluid fraction and the mutual-friction coefficients. Our extensive study of the 3D-HVBK shell model shows that the multiscaling behavior of the velocity structure functions in superfluid turbulence is more complicated than it is in fluid turbulence.
Progress in wall turbulence 2 understanding and modelling
Jimenez, Javier; Marusic, Ivan
2016-01-01
This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.
Modelling of structural effects on chemical reactions in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Directory of Open Access Journals (Sweden)
G. Reffray
2014-08-01
Full Text Available Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003 are able to correctly reproduce the classical test of Kato and Phillips (1969 under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011 at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between −2 and 2 °C during the stratified period (June to October. However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA. This package is a good starting point for further investigation of vertical processes.
Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles
Energy Technology Data Exchange (ETDEWEB)
Bellakhal, Ghazi
2005-03-15
The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)
Turbulence modeling in three-dimensional stenosed arterial bifurcations.
Banks, J; Bressloff, N W
2007-02-01
Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k-omega model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k-epsilon model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k-epsilon model, whereas the velocity profiles in the transitional k-omega model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k-omega model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity.
A streamwise constant model of turbulence in plane Couette flow
Gayme, D. F.; McKeon, B. J.; Papachristodoulou, A.; Bamieh, B; Doyle, J. C.
2010-01-01
Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behaviour of fully turbulent plane Couette flow using a streamwise constant projection of the Navier–Stokes equations. This results in a two-dimensional three-velocity-component (2D/3C) model. We first use a steady-state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity p...
Performance of turbulence models for transonic flows in a diffuser
Liu, Yangwei; Wu, Jianuo; Lu, Lipeng
2016-09-01
Eight turbulence models frequently used in aerodynamics have been employed in the detailed numerical investigations for transonic flows in the Sajben diffuser, to assess the predictive capabilities of the turbulence models for shock wave/turbulent boundary layer interactions (SWTBLI) in internal flows. The eight turbulence models include: the Spalart-Allmaras model, the standard k - 𝜀 model, the RNG k - 𝜀 model, the realizable k - 𝜀 model, the standard k - ω model, the SST k - ω model, the v2¯ - f model and the Reynolds stress model. The performance of the different turbulence models adopted has been systematically assessed by comparing the numerical results with the available experimental data. The comparisons show that the predictive performance becomes worse as the shock wave becomes stronger. The v2¯ - f model and the SST k - ω model perform much better than other models, and the SST k - ω model predicts a little better than the v2¯ - f model for pressure on walls and velocity profile, whereas the v2¯ - f model predicts a little better than the SST k - ω model for separation location, reattachment location and separation length for strong shock case.
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C
2012-10-12
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.
Diffusive dynamics and stochastic models of turbulent axisymmetric wakes
Rigas, G; Brackston, R D; Morrison, J F
2015-01-01
A modelling methodology to reproduce the experimental measurements of a turbulent flow under the presence of symmetry is presented. The flow is a three-dimensional wake generated by an axisymmetric body. We show that the dynamics of the turbulent wake- flow can be assimilated by a nonlinear two-dimensional Langevin equation, the deterministic part of which accounts for the broken symmetries which occur at the laminar and transitional regimes at low Reynolds numbers and the stochastic part of which accounts for the turbulent fluctuations. Comparison between theoretical and experimental results allows the extraction of the model parameters.
Steady states in Leith's model of turbulence
Grebenev, V. N.; Griffin, A.; Medvedev, S. B.; Nazarenko, S. V.
2016-09-01
We present a comprehensive study and full classification of the stationary solutions in Leith’s model of turbulence with a generalised viscosity. Three typical types of boundary value problems are considered: Problems 1 and 2 with a finite positive value of the spectrum at the left (right) and zero at the right (left) boundaries of a wave number range, and Problem 3 with finite positive values of the spectrum at both boundaries. Settings of these problems and analysis of existence of their solutions are based on a phase-space analysis of orbits of the underlying dynamical system. One of the two fixed points of the underlying dynamical system is found to correspond to a ‘sharp front’ where the energy flux and the spectrum vanish at the same wave number. The other fixed point corresponds to the only exact power-law solution—the so-called dissipative scaling solution. The roles of the Kolmogorov, dissipative and thermodynamic scaling, as well as of sharp front solutions, are discussed.
Second order closure modeling of turbulent buoyant wall plumes
Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing
1992-01-01
Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.
Turbulence Model Discovery with Data-Driven Learning and Optimization
King, Ryan; Hamlington, Peter
2016-11-01
Data-driven techniques have emerged as a useful tool for model development in applications where first-principles approaches are intractable. In this talk, data-driven multi-task learning techniques are used to discover flow-specific optimal turbulence closure models. We use the recently introduced autonomic closure technique to pose an online supervised learning problem created by test filtering turbulent flows in the self-similar inertial range. The autonomic closure is modified to solve the learning problem for all stress components simultaneously with multi-task learning techniques. The closure is further augmented with a feature extraction step that learns a set of orthogonal modes that are optimal at predicting the turbulent stresses. We demonstrate that these modes can be severely truncated to enable drastic reductions in computational costs without compromising the model accuracy. Furthermore, we discuss the potential universality of the extracted features and implications for reduced order modeling of other turbulent flows.
A new energy transfer model for turbulent free shear flow
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Evolution of a turbulent pycnocline within the framework of a modified model of turbulent closure
Soustova, Irina; Troitskaya, Yuliya; Ezhova, Ekaterina; Rybushkina, Galina; Zilitinkevich, Sergej
2015-04-01
The formation and evolution of a turbulent pycnocline generated by internal wave breaking were investigated within the framework of a modified model of turbulent closure. Numerical computation based on closed Reynolds equations using closure hypotheses obtained in the framework of the kinetic approach showed a strong dependence of vertical distributions corresponding to hydrodynamic parameters on the anisotropy of turbulence and speed of pycnocline motion. Strongly anisotropic motion is characterized by the presence of stepwise variations in the vertical profiles of buoyancy frequency, turbulence scale, and kinetic and potential energy as compared to the known analytical solution obtained earlier without allowance for a non-steady-state term in the kinetic energy balance equation. In the case of a weaker anisotropy, no sharp changes are observed in spatial and energy characteristics of turbulence and the qualitative shape of their profiles in the pycnolcline region coincides with the known analytical dependences. The obtained result is important for development of numerical climatic models of the interaction between the atmosphere and the ocean. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 15-45-02580).
Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion
2016-07-20
PDF methods have proven useful in modelling turbulent combustion, primarily because convection and complex reactions can be treated without the need...modelled transport equation fir the joint PDF of velocity, turbulent frequency and composition (species mass fractions and enthalpy ). The advantages of...PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical
Elastic turbulence in a shell model of polymer solution
Ray, Samriddhi Sankar
2016-01-01
We show that, at low inertia and large elasticity, shell models of viscoelastic fluids develop a chaotic behaviour with properties similar to those of elastic turbulence. The low dimensionality of shell models allows us to explore a wide range both in polymer concentration and in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.
Energy Technology Data Exchange (ETDEWEB)
Markus Meier, H.E. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden). Rossby Centre
2000-09-01
As mixing plays a dominant role for the physics of an estuary like the Baltic Sea (seasonal heat storage, mixing in channels, deep water mixing), different mixing parameterizations for use in 3D Baltic Sea models are discussed and compared. For this purpose two different OGCMs of the Baltic Sea are utilized. Within the Swedish regional climate modeling program, SWECLIM, a 3D coupled ice-ocean model for the Baltic Sea has been coupled with an improved version of the two-equation k - {epsilon} turbulence model with corrected dissipation term, flux boundary conditions to include the effect of a turbulence enhanced layer due to breaking surface gravity waves and a parameterization for breaking internal waves. Results of multi-year simulations are compared with observations. The seasonal thermocline is simulated satisfactory and erosion of the halocline is avoided. Unsolved problems are discussed. To replace the controversial equation for dissipation the performance of a hierarchy of k-models has been tested and compared with the k - {epsilon} model. In addition, it is shown that the results of the mixing parameterization depend very much on the choice of the ocean model. Finally, the impact of two mixing parameterizations on Baltic Sea climate is investigated. In this case the sensitivity of mean SST, vertical temperature and salinity profiles, ice season and seasonal cycle of heat fluxes is quite large.
Efficiency of a statistical transport model for turbulent particle dispersion
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.
Turbulence Modeling for the Simulation of Transition in Wall Shear Flows
Crawford, Michael E.
2007-01-01
Our research involves study of the behavior of k-epsilon turbulence models for simulation of bypass-level transition over flat surfaces and turbine blades. One facet of the research has been to assess the performance of a multitude of k-epsilon models in what we call "natural transition", i.e. no modifications to the k-e models. The study has been to ascertain what features in the dynamics of the model affect the start and end of the transition. Some of the findings are in keeping with those reported by others (e.g. ERCOFTAC). A second facet of the research has been to develop and benchmark a new multi-time scale k-epsilon model (MTS) for use in simulating bypass-level transition. This model has certain features of the published MTS models by Hanjalic, Launder, and Schiestel, and by Kim and his coworkers. The major new feature of our MTS model is that it can be used to compute wall shear flows as a low-turbulence Reynolds number type of model, i.e. there is no required partition with patching a one-equation k model in the near-wall region to a two-equation k-epsilon model in the outer part of the flow. Our MTS model has been studied extensively to understand its dynamics in predicting the onset of transition and the end-stage of the transition. Results to date indicate that it far superior to the standard unmodified k-epsilon models. The effects of protracted pressure gradients on the model behavior are currently being investigated.
Computational fluid dynamics investigation of turbulent separated ...
African Journals Online (AJOL)
user
This study discusses about numerical investigation of the turbulent flow (Re ... systems, while the 90° diffuser or sudden expansion is normally found in piping junctions or weld ribs . ... According to the widely used two-equation k−ε model, t.
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type o
Model of strong stationary vortex turbulence in space plasmas
Directory of Open Access Journals (Sweden)
G. D. Aburjania
2009-01-01
Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k^{−8/3} is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Energy Technology Data Exchange (ETDEWEB)
Sun, Guangyuan, E-mail: gysungrad@gmail.com; Lignell, David O., E-mail: davidlignell@byu.edu [Chemical Engineering Department, Brigham Young University, Provo, Utah 84602 (United States); Hewson, John C., E-mail: jchewso@sandia.gov [Fire Science and Technology Department, Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Gin, Craig R., E-mail: cgin@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843 (United States)
2014-10-15
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter β{sub p}, and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
Turbulent Boundary Layers - Experiments, Theory and Modelling
1980-01-01
DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD ) AGARD Conference Proceedings No.271 TURBULENT BOUNDARY LAYERS - EXPERIMENTS, THEORY AND...photographs of Figures 21 and 22. In this case, the photographs are taken with a single flash strobe and thus yield the instantaneous positions of the
Compressible Turbulent Channel Flows: DNS Results and Modeling
Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)
1994-01-01
The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.
Modelling and prediction of non-stationary optical turbulence behaviour
Doelman, Niek; Osborn, James
2016-07-01
There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument installed at the Isaac Newton Telescope at La Palma. Based on an estimate of the power spectral density function, a low order stochastic model to capture the temporal variability of r0 is proposed. The impact of this type of stochastic model on the prediction of the coherence length behaviour is shown.
Model Polyelectrolytes in Turbulent Couette Flow
Price, Brian; Hoagland, David A.
1997-03-01
Isolated polymer chains in strong flow are deformed significantly from their equilibrium conformations, imparting a pronounced change in the local velocity field. Turbulent drag reduction by dilute polymer solutions is an important example. The onset of drag reduction appears dependent on a characteristic shear stress at the wall τw for a given polymer. (Virk, P.S. AIChE Journal 21 1975) Length and time scales formed from τw and solvent kinematic viscosity provide different scalings of the onset with chain length. It is likely that length polydispersity could be responsible for the disparity among the previously reported results concerning the correct onset condition. We have employed preparative gel electrophoresis to produce samples of very low polydispersity to determine the onset scaling of drag reduction in turbulent couette flow. The same technique provides information about chain scission in turburlence, yielding an indirect indication of chain conformation.
Quantification of Modelling Uncertainties in Turbulent Flow Simulations
Edeling, W.N.
2015-01-01
The goal of this thesis is to make predictive simulations with Reynolds-Averaged Navier-Stokes (RANS) turbulence models, i.e. simulations with a systematic treatment of model and data uncertainties and their propagation through a computational model to produce predictions of quantities of interest w
Simulating tidal turbines with mesh optimisation and RANS turbulence models
Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.
2015-01-01
A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model present
Quantification of Modelling Uncertainties in Turbulent Flow Simulations
Edeling, W.N.
2015-01-01
The goal of this thesis is to make predictive simulations with Reynolds-Averaged Navier-Stokes (RANS) turbulence models, i.e. simulations with a systematic treatment of model and data uncertainties and their propagation through a computational model to produce predictions of quantities of interest
Optical Turbulence Characterization by WRF model above Ali, Tibet
Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia
2015-04-01
Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.
Modelling [CI] emission from turbulent molecular clouds
Glover, Simon C O; Micic, Milica; Molina, Faviola
2014-01-01
We use detailed numerical simulations of the coupled chemical, thermal and dynamical evolution of the gas in a turbulent molecular cloud to study the usefulness of the [CI] 609 micron and 370 micron fine structure emission lines as tracers of cloud structure. Emission from these lines is observed throughout molecular clouds, and yet the question of what we can learn from them about the physics of the clouds remains largely unexplored. We show that the fact that [CI] emission is widespread within molecular clouds is a simple consequence of the fact that the clouds are dominated by turbulent motions. Turbulence creates large density inhomogeneities, allowing radiation to penetrate deeply into the clouds. As a result, [CI] emitting gas is found throughout the cloud, rather than being concentrated at the edges. We examine how well we can use [CI] emission to trace the structure of the cloud, and show that the integrated intensity of the 609 micron line traces column density accurately over a wide range of visual ...
Mathematical and Numerical Modeling of Turbulent Flows
Directory of Open Access Journals (Sweden)
João M. Vedovoto
2015-06-01
Full Text Available The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solu- tions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan.
Turbulence radiation interaction modeling in hydrocarbon pool fire simulations
Energy Technology Data Exchange (ETDEWEB)
BURNS,SHAWN P.
1999-12-01
The importance of turbulent fluctuations in temperature and species concentration in thermal radiation transport modeling for combustion applications is well accepted by the radiation transport and combustion communities. A number of experimental and theoretical studies over the last twenty years have shown that fluctuations in the temperature and species concentrations may increase the effective emittance of a turbulent flame by as much as 50% to 300% over the value that would be expected from the mean temperatures and concentrations. With the possibility of such a large effect on the principal mode of heat transfer from a fire, it is extremely important for fire modeling efforts that turbulence radiation interaction be well characterized and possible modeling approaches understood. Toward this end, this report seeks to accomplish three goals. First, the principal turbulence radiation interaction closure terms are defined. Second, an order of magnitude analysis is performed to understand the relative importance of the various closure terms. Finally, the state of the art in turbulence radiation interaction closure modeling is reviewed. Hydrocarbon pool fire applications are of particular interest in this report and this is the perspective from which this review proceeds. Experimental and theoretical analysis suggests that, for this type of heavily sooting flame, the turbulent radiation interaction effect is dominated by the nonlinear dependence of the Planck function on the temperature. Additional effects due to the correlation between turbulent fluctuations in the absorptivity and temperature may be small relative to the Planck function effect for heavily sooting flames. This observation is drawn from a number of experimental and theoretical discussions. Nevertheless, additional analysis and data is needed to validate this observation for heavily sooting buoyancy dominated plumes.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Effects of Freestream Turbulence in a Model Wind Turbine Wake
Directory of Open Access Journals (Sweden)
Yaqing Jin
2016-10-01
Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .
A Model for the Saturation of the Turbulent Dynamo
Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Klessen, Ralf S
2015-01-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e. on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate the magnetic energy in the linear regime, the saturation level, i.e. the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present the first scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover timescale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales...
A minimal model of self-sustaining turbulence
Energy Technology Data Exchange (ETDEWEB)
Thomas, Vaughan L.; Gayme, Dennice F. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Farrell, Brian F. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Ioannou, Petros J. [Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)
2015-10-15
In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that are consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.
MODELLING AND COMPUTATION OF UNSTEADY TURBULENT CAVITATION FLOWS
Institute of Scientific and Technical Information of China (English)
CHEN Ying; LU Chuan-jing; WU Lei
2006-01-01
Unsteady turbulent cavitation flows in a Venturi-type section and around a NACA0012 hydrofoil were simulated by two-dimensional computations of viscous compressible turbulent flow model.The Venturi-type section flow proved numerical precision and reliability of the physical model and the code, and further the cavitation around NACA0012 foil was investigated.These flows were calculated with a code of SIMPLE-type finite volume scheme, associated with a barotropic vapor/liquid state law which strongly links density and pressure variation.To simulate turbulent flows, modified RNG k- ε model was used.Numerical results obtained in the Venturi-type flow simulated periodic shedding of sheet cavity and was compared with experiment data, and the results of the NACA0012 foil show quasi-periodic vortex cavitation phenomenon.Results obtained concerning cavity shape and unsteady behavior, void ratio, and velocity field were found in good agreement with experiment ones.
Numerical modeling of turbulent combustion and flame spread
Energy Technology Data Exchange (ETDEWEB)
Yan Zhenghua
1999-01-01
Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall
Energy Technology Data Exchange (ETDEWEB)
Hori, M.; Yata, J. [Kyoto Inst. of Technology, Kyoto (Japan); Minamiyama, T. [Fukuyama University, Hiroshima (Japan)
1996-04-25
The effects of free stream turbulence on turbulent boundary layer were calculated using a {kappa}-{epsilon} two-equation model. The calculations were performed with respect to velocity profiles on a flat plate wall shear stress turbulence energy integral length scales of turbulence and decay of free stream turbulence and the results were compared with experimental results. The energy of free stream turbulence and the dissipation values at the leading edge of flat plate were used, as the initial conditions for calculation. These initial values of dissipation were determined from the integral length scales of free stream turbulence at the leading edge. The calculated wall shear stress increased with the free stream turbulence and integral length scales of turbulence. The velocity profiles and turbulence energy agreed well with the experimental results and the effects of free stream turbulence on the wall shear stress agreed fairly well with those observed in experiments. 15 refs., 10 figs.
Conditional moment closure modeling of a lifted turbulent flame
Institute of Scientific and Technical Information of China (English)
JIANG Yong; QIU Rong; ZHOU Wei; FAN Weicheng
2005-01-01
Results obtained using conditional moment closure (CMC) approach to modeling a lifted turbulent hydrogen flame are presented. Predictions are based on k-ε-g turbulent closure, a 23-step chemical mechanism and a radially averaged CMC model. The objectives are to find out how radially averaged CMC can represent a lifted flame and which mechanism of flame stabilization can be described by this modeling method. As a first stage of the study of multi-dimensional CMC for large eddy simulation (LES) of the lifted turbulent flames, the effect of turbulence upon combustion is included, the high-order compact finite- difference scheme (Padé) is used and previously developed characteristic-wave-based boundary conditions for multi- component perfect gas mixtures are here extended to their conditional forms but the heat release due to combustion is not part of the turbulent calculations. Attention is focused to the lift-off region of the flame which is commonly considered as a cold flow. Comparison with published experimental data and the computational results shows that the lift-off height can be accurately determined, and Favre averaged radial profiles of temperature and species mole fractions are also reasonably well predicted. Some of the current flame stabilization mechanisms are discussed.
Turbulence Modelling of A Lock-Release Oil Slick
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The motion of a lock-release oil slick as an immiscible two-fluid gravity current is numerically studied by a finite difference algorithm based on the volume of fluid (VOF) method for the basic formulation and a rigid cover approximation for the open free surface. Detailed numerical simulation with careful model validation reveals the existence of turbulence and the adaptability of the renormalization group (RNG) k-ε model for the Reynolds-stress closure in the case of the oil slick. The time evolution and spatial distribution of the mean velocity, turbulence kinetic energy and turbulent viscosity are characterized. The mechanism for the transition from an initial gravity-inertial phase to a second gravity-viscous phase is shown to be the relaminarization effect of the initially highly turbulent slick. Compared well with known theoretical analyses and experimental observations, the turbulence modeling results in self-similar spreading laws in terms of the fact that the oil slick passes through the initial gravity-inertial phase with the front speed decreasing as t-1/3 (where t is the time measured from lock release) and the second gravity-viscous phase with the front speed decreasing as t-5/8.
Turbulence Modeling of Flows with Extensive Crossflow Separation
Directory of Open Access Journals (Sweden)
Argyris G. Panaras
2015-07-01
Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.
A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation
Davidovits, Seth; Fisch, Nathaniel J.
2017-04-01
The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with the compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between compressed turbulence and decaying turbulence.
A lower bound on adiabatic heating of compressed turbulence for simulation and model validation
Davidovits, Seth
2016-01-01
The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some simulations and models of compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between compressed turbulence and decaying turbulence.
Development of a Complete Model of Turbulence Revisited.
1983-12-01
model have been those of Bush and Fendell (Ref 14 - for the mixing-length model) and Wilcox and Traci. In neither case were effects of pressure gradient...Second Edition (1976). - - - ---. ~A 14. Bush, .B. and Fendell , F.E., "Asymptotic Analysis of Turbulent Channel and Boundary-Layer Flow," JFM, Vol 56
Second Order Model for Strongly Sheared Compressible Turbulence
Directory of Open Access Journals (Sweden)
marzougui hamed
2015-01-01
Full Text Available In this paper, we propose a model designed to describe a strongly sheared compressible homogeneous turbulent flows. Such flows are far from equilibrium and are well represented by the A3 and A4 cases of the DNS of Sarkar. Speziale and Xu developed a relaxation model in incompressible turbulence able to take into account significant departures from equilibrium. In a previous paper, Radhia et al. proposed a relaxation model similar to that of Speziale and Xu .This model is based on an algebraic representation of the Reynolds stress tensor, much simpler than that of Speziale and Xu and it gave a good result for rapid axisymetric contraction. In this work, we propose to extend the Radhia et al’s. model to compressible homogenous turbulence. This model is based on the pressure-strain model of Launder et al., where we incorporate turbulent Mach number in order to take into account compressibility effects. To assess this model, two numerical simulations were performed which are similar to the cases A3 and A4 of the DNS of Sarkar.
A new turbulence-based model for sand transport
Mayaud, Jerome; Wiggs, Giles; Bailey, Richard
2016-04-01
Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical
Tsuji, Takuya; Yokomine, Takehiko; Shimizu, Akihiko
2002-11-01
We have been engaged in the development of multi-scale adaptive simulation technique for incompressible turbulent flow. This is designed as that important scale components in the flow field are detected automatically by lifting wavelet and solved selectively. In conventional incompressible scheme, it is very common to solve Poisson equation of pressure to meet the divergence free constraints of incompressible flow. It may be not impossible to solve the Poisson eq. in the adaptive way, but this is very troublesome because it requires generation of control volume at each time step. We gave an eye on weakly compressible model proposed by Bao(2001). This model was derived from zero Mach limit asymptotic analysis of compressible Navier-Stokes eq. and does not need to solve the Poisson eq. at all. But it is relatively new and it requires demonstration study before the combination with the adaptation by wavelet. In present study, 2-D and 3-D Backstep flow were selected as test problems and applicability to turbulent flow is verified in detail. Besides, combination of adaptation by wavelet with weakly compressible model towards the adaptive turbulence simulation is discussed.
Modelling turbulent stellar convection zones: sub-grid scales effects
Strugarek, A; Brun, A S; Charbonneau, P; Mathis, S; Smolarkiewicz, P K
2016-01-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We deriv...
Subgrid Modeling of AGN-Driven Turbulence in Galaxy Clusters
Scannapieco, Evan
2008-01-01
Hot, underdense bubbles powered by active galactic nuclei (AGN) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive-mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure-hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus bubbles are transformed into hot clouds of mixed material as they move outwards in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive ``mushroo...
A Nonlinear k-ε Turbulence Model Applicable to High Pressure Gradient and Large Curvature Flow
Directory of Open Access Journals (Sweden)
Xiyao Gu
2014-01-01
Full Text Available Most of the RANS turbulence models solve the Reynolds stress by linear hypothesis with isotropic model. They can not capture all kinds of vortexes in the turbomachineries. In this paper, an improved nonlinear k-ε turbulence model is proposed, which is modified from the RNG k-ε turbulence model and Wilcox's k-ω turbulence model. The Reynolds stresses are solved by nonlinear methods. The nonlinear k-ε turbulence model can calculate the near wall region without the use of wall functions. The improved nonlinear k-ε turbulence model is used to simulate the flow field in a curved rectangular duct. The results based on the improved nonlinear k-ε turbulence model agree well with the experimental results. The calculation results prove that the nonlinear k-ε turbulence model is available for high pressure gradient flows and large curvature flows, and it can be used to capture complex vortexes in a turbomachinery.
A dual-scale turbulence model for gas-liquid bubbly flows☆
Institute of Scientific and Technical Information of China (English)
Xiaoping Guan; Zhaoqi Li; Lijun Wang⁎; Xi Li; Youwei Cheng
2015-01-01
A dual-scale turbulence model is applied to simulate cocurrent upward gas–liquid bubbly flows and validated with available experimental data. In the model, liquid phase turbulence is split into shear-induced and bubble-induced turbulence. Single-phase standard k-εmodel is used to compute shear-induced turbulence and another transport equation is added to model bubble-induced turbulence. In the latter transport equation, energy loss due to interface drag is the production term, and the characteristic length of bubble-induced turbulence, simply the bubble diameter in this work, is introduced to model the dissipation term. The simulated results agree well with experimental data of the test cases and it is demonstrated that the proposed dual-scale turbulence model outperforms other models. Analysis of the predicted turbulence shows that the main part of turbulent kinetic en-ergy is the bubble-induced one while the shear-induced turbulent viscosity predominates within turbulent vis-cosity, especially at the pipe center. The underlying reason is the apparently different scales for the two kinds of turbulence production mechanisms:the shear-induced turbulence is on the scale of the whole pipe while the bubble-induced turbulence is on the scale of bubble diameter. Therefore, the model reflects the multi-scale phe-nomenon involved in gas–liquid bubbly flows.
Constructive modelling of structural turbulence: computational experiment
Energy Technology Data Exchange (ETDEWEB)
Belotserkovskii, O M; Oparin, A M; Troshkin, O V [Institute for Computer Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya st., 19/18, Moscow, 123056 (Russian Federation); Chechetkin, V M [Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Miusskaya sq., 4, Moscow, 125047 (Russian Federation)], E-mail: o.bel@icad.org.ru, E-mail: a.oparin@icad.org.ru, E-mail: troshkin@icad.org.ru, E-mail: chech@gin@keldysh.ru
2008-12-15
Constructively, the analysis of the phenomenon of turbulence must and can be performed through direct numerical simulations of mechanics supposed to be inherent to secondary flows. This one reveals itself through such instances as large vortices, structural instabilities, vortex cascades and principal modes discussed in this paper. Like fragments of a puzzle, they speak of a motion ordered with its own nuts and bolts, however chaotic it appears at first sight. This opens an opportunity for a multi-oriented approach of which a prime ideology seems to be a rational combination of grid, spectral and statistical methods. An attempt is made to bring together the above instances and produce an alternative point of view on the phenomenon in question when based on the main laws of conservation.
Modelling of Turbulent Nonpremixed CH4／H2 Flame Using Second-Moment Turbulence Closure Models
Institute of Scientific and Technical Information of China (English)
李国岫
2005-01-01
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.
Modeling H2 formation in the turbulent ISM: Solenoidal versus compressive turbulent forcing
Milosavljevic, Milica; Federrath, Christoph; Klessen, Ralf S
2011-01-01
We present results from high-resolution three-dimensional simulations of the turbulent interstellar medium that study the influence of the nature of the turbulence on the formation of molecular hydrogen. We have examined both solenoidal (divergence-free) and compressive (curl-free) turbulent driving, and show that compressive driving leads to faster H2 formation, owing to the higher peak densities produced in the gas. The difference in the H2 formation rate can be as much as an order of magnitude at early times, but declines at later times as the highest density regions become fully molecular and stop contributing to the total H2 formation rate. We have also used our results to test a simple prescription suggested by Gnedin et al. (2009) for modeling the influence of unresolved density fluctuations on the H2 formation rate in large-scale simulations of the ISM. We find that this approach works well when the H2 fraction is small, but breaks down once the highest density gas becomes fully molecular.
A Gas-Kinetic Scheme For The Simulation Of Compressible Turbulent Flows
Righi, Marcello
2013-01-01
A gas-kinetic scheme for the continuum regime is applied to the simulation of turbu- lent compressible flow, by replacing the molecular relaxation time with a turbulent relaxation time in the BGK model. The turbulence dynamics is modelled on the basis of a standard, linear two-equation turbulence model. The hydrodynamic limit of the resulting turbulence model is linear in smooth flow and non-linear in the presence of stronger flow gradients. The non-linear correction terms in the numerical flux are weighed as a function of "rarefaction" - referred to turbulence dynamics and not to molecular dynamics, i.e. measured by the ratio of turbulence to mean flow scales of motion. Even though no assumptions on the nature of the turbulence have been made and a linear two-equation turbulence model is used, the turbulence gas-kinetic scheme seems able to correct the turbulent stress tensor in an effective way; on the basis of a number of turbulence modelling benchmark flow cases, characterized by strong shock - boundary l...
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised.Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
New DNS and modeling results for turbulent pipe flow
Johansson, Arne; El Khoury, George; Grundestam, Olof; Schlatter, Philipp; Brethouwer, Geert; Linne Flow Centre Team
2013-11-01
The near-wall region of turbulent pipe and channel flows (as well as zero-pressure gradient boundary layers) have been shown to exhibit a very high degree of similarity in terms of all statistical moments and many other features, while even the mean velocity profile in the two cases exhibits significant differences between in the outer region. The wake part of the profile, i.e. the deviation from the log-law, in the outer region is of substantially larger amplitude in pipe flow as compared to channel flow (although weaker than in boundary layer flow). This intriguing feature has been well known but has no simple explanation. Model predictions typically give identical results for the two flows. We have analyzed a new set of DNS for pipe and channel flows (el Khoury et al. 2013, Flow, Turbulence and Combustion) for friction Reynolds numbers up to 1000 and made comparing calculations with differential Reynolds stress models (DRSM). We have strong indications that the key factor behind the difference in mean velocity in the outer region can be coupled to differences in the turbulent diffusion in this region. This is also supported by DRSM results, where interesting differences are seen depending on the sophistication of modeling the turbulent diffusion coefficient.
The study of PDF turbulence models in combustion
Hsu, Andrew T.
1991-01-01
In combustion computations, it is known that the predictions of chemical reaction rates are poor if conventional turbulence models are used. The probability density function (pdf) method seems to be the only alternative that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus is the only viable approach for more accurate turbulent combustion calculations. The fact that the pdf equation has a very large dimensionality renders finite difference schemes extremely demanding on computer memories and thus impractical. A logical alternative is the Monte Carlo scheme. Since CFD has a certain maturity as well as acceptance, it seems that the use of a combined CFD and Monte Carlo scheme is more beneficial. Therefore, a scheme is chosen that uses a conventional CFD flow solver in calculating the flow field properties such as velocity, pressure, etc., while the chemical reaction part is solved using a Monte Carlo scheme. The discharge of a heated turbulent plane jet into quiescent air was studied. Experimental data for this problem shows that when the temperature difference between the jet and the surrounding air is small, buoyancy effect can be neglected and the temperature can be treated as a passive scalar. The fact that jet flows have a self-similar solution lends convenience in the modeling study. Futhermore, the existence of experimental data for turbulent shear stress and temperature variance make the case ideal for the testing of pdf models wherein these values can be directly evaluated.
Modeling of Fine-Particle Formation in Turbulent Flames
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Development of a recursion RNG-based turbulence model
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
Refined Turbulence Modeling for Swirl Velocity in Turbomachinery Seals
Directory of Open Access Journals (Sweden)
Namhyo Kim
2003-01-01
Full Text Available A generalized new form of the rotation-sensitive source term coefficient previously proposed by Bardina and colleagues as an extension of the standard k-ε turbulence model was developed. The proposal made by Bardina and colleagues focused on rotating flows without significant turbulence generation, and the result was a negative-valued constant coefficient. The new functional form developed here for the coefficient has global as well as local dependence. The new model predictions of laser Doppler anemometry measurements of swirling flows in labyrinth seals were compared with the swirl distribution measurements and with the standard k-ε model (i.e., no rotation source term predictions. It was found that for the labyrinth seal cases for which detailed measurements are available, the standard k-ε model gives unsatisfactory predictions, whereas the new model gives significantly improved predictions.
Initial Conditions and Modeling for Shock Driven Turbulence
Grinstein, Fernando
2016-11-01
We focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions. Beyond complex multi-scale resolution of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics which can be captured by LES, but not by URANS based on equilibrium turbulence assumptions and single-point-closure modeling. Such URANS is frequently preferred on the engineering end of computation capabilities for full-scale configurations - and with reduced 1D/2D dimensionality being also a common aspect. With suitable initialization around each transition - e.g., reshock, URANS can be used to simulate the subsequent near-equilibrium weakly turbulent flow. We demonstrate 3D state-of-the-art URANS performance in one such flow regime. We simulate the CEA planar shock-tube experiments by Poggi et al. (1998) with an ILES strategy. Laboratory turbulence and mixing data are used to benchmark ILES. In turn, the ILES generated data is used to initialize and as reference to assess state-of-the-art 3D URANS. We find that by prescribing physics-based 3D initial conditions and allowing for 3D flow convection with just enough resolution, the additionally computed dissipation in 3D URANS effectively blends with the modeled dissipation to yield significantly improved statistical predictions.
Multiscale Turbulence Models Based on Convected Fluid Microstructure
Holm, Darryl D
2012-01-01
The Euler-Poincar\\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \\emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.
Turbulence modelling of flow fields in thrust chambers
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence.
Nigro, Giuseppina; Carbone, Vincenzo
2010-07-01
The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.
Magnetic moment nonconservation in magnetohydrodynamic turbulence models.
Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-07-01
The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
NUMERICAL SIMULATION FOR THE STEPPED SPILLWAY OVERFLOW WITH TURBULENCE MODEL
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Stepped spillways have increasingly become a very important measure for flood discharge and energy dissipation. Therefore, the velocity, pressure and other characteristics of the flow on the stepped spillway should be known clearly. But so far the study for the stepped spillway overflow is only based on the model test. In this paper, the stepped spillway overflow was simulated by the Reynolds stress turbulence model. The simulation results were analyzed and compared with measured data, which shows they are satisfactory.
An Oriented-Eddy Collision Model for Turbulence Prediction
2007-06-15
kinetic energy, K, and dissipation rate, E). There is also a hypothesized algebraic constitutive equation relating these two scalar quantities and the...elliptic relaxation ( Durbin ) have even expanded the predictive scope of these models. Nevertheless, it is well understood at this time, even by CFD users...Publisher, 1993 P.A. Durbin , Near-wall turbulence closure modeling without ’damping functions’, Theoret. Comput. Fluid Dynamics 3, 1-13, 1991. W. C
A Streamwise Constant Model of Turbulence in Plane Couette Flow
Gayme, D F; Papachristodoulou, A; Bamieh, B; Doyle, J C
2010-01-01
There is a consensus that turbulent flow is characterized by coherent structures. In particular, streamwise and quasi-streamwise elongated structures have been observed in both numerical simulations and experiments. Using this idea the mean behavior of fully turbulent plane Couette flow is modeled using a streamwise constant projection of the Navier Stokes equations. This assumption results in a two dimensional, three velocity component (2D/3C) model. We first use a steady state version of this 2D/3C model to demonstrate that the nonlinear coupling in the equations provides the mathematical mechanisms associated with the shape of the turbulent velocity profile. In simulating the full model we borrow some ideas from robust control and represent uncertainty as well as modeling errors using small amplitude noise forcing. Simulations of the 2D/3C model under small amplitude Gaussian forcing of the cross stream components is compared to DNS data. The results indicate that a streamwise constant projection of the Na...
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Turbulence in edge and core transport barriers: new experimental results and modeling
Tokuzawa, T.
2017-02-01
In this paper, recent progressive studies on experimental analysis and theoretical models for turbulence phenomena around the transport barriers in high-performance magnetic confined fusion plasma are reviewed. The linkage of radial electric fields and turbulence, the importance of radial electric field curvature, and observations of spatiotemporal turbulence structures are described with related theoretical models.
Modelling of pressure-strain correlation in compressible turbulent flow
Institute of Scientific and Technical Information of China (English)
Siyuan Huang; Song Fu
2008-01-01
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation.Later,it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations.Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort,there are still some discrepancies among these recent findings.Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number,Mt.From the comparison of two classes of compressible flow,homogenous shear flow and inhomogeneous shear flow(mixing layer),we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers:the low-Mt,the moderate-Mt and high-Mt regions.In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different.A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate,and may even cause an increase in the growth rate.The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow.The model has been successfully applied to the compressible mixing layers.
Relevant Criteria for Testing the Quality of Turbulence Models
DEFF Research Database (Denmark)
Frandsen, Sten; Jørgensen, Hans E.; Sørensen, John Dalsgaard
2007-01-01
turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...
Detonability of white dwarf plasma: turbulence models at low densities
Fenn, D.; Plewa, T.
2017-06-01
We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.
Mixing Model Performance in Non-Premixed Turbulent Combustion
Pope, Stephen B.; Ren, Zhuyin
2002-11-01
In order to shed light on their qualitative and quantitative performance, three different turbulent mixing models are studied in application to non-premixed turbulent combustion. In previous works, PDF model calculations with detailed kinetics have been shown to agree well with experimental data for non-premixed piloted jet flames. The calculations from two different groups using different descriptions of the chemistry and turbulent mixing are capable of producing the correct levels of local extinction and reignition. The success of these calculations raises several questions, since it is not clear that the mixing models used contain an adequate description of the processes involved. To address these questions, three mixing models (IEM, modified Curl and EMST) are applied to a partially-stirred reactor burning hydrogen in air. The parameters varied are the residence time and the mixing time scale. For small relative values of the mixing time scale (approaching the perfectly-stirred limit) the models yield the same extinction behavior. But for larger values, the behavior is distictly different, with EMST being must resistant to extinction.
RANS turbulence model form uncertainty quantification for wind engineering flows
Gorle, Catherine; Zeoli, Stephanie; Bricteux, Laurent
2016-11-01
Reynolds-averaged Navier-Stokes simulations with linear eddy-viscosity turbulence models are commonly used for modeling wind engineering flows, but the use of the results for critical design decisions is hindered by the limited capability of the models to correctly predict bluff body flows. A turbulence model form uncertainty quantification (UQ) method to define confidence intervals for the results could remove this limitation, and promising results were obtained in a previous study of the flow in downtown Oklahoma City. The objective of the present study is to further investigate the validity of these results by considering the simplified test case of the flow around a wall-mounted cube. DNS data is used to determine: 1. whether the marker, which identifies regions that deviate from parallel shear flow, is a good indicator for the regions where the turbulence model fails, and 2. which Reynolds stress perturbations, in terms of the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor, can capture the uncertainty in the flow field. A comparison of confidence intervals obtained with the UQ method and the DNS solution indicates that the uncertainty in the velocity field can be captured correctly in a large portion of the flow field.
Modelling wind turbine wakes using the turbulent entrainment hypothesis
Luzzatto-Fegiz, Paolo
2015-11-01
Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. Jensen (1983; see also Katić et al. 1986) developed a model assuming that the wake radius grows linearly with distance x, approximating the velocity deficit with a top-hat profile. While this model has been widely implemented in the wind energy community, recently Bastankhah & Porté-Agel (2014) showed that it does not conserve momentum. They proposed a momentum-conserving theory, which assumed a Gaussian velocity deficit and retained the linear-spreading assumption, significantly improving agreement with experiments and LES. While the linear spreading assumption facilitates conceptual modeling, it requires empirical estimates of the spreading rate, and does not readily enable generalizations to other turbine designs. Furthermore, field measurements show sub-linear wake growth with x in the far-wake, consistently with results from fundamental turbulence studies. We develop a model by relying on a simple and general turbulence parameterization, namely the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. Without assuming similarity, we derive an analytical solution for a circular turbine wake, which predicts a far-wake radius increasing with x 1 / 3, and is consistent with field measurements and fundamental turbulence studies. Finally, we discuss developments accounting for effects of stratification, as well as generalizations to other turbine designs.
Sonic eddy model of the turbulent boundary layer
Breidenthal, Robert; Dintilhac, Paul; Williams, Owen
2016-11-01
A model of the compressible turbulent boundary layer is proposed. It is based on the notion that turbulent transport by an eddy requires that information of nonsteady events propagates across the diameter of that eddy during one rotation period. The finite acoustic signaling speed then controls the turbulent fluxes. As a consequence, the fluxes are limited by the largest eddies that satisfies this requirement. Therefore "sonic eddies" with a rotational Mach number of about unity would determine the skin friction, which is predicted to vary inversely with Mach number. This sonic eddy model contrasts with conventional models that are based on the energy equation and variations in the density. The effect of density variations is known to be weak in free shear flows, and the sonic eddy model assumes the same for the boundary layer. In general, Mach number plays two simultaneous roles in compressible flow, one related to signaling and the other related to the energy equation. The predictions of the model are compared with experimental data and DNS results from the literature.
Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.
2004-01-01
Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.
Institute of Scientific and Technical Information of China (English)
O.G.Martynenko; V.N.Korovkin
1992-01-01
An algebraic model of turbulence,involving buyancy forces,is used for calculating velocity and temperature fields in plane turbulent vertical jets in a non-homogeneous stagnant medium,A new approach to the solution of the governing system of partial differential differental equations (Continuity ,Conservation of momentum,heat (buoyancy),turbulent kinetic energy,dissipation rate and mean quadratic temperature fluctuation)is suggested which is based on the intrduction of mathematical variables.Comparison is made between the results of the present calculations with experimental and numerical data of ther authors.
Turbulent Chemical Interaction Models in NCC: Comparison
Norris, Andrew T.; Liu, Nan-Suey
2006-01-01
The performance of a scalar PDF hydrogen-air combustion model in predicting a complex reacting flow is evaluated. In addition the results are compared to those obtained by running the same case with the so-called laminar chemistry model and also a new model based on the concept of mapping partially stirred reactor data onto perfectly stirred reactor data. The results show that the scalar PDF model produces significantly different results from the other two models, and at a significantly higher computational cost.
Turbulent lock release gravity current
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The time evolution of a turbulent lock release gravity current, formed by a finite volume ofhomogeneous fluid released instantaneously into another fluid of slightly lower density, was studied byexperimental measurements of the density structure via elaborate digital image processing and by a nu-merical simulation of the flow and mixing using a two-equation turbulence model. The essential fact thatthe gravity current passes through an initial slumping phase in which the current head advances steadilyand a second self-similar phase in which the front velocity decreases like the negative third power of thetime after release is satisfactorily presented by the laboratory observation. An overall entrainment ratioproportional to the distance from the release point is found by the numerical simulation. The renormal-ization group (RNG) k- ε model for Reynolds-stress closure is validated to characterize the gravitycurrent with transitional and localized turbulence.
Numerical Verification of the Weak Turbulent Model for Swell Evolution
Korotkevich, A O; Resio, D; Zakharov, V E
2007-01-01
We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates applicability of the weak turbulent approach. In both cases we observed effects predicted by this theory: frequency downshift, angular spreading and formation of Zakharov-Filonenko spectrum $I_{\\omega} \\sim \\omega^{-4}$. One of the results of our article consists in the fact that physical processes in finite size laboratory wave tanks and in the ocean are quite different, and the results of such laboratory experiments can be applied to modeling of the ocean phenomena with extra care. We also present the estimate on the minimum size of the laboratory installation, allowing to model open ocean surface wave dynami...
A stochastic model of cascades in 2D turbulence
Ditlevsen, Peter D
2012-01-01
The dual cascade of energy and enstrophy in 2D turbulence cannot easily be understood in terms of an analog to the Richardson-Kolmogorov scenario describing the energy cascade in 3D turbulence. The coherent up- and downscale fluxes points to non-locality of interactions in spectral space, and thus the specific spatial structure of the flow could be important. Shell models, which lack spacial structure and have only local interactions in spectral space, indeed fail in reproducing the correct scaling for the inverse cascade of energy. In order to exclude the possibility that non-locality of interactions in spectral space is crucial for the dual cascade, we introduce a stochastic spectral model of the cascades which is local in spectral space and which shows the correct scaling for both the direct enstrophy - and the inverse energy cascade.
Modelling and analysis of turbulent datasets using ARMA processes
Faranda, Davide; Dubrulle, Bérèngere; Daviaud, François; Saint-Michel, Brice; Herbert, Éric; Cortet, Pierre-Philippe
2014-01-01
We introduce a novel way to extract information from turbulent datasets by applying an ARMA statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new intermittency parameter $\\Upsilon$ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von K\\'arm\\'an swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the intermittency parameter is highest in regions where shear layer vortices are present, t...
Assessment of the modulated gradient model in decaying isotropic turbulence
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number.The model uses an estimation of the subgrid-scale(SGS) kinetic energy to model the magnitude of the SGS stress tensor,and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor.Testing is performed for the first case through a comparison betwee...
Modeling quasi-static magnetohydrodynamic turbulence with variable energy flux
Verma, Mahendra K
2014-01-01
In quasi-static MHD, experiments and numerical simulations reveal that the energy spectrum is steeper than Kolmogorov's $k^{-5/3}$ spectrum. To explain this observation, we construct turbulence models based on variable energy flux, which is caused by the Joule dissipation. In the first model, which is applicable to small interaction parameters, the energy spectrum is a power law, but with a spectral exponent steeper than -5/3. In the other limit of large interaction parameters, the second model predicts an exponential energy spectrum and flux. The model predictions are in good agreement with the numerical results.
Review of Four Turbulence Models using Topology
DEFF Research Database (Denmark)
Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær; Pedersen, Jakob Martin;
2003-01-01
for changing from the k-w model to the k-e model throughout the boundary layer does not work when simulating the flow in the Annex 20 test case. We analyze the topologies of the numerical flow fields and show that they agree with experiments as precisely as can be expected from a 2D simulation....
Computational Modeling of Turbulent Spray Combustion
Ma, L.
2016-01-01
The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,
Computational Modeling of Turbulent Spray Combustion
Ma, L.
2016-01-01
The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight, a
Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit
Kopasakis, George (Inventor)
2015-01-01
An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
Realtime capable first principle based modelling of tokamak turbulent transport
Citrin, Jonathan; Breton, Sarah; Felici, Federico; Imbeaux, Frederic; Redondo, Juan; Aniel, Thierry; Artaud, Jean-Francois; Baiocchi, Benedetta; Bourdelle, Clarisse; Camenen, Yann; Garcia, Jeronimo
2015-11-01
Transport in the tokamak core is dominated by turbulence driven by plasma microinstabilities. When calculating turbulent fluxes, maintaining both a first-principle-based model and computational tractability is a strong constraint. We present a pathway to circumvent this constraint by emulating quasilinear gyrokinetic transport code output through a nonlinear regression using multilayer perceptron neural networks. This recovers the original code output, while accelerating the computing time by five orders of magnitude, allowing realtime applications. A proof-of-principle is presented based on the QuaLiKiz quasilinear transport model, using a training set of five input dimensions, relevant for ITG turbulence. The model is implemented in the RAPTOR real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. Progress in generalizing the emulation to include 12 input dimensions is presented. This opens up new possibilities for interpretation of present-day experiments, scenario preparation and open-loop optimization, realtime controller design, realtime discharge supervision, and closed-loop trajectory optimization.
Towards CFD modeling of turbulent pipeline material transportation
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended
Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model
Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad
2016-04-01
We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.
Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence
2016-11-01
During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Numerical experiments for turbulent flows
Directory of Open Access Journals (Sweden)
Příhoda Jaromír
2013-04-01
Full Text Available The aim of the work is to explore the possibilities of modelling transonic flows in the internal and external aerodynamics. Several configurations were analyzed and calculations were performed using both inviscid and viscous models of flow. Viscous turbulent flows have been simulated using either zero equation algebraic Baldwin-Lomax model and two equation k—ω model in its basic version and improved TNT variant. The numerical solution was obtained using Lax-Wendroff scheme in the MacCormack form on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability. Achieved results are compared with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Toutant, A
2006-12-15
The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Turbulence, superrotation, and general circulation models of the atmosphere of Venus
Izakov, M. N.
2016-09-01
The data obtained in space-borne measurements and the findings of turbulence theory show that turbulence, of both small and large scales, has a decisive influence on the structure and dynamics of the atmosphere of Venus. The small-scale turbulence generates anomalous convection, while large-scale turbulence induces the return spectral flux of energy that is the main element of the superrotation mechanism in the atmosphere. Ways for improving the general circulation model of the atmosphere of Venus are proposed.
One-dimensional hydrodynamic model generating turbulent cascade
Matsumoto, Takeshi
2016-01-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analogue (enstrophy) in the inviscid case. With a large-scale forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency and self-similarity in the dynamical system structure.
One-dimensional hydrodynamic model generating a turbulent cascade
Matsumoto, Takeshi; Sakajo, Takashi
2016-05-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.
A Non-Fickian Mixing Model for Stratified Turbulent Flows
2013-09-30
Berselli et al., 2011) and in ocean models ( Marques and Özgökmen, 2012). Our approach in Özgökmen et al. (2012) is perhaps the first truly multi-scale...Transport in Star Eddies: Star eddies have been observed from MODIS SST images in both the summer 2011 and winter 2012 LatMix cruises. I have...published, refereed]. Marques , G.M. and T.M. Özgökmen: On modeling the turbulent exchange in buoyancy-driven fronts. Ocean Modelling [submitted
Energy transfers in shell models for magnetohydrodynamics turbulence.
Lessinnes, Thomas; Carati, Daniele; Verma, Mahendra K
2009-06-01
A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of the energy fluxes.
Validating modelling assumptions of alpha particles in electrostatic turbulence
Wilkie, George; Highcock, Edmund; Dorland, William
2014-01-01
To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.
Weak versus strong wave turbulence in the MMT model
Chibbaro, Sergio; Onorato, Miguel
2016-01-01
Within the spirit of fluid turbulence, we consider the one-dimensional Majda-McLaughlin-Tabak (MMT) model that describes the interactions of nonlinear dispersive waves. We perform a detailed numerical study of the direct energy cascade in the defocusing regime. In particular, we consider a configuration with large-scale forcing and small scale dissipation, and we introduce three non- dimensional parameters: the ratio between nonlinearity and dispersion, {\\epsilon}, and the analogues of the Reynolds number, Re, i.e. the ratio between the nonlinear and dissipative time-scales, both at large and small scales. Our numerical experiments show that (i) in the limit of small {\\epsilon} the spectral slope observed in the statistical steady regime corresponds to the one predicted by the Weak Wave Turbulence (WWT) theory. (ii) As the nonlinearity is increased, the WWT theory breaks down and deviations from its predictions are observed. (iii) It is shown that such departures from the WWT theoretical predictions are accom...
Modeling turbulent stellar convection zones: Sub-grid scales effects
Strugarek, A.; Beaudoin, P.; Brun, A. S.; Charbonneau, P.; Mathis, S.; Smolarkiewicz, P. K.
2016-10-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modeled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.
Instantons in a Lagrangian model of turbulence
Grigorio, Leonardo S; Pereira, Rodrigo M; Chevillard, Laurent
2016-01-01
The role of instantons is investigated in the Lagrangian model for the velocity gradient evolution known as the Recent Fluid Deformation approximation. After recasting the model into the path-integral formalism, the probability distribution function is computed along with the most probable path in the weak noise limit through the saddle-point approximation. Evaluation of the instanton solution is implemented numerically by means of the iteratively Chernykh-Stepanov method. In the case of the longitudinal velocity gradient statistics, due to symmetry reasons, the number of degrees of freedom can be reduced to one, allowing the pdf to be evaluated analytically as well, thereby enabling a prediction of the scaling of the moments as a function of Reynolds number. It is also shown that the instanton solution lies on the Vieillefosse line concerning the RQ-plane. We illustrate how instantons can be unveiled in the stochastic dynamics performing a conditional statistics.
Searching for turbulence models by artificial neural network
Gamahara, Masataka; Hattori, Yuji
2017-05-01
An artificial neural network (ANN) is tested as a tool for finding a new subgrid model of the subgrid-scale (SGS) stress in large-eddy simulation. An ANN is used to establish a functional relation between the grid-scale flow field and the SGS stress without any assumption of the form of function. Data required for training and test of the ANN are provided by direct numerical simulation of a turbulent channel flow. It is shown that an ANN can establish a model similar to the gradient model. The correlation coefficients between the real SGS stress and the output of the ANN are comparable to or larger than similarity models, but smaller than a two-parameter dynamic mixed model. Large-eddy simulations using the trained ANN are also performed. Although ANN models show no advantage over the Smagorinsky model, the results confirm that the ANN is a promising tool for establishing a new subgrid model with further improvement.
A flamelet model for turbulent diffusion combustion in supersonic flow
Institute of Scientific and Technical Information of China (English)
LEE; ChunHian
2010-01-01
In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.
Laminar-turbulent transition on the flying wing model
Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.
2016-10-01
Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.
Uncertainty Quantification and Validation for RANS Turbulence Models
Oliver, Todd; Moser, Robert
2011-11-01
Uncertainty quantification and validation procedures for RANS turbulence models are developed and applied. The procedures used here rely on a Bayesian view of probability. In particular, the uncertainty quantification methodology requires stochastic model development, model calibration, and model comparison, all of which are pursued using tools from Bayesian statistics. Model validation is also pursued in a probabilistic framework. The ideas and processes are demonstrated on a channel flow example. Specifically, a set of RANS models--including Baldwin-Lomax, Spalart-Allmaras, k- ɛ, k- ω, and v2- f--and uncertainty representations are analyzed using DNS data for fully-developed channel flow. Predictions of various quantities of interest and the validity (or invalidity) of the various models for making those predictions will be examined. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
A Quadratic Closure for Compressible Turbulence
Energy Technology Data Exchange (ETDEWEB)
Futterman, J A
2008-09-16
We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
Fang, Chung
2016-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
Gasdynamic Model of Turbulent Combustion in TNT Explosions
Energy Technology Data Exchange (ETDEWEB)
Kuhl, A L; Bell, J B; Beckner, V E
2010-01-08
A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.
On the coalescence-dispersion modeling of turbulent molecular mixing
Givi, Peyman; Kosaly, George
1987-01-01
The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.
PDF modelling and particle-turbulence interaction of turbulent spray flames
Beishuizen, N.A.
2008-01-01
Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and
PDF modelling and particle-turbulence interaction of turbulent spray flames
Beishuizen, N.A.
2008-01-01
Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and optim
Chaotic and regular instantons in helical shell models of turbulence
De Pietro, Massimo; Biferale, Luca
2016-01-01
Shell models of turbulence have a finite-time blowup, i.e. the enstrophy diverges while the single shell velocities stay finite, in the inviscid limit. The signature of this blowup is represented by self-similar instantonic structures traveling coherently through the inertial range. These solutions might influence the energy transfer and the anomalous scaling properties empirically observed for the forced and viscous models. In this paper we present a study of the instantonic solutions for a class of shell-models of turbulence based on the exact decomposition of the Navier-Stokes equations in helical eigenstates. We found that depending on the helical structure of the shell interactions instantons are chaotic or regular. Some instantonic solutions tend to recover mirror symmetry for scales small enough. All models that have anomalous scaling develop regular non-chaotic instantons. Vice-versa, models that have mean field non-anomalous scaling in the stationary regime are those that have chaotic instantons. Fin...
Eliassen, Lene; Andersen, Søren
2016-09-01
The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines.
A theoretical model of turbulent fiber suspension and its application to the channel flow
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.
An analytical model of capped turbulent oscillatory bottom boundary layers
Shimizu, Kenji
2010-03-01
An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.
Spectral Model of Non-Stationary, Inhomogeneous Turbulence
Bragg, Andrew D; Clark, Timothy T
2015-01-01
We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al., Theor. Comp. Fluid. Dyn., vol. 8, pp 1-35, 1996) with Direct Numerical Simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al., Phys. Rev. E, vol. 77, 016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long-times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We present arguments, supported by the DNS data, that a significant cause of the discrepancies is the local approximation to the intrinsically non-local pressure-transport in physical...
Searching for turbulence models by artificial neural network
Gamahara, Masataka
2016-01-01
Artificial neural network (ANN) is tested as a tool for finding a new subgrid model of the subgrid-scale (SGS) stress in large-eddy simulation. ANN is used to establish a functional relation between the grid-scale (GS) flow field and the SGS stress without any assumption of the form of function. Data required for training and test of ANN are provided by direct numerical simulation (DNS) of a turbulent channel flow. It is shown that ANN can establish a model similar to the gradient model. The correlation coefficients between the real SGS stress and the output of ANN are comparable to or larger than similarity models, but smaller than a two-parameter dynamic mixed model.
Energy Dissipation in the Smagorinsky Model of Turbulence
Layton, William
2016-01-01
The Smagorinsky model, unmodified, is often reported to severely overdiffuse flows. Previous estimates of the energy dissipation rate of the Smagorinsky model for shear flows reflect a blow up of model energy dissipation as Re increases. This blow up is consistent with the numerical evidence and leads to the question: Is the over dissipation due to the influence of the turbulent viscosity in boundary layers alone or is its action on small scales generated by the nonlinearity through the cascade also a contributor? This report develops model dissipation estimates for body force driven flow under periodic boundary conditions (and thus only with nonlinearity generated small scales). It is proven that the model's time averaged energy dissipation rate satisfies the same upper bound as for the NSE plus one additional term that vanishes uniformly in the Reynolds number as the Smagorinsky length scale decreases. Since this estimate is consistent with that observed for the NSE, it establishes that, without boundary la...
A fast algorithm for a three-dimensional synthetic model of intermittent turbulence
Malara, Francesco; Nigro, Giuseppina; Sorriso-Valvo, Luca
2016-01-01
Synthetic turbulence models are a useful tool that provide realistic representations of turbulence, necessary to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis tools. Models of 1D and 3D synthetic turbulence previously developed still required large computational resources. A new wavelet-based model of synthetic turbulence, able to produce a field with tunable spectral law, intermittency and anisotropy, is presented here. The rapid algorithm introduced, based on the classic $p$-model of intermittent turbulence, allows to reach a broad spectral range using a modest computational effort. The model has been tested against the standard diagnostics for intermittent turbulence, i.e. the spectral analysis, the scale-dependent statistics of the field increments, and the multifractal analysis, all showing an excellent response.
Fix-point Multiplier Distributions in Discrete Turbulent Cascade Models
Jouault, B; Lipa, P
1998-01-01
One-point time-series measurements limit the observation of three-dimensional fully developed turbulence to one dimension. For one-dimensional models, like multiplicative branching processes, this implies that the energy flux from large to small scales is not conserved locally. This then renders the random weights used in the cascade curdling to be different from the multipliers obtained from a backward averaging procedure. The resulting multiplier distributions become solutions of a fix-point problem. With a further restoration of homogeneity, all observed correlations between multipliers in the energy dissipation field can be understood in terms of simple scale-invariant multiplicative branching processes.
Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link
Directory of Open Access Journals (Sweden)
A. Prokes
2009-04-01
Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.
Directory of Open Access Journals (Sweden)
Li-ren YU
2009-09-01
Full Text Available This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, κ- ε, κ-w , and κ-ω, were used to close the quasi three-dimensional hydrodynamic model. The κ-ω model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.
Institute of Scientific and Technical Information of China (English)
Li-ren YU; Jun YU
2009-01-01
This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station,aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways.Three depth-averaged two-equation closure turbulence models,(k)-(ε),(k)-(w),and (k)-(ω),were used to close the quasi three-dimensional hydrodynamic model.The (k)-(ω) model was recently established by the authors and is still in the testing process.The general-purpose computational programs and turbulence models will be involved in a software that is under development.The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations,which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement.The results calculated with the three turbulence models were compared with one another.In addition to the steady flow and thermal transport simulation,the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.
PROSPECTS OF DESIGNING FLEXIBLE BUSINESS MODEL IN TURBULENT TIMES
Directory of Open Access Journals (Sweden)
Amalia DUTU
2014-06-01
Full Text Available The present study aims to analyze the current global context to capture the characteristics of the new type of volatile and turbulent business environment in which companies must operate nowdays and to bring some propositions in order to guide managers in designing or redesigning business models to achieve flexibility. The central message of this paper, that is a point of view one, is that, nowdays but also in the future, business models that are based on strategic, organizational and operational flexibility and on reaction speed will be those who will provide the greatest capacity to respond to change. Even if the international theory provides a multiple perspective analysis of business model concept, still how it can be achieved such flexibility remains an open issue in the academic debate, but also in the practice of companies. Thus, the paper contains some propositions in order to guide managers in the process of designing or redesigning the business model.
Model-based design of transverse wall oscillations for turbulent drag reduction
Moarref, Rashad
2012-01-01
Over the last two decades, both experiments and simulations have demonstrated that transverse wall oscillations with properly selected amplitude and frequency can reduce turbulent drag by as much as 40%. In this paper, we develop a model-based approach for designing oscillations that suppress turbulence in a channel flow. We utilize eddy-viscosity-enhanced linearization of the turbulent flow with control in conjunction with turbulence modeling to determine skin-friction drag in a simulation-free manner. The Boussinesq eddy viscosity hypothesis is used to quantify the effect of fluctuations on the mean velocity in the flow subject to control. In contrast to the traditional approach that relies on numerical simulations, we determine the turbulent viscosity from the second order statistics of the linearized model driven by white-in-time stochastic forcing. The spatial power spectrum of the forcing is selected to ensure that the linearized model for the uncontrolled flow reproduces the turbulent energy spectrum. ...
Modeling of turbulent supersonic H2-air combustion with an improved joint beta PDF
Baurle, R. A.; Hassan, H. A.
1991-01-01
Attempts at modeling recent experiments of Cheng et al. indicated that discrepancies between theory and experiment can be a result of the form of assumed probability density function (PDF) and/or the turbulence model employed. Improvements in both the form of the assumed PDF and the turbulence model are presented. The results are again used to compare with measurements. Initial comparisons are encouraging.
Youngs-Type Material Strength Model in the Besnard-Harlow-Rauenzahn Turbulence Equations
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plohr, Bradley J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-17
Youngs [AWE Report Number 96/96, 1992] has augmented a two-phase turbulence model to account for material strength. Here we adapt the model of Youngs to the turbulence model for the mixture developed by Besnard, Harlow, and Rauenzahn [LANL Report LA-10911, 1987].
CALCULATION OF THERMAL AND SALINE TURBULENT FLOW BY k-ε MODEL
Institute of Scientific and Technical Information of China (English)
Hu Zhen-hong; Shen Yong-ming; Zheng Yong-hong; Liu Cai-guang
2003-01-01
Based on the N-S equation, taking the character of thermal and saline stratified flow into account, and considering the effects of buoyancy on turbulence, the k-ε model of thermal and saline stratified flow is established.Density stratified flow with both the vertical temperature gradient and the vertical salinity gradient is simulated numerically, in which turbulent terms are calculated by the k-ε turbulent model.The distributions of velocity, temperature and salinity are given in this paper.The feature of stratification and turbulence is described correctly by the model.The computational results agree well with the experimental data.
Scaling law and fractality concepts in models of turbulent diffusion
Energy Technology Data Exchange (ETDEWEB)
Bakunin, O G [Russian Research Center ' Kurchatov Institute' , Nuclear Fusion Institute, Kurchatova Sq., Moscow, 123182 (Russian Federation); FOM Instituut voor Plasmafysica ' Rijnhuizen' , Associate Euroatom-FOM, 3430 BE Nieuwegein (Netherlands)
2003-10-01
A large variety of plasma instabilities lead to the development of different types of plasma turbulences. This paper discusses the Dreizin-Dykhne model of random flows, the Kadomtsev-Pogutse approach to describe 'braided' magnetic field and transport estimates in systems with convective cells. The important role of correlation effects and anisotropy is shown. The variety of forms require not only special description methods, but also an analysis of the general mechanisms for different turbulence types. One such mechanism is the percolation transport. Its description is based on the idea of long-range correlations, taken from the theory of phase transitions and the percolation theory. This approach is based on fractality ideas. This paper discusses several different models of the percolation transport. The similar characters of used approaches are pointed out. The detailed analysis of the more important results obtained in this domain is presented in this paper. The aim of this paper is to make these results clear and not only for theoreticians.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Directory of Open Access Journals (Sweden)
Česenek Jan
2016-01-01
Full Text Available In this article we deal with numerical simulation of the non-stationary compressible turbulent flow. Compressible turbulent flow is described by the Reynolds-Averaged Navier-Stokes (RANS equations. This RANS system is equipped with two-equation k-omega turbulence model. These two systems of equations are solved separately. Discretization of the RANS system is carried out by the space-time discontinuous Galerkin method which is based on piecewise polynomial discontinuous approximation of the sought solution in space and in time. Discretization of the two-equation k-omega turbulence model is carried out by the implicit finite volume method, which is based on piecewise constant approximation of the sought solution. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.
Binary tree models of high-Reynolds-number turbulence
Aurell, Erik; Dormy, Emmanuel; Frick, Peter
1997-08-01
We consider hierarchical models for turbulence, that are simple generalizations of the standard Gledzer-Ohkitani-Yamada shell models (E. B. Gledzer, Dokl, Akad. Nauk SSSR 209, 5 (1973) [Sov. Phys. Dokl. 18, 216 (1973)]; M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn. 56, 4210 (1987)). The density of degrees of freedom is constant in wave-number space. Looking only at this behavior and at the quadratic invariants in the inviscid unforced limit, the models can be thought of as systems living naturally in one spatial dimension, but being qualitatively similar to hydrodynamics in two (2D) and three dimensions. We investigated cascade phenomena and intermittency in the different cases. We observed and studied a forward cascade of enstrophy in the 2D case.
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Energy Technology Data Exchange (ETDEWEB)
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Study on Turbulent Modeling in Gas Entrainment Evaluation Method
Ito, Kei; Ohshima, Hiroyuki; Nakamine, Yoshiaki; Imai, Yasutomo
Suppression of gas entrainment (GE) phenomena caused by free surface vortices are very important to establish an economically superior design of the sodium-cooled fast reactor in Japan (JSFR). However, due to the non-linearity and/or locality of the GE phenomena, it is not easy to evaluate the occurrences of the GE phenomena accurately. In other words, the onset condition of the GE phenomena in the JSFR is not predicted easily based on scaled-model and/or partial-model experiments. Therefore, the authors are developing a CFD-based evaluation method in which the non-linearity and locality of the GE phenomena can be considered. In the evaluation method, macroscopic vortex parameters, e.g. circulation, are determined by three-dimensional CFD and then, GE-related parameters, e.g. gas core (GC) length, are calculated by using the Burgers vortex model. This procedure is efficient to evaluate the GE phenomena in the JSFR. However, it is well known that the Burgers vortex model tends to overestimate the GC length due to the lack of considerations on some physical mechanisms. Therefore, in this study, the authors develop a turbulent vortex model to evaluate the GE phenomena more accurately. Then, the improved GE evaluation method with the turbulent viscosity model is validated by analyzing the GC lengths observed in a simple experiment. The evaluation results show that the GC lengths analyzed by the improved method are shorter in comparison to the original method, and give better agreement with the experimental data.
A heuristic model for MRI turbulent stresses in Hall MHD
Lingam, M
2016-01-01
Although the Shakura-Sunyaev $\\alpha$ viscosity prescription has been highly successful in characterizing myriad astrophysical environments, it has proven to be partly inadequate in modelling turbulent stresses driven by the MRI. Hence, we adopt the approach employed by \\citet{GIO03}, but in the context of Hall magnetohydrodynamics (MHD), to study MRI turbulence. We utilize the exact evolution equations for the stresses, and the non-linear terms are closed through the invocation of dimensional analysis and physical considerations. We demonstrate that the inclusion of the Hall term leads to non-trivial results, including the modification of the Reynolds and Maxwell stresses, as well as the (asymptotic) non-equipartition between the kinetic and magnetic energies; the latter issue is also addressed via the analysis of non-linear waves. The asymptotic ratio of the kinetic and magnetic energies is shown to be \\emph{independent} of the choice of initial conditions, but it is governed by the \\emph{Hall parameter}. W...
A model for turbulent dissipation rate in a constant pressure boundary layer
Indian Academy of Sciences (India)
J DEY; P PHANI KUMAR
2016-04-01
Estimation of the turbulent dissipation rate in a boundary layer is a very involved process.Experimental determination of either the dissipation rate or the Taylor microscale, even in isotropic turbulence,which may occur in a portion of the turbulent boundary layer, is known to be a difficult task. For constant pressure boundary layers, a model for the turbulent dissipation rate is proposed here in terms of the local mean flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data in the logarithmic region suggests usefulness of this model in obtaining these quantitiesexperimentally
Turbulent transport measurements in a model of GT-combustor
Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.
2016-10-01
To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.
An entrainment model for the turbulent jet in a coflow
Enjalbert, Nicolas; Galley, David; Pierrot, Laurent
2009-09-01
The entrainment hypothesis was introduced by G.I. Taylor to describe one-dimensionally the development of turbulent jets issuing into a stagnant or coflowing environment. It relates the mass flow rate of surrounding fluid entrained into the jet to the characteristic velocity difference between the jet and the coflow. A model based on this hypothesis along with axial velocity assumed to follow a realistic Gaussian distribution is presented. It possesses an implicit analytical solution, and its results are compared and shown to be fully equivalent to previously published models that are rather based on a spreading hypothesis. All of them are found to be in agreement with experimental results, on a wide range of downstream positions and for various coflow intensities. To cite this article: N. Enjalbert et al., C. R. Mecanique 337 (2009).
Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.
Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks
DEFF Research Database (Denmark)
Ondac, Peter; Horacek, Jan; Seidl, Jakub;
2015-01-01
In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained...
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
A nonlinear kp-εp particle two-scale turbulence model and its application
Institute of Scientific and Technical Information of China (English)
Zhuoxiong Zeng; Zhuozhi Zeng; Yihua Xu
2007-01-01
A particle nonlinear two-scale Kp-εp turbulence model is proposed for simulating the anisotropic turbulent two-phase flow. The particle kinetic energy equation for two-scale fluctuation, particle energy transfer rate equation for large-scale fluctuation, and particle turbulent kinetic energy dissipation rate equation for small-scale fluctuation are deri-ved and closed. This model is used to simulate gas-particle flows in a sudden-expansion chamber. The simulation is com-pared with the experiment and with those obtained by using another two kinds of tow-phase turbulence model, such as the single-scale k-ε two-phase turbulence model and the particle two-scale second-order moment (USM) two-phase turbulence model. It is shown that the present model gives simulation in much better agreement with the experiment than the single-scale k-ε two-phase turbulence model does and is almost as good as the particle two-scale USM turbu-lence model.
A mathematical model of turbulence in flows with uniform stationary velocity gradients
Zak, M. A.
1982-01-01
Certain cases of turbulence as a postinstability state of a fluid in motion modeled by the introduction of multivalued velocity fields are examined. The turbulence is regarded as occurring in the form of random pulsations which grow until the external energy input in the average flow is balanced by the dissipated energy of pulsations by means of turbulent friction. Closed form analytic solutions are shown to be possible when the considered velocity fields, the pulsation velocity and the fluid velocity, are decoupled.
National Research Council Canada - National Science Library
Sebnem Elci; Huseyin Burak Ekmekçi
2016-01-01
.... A 3D numerical model is used to investigate the water column hydrodynamics for the duration of measurements and the performance of various turbulence models used in the CFD model are investigated via...
DEFF Research Database (Denmark)
Eliassen, Lene; Andersen, Søren Juhl
2016-01-01
The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life......, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which...... are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two...
Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow
Wang, Chi R.; Bidek, Maleina C.
1994-01-01
Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; Pawlowski, Jan M; Sexty, Dénes
2013-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appear in the gauge field which are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signalled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these r...
Modelling the influence of photospheric turbulence on solar flare statistics
Mendoza, M.; Kaydul, A.; de Arcangelis, L.; Andrade, J. S., Jr.; Herrmann, H. J.
2014-09-01
Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.
Spreading and wandering of Gaussian-Schell model laser beams in an anisotropic turbulent ocean
Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda
2016-09-01
The effect of anisotropic turbulence on the spreading and wandering of Gaussian-Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens-Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.
Energy Technology Data Exchange (ETDEWEB)
Jayaraju, S.T., E-mail: jayaraju@nrg.eu [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Sathiah, P.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Dehbi, A. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)
2015-08-15
Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions.
Chen, Chunyi; Yang, Huamin; Lou, Yan; Tong, Shoufeng
2011-08-01
Novel analytical expressions for the cross-spectral density function of a Gaussian Schell-model pulsed (GSMP) beam propagating through atmospheric turbulence are derived. Based on the cross-spectral density function, the average spectral density and the spectral degree of coherence of a GSMP beam in atmospheric turbulence are in turn examined. The dependence of the spectral degree of coherence on the turbulence strength measured by the atmospheric spatial coherence length is calculated numerically and analyzed in depth. The results obtained are useful for applications involving spatially and spectrally partially coherent pulsed beams propagating through atmospheric turbulence.
Influence of Turbulence Model for Wind Turbine Simulation in Low Reynolds Number
Directory of Open Access Journals (Sweden)
Masami Suzuki
2016-01-01
Full Text Available In designing a wind turbine, the validation of the mathematical model’s result is normally carried out by comparison with wind tunnel experiment data. However, the Reynolds number of the wind tunnel experiment is low, and the flow does not match fully developed turbulence on the leading edge of a wind turbine blade. Therefore, the transition area from laminar to turbulent flow becomes wide under these conditions, and the separation point is difficult to predict using turbulence models. The prediction precision decreases dramatically when working with tip speed ratios less than the maximum power point. This study carries out a steadiness calculation with turbulence model and an unsteadiness calculation with laminar model for a three-blade horizontal axis wind turbine. The validation of the calculations is performed by comparing with experimental results. The power coefficients calculated without turbulence models are in agreement with the experimental data for a tip speed ratio greater than 5.
Evaluation of a Two-Length Scale Turbulence Model with Experiments on Shock-Driven Turbulent Mixing
Carter, John; Gore, Rob; Ranjan, Devesh
2015-11-01
A new second moment turbulence model which uses separate transport and decay length scales is used to model the shock-driven instability. The ability of the model to capture the evolution of turbulence statistics and mixing is discussed. Evaluation is based on comparison to the Georgia Tech shock tube experiments. In the experiments a membraneless light-over-heavy interface is created. There is a long-wavelength perturbation which exists due to inclination of the entire shock tube. By limiting calculations to one dimension, there is not a geometric description of the incline, and the ability of the transport length scale alone to capture the effect of the long-wavelength perturbation is tested.
Amano, R. S.
1982-01-01
Progress in implementing and refining two near-wall turbulence models in which the near-wall region is divided into either two or three zones is outlined. These models were successfully applied to the computation of recirculating flows. The research was further extended to obtaining experimental results of two different recirculating flow conditions in order to check the validity of the present models. Two different experimental apparatuses were set up: axisymmetric turbulent impinging jets on a flat plate, and turbulent flows in a circular pipe with a abrupt pipe expansion. It is shown that generally better results are obtained by using the present near-wall models, and among the models the three-zone model is superior to the two-zone model.
Energy Technology Data Exchange (ETDEWEB)
Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group
1997-12-31
The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Thermal Engineering
1996-12-01
The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with {beta} and {gamma}-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-{epsilon} models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)
Development of a two zone turbulence model and its application to the cycle-simulation
Directory of Open Access Journals (Sweden)
Sjerić Momir
2014-01-01
Full Text Available The development of a two zone k-ε turbulence model for the cycle-simulation software is presented. The in-cylinder turbulent flow field of internal combustion engines plays the most important role in the combustion process. Turbulence has a strong influence on the combustion process because the convective deformation of the flame front as well as the additional transfer of the momentum, heat and mass can occur. The development and use of numerical simulation models are prompted by the high experimental costs, lack of measurement equipment and increase in computer power. In the cycle-simulation codes, multi zone models are often used for rapid and robust evaluation of key engine parameters. The extension of the single zone turbulence model to the two zone model is presented and described. Turbulence analysis was focused only on the high pressure cycle according to the assumption of the homogeneous and isotropic turbulent flow field. Specific modifications of differential equation derivatives were made in both cases (single and two zone. Validation was performed on two engine geometries for different engine speeds and loads. Results of the cyclesimulation model for the turbulent kinetic energy and the combustion progress variable are compared with the results of 3D-CFD simulations. Very good agreement between the turbulent kinetic energy during the high pressure cycle and the combustion progress variable was obtained. The two zone k-ε turbulence model showed a further progress in terms of prediction of the combustion process by using only the turbulent quantities of the unburned zone.
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
Evaluation of the Kinetic Energy Approach for Modeling Turbulent Fluxes in Stratocumulus
Lenderink, G.; Holtslag, A.A.M.
2000-01-01
The modeling of vertical mixing by a turbulence scheme on the basis of prognostic turbulent kinetic energy (E) and a diagnostic length scale (l ) is investigated with particular emphasis on the representation of entrainment. The behavior of this E–l scheme is evaluated for a stratocumulus case obser
Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets
Compton, William B., III
1996-01-01
A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.
Statistical models for spatial patterns of inertial particles in turbulence
Gustavsson, K
2014-01-01
The dynamics of particles suspended in turbulent flows is of fundamental importance for a wide range of questions in astrophysics, cloud physics, oceanography, and in technology. Laboratory experiments and direct numerical simulations have demonstrated that heavy particles respond in intricate ways to turbulent fluctuations of the carrying fluid: independent particles may cluster together and form spatial patterns even though the fluid is incompressible, and the relative speeds of nearby particles may fluctuate strongly. Both phenomena depend sensitively on the parameters of the system, affect collision rates and outcomes, and thus the long-term fate of the system. This is a hard problem to describe theoretically: the turbulence determines the particle paths, but at the same time the turbulent fluctuations encountered by a particle depend sensitively upon its path through the medium. In recent years it has become clear that important aspects of the particle dynamics in turbulence can be understood in terms of...
Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades
Costello, Mark; Gaonkar, G. H.; Prasad, J. V. R.; Schrage, D. P.
1992-01-01
The atmospheric turbulence velocities seen by nonrotating aircraft components and rotating blades can be substantially different. The differences are due to the spatial motion of the rotor blades, which move fore and aft through the gust waves. Body-fixed atmospheric turbulence refers to the actual atmospheric turbulence experienced by a point fixed on a nonrotating aircraft component such as the aircraft's center of gravity or the rotor hub, while blade-fixed atmospheric turbulence refers to the atmospheric turbulence experienced by an element of the rotating rotor blade. An example is presented, which, though overly simplified, shows important differences between blade- and body-fixed rotorcraft atmospheric turbulence models. All of the information necessary to develop the dynamic equations describing the atmospheric turbulence velocity field experienced by an aircraft is contained in the atmospheric turbulence velocity correlation matrix. It is for this reason that a generalized formulation of the correlation matrix describing atmospheric turbulence that a rotating blade encounters is developed. From this correlation matrix, earlier treated cases restricted to a rotor flying straight and level directly into the mean wind can be recovered as special cases.
Subgrid-scale heat flux modeling for large eddy simulation of turbulent mixed convection
Morar, Dejan
2014-01-01
In the present work, new subgrid-scale (SGS) heat flux model for large eddy simulation (LES) of turbulent mixed convection is developed. The new model explicitly includes the buoyancy production term. It is based on the algebraic equations and dynamic procedure is applied to calculate model coefficients. An experiment on turbulent mixed convection to water in a vertical duct is used for validation of the model.
Institute of Scientific and Technical Information of China (English)
ZHANG Ling; ZHOU Jun-li; CHEN Xiao-chun; LAN Li; ZHANG Nan
2008-01-01
ABE-KONDOH-NAGANO, ABID, YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field. Meanwhile, drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed. The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results, and they are significantly better than those of ABE-KONDOH-NAGANO, ABID and LAUNDER-SHARMR models. The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model, while the correction of the turbulence near the wall has minor influence on the simulation results. For ABE-KONDOH-NAGANO, ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy. With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall.
Anisotropy and Dissipation of Turbulence and Their Effects on Solar Models
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on a dynamic model for turbulent convection, we investigate the effects of dissipation and anisotropy of the turbulence on the convective energy transport. We introduce two time scales to describe the dissipation of the turbulence,and approximate the anisotropy of the turbulence by Rotta's proposal of "return to isotropy". The improved turbulence model results in an equation to determine the temperature gradient in the convection zone, which is of similar form as that of the MLT. We apply the improved MLT to solar models, and find that the increases of the anisotropy and decreases of the dissipation of the turbulence reduce the value of the convection parameter α, because these processes enhance the convective energy transfer rate. Compared with the observed solar p-mode frequencies, it is plausible that the dissipation of the turbulence in the solar convection zone should be fairly strong, while the degree of anisotropy of the turbulence plays a less significant role on the structure of the solar convection zone.
Modelling of turbulent combustion in the blast furnace raceway
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering
1996-12-31
The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.
Studies of compressible shear flows and turbulent drag reduction
Orszag, S. A.
1981-04-01
Compressible shear flows and drag reduction were examined and three methods are addressed: (1) the analytical and numerical aspects of conformal mapping were summarized and a new method for computation of these maps is presented; (2) the computer code SPECFD for solution of the three dimensional time dependent Navier-Stokes equations for compressible flow on the CYBER 203 computer is described; (3) results of two equation turbulence modeling of turbulent flow over wavy walls are presented. A modified Jones-Launder model is used in two dimensional spectral code for flow in general wavy geometries.
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)
A PDF closure model for compressible turbulent chemically reacting flows
Kollmann, W.
1992-01-01
The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.
Percolation models of turbulent transport and scaling estimates
Energy Technology Data Exchange (ETDEWEB)
Bakunin, O.G. [FOM Instituut voor Plasmafysica ' Rijnhuizen' , Associate Euroatom-FOM, 3430 BE Nieuwegein (Netherlands) and Kurchatov Institute, Nuclear Fusion Institute, Kurchatov sq. 1, 123182 Moscow (Russian Federation)]. E-mail: oleg_bakunin@yahoo.com
2005-03-01
The variety of forms of turbulent transport requires not only special description methods, but also an analysis of general mechanisms. One such mechanism is the percolation transport. The percolation approach is based on fractality and scaling ideas. It is possible to explain the anomalous transport in two-dimensional random flow in terms of the percolation threshold. The percolation approach looks very attractive because it gives simple and, at same time, universal model of the behavior related to the strong correlation effects. In the present paper we concentrate our attention on scaling arguments that play the very important role in estimation of transport effects. We discuss the united approach to obtain the renormalization condition of the small parameter, which is responsible for the analytical description of the system near the percolation threshold. Both monoscale and multiscale models are treated. We consider the steady case, time-dependent perturbations, the influence of drift effects, the percolation transport in a stochastic magnetic field, and compressibility effects.
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan
2011-10-20
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The
Bayesian Calibration and Comparison of RANS Turbulence Models for Channel Flow
Oliver, Todd; Moser, Robert
2010-11-01
A set of RANS turbulence models---including Baldwin-Lomax, Spalart-Allmaras, k-ɛ, and v^2-f---are calibrated and compared in the context of fully-developed channel flow. Specifically, a Bayesian calibration procedure is applied to infer the parameter values for each turbulence model from channel flow DNS data. In this process, uncertainty arises both from uncertainty in the data and inadequacies in the turbulence models. Various stochastic models of the turbulence model inadequacy are formulated, and the impacts of different uncertainty modeling choices are examined. The calibrated turbulence models are compared in terms of two items: posterior plausibility and predictions of quantities of interest such as centerline velocity and the location of the maximum Reynolds shear stress. The posterior plausibility indicates which model is preferred by the data according to Bayes' theorem, while the predictions allow assessment of how strongly the model differences impact the quantities of interest. The implications of these comparisons for turbulence model validation will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Institute of Scientific and Technical Information of China (English)
XIANG Aishuang; XU Songlin
2005-01-01
Velocity field of evaporating liquid film in a wiped molecular distillator was simulated with a computational fluid dynamics (CFD) software, and two turbulent models treating near-wall flow were compared. Differences between wiped and other molecular distillations were introduced to explain why turbulent model should be used in this simulation. Three assumptions were made in order to simplify simulating processes. In rotating coordinate system, fixed other settings, the above two turbulent models were used, and the volume of fluid (VOF) multiphase model was also applied to tracking the liquid-gas surface. Both of the simulating results are basically identical with real situation and were compared in several aspects. It was concluded that both of the turbulent models are suitable in this simulation.
A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
Mininni, P D; Pouquet, A G
2004-01-01
We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...
Simulation model of SAR remote sensing of turbulent wake of semi-elliptical submerged body
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In terms of the 2-dimensional hydrodynamic simplified model of a semi-elliptical submerged body moving horizontally at high speed,by using the full-spectrum model of SAR(synthetic aperture radar) remote sensing and taking the effect of oceanic interior turbulence on surface gravity capillary waves into account, applying the k-ε model of turbulence with internal wave mixing, and adopting the Nasmyth spectrum of oceanic turbulence, the 2-dimensional simulation model of SAR remote sensing of this semi-elliptical submerged body is built up. Simulation by using this model at X band and C band is made in the northeastern South China Sea (21°00'N,119°00'E). Satisfactory results of the delay time and delay distance of turbulent surface wake of this semi-elliptical submerged body, as well as the minimum submerged depth at which this submerged body which cannot be discovered by SAR, are obtained through simulation.
An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.
2016-11-01
Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots
Simon, Fred; Boyle, Robert
1998-01-01
While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.
Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor
Directory of Open Access Journals (Sweden)
Ali Cemal Benim
2016-01-01
Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.
Modelling wind flow and vehicle-induced turbulence in urban streets
Solazzo, Efisio; Cai, Xiaoming; Vardoulakis, Sotiris
Mechanically generated wind flow and turbulence in urban street canyons are the results of combined processes of atmospheric wind and vehicular traffic, both of which contribute to the transport and dilution of pollutants emitted by vehicles at street level. A good understanding of these processes is thus essential for predicting the spatial distribution of pollutants, and especially for deriving useful parameterisations to be included in urban air-quality models. In this study, a computational fluid dynamics (CFD) modelling methodology for the simulation of the flow and turbulence induced by wind and vehicle motion within an idealised street canyon is presented. Initially, a CFD methodology for analysing the contribution of vehicle's movement to the production of flow and turbulence near street level is introduced. The effects of vehicle's motion are characterised in terms of mean wind flow and turbulence. The results obtained from this analysis are then used for the modelling of the combined effects of wind and vehicular traffic in the street canyon. The CFD methodology is tested by comparing the model results against wind tunnel data of mean velocity and turbulence. Evaluation of the results shows the capability of the methodology to reproduce measured flow field and turbulence patterns. This methodology can be used to gain insights into the mechanically driven turbulence for the dispersion of pollutants within urban streets.
Stochastic model error in the LANS-alpha and NS-alpha deconvolution models of turbulence
Olson, Eric
2015-01-01
This paper reports on a computational study of the model error in the LANS-alpha and NS-alpha deconvolution models of homogeneous isotropic turbulence. The focus is on how well the model error may be characterized by a stochastic force. Computations are also performed for a new turbulence model obtained as a rescaled limit of the deconvolution model. The technique used is to plug a solution obtained from direct numerical simulation of the incompressible Navier--Stokes equations into the competing turbulence models and to then compute the time evolution of the resulting residual. All computations have been done in two dimensions rather than three for convenience and efficiency. When the effective averaging length scale in any of the models is $\\alpha_0=0.01$ the time evolution of the root-mean-squared residual error grows as $\\sqrt t$. This growth rate is consistent with the hypothesis that the model error may be characterized by a stochastic force. When $\\alpha_0=0.20$ the residual error grows linearly. Linea...
Obtain Lower-Dimensional Turbulence Systems from Higher-Dimensional Lax Integrable Models
Institute of Scientific and Technical Information of China (English)
LOU Sen-Yue
2001-01-01
Taking the well known (1-+l)-dimensional turbulence system,the Korteweg de-Vries Burgers equation,as a special example,we show that some types of lower-dimensional turbulence systems may be derived from some higherdimensional Lax integrable models,say,the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation.On the other hand,using the Lax pair of the original higher-dimensional integrable model(s),we may obtain higher-dimensional Lax pair(s) for a lower-dimensional turbulence system.``
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
A new probability distribution model of turbulent irradiance based on Born perturbation theory
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled.Theory reliably describes the behavior in the weak turbulence regime,but theoretical description in the strong and whole turbulence regimes are still controversial.Based on Born perturbation theory,the physical manifestations and correlations of three typical PDF models (Rice-Nakagami,exponential-Bessel and negative-exponential distribution) were theoretically analyzed.It is shown that these models can be derived by separately making circular-Gaussian,strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory,which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications.In addition,a common shortcoming of the three models is that they are all approximations.A new model,called the Maclaurin-spread distribution,is proposed without any approximation except for assuming the correlation coefficient to be zero.So,it is considered that the new model can exactly reflect the Born perturbation theory.Simulated results prove the accuracy of this new model.
Ghalichi, Farzan; Deng, Xiaoyan
2003-01-01
The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project
National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...
Institute of Scientific and Technical Information of China (English)
胡瓅元; 周力行; 张健
2005-01-01
Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.
Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes
Directory of Open Access Journals (Sweden)
V. G. Ferreira
2007-01-01
Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.
A new compressibility modification k-ε turbulence model with shock unsteadiness effect
Institute of Scientific and Technical Information of China (English)
HAN XingSi; YE TaoHong; ZHU MinMing; CHEN YiLiang
2008-01-01
A new compressibility modification k-ε model, including shock unsteadiness effect and the previous compressibility modification of pressure dilatation and dilatational dissipation rate, was developed with a simple formulation for numerical simulation in supersonic complex turbulent flows. The shock unsteadiness effect was modeled by inhibiting turbulent kinetic energy production in the governing equations of turbulent kinetic energy and the turbulent kinetic energy dissipation rate. Sarkar's correction models were employed accounting for the dilatational compressibility effects in the new model.Two types of flows, the free supersonic mixing layers and complex supersonic flow with transverse injection were simulated with different flow conditions. Comparisons with experimental data of the free supersonic mixing layers showed that the new compressibility modification k-ε model significantly inhibited the excessive growth of turbulent kinetic energy and improved predictions. On the supersonic mixing layer flows, prediction results with the new model were in close agreement with experimental data, accurately predicting the decreasing trend of the mixing layer spreading rate with the increase of the convective Mach number. Due to the complicated flow field with flow separation, shock unsteadiness modification inhibited excessive growth of the turbulent kinetic energy in shock regions and wider shock regions are predicted, thereby significantly improving results of the flow with a strong separation forecast. The flow separation was stronger, which was the primary modification effect of the new model. Predictions accord with experimental results even in strong separation flows.
Development of an AD/RANS model for predicting wind turbine wakes
DEFF Research Database (Denmark)
Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong;
2013-01-01
methods together. The simulations are performed by using the in-house flow solver EllipSys3D coupled with the actuator disc (AD) methodology. The main objective of the proposed model is to control the turbulence decay caused by the intrinsic property of the two-equation turbu-lence model and further...
Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix
2016-06-01
Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.
Institute of Scientific and Technical Information of China (English)
GAO Ge; ZHANG Chang-xian; YAN Wen-hui; WANG Yong
2012-01-01
A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion terms were calculated using the second-order AUSM（advection upstream splitting method） scheme and the second-order central difference scheme,respectively.The Runge-Kutta time marching method was employed to solve the governing equations for steady state solutions.Significant flow separation-region which indicates highly non-isotropic turbulence structure has been found in the present work due to intensity interaction under the 24° compression corner.Comparisons between the calculated results and experimental data have been carried out,including surface pressure distribution,boundary-layer static pressure profiles and mean velocity profiles.The numerical results agree well with the experimental values,which indicate Gao-Yong compressible turbulence model is suitable for the prediction of shock wave turbulent boundary layer interaction in two-dimensional compression corner flows.
Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows
Norris, Andrew T.; Hsu, Andrew T.
1994-01-01
In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.
Modification method of numerical calculation of heat flux over dome based on turbulence models
Zhang, Daijun; Luo, Haibo; Zhang, Junchao; Zhang, Xiangyue
2016-10-01
For the optical guidance system flying at low altitude and high speed, the calculation of turbulent convection heat transfer over its dome is the key to designing this kind of aircraft. RANS equations-based turbulence models are of high computation efficiency and their calculation accuracy can satisfy the engineering requirement. But for the calculation of the flow in the shock layer of strong entropy and pressure disturbances existence, especially of aerodynamic heat, some parameters in the RANS energy equation are necessary to be modified. In this paper, we applied turbulence models on the calculation of the heat flux over the dome of sphere-cone body at zero attack. Based on Billig's results, the shape and position of detached shock were extracted in flow field using multi-block structured grid. The thermal conductivity of the inflow was set to kinetic theory model with respect to temperature. When compared with Klein's engineering formula at the stagnation point, we found that the results of turbulent models were larger. By analysis, we found that the main reason of larger values was the interference from entropy layer to boundary layer. Then thermal conductivity of inflow was assigned a fixed value as equivalent thermal conductivity in order to compensate the overestimate of the turbulent kinetic energy. Based on the SST model, numerical experiments showed that the value of equivalent thermal conductivity was only related with the Mach number. The proposed modification approach of equivalent thermal conductivity for inflow in this paper could also be applied to other turbulence models.
Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model
Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.
2016-09-01
Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.
Rukes, Lothar; Oberleithner, Kilian
2016-01-01
Linear stability analysis has proven to be a useful tool in the analysis of dominant coherent structures, such as the von K\\'{a}rm\\'{a}n vortex street and the global spiral mode associated with the vortex breakdown of swirling jets. In recent years, linear stability analysis has been applied successfully to turbulent time-mean flows, instead of laminar base-flows, \\textcolor{black}{which requires turbulent models that account for the interaction of the turbulent field with the coherent structures. To retain the stability equations of laminar flows, the Boussinesq approximation with a spatially nonuniform but isotropic eddy viscosity is typically employed. In this work we assess the applicability of this concept to turbulent strongly swirling jets, a class of flows that is particularly unsuited for isotropic eddy viscosity models. Indeed we find that unsteady RANS simulations only match with experiments with a Reynolds stress model that accounts for an anisotropic eddy viscosity. However, linear stability anal...
MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS
Energy Technology Data Exchange (ETDEWEB)
Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2013-02-10
We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems
Aminikashani, Mohammadreza; Kavehrad, Mohsen
2015-01-01
In this paper, we propose a new probability distribution function which accurately describes turbulence-induced fading under a wide range of turbulence conditions. The proposed model, termed Double Generalized Gamma (Double GG), is based on a doubly stochastic theory of scintillation and developed via the product of two Generalized Gamma (GG) distributions. The proposed Double GG distribution generalizes many existing turbulence channel models and provides an excellent fit to the published plane and spherical waves simulation data. Using this new statistical channel model, we derive closed form expressions for the outage probability and the average bit error as well as corresponding asymptotic expressions of free-space optical communication systems over turbulence channels. We demonstrate that our derived expressions cover many existing results in the literature earlier reported for Gamma-Gamma, Double-Weibull and K channels as special cases.
DEFF Research Database (Denmark)
Xu, Chang; Han, Xingxing; Wang, Xin
2015-01-01
the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
Multilayer Numerical Modeling of Flows through Vegetation Using a Mixing-Length Turbulence Model
Directory of Open Access Journals (Sweden)
Hector Barrios-Piña
2014-07-01
Full Text Available This work focuses on the effects of vegetation on a fluid flow pattern. In this numerical research, we verify the applicability of a simpler turbulence model than the commonly used k-" model to predict the mean flow through vegetation. The novel characteristic of this turbulence model is that the horizontal mixing-length is explicitly calculated and coupled with a multi-layer approach for the vertical mixing-length, within a general three-dimensional eddy-viscosity formulation. This mixing-length turbulence model has been validated in previous works for different kinds of non-vegetated flows. The hydrodynamic numerical model used for simulations is based on the Reynolds-averaged Navier–Stokes equations for shallow water flows, where a vegetation shear stress term is considered to reproduce the effects of drag forces on flow. A second-order approximation is used for spatial discretization and a semi-implicit Lagrangian–Eulerian scheme is used for time discretization. In order to validate the numerical results, we compare them against experimental data reported in the literature. The comparisons are carried out for two cases of study: submerged vegetation and submerged and emergent vegetation, both within an open channel flow.
Multiscale modeling of turbulent channel flow over porous walls
Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin
2016-11-01
We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.
One-dimensional Turbulence Models of Type I X-ray Bursts
Energy Technology Data Exchange (ETDEWEB)
Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)
2016-01-06
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more ^{12}C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.
Testing of RANS Turbulence Models for Stratified Flows Based on DNS Data
Venayagamoorthy, S. K.; Koseff, J. R.; Ferziger, J. H.; Shih, L. H.
2003-01-01
In most geophysical flows, turbulence occurs at the smallest scales and one of the two most important additional physical phenomena to account for is strati cation (the other being rotation). In this paper, the main objective is to investigate proposed changes to RANS turbulence models which include the effects of stratifi- cation more explicitly. These proposed changes were developed using a DNS database on strati ed and sheared homogenous turbulence developed by Shih et al. (2000) and are described more fully in Ferziger et al. (2003). The data generated by Shih, et al. (2000) (hereinafter referred to as SKFR) are used to study the parameters in the k- model as a function of the turbulent Froude number, Frk. A modified version of the standard k- model based on the local turbulent Froude number is proposed. The proposed model is applied to a stratified open channel flow, a test case that differs significantly from the flows from which the modified parameters were derived. The turbulence modeling and results are discussed in the next two sections followed by suggestions for future work.
Reduced-Basis Determination of Planetary Boundary-Layer Flow Statistics for a Novel Turbulence Model
Skitka, Joseph; Marston, Brad; Fox-Kemper, Baylor
2016-11-01
Uncertainty in climate modeling and weather forecasting can largely be attributed to the omission or inaccurate representation of oceanic and atmospheric subgrid processes. Existing subgrid turbulence models are built on assumptions of isotropy, homogeneity, and the locality of correlations. Direct statistical simulation (DSS) using expansion in equal-time cumulants is a novel approach to subgrid modeling that does not make these assumptions. In prior work, a second-order closure, CE2, was shown to capture important vertical turbulent transports in Langmuir turbulence and Rayleigh-Bénard convection, but to run efficiently, this approach to turbulence modeling requires a drastic reduction in dimensionality. The present work addresses how accurately these systems can be represented with a truncated principal orthogonal decomposition (POD). The representation of turbulent transports by truncated POD bases are studied by static projection of fully resolved statistics and dynamical evolution of a reduced model. Results indicate the projected truncated turbulent statistics in these flows are less sensitive to flow details, like mixed-layer depth, than the truncated basis itself. The question of whether POD is an optimal truncation technique for these purposes is considered. NSF DMR 1306806, NSF GCE 1350795, The Institute at Brown for Environment and Society Graduate Student Fellowship.
On the turbulence-particles interaction in turbulent two-phase flows
Mostafa, A. A.; Mongia, H. C.
1986-01-01
A mathematically simple two-equation turbulence model for two-phase flows has been developed to take into account the extra energy dissipation due to the presence of the particles with the carrier phase. The transport equations of mass, momentum, and kinetic energy and its dissipation rate of the carrier phase using an Eulerian formulation are presented. The Lagrangian approach is used to solve for the particles using the Monte Carlo technique. These equations are solved numerically using a finite difference technique to predict a turbulent round gaseous jet laden with solid particles. The predicted mean and turbulence quantities of the carrier and dispersed phases are in good agreement with the recent experimental data.
Modeling sunspot and starspot decay by turbulent erosion
Litvinenko, Yuri E
2015-01-01
Disintegration of sunspots (and starspots) by fluxtube erosion, originally proposed by Simon and Leighton, is considered. A moving boundary problem is formulated for a nonlinear diffusion equation that describes the sunspot magnetic field profile. Explicit expressions for the sunspot decay rate and lifetime by turbulent erosion are derived analytically and verified numerically. A parabolic decay law for the sunspot area is obtained. For moderate sunspot magnetic field strengths, the predicted decay rate agrees with the results obtained by Petrovay and Moreno-Insertis. The new analytical and numerical solutions significantly improve the quantitative description of sunspot and starspot decay by turbulent erosion.
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
X-33 Metal Model Testing In Low Turbulence Pressure Tunnel
1997-01-01
The countrys next generation of space transportation, a reusable launch vehicle (RLV), continues to undergo wind tunnel testing at NASA Langley Research Center, Hampton, Va. All four photos are a metal model of the X-33 reusable launch vehicle (about 15 inches long by 15 inches wide) being tested for Lockheed Martin Skunk Works in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Tests are being conducted by members of the Aerothermodynamics Branch. According to Kelly Murphy of Langleys Aerothermodynamics Branch, the aluminum and stainless steel model of the X-33 underwent aerodynamic testing in the tunnel. *The subsonic tests were conducted at the speed of Mach 25,* she said. *Force and moment testing and measurement in this tunnel lasted about one week.* Future testing of the metal model is scheduled for Langleys 16-Foot Transonic Tunnel, from the end of March to mid-April 1997, and the Unitary Wind Tunnel, from mid-April to the beginning of May. Other tunnel testing for X-33 models are scheduled from the present through June in the hypersonic tunnels, and the 14- by 22-Foot Tunnel from about mid-June to mid-July. Since 1991 Marshall Space Flight Center in Huntsville, Ala. has been the lead center for coordinating the Agencys X-33 Reusable Launch Vehicle (RLV) Program, an industry-led effort, which NASA Administrator Daniel S. Goldin has declared the agency's highest priority new program. The RLV Technology Program is a partnership among NASA, the United States Air Force and private industry to develop world leadership in low-cost space transportation. The goal of the program is to develop technologies and new operational concepts that can radically reduce the cost of access to space. The RLV program also hopes to speed the commercialization of space and improve U.S. economic competitiveness by making access to space as routine and reliable as today's airline industry, while reducing costs and enhancing safety and reliability. The RLV
Energy Technology Data Exchange (ETDEWEB)
Keck, R.-E.
2013-07-15
This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling capability of the dynamics wake meandering model to a level where it is sufficiently mature to be applied in industrial applications and for an augmentation of the IEC-standard for wind turbine wake modelling. Based on a comparison of capabilities of the dynamic wake meandering model to the requirement of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake. 2. multiple wake deficits and build-up of turbulence over a row of turbines. 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit evolution. 4. atmospheric stability effects on wake deficit evolution and meandering. The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented by an actuator line model. As a consequence, part of the research also targets the performance of the actuator line model when generating wind turbine wakes in the atmospheric boundary layer. Highlights of the conducted research: 1. A description is given for using the dynamic wake meandering model as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry. 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind
Koyama, H
2008-01-01
Using numerical simulations of galactic disks resolving scales from ~1 to several hundred pc, we investigate dynamical properties of the multiphase ISM with turbulence driven by star formation feedback. We focus on HII region effects by applying intense heating in dense, self-gravitating regions. Our models are two-dimensional radial-vertical slices through the disk, and include sheared background rotation, vertical stratification, heating and cooling to yield temperatures T~10-10^4K, and thermal conduction. We separately vary the gas surface density Sigma, the stellar volume density rho_*, and the local angular rotation rate Omega to explore environmental dependencies, and analyze the steady-state properties of each model. Among other statistics, we evaluate turbulent amplitudes, virial ratios, Toomre Q parameters including turbulence, and the mass fractions at different densities. We find that the dense gas (n>100 cm^-3) has turbulence levels similar to observed GMCs and virial ratios ~1-2. The Toomre Q par...
Study on Duality of Wave and Particle of Turbulence Using CML Models
Institute of Scientific and Technical Information of China (English)
LIU Zhao-Cun
2009-01-01
A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only coherent and turbulent properties as well as their relations, but also the transitional states between convection dominating, diffusion dominating and dispersion dominating are analyzed to demonstrate the essential characteristics of any state. Numerical results show that the models are capable of simulating both layered coupling and stochastic mechanism, and lead us to understand whether or not turbulence coherent structure is formed by modulation of wave packet. The duality of wave and particle characters of turbulence is illustrated in the numerical simulation; a sketch picture is given to explain the questions associated with the turbulent inverse cascade, which is the result of the mutual interactions among the physical factors of nonlinearity, dissipation and dispersion.
Bakosi, J; Boybeyi, Z
2010-01-01
In probability density function (PDF) methods a transport equation is solved numerically to compute the time and space dependent probability distribution of several flow variables in a turbulent flow. The joint PDF of the velocity components contains information on all one-point one-time statistics of the turbulent velocity field, including the mean, the Reynolds stresses and higher-order statistics. We developed a series of numerical algorithms to model the joint PDF of turbulent velocity, frequency and scalar compositions for high-Reynolds-number incompressible flows in complex geometries using unstructured grids. Advection, viscous diffusion and chemical reaction appear in closed form in the PDF formulation, thus require no closure hypotheses. The generalized Langevin model (GLM) is combined with an elliptic relaxation technique to represent the non-local effect of walls on the pressure redistribution and anisotropic dissipation of turbulent kinetic energy. The governing system of equations is solved fully...
Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models
Degrazia, G. A.; Rizza, U.; Puhales, F. S.; Welter, G. S.; Acevedo, O. C.; Maldaner, S.
2012-02-01
A turbulent subfilter viscosity for Large Eddy Simulation (LES) based on the Taylor statistical diffusion theory is proposed. This viscosity is described in terms of a velocity variance and a time scale, both associated to the inertial subrange. This new subfilter viscosity contains a cutoff wavenumber kc, presenting an identical form (differing by a constant) to the Heisenberg subfilter viscosity. Therefore, both subfilter viscosities are described in terms of a sharp division between large and small wavenumbers of a turbulent flow and, henceforth, Taylor and Heisenberg subfilter viscosities are in agreement with the sharp Fourier filtering operation, frequently employed in LES models. Turbulent statistics of different orders, generated from atmospheric boundary layer simulations employing both Taylor and Heisenberg subfilter viscosities have been compared with observations and results provided by other simulations. The comparison shows that the LES model utilizing the approaches of Taylor and Heisenberg reproduces these turbulent statistics correctly in different vertical regions of a planetary convective boundary layer (CBL).
Implementation and Validation of the BHR Turbulence Model in the FLAG Hydrocode
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas A. [Los Alamos National Laboratory; Fung, Jimmy [Los Alamos National Laboratory; Reisner, Jon M. [Los Alamos National Laboratory; Andrews, Malcolm J. [Los Alamos National Laboratory
2012-08-29
The BHR-2 turbulence model, developed at Los Alamos National Laboratory for variable density and compressible flows, is implemented in an Arbitrary Lagrangian-Eulerian hydrocode, FLAG. The BHR-2 formulation is discussed, with emphasis on its connection to multi-component flow formulations that underlie FLAG's treatment of multi-species flow. One-dimensional and two-dimensional validation tests are performed and compared to experiment and Eulerian simulations. Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in the presence of strong density gradients and compressibility is of fundamental importance in applications ranging from Inertial Confinement Fusion (ICF) [1], supernovae [2], and atmospheric flows. The BHR closure approach [3] seeks to model the physical processes at work in variable density turbulence including Kelvin-Helmholtz (KH) [4], Rayleigh-Taylor (RT) [5], and Richtmyer-Meshkov (RM) [6], driven turbulence. The effectiveness of the BHR-2 implementation has been demonstrated for variable density mixing in the KH, RT, and RM cases in an Eulerian framework [7]. The primary motivation of the present work is to implement the BHR-2 turbulence model in the Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code FLAG. The goal is not only to demonstrate results in agreement with previous Eulerian calculations, but also document behavior that arises from the underlying differences in code philosophy.
Modeling the Emission from Turbulent Relativistic Jets in Active Galactic Nuclei
Indian Academy of Sciences (India)
Victoria Calafut; Paul J. Wiita
2015-06-01
We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and our viewing angle to the jet. The total observed flux is found by integrating the radiation from the eddies over the turbulent spectrum. We consider jets that contain turbulent eddies that have either standard Kolmogorov or recently derived relativistic turbulence spectra. We also account for the time delays in receiving the emission of the eddies due to their different simulated positions in the jet, as well as due to the varying beaming directions as they turn over. We examine these theoretical light curves and compute power spectral densities (PSDs) for a range of viewing angles, bulk velocities of the jet, and turbulent velocities. These PSD slopes depend significantly on the turbulent velocity, and are essentially independent of viewing angle and bulk velocity. The flux variations produced in the simulations for realistic values of the parameters tested are consistent with the types of variations observed in radio-loud AGN as, for example, recently measured with the Kepler satellite, as long as the turbulent velocities are not too high.
Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM
Yao, Mao-Sung; Cheng, Ye
2013-01-01
The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.
Fundamental Physics and Model Assumptions in Turbulent Combustion Models for Aerospace Propulsion
2014-06-01
Astronautics also speculate that, for non-equilibrium flows, this effect could be even stronger. Combustion problems wherein the energy deposition often...flamelet regime. However, in the presence of slow reactions such as pyrolysis and/or at high Reynolds numbers that lead to smaller turbulent scales...376404. 20S. Menon and N. Patel. Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors. AIAA Journal, 44(4):709–723, 2006. 21M
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Flocculation , Optics and Turbulence in the Community...www.phys.ocean.dal.ca/~phill LONG-TERM GOALS The goal of this research is to develop greater understanding of how the flocculation of fine-grained sediment...COVERED - 4. TITLE AND SUBTITLE Flocculation , Optics and Turbulence in the Community Sediment Transport Model System: Application of Oasis
2011-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Flocculation , Optics and Turbulence in the Community...www.phys.ocean.dal.ca/~phill LONG-TERM GOALS The goal of this research is to develop greater understanding of how the flocculation of fine-grained...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Flocculation , Optics and Turbulence in the Community Sediment Transport Model System
Institute of Scientific and Technical Information of China (English)
ShidaLIU; ZuguangZheng; 等
1996-01-01
We analyse the behavior of the nonlinear dynamical systems which are the truncated-spectrum model of the atmospheric turbulence equation.It shows that the chaos can appear in the Lorenz equation obtained by simple equations for the unstable stratification(Ri0),And the chaos can also appear in Burgers-Chao equations for the stable stratification(Ri>0,Ra<0),The atmospheric turbulence is intermittent in the stable stratified atmosphere.
Introducing the concept of anisotropy at different scales for modeling optical turbulence.
Toselli, Italo
2014-08-01
In this paper, the concept of anisotropy at different atmospheric turbulence scales is introduced. A power spectrum and its associated structure function with inner and outer scale effects and anisotropy are also shown. The power spectrum includes an effective anisotropic parameter ζ(eff) to describe anisotropy, which is useful for modeling optical turbulence when a non-Kolmogorov power law and anisotropy along the direction of propagation are present.
Energy Technology Data Exchange (ETDEWEB)
Dutta, T.; Bandyopdhyay, S.S. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302 (India); Sinhamahapatra, K.P. [Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur 721302 (India)
2010-06-15
An axisymmetric computational fluid dynamics (CFD) model is used to compare the influence of different Reynolds Averaged Navier-Stokes (RANS) based turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube. The standard {kappa}-{epsilon}, RNG {kappa}-{epsilon}, standard {kappa}-{omega} and SST {kappa}-{omega} turbulence models are used in this study. The performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results. The objective is to select an appropriate turbulence model for the simulation of the flow phenomena in a vortex tube with optimum computational expense. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the standard {kappa}-{epsilon} turbulence model is closer to the experimental results. (author)
Leray and LANS-α modeling of turbulent mixing
Geurts, Bernardus J.; Holm, D.D.
2006-01-01
Mathematical regularization of the nonlinear terms in the Navier-Stokes equations is found to provide a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the
On advanced fluid modelling of drift wave turbulence
Weiland, J; Zasenko, V
2007-01-01
The Dupree-Weinstock renormalization is used to prove that a reactive closure exists for drift wave turbulence in magnetized plasmas. The result is used to explain recent results in gyrokinetic simulations and is also related to the Mattor-Parker closure. The level of closure is found in terms of applied external sources.
Leray and LANS-α modeling of turbulent mixing
Geurts, Bernardus J.; Holm, D.D.
2006-01-01
Mathematical regularization of the nonlinear terms in the Navier-Stokes equations is found to provide a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corr
Low-Level Turbulence Forecasts From Fine-Scale Models
2014-02-01
Army Research Laboratory Computational and Information Sciences Directorate Battlefield Environment Division (ATTN: RDRL- CIE -M) White Sands Missile... colors show where the forecast is for LGT and MOD turbulence respectively. By 1800 UTC (figure 31) the boundary has progressed across the entire
Directory of Open Access Journals (Sweden)
Amini Behnaz
2011-01-01
Full Text Available In this research, the performance of non-linear k-ε turbulence model in resolving the time delay between mean flow changes and its proportionate turbulent dissipation rate adjustment was investigated. For this purpose, the ability of Launder-Spalding linear, Suga non-linear, Yakhot RNG and Rietz modified RNG k-ε models are compared in the estimation of axial mean velocity profile and turbulent integral length scale evolution during engine compression stroke. Computed results showed that even though all the models can predict the acceptable results for velocity profile, for turbulent integral length scale curve, non-linear model is in a good agreement with modified RNG model prediction that depicts correspondence with experimental reported data, while other models show a different unrealistic behaviors. Also after combustion starts and piston is expanding, non-linear model can predicts actual manner for integral length scale while linear one cannot. It is concluded that, physical behavior of turbulence models characteristics should be ascertained before being successfully applied to simulate complex flow fields like internal combustion engines.
Three Dimensional Large Eddy Simulation Model of Turbulence in a Meandering Channel
Akahori, R.; Schmeeckle, M. W.
2002-12-01
Recent research has shown that intermittency caused by large-scale turbulence structures in rivers can be critical to accurate prediction of the sediment transport field. These large-scale turbulence structures are inherently three-dimensional. This is especially true in a river meander where strong secondary flows affect not only the three-dimensional, time-averaged flow structure, but also the process of large-scale turbulent eddy generation. It is very difficult to directly measure the turbulence field in a river except at the water surface or a few points in the interior of the flow. Numerical simulation of turbulence is a powerful tool, because it can provide information about the non-averaged flow at each grid point. Many previous researchers have calculated the time-averaged flow in a meandering channel, and obtained useful results. However, simulations of turbulence in meandering channels have been restricted to two dimensions. Therefore, they have a problem in accurately reproducing important features of the flow. We present a 3-dimenstional turbulent model for the numerical calculation of channel flow. The turbulence cannot be resolved at scales smaller than the channel grid, and we therefore parameterize the effects of small scale turbulence using standard Large Eddy Simulation (LES) assumptions. A Body Fitted Coordinate (BFC) system is employed to fit the irregular boundaries of natural channels. To solve the Navier-Stokes equations on the finite difference mesh, we employ the Cubic-Interpolated Propagation (CIP) method. The CIP method precisely solves the convective acceleration terms without numerical diffusion.
A study of key features of the RAE atmospheric turbulence model
Jewell, W. F.; Heffley, R. K.
1978-01-01
A complex atmospheric turbulence model for use in aircraft simulation is analyzed in terms of its temporal, spectral, and statistical characteristics. First, a direct comparison was made between cases of the RAE model and the more conventional Dryden turbulence model. Next the control parameters of the RAE model were systematically varied and the effects noted. The RAE model was found to possess a high degree of flexibility in its characteristics, but the individual control parameters are cross-coupled in terms of their effect on various measures of intensity, bandwidth, and probability distribution.
On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion
Liu, Nan-Suey; Wey, Thomas
2014-01-01
This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.
Numerical simulation of turbidity current using V2-f turbulence model
Directory of Open Access Journals (Sweden)
a. Mehdizadeh
2008-01-01
Full Text Available The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about reservoir sedimentation. An elliptic relaxation turbulence model ( 2 n - f model has been used to simulate the motion of turbid density currents laden with fine solid particles. During the last few years, the 2 n - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. The 2 n - f model has also proved to be superior to other RANS (Reynolds-Averaged Navier-Stokes methods in many fluid flows where complex flow features are present. This current becomes turbulent at low Reynolds number (order 1000. The k -e model, which was standardized for high Reynolds number and isotropic turbulence flow, cannot simulate the anisotropy and nonhomogenous behavior near the wall. In this study, the turbidity current with a uniform velocity and concentration enters the channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. The model has been validated by available experimental data sets. Moreover, results have been compared with the standard k -e turbulence model. The deposition of particles and the effects of their fall velocity on concentration distribution, Richardson number, and the deposition rate are also investigated. The results show that the coarse particles settle rapidly and make the deposition rate higher.
A Physics-Informed Machine Learning Framework for RANS-based Predictive Turbulence Modeling
Xiao, Heng; Wu, Jinlong; Wang, Jianxun; Ling, Julia
2016-11-01
Numerical models based on the Reynolds-averaged Navier-Stokes (RANS) equations are widely used in turbulent flow simulations in support of engineering design and optimization. In these models, turbulence modeling introduces significant uncertainties in the predictions. In light of the decades-long stagnation encountered by the traditional approach of turbulence model development, data-driven methods have been proposed as a promising alternative. We will present a data-driven, physics-informed machine-learning framework for predictive turbulence modeling based on RANS models. The framework consists of three components: (1) prediction of discrepancies in RANS modeled Reynolds stresses based on machine learning algorithms, (2) propagation of improved Reynolds stresses to quantities of interests with a modified RANS solver, and (3) quantitative, a priori assessment of predictive confidence based on distance metrics in the mean flow feature space. Merits of the proposed framework are demonstrated in a class of flows featuring massive separations. Significant improvements over the baseline RANS predictions are observed. The favorable results suggest that the proposed framework is a promising path toward RANS-based predictive turbulence in the era of big data. (SAND2016-7435 A).
Zilitinkevich, S. S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Esau, I.
2013-03-01
Here we advance the physical background of the energy- and flux-budget turbulence closures based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth's rotation. In accordance with modern experimental evidence, the closure implies the maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: "strong turbulence" at {Ri ≪ 1} typical of boundary-layer flows and characterized by the practically constant turbulent Prandtl number Pr T; and "weak turbulence" at Ri > 1 typical of the free atmosphere or deep ocean, where Pr T asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient model based on prognostic equations for all the basic parameters of turbulence including turbulent fluxes.
Explosive turbulent magnetic reconnection.
Higashimori, K; Yokoi, N; Hoshino, M
2013-06-21
We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.
Joint-constraint model for large-eddy simulation of helical turbulence.
Yu, Changping; Xiao, Zuoli; Shi, Yipeng; Chen, Shiyi
2014-04-01
A three-term mixed subgrid-scale (SGS) stress model is proposed for large-eddy simulation (LES) of helical turbulence. The new model includes a Smagorinsky-Lilly term, a velocity gradient term, and a symmetric vorticity gradient term. The model coefficients are determined by minimizing the mean square error between the realistic and modeled Leonard stresses under a joint constraint of kinetic energy and helicity fluxes. The model formulated as such is referred to as joint-constraint dynamic three-term model (JCD3TM). First, the new model is evaluated a priori using the direct numerical simulation (DNS) data of homogeneous isotropic turbulence with helical forcing. It is shown that the SGS dissipation fractions from all three terms in JCD3TM have the properties of length-scale invariance in inertial subrange. JCD3TM can predict the SGS stresses, energy flux, and helicity flux more accurately than the dynamic Smagorinsky model (DSM) and dynamic mixed helical model (DMHM) in both pointwise and statistical senses. Then, the performance of JCD3TM is tested a posteriori in LESs of both forced and freely decaying helical isotropic turbulence. It is found that JCD3TM possesses certain features of superiority over the other two models in predicting the energy spectrum, helicity spectrum, high-order statistics, etc. It is also noteworthy that JCD3TM is capable of simulating the evolutions of both energy and helicity spectra more precisely than other models in decaying helical turbulence. We claim that the present SGS model can capture the main helical features of turbulent motions and may serve as a useful tool for LES of helical turbulent flows.
Transport of cosmic-ray protons in intermittent heliospheric turbulence: model and simulations
Alouani-Bibi, Fathallah
2014-01-01
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 Astronomical Unit (AU). The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfv\\'enic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallel and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport duri...
Soulard, Olivier; Griffond, Jérôme; Souffland, Denis
2012-02-01
In this work, a pseudocompressible approximation relevant for turbulent mixing flows encountered in shock tubes is derived. The asymptotic analysis used for this purpose puts forward the role played by four dimensionless numbers on the flow compressibility, namely, the turbulent, deformation, stratification, and buoyancy force Mach numbers. The existence of rapid distortion and diffusion-dissipation regimes is also accounted for in the analysis. Some consequences of the derived pseudocompressible approximation on statistical turbulence models are discussed. In particular, the evolutions of the density variance and flux are examined, as well as the turbulent transport of energy. The different aspects of this study are assessed by performing a direct numerical simulation of a shock tube flow configuration.
Andersen, S. J.; Sørensen, J. N.; Mikkelsen, R.
2014-12-01
The turbulence in the interior of an idealised wind farm is simulated using Large Eddy Simulation and the Actuator Line technique implemented in the Navier-Stokes equations. The simulation is carried out for an 'infinitely' long row of turbines simulated by applying cyclic boundary conditions at the inlet and outlet. The simulations investigate the turbulence inherent to the wind turbines as no ambient turbulence or shear is added to this idealised case. A Reduced Order Model for the highly turbulent flow deep inside a wind farm is proposed based on a Proper Orthogonal Decomposition. The reconstructed flow is shown to capture the large scale motions of the highly turbulent flow.
Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo
2013-01-01
We present new experimental results on the development of turbulent spots in channel flow. The internal structure of a turbulent spot is measured, with Time Resolved Stereoscopic Particle Image Velocimetry. We report the observation of travelling-wave-like structures at the trailing edge of the turbulent spot. Special attention is paid to the large-scale flow surrounding the spot. We show that this large-scale flow is an asymmetric quadrupole centred on the spot. We measure the time evolution of the turbulent fluctuations and the mean flow distortions and compare these with the predictions of a nonlinear reduced order model predicting the main features of subcritical transition to turbulence.
Moin, Parviz; Spalart, Philippe R.
1987-01-01
The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.
Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study
Englberger, Antonia; Dörnbrack, Andreas
2017-03-01
The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.
Structural ensemble dynamics based closure model for wall-bounded turbulent flow
Institute of Scientific and Technical Information of China (English)
Zhen-Su She; Ning Hu; You Wu
2009-01-01
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the stream-wise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions.
Energy Technology Data Exchange (ETDEWEB)
Mansoori, Zohreh; Saffar-Avval, Majid; Basirat-Tabrizi, Hassan; Ahmadi, Goodarz; Lain, Santiago
2002-12-01
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas-solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal k{sub {theta}}-{tau}{sub {theta}} equations, in addition to the hydrodynamic k-{tau} transport, and accounts for the particle-particle and particle-wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.
LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure
Wang, Qing; Wu, Hao; Ihme, Matthias
2015-11-01
The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril
2016-04-01
Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.
Evaluation of turbulence models in the PARC code for transonic diffuser flows
Georgiadis, N. J.; Drummond, J. E.; Leonard, B. P.
1994-01-01
Flows through a transonic diffuser were investigated with the PARC code using five turbulence models to determine the effects of turbulence model selection on flow prediction. Three of the turbulence models were algebraic models: Thomas (the standard algebraic turbulence model in PARC), Baldwin-Lomax, and Modified Mixing Length-Thomas (MMLT). The other two models were the low Reynolds number k-epsilon models of Chien and Speziale. Three diffuser flows, referred to as the no-shock, weak-shock, and strong-shock cases, were calculated with each model to conduct the evaluation. Pressure distributions, velocity profiles, locations of shocks, and maximum Mach numbers in the duct were the flow quantities compared. Overall, the Chien k-epsilon model was the most accurate of the five models when considering results obtained for all three cases. However, the MMLT model provided solutions as accurate as the Chien model for the no-shock and the weak-shock cases, at a substantially lower computational cost (measured in CPU time required to obtain converged solutions). The strong shock flow, which included a region of shock-induced flow separation, was only predicted well by the two k-epsilon models.
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.
2017-01-01
A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...... separation. Finally, it is shown that the RDT output can deviate from Monin-Obukhov similarity theory....
Physically-consistent wall boundary conditions for the k-ω turbulence model
DEFF Research Database (Denmark)
Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl
2010-01-01
A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...
Ahn, Kyung H.
1994-01-01
The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.
Study and modeling of finite rate chemistry effects in turbulent non-premixed flames
Vervisch, Luc
1993-01-01
The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.
A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Model in ARW-WRF Model
Zhang, Xu; Bao, Jian-Wen; Chen, Baode
2017-04-01
A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing model is developed to address the problem of simulating the convective boundary layer (CBL) across the terra incognita in the Advanced Research version of the Weather Research and Forecasting Model (ARW-WRF). The new model combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the convectional one-dimensional (1D) planetary boundary layer (PBL) schemes. The transition between large-eddy simulation (LES) and mesoscale limit is accomplished in the new scale-adaptive model. A series of dry CBL and real-time simulations using the WRF model are carried out, in which the newly-developed, scale-adaptive, more general and energetically consistent TKE-based model is compared with the conventional 1D TKE-based PBL schemes for parameterizing vertical subgrid turbulent mixing against the WRF LES dataset and observations. The characteristics of the WRF-simulated results using the new and conventional schemes are compared. The importance of including the nonlocal component in the vertical buoyancy specification in the newly-developed general TKE-based scheme is illustrated. The improvements of the new scheme over convectional PBL schemes across the terra incognita can be seen in the partitioning of vertical flux profiles. Through comparing the results from the simulations against the WRF LES dataset and observations, we will show the feasibility of using the new scheme in the WRF model in the lieu of the conventional PBL parameterization schemes.
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky
Comparison of CFD Simulation of a Hyundai I20 Model with Four Different Turbulence Models
Directory of Open Access Journals (Sweden)
Vivekanandan
2016-07-01
Full Text Available This article describes the CFD analysis of a Hyundai i20 car Model. The focus of this study is to investigate the aerodynamics characteristics of Hyundai i20 car model and the flow obtained by solving the steady-state governing continuity equations as well as the momentum conservation equations combined with one of four turbulence models (1.Spalart-Allmaras 2.k-ε Standard 3.Transition k-kl-ω 4.Transition Shear Stress Transport (SST and the solutions obtained using these different models were compared. Except transition k-kl-ω model, other three models show nearly similar velocity variations plot. Pressure variation plot are almost similar with K-ε and transition-SST models. Eddy viscosity plot are almost similar with K-ε and transition k-kl-ω models
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-07-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-02-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes (RANS) based turbulence models which are the Standard k - ɛ, the Renormalized Group k - ɛ, the Realizable k - ɛ, the Reynolds Stress Model, the k - ω and the Shear Stress Transport k - ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS-based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore
2014-01-01
turbulence models. In the present work, the flow in a dynamic scale model of a uniflowscavenged cylinder is investigated experimentally. The model has a transparent cylinder and a moving piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry (PIV...
Validation of a bulk turbulence model with therman images of a point source
Kunz, G.J.; Moerman, M.M.; Fritz, P.J.; Leeuw, G. de
1996-01-01
A model was developed for the prediction of turbulence in the marine surface layer. The model requires standard meteorological values of air temperature, air humidity, wind speed each from any given height from within the surface layer and the sea surface temperature. Internally, the model is contro
A k-Model for Stably Stratified Nearly Horizontal Turbulent Flows
Kranenburg, C.
1985-01-01
A k-model is formulated that consists of the turbulent kinetic energy equation and an algebraic expression for the mixing length taking into account the influence of stratification. Applicability of the model is restricted to shallow, nearly horizontal flows. For local-equilibrium flows the model re
Náraigh, L Ó; Matar, O; Zaki, T
2009-01-01
We investigate the linear stability of a flat interface that separates a liquid layer from a fully-developed turbulent gas flow. In this context, linear-stability analysis involves the study of the dynamics of a small-amplitude wave on the interface, and we develop a model that describes wave-induced perturbation turbulent stresses (PTS). We demonstrate the effect of the PTS on the stability properties of the system in two cases: for a laminar thin film, and for deep-water waves. In the first case, we find that the PTS have little effect on the growth rate of the waves, although they do affect the structure of the perturbation velocities. In the second case, the PTS enhance the maximum growth rate, although the overall shape of the dispersion curve is unchanged. Again, the PTS modify the structure of the velocity field, especially at longer wavelengths. Finally, we demonstrate a kind of parameter tuning that enables the production of the thin-film (slow) waves in a deep-water setting.
Modeling and Measurement of Turbulent Swirling Flows Through Abrupt Expansions.
1987-03-01
developed Nusselt number for turbulent pipe flow represented by Dittus-Boelter or Sieder - Tate equations Nun Maximum or peak Nusaelt number q Local...temperature differences were moderate-to-large, and hence property variations appreciable, the Sieder -Tate correlation (Kern, 1950) was used to evaluate...For example, if the present results had been normalized using the Dittus-Boelter relation rather than the Sieder -Tate correlation, then peak values
Toy models of ice formation in turbulent overcooled water
De Santi, Francesca
2016-01-01
A study of ice formation in stationary turbulent conditions is carried out in various limit regimes with regard to crystal growth rate, overcooling and ice entrainment at the water surface. Analytical expressions of the temperature, salinity and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. A lower bound on the ratio of sensible heat flux to latent heat flux to the atmosphere is derived.
Bakosi, J; Boybeyi, Z; 10.1063/1.2803348
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a non-local representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent timescale is supplied by the gamma-distribution model of van Slooten et al. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with th...
A computationally efficient model for turbulent droplet dispersion in spray combustion
Litchford, Ron J.; Jeng, San-Mou
1990-01-01
A novel model for turbulent droplet dispersion is formulated having significantly improved computational efficiency in comparison to the conventional point source stochastic sampling methodology. In the proposed model, a computational parcel representing a group of physical particles is considered to have a normal (Gaussian) probability density function (PDF) in three-dimensional space. The mean of each PDF is determined by Lagrangian tracking of each computational parcel, either deterministically or stochastically. The variance is represented by a turbulence-induced mean squared dispersion which is based on statistical inferences from the linearized direct modeling formulation for particle/eddy interactions. Convolution of the computational parcel PDF's produces a single PDF for the physical particle distribution profile. The validity of the new model is established by comparison with the conventional stochastic sampling method, where in each parcel is represented by a delta function distribution, for non-evaporating particles injected into simple turbulent air flows.
Type Ia Supernova: Calculations of Turbulent Flames Using the Linear Eddy Model
Woosley, S E; Sankaran, V; Roepke, F K
2008-01-01
The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein (1991) elucidate three regimes of turbulent burning. In the simplest case, large scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U_L. This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of U_L remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase ...
Transport of cosmic-ray protons in intermittent heliospheric turbulence: Model and simulations
Energy Technology Data Exchange (ETDEWEB)
Alouani-Bibi, Fathallah; Le Roux, Jakobus A., E-mail: fb0006@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)
2014-02-01
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 astronomical unit. The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfvénic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallel and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport during which cross-field transport diffusion dominates. The effects of intermittency are found to depend on particle rigidity and the fraction of slab energy in the turbulence, yielding a perpendicular to parallel mean free path ratio close to 1 for large-scale intermittency. Investigation of higher order transport moments (kurtosis) indicates that non-Gaussian statistical properties of the intermittent turbulent magnetic field are present in the parallel transport, especially for low rigidity particles at all times.
Modelling of Turbulent Scalar Fluxes in the Broken Reaction Zones Regime
Im, Hong G.; Chakraborty, Nilanjan; Klein, Markus; Kasten, Christian; Arias, Paul
2016-11-01
The LES filtered species transport equation in turbulent reacting flow simulations contains the unclosed turbulent scalar flux that needs to be modelled. It is well known that the statistical behavior of this term and its alignment characteristics with resolved scalar gradient depend on the relative importance of heat release and turbulent velocity fluctuations. Counter-gradient transport has been reported in several earlier studies where the flames under investigation were located either in the corrugated flamelets or thin reaction zones regime of premixed turbulent combustion. Therefore it is useful to understand the statistical behavior of turbulent scalar fluxes if the flame represents the broken reaction zones regime (BRZR). The present analysis aims to provide improved understanding on this subject through an a-priori analysis of a detailed chemistry database consisting of three freely-propagating statistically planar turbulent H2-air premixed flames representing three different regimes of combustion. Results indicate that heat release effects weaken with increasing Karlovitz number, but that counter-gradient transport can still occur for large LES filter size in the BRZR. Furthermore the behaviour of the flux and in particular its sign are different for reactant and product species. KAUST, EPSRC, KAUST Supercomputing Lab, N8, Archer.
Robinson, P. A.; Newman, D. L.
1990-01-01
A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.
Doppler ultrasound in vitro modeling of turbulence in carotid vascular disease
Thorne, Meghan L.; Poepping, Tamie L.; Rankin, Richard N.; Nikolov, Hristo N.; Holdsworth, David W.
2004-04-01
Turbulence is ubiquitous to many systems in nature, except the human vasculature. Development of turbulence in the human vasculature is an indication of abnormalities and disease. A severely stenosed vessel is one such example. In vitro modeling of common vascular diseases, such as a stenosis, is necessary to develop a better understanding of the fluid dynamics for a characteristic geometry. Doppler ultrasound (DUS) is the only available non-invasive technique for in vivo applications. Using Doppler velocity-derived data, turbulence intensity (TI) can be calculated. We investigate a realistic 70% stenosed bifurcation model in pulsatile flow and the performance of this model for turbulent flow. Blood-mimicking fluid (BMF) was pumped through the model using a flow simulator, which generated pulsatile flow with a mean flow rate of 6 ml/s. Twenty-five cycles of gated DUS data were acquired within regions of laminar and turbulent flow. The data was digitized at 44.1 kHz and analyzed at 79 time-points/cardiac cycle with a 1024-point FFT, producing a 1.33 cm/s velocity resolution. We found BMF to exhibit DUS characteristics similar to blood. We demonstrated the capabilities to generate velocities comparable to that found in the human carotid artery and calculated TI in the case of repetitive pulsatile flow.
A novel combined model of discrete and mixture phases for nanoparticles in convective turbulent flow
Mahdavi, Mostafa; Sharifpur, Mohsen; Meyer, Josua P.
2017-08-01
In this study, a new combined model is presented to study the flow and discrete phase features of nano-size particles for turbulent convection in a horizontal tube. Due to the complexity and many phenomena involved in particle-liquid turbulent flows, the conventional models are not able to properly predict some hidden aspects of the flow. Therefore, a new form of Brownian force is implemented in the discrete phase model to predict the migration of the particles as well as energy equation has modified for particles. Then, the final results are exported to the mixture equations of the flow. The effects of the mass diffusion due to thermophoresis, Brownian motion, and turbulent dispersion are implemented as source terms in equations. The results are compared with the experimental measurements from the literature and are adequately validated. The accuracy of predicted heat transfer and friction coefficients is also discussed versus measurements. The migration of the particles toward the centre of the tube is properly captured. The results show the non-uniform distribution of particles in the turbulent flow due to strong turbulent dispersion. The proposed combined model can open new viewpoints of particle-fluid interaction flows.
Collisional-radiative modelling for the spectroscopic diagnostic of turbulent plasmas
Energy Technology Data Exchange (ETDEWEB)
Rosato, J.; Lefevre, T.; Escarguel, A.; Capes, H.; Catoire, F.; Marandet, Y.; Stamm, R. [PIIM, Universite de Provence, CNRS, Marseille (France); Rosmej, F.B. [Universite Pierre et Marie Curie, Paris (France)] [LULI, Palaiseau (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [NFI, Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Bonhomme, G. [IJL, Universite de Nancy, CNRS, Vandoeuvre-les-Nancy (France)
2011-07-01
Spectroscopy is a diagnostic method widely used in plasma physics research, e.g. in laboratory experiments, in fusion devices or in astrophysics. Information on the plasma parameters (electron density, temperature etc.) can be obtained from the analysis of both line shapes and intensities through the use of suitable models. The aim of the present paper is to assess the role of turbulent fluctuations on line intensity ratios in the case of weakly radiating plasmas. This involves the use of collisional-radiative modelling. In the present work we address the radiation due to atomic lines in turbulent helium plasmas at low density/temperature. The statistical formalism previously used in line shape modelling is adapted in this way, and the atomic populations are calculated with a collisional-radiative code. Different regimes, according to the turbulence correlation time, have been considered. In the static case, which corresponds to low-frequency fluctuations, it has been shown that the turbulence can lead to an increase of the line intensities. An application to helium in realistic experimental conditions has revealed that line ratios are sensitive to the fluctuations, which offers a track to a diagnostic. In the dynamic case, the use of a reduced model in the case of an ideal two-level atom has revealed the possibility for a significant dependence of the atomic populations on the turbulence frequency
Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow
Energy Technology Data Exchange (ETDEWEB)
Thomas, Vaughan L.; Gayme, Dennice F. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, 21218 (United States); Lieu, Binh K.; Jovanović, Mihailo R. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455 (United States); Farrell, Brian F. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, 02138 (United States); Ioannou, Petros J. [Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, Athens, 15784 (Greece)
2014-10-15
This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate that the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.
The spectral relaxation model of the scalar dissipation rate in homogeneous turbulence
Fox, R. O.
1995-05-01
A model for the effect of scalar spectral relaxation on the scalar dissipation rate of an inert, passive scalar (Sc≥1) in fully developed homogeneous turbulence is presented. In the model, wave-number space is divided into a finite number [the total number depending on the turbulence Reynolds number Reλ and the Schmidt number (Sc)] of intermediate stages whose time constants are determined from the velocity spectrum. The model accounts for the evolution of the scalar spectrum from an arbitrary initial shape to its fully developed form and its effect on the scalar dissipation rate for finite Reλ and Sc≥1. Corrsin's result [AIChE J. 10, 870 (1964)] for the scalar mixing time is attained for large Reλ in the presence of a constant mean scalar gradient and a stationary, isotropic turbulence field. Comparisons with DNS results for stationary, isotropic turbulence and experimental data for decaying, homogeneous grid turbulence demonstrate the satisfactory performance of the model.
Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor
Directory of Open Access Journals (Sweden)
B. B. Novickii
2015-01-01
Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor
Zilberman, Arkadi; Golbraikh, Ephim; Kopeika, Norman S
2008-12-01
Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
Mathematical modeling of turbulent reacting plumes - I. General theory and model formulation
Energy Technology Data Exchange (ETDEWEB)
Georgopoulos, P.G.; Seinfeld, J.H.
1986-01-01
A new, comprehensive model for a chemically reacting plume is presented that accounts for the effects of incomplete turbulent macro- and micromixing on chemical reactions between plume and atmospheric constituents. The model is modular in nature, allowing for the use of different levels of approximation of the phenomena involved. The core of the model consists of the evolution equations for reaction progress variables appropriate for evolving spatially varying systems. These equations estimate the interaction of mixing and chemical reaction and require input parameters characterizing internal plume behavior, such as relative dispersion and fine scale plume segregation. The model addresses deficiencies in previous reactive plume models. Part II is devoted to atmospheric application of the model. (authors).
Experimental Validation of Simplified Free Jet Turbulence Models Applied to the Vocal Tract
Grandchamp, Xavier; Pelorson, Xavier
2008-01-01
Sound production due to turbulence is widely shown to be an important phenomenon involved in a.o. fricatives, singing, whispering and speech pathologies. In spite of its relevance turbulent flow is not considered in classical physical speech production models mostly dealing with voiced sound production. The current study presents preliminary results of an experimental validation of simplified turbulence models in order to estimate the time-mean velocity distribution in a free jet downstream of a tube outlet. Aiming a future application in speech production the influence of typical vocal tract shape parameters on the velocity distribution is experimentally and theoretically explored: the tube shape, length and the degree and geometry of the constriction. Simplified theoretical predictions are obtained by applying similarity solutions of the bidimensional boundary layer theory to a plane and circular free jet in still air. The orifice velocity and shape are the main model input quantities. Results are discussed...
Wu, Jin-Long; Xiao, Heng; Ling, Julia
2016-01-01
Although Reynolds-Averaged Navier-Stokes (RANS) equations are still the dominant tool for engineering design and analysis applications involving turbulent flows, standard RANS models are known to be unreliable in many flows of engineering relevance, including flows with separation, strong pressure gradients or mean flow curvature. With increasing amounts of 3-dimensional experimental data and high fidelity simulation data from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), data-driven turbulence modeling has become a promising approach to increase the predictive capability of RANS simulations. Recently, a data-driven turbulence modeling approach via machine learning has been proposed to predict the Reynolds stress anisotropy of a given flow based on high fidelity data from closely related flows. In this work, the closeness of different flows is investigated to assess the prediction confidence a priori. Specifically, the Mahalanobis distance and the kernel density estimation (KDE) technique...
Probing turbulence intermittency via Auto-Regressive Moving-Average models
Faranda, Davide; Dubrulle, Berengere; Daviaud, Francois
2014-01-01
We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the Auto-Regressive Moving-Average modeling of turbulent time series. We introduce a new index $\\Upsilon$ that measures the distance from a Kolmogorov-Obukhov model in the Auto-Regressive Moving-Average models space. Applying our analysis to Particle Image Velocimetry and Laser Doppler Velocimetry measurements in a von K\\'arm\\'an swirling flow, we show that $\\Upsilon$ is proportional to the traditional intermittency correction computed from the structure function. Therefore it provides the same information, using much shorter time series. We conclude that $\\Upsilon$ is a suitable index to reconstruct the spatial intermittency of the dissipation in both numerical and experimental turbulent fields.
Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium.
Xiao, Houfei; Zuo, Yong; Wu, Jian; Li, Yan; Lin, Jintong
2013-09-01
Non-line-of-sight (NLOS) ultraviolet communication (UVC) uses the atmosphere as a propagation medium. In previous literature, various scatter propagation models have been derived based on the premise that atmospheric turbulence was ignored and the atmosphere was considered as a turbid medium, also called random scatterers. In this Letter, a NLOS single-scatter propagation model is proposed to describe the singly scattered radiation in a turbulent medium, also called a random continuum, such as the clear atmosphere. The model is established based on the relationship between the scattered power and the characteristics of the random turbulent medium. The scattering cross section is further investigated in terms of different correlation distances and wavelengths. The received power dependence for NLOS UVC is also analyzed for different factors, including refractive-index structure parameter and transceiver range.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
Jošt, D.; Škerlavaj, A.; Lipej, A.
2012-11-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine
Energy Technology Data Exchange (ETDEWEB)
Roy, S.; Saha, U.K. [Indian Institute of Technology Guwahati, Dept. of Mechanical Engineering, Guwahati (India)
2012-07-01
An unsteady computational investigation of the static torque characteristics of a drag based vertical axis wind turbine (VAWT) has been carried out using the finite volume based computational fluid dynamics (CFD) software package Fluent 6.3. A comparative study among the various turbulence models was conducted in order to predict the flow over the turbine at static condition and the results are validated with the available experimental results. CFD simulations were carried out at different turbine angular positions between 0 deg.-360 deg. in steps of 15 deg.. Results have shown that due to high static pressure on the returning blade of the turbine, the net static torque is negative at angular positions of 105 deg.-150 deg.. The realizable k-{epsilon} turbulent model has shown a better simulation capability over the other turbulent models for the analysis of static torque characteristics of the drag based VAWT. (Author)
Near-wall variable-Prandtl-number turbulence model for compressible flows
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon (sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, there are significant improvements in the predictions of mean flow properties at high Mach numbers.
A near-wall four-equation turbulence model for compressible boundary layers
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1992-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.
Observational Test for a Random Sweeping Model in Solar Wind Turbulence.
Perschke, C; Narita, Y; Motschmann, U; Glassmeier, K H
2016-03-25
Evidence of frequency broadening at ion kinetic scales due to large-scale eddies and waves is found in solar wind turbulence by a test for a random sweeping model using the magnetic energy spectrum in the frequency vs wave number domain in the comoving frame of the flow obtained from multispacecraft observations. The statistical analysis of the frequency vs wave number spectra without using Taylor's hypothesis shows Gaussian frequency broadening around nearly zero frequencies that increases for larger wave numbers and non-Gaussian tails at higher frequencies. Comparison of the observed frequency broadening with a random sweeping model derived from hydrodynamic turbulence reveals similarities with respect to the Gaussian shape. The standard deviation of the broadening scales with ∼k^{1.6±0.2} and differs from the hydrodynamic turbulence model that predicts ∼k^{2/3}. We interpret this stronger increasing broadening as a consequence of the more diverse large scale structures (eddies and waves) in plasma turbulence and the accompanied more complex sweeping. Consequently, an identification and association of waves with normal modes based on their dispersion relation only, in particular at ion kinetic scales and below, is not possible in solar wind turbulence.
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
Directory of Open Access Journals (Sweden)
Ma Li
2014-04-01
Full Text Available It is of great significance to improve the accuracy of turbulence models in shock-wave/boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS. It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras (S–A model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.
Modeling of individual coherent structures in wall region of a turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
周恒; 陆昌根; 罗纪生
1999-01-01
Models for individual coherent structures in the wall region of a turbulent boundary layer are proposed. Method of numerical simulations is used to follow the evolution of the structures. It is found that the proposed model does bear many features of coherent structures found in experiments.
Geurts, Bernard J.; Meyers, Johan
2006-01-01
We propose the successive inverse polynomial interpolation method to optimize model parameters in subgrid parameterization for large-eddy simulation. This approach is illustrated for the Smagorinsky eddy-viscosity model used in homogeneous decaying turbulence. The optimal Smagorinsky parameter is re
Turbulence model comparisons for a low pressure 1.5 stage test turbine
CSIR Research Space (South Africa)
Dunn, Dwain I
2009-09-01
Full Text Available . Experimental validation is used to determine the appropriateness of the model. The numerical study was performed using Numeca’s FINETM/Turbo and all of the appropriate turbulence models were tested. It was found that the Baldwin- Lomax, Spalart-Allmaras and k...
Geurts, Bernardus J.; Meyers, Johan
We propose the successive inverse polynomial interpolation method to optimize model parameters in subgrid parameterization for large-eddy simulation. This approach is illustrated for the Smagorinsky eddy-viscosity model used in homogeneous decaying turbulence. The optimal Smagorinsky parameter is
DEFF Research Database (Denmark)
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...
NEI Modelling of the ISM - Turbulent Dissipation & Hausdorff Dimension
de Avillez, Miguel A
2009-01-01
High-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.
A New Methodology for Turbulence Modelers Using DNS Database Analysis
Parneix, S.; Durbin, P.
1996-01-01
Many industrial applications in such fields as aeronautical, mechanical, thermal, and environmental engineering involve complex turbulent flows containing global separations and subsequent reattachment zones. Accurate prediction of this phenomena is very important because separations influence the whole fluid flow and may have an even bigger impact on surface heat transfer. In particular, reattaching flows are known to be responsible for large local variations of the local wall heat transfer coefficient as well as modifying the overall heat transfer. For incompressible, non-buoyant situations, the fluid mechanics have to be accurately predicted in order to have a good resolution of the temperature field.
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
stream, respec- tively) cross-stream planes and stereo-PIV in a vertical cross-stream plane of the turbulent boundary layer over a range Reθ = 7500–19000...energy is concentrated around a thin “ spine ” in (k,n,ω, l) space, where l is the singular value index, which essentially describes a low-dimensional...find the complexity of coherent structure arising from even the idealized arrangement of only three modes to be striking. This assembly of modes was
A Random Matrix Approach for Quantifying Model-Form Uncertainties in Turbulence Modeling
Xiao, Heng; Ghanem, Roger G
2016-01-01
With the ever-increasing use of Reynolds-Averaged Navier--Stokes (RANS) simulations in mission-critical applications, the quantification of model-form uncertainty in RANS models has attracted attention in the turbulence modeling community. Recently, a physics-based, nonparametric approach for quantifying model-form uncertainty in RANS simulations has been proposed, where Reynolds stresses are projected to physically meaningful dimensions and perturbations are introduced only in the physically realizable limits. However, a challenge associated with this approach is to assess the amount of information introduced in the prior distribution and to avoid imposing unwarranted constraints. In this work we propose a random matrix approach for quantifying model-form uncertainties in RANS simulations with the realizability of the Reynolds stress guaranteed. Furthermore, the maximum entropy principle is used to identify the probability distribution that satisfies the constraints from available information but without int...
A model for gyrotactic pattern formation of motile micro-organisms in turbulence
Gustavsson, K; Jonsson, P R; Mehlig, B
2015-01-01
Recent studies show that the dynamics of motile organisms subject to gravitational torques in turbulence gives rise to patchiness. Spherical motile organisms gather in down-welling regions of the turbulent flow. We determine how shape affects preferential sampling and small-scale spatial clustering (determining local encounter rates) by analysing a statistical model in two and three spatial dimensions. By recursively refining approximations for the paths the organisms take through the flow we determine analytically how preferential sampling and small-scale clustering in the model depend upon the dimensionless parameters of the problem. We show that singularities ("caustics") occur in the dynamics and discuss how these singularities affect spatial patterns.
Drag reduction by linear viscosity model in turbulent channel flow of polymer solution
Institute of Scientific and Technical Information of China (English)
吴桂芬; 李昌烽; 黄东升; 赵作广; 冯晓东; 王瑞
2008-01-01
A further numerical study of the theory that the drag reduction in the turbulence is related to the viscosity profile growing linearly with the distance from the wall was performed.The constant viscosity in the Navier-Stokes equations was replaced using this viscosity model.Some drag reduction characteristics were shown comparing with Virk’s phenomenology.The mean velocity and Reynolds stress profiles are consistent with the experimental and direct numerical simulation results.A drag reduction level of 45% was obtained.It is reasonable for this linear viscosity model to explain the mechanism of turbulence drag reduction in some aspects.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Elliptic model for space-time correlations in turbulent shear flows.
He, Guo-Wei; Zhang, Jin-Bai
2006-05-01
An elliptic model for space-time correlations in turbulent shear flows is proposed based on a second order approximation to the iso-correlation contours, while Taylor's hypothesis implies a first-order approximation. It is shown that the space-time correlations are mainly determined by their space correlations and the convection and sweeping velocities. This model accommodates two extreme cases: Taylor's hypothesis at vanishing sweeping velocity and the sweeping hypothesis at vanishing convection velocity. The result is supported by the data from the direct numerical simulation of turbulent channel flows.
Kolesnichenko, A. V.
2004-03-01
A thermodynamic approach to the construction of a phenomenological macroscopic model of developed turbulence in a compressible fluid is considered with regard for the formation of space-time dissipative structures. A set of random variables were introduced into the model as internal parameters of the turbulent-chaos subsystem. This allowed us to obtain, by methods of nonequilibrium thermodynamics, the kinetic Fokker-Planck equation in the configuration space. This equation serves to determine the temporary evolution of the conditional probability distribution function of structural parameters pertaining to the cascade process of fragmentation of large-scale eddies and temperature inhomogeneities and to analyze Markovian stochastic processes of transition from one nonequilibrium stationary turbulent-motion state to another as a result of successive loss of stability caused by a change in the governing parameters. An alternative method for investigating the mechanisms of such transitions, based on the stochastic Langevin-type equation intimately related to the derived kinetic equation, is also considered. Some postulates and physical and mathematical assumptions used in the thermodynamic model of structurized turbulence are discussed in detail. In particular, we considered, using the deterministic transport equation for conditional means, the cardinal problem of the developed approach-the possibility of the existence of asymptotically stable stationary states of the turbulent-chaos subsystem. Also proposed is the nonequilibrium thermodynamic potential for internal coordinates, which extends the well-known Boltzmann-Planck relationship for equilibrium states to the nonequilibrium stationary states of the representing ensemble. This potential is shown to be the Lyapunov function for such states. The relation is also explored between the internal intermittence in the inertial interval of scales and the fluctuations of the energy of dissipation. This study is aimed at
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Weak turbulence theory and simulation of the gyro-water-bag model.
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2008-05-01
The thermal confinement time of a magnetized fusion plasma is essentially determined by turbulent heat conduction across the equilibrium magnetic field. To achieve the study of turbulent thermal diffusivities, Vlasov gyrokinetic description of the magnetically confined plasmas is now commonly adopted, and offers the advantage over fluid models (MHD, gyrofluid) to take into account nonlinear resonant wave-particle interactions which may impact significantly the predicted turbulent transport. Nevertheless kinetic codes require a huge amount of computer resources and this constitutes the main drawback of this approach. A unifying approach is to consider the water-bag representation of the statistical distribution function because it allows us to keep the underlying kinetic features of the problem, while reducing the Vlasov kinetic model into a set of hydrodynamic equations, resulting in a numerical cost comparable to that needed for solving multifluid models. The present paper addresses the gyro-water-bag model derived as a water-bag-like weak solution of the Vlasov gyrokinetic models. We propose a quasilinear analysis of this model to retrieve transport coefficients allowing us to estimate turbulent thermal diffusivities without computing the full fluctuations. We next derive another self-consistent quasilinear model, suitable for numerical simulation, that we approximate by means of discontinuous Galerkin methods.
Directory of Open Access Journals (Sweden)
Sanghyeon Kim
2017-06-01
Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.
Kim, Sanghyeon; Cheong, Cheolung; Park, Warn-Gyu
2017-06-01
In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier-Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k - ɛ turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.
PDF Modeling of Evaporating Droplets in Isotropic Turbulence.
Mashayek, F.; Pandya, R. V. R.
2000-11-01
We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Institute of Scientific and Technical Information of China (English)
Li Ya-Qing; Wu Zhen-Sen
2012-01-01
On the basis of the extended Huygens Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM)beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intersity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.
1994-01-01
Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).
RESEARCH AND MATHEMATICAL MODELING OF TURBULENT BOUNDARY LAYER AT POSITIVE PRESSURE GRADIENT
Directory of Open Access Journals (Sweden)
Vitaliy Mamchuk
2016-06-01
Full Text Available Purpose: Mathematical modeling of complex turbulent near-wall flows, that occur during the flow of airfoils, is impossible without understanding the nature of the flow in boundary layer. From a mathematical point of view, the calculation of such flows, because in practical problems they regarded as turbulent, and the characteristics of turbulence are largely dependent on the geometry of the profile of the longitudinal component of the average velocity of the near-wall flow. Based on this, the purpose of this work is studying and mathematical modeling of turbulent near-wall flows in the interaction with the real streamlined surface, that has certain features, such as the curvature, roughness, etc., as well as the study and research of the influence of the pressure gradient on the empirical coefficients, parameters of the flow, velocity profiles and friction stress. Methods: We performed the calculations using numerical finite-difference marching method with algebraic model of turbulent viscosity coefficient. Results: In this paper we present some results of the numerical study of the effect of the positive pressure gradient on the empirical coefficients of the transition zone and the law of the near-wall and the outer-wall areas. Discussion: Comparison of the calculated results with the experimental data shows that the proposed approaches provide an opportunity to simulate the flow as close as possible to their physical properties. Presented mathematical model for the calculation of turbulent boundary layers and near-wall flows makes it possible to calculate such a complex and valuable from a practical point of view type of the flow as the aerodynamic trail behind the streamlined body.
Extended intrinsic mean spin tensor for turbulence modelling in non-inertial frame of reference
Institute of Scientific and Technical Information of China (English)
HUANG Yu-ning; MA Hui-yang
2008-01-01
We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference.It is described by the Euclidean group of transformations and,in particular,its significance and importance in the approach of the algebraic Reynolds stress modelling,such as in a nonlinear K-εmodel.To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling,we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data.Our results and analysis indicate that,only if the deficiencies of these models and the like be well understood and properly corrected,may in the near future,more sophisticated nonlinear K-ε models be 0eveloped to better predict complex turbulent flows in a non-inertial frame of reference.
Notes on the Langevin model for turbulent diffusion of ``marked`` particles
Energy Technology Data Exchange (ETDEWEB)
Rodean, H.C.
1994-01-26
Three models for scalar diffusion in turbulent flow (eddy diffusivity, random displacement, and on the Langevin equation) are briefly described. These models random velocity increment based Fokker-Planck equation is introduced as are then examined in more detail in the reverse order. The Fokker-Planck equation is the Eulerian equivalent of the Lagrangian Langevin equation, and the derivation of e outlined. The procedure for obtaining the deterministic and stochastic components of the Langevin equation from Kolmogorov`s 1941 inertial range theory and the Fokker-Planck equation is described. it is noted that a unique form of the Langevin equation can be determined for diffusion in one dimension but not in two or three. The Langevin equation for vertical diffusion in the non-Gaussian convective boundary layer is presented and successively simplified for Gaussian inhomogeneous turbulence and Gaussian homogeneous turbulence in turn. The Langevin equation for Gaussian inhomogeneous turbulence is mathematically transformed into the random displacement model. It is shown how the Fokker-Planck equation for the random displacement model is identical in form to the partial differential equation for the eddy diffusivity model. It is noted that the Langevin model is applicable in two cases in which the other two are not valid: (1) very close in time and distance to the point of scalar release and (2) the non-Gaussian convective boundary layer. The two- and three-dimensional cases are considered in Part III.
Impact of chemical kinetic model reduction on premixed turbulent flame characteristics
Fillo, Aaron; Niemeyer, Kyle
2016-11-01
The use of detailed chemical kinetic models for direct numerical simulations (DNS) is prohibitively expensive. Current best practice for the development of reduced models is to match laminar burning parameters such as flame speed, thickness, and ignition delay time to predictions of the detailed chemical kinetic models. Prior studies using reduced models implicitly assumed that matching the homogeneous and laminar properties of the detailed model will result in similar behavior in a turbulent environment. However, this assumption has not been tested. Fillo et al. recently demonstrated experimentally that real jet fuels with similar chemistry and laminar burning parameters exhibit different turbulent flame speeds under the same flow conditions. This result raises questions about the validity of current best practices for the development of reduced chemical kinetic models for turbulent DNS. This study will investigate the validity of current best practices. Turbulent burning parameters, including flame speed, thickness, and stretch rate, will be compared for three skeletal mechanisms of the Princeton POSF 4658 mechanism, reduced using current best practice methods. DNS calculations of premixed, high-Karlovitz flames will be compared to determine if these methods are valid. This material is based upon work supported by the National Science Foundation under Grant No. 1314109-DGE.
A SECOND-ORDER MOMENT TURBULENCE MODEL FOR POWER LAW FLUID WITH PARTICLES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The model of power law fluid for dense two-phase turbulent flow was developed, which combines the unified second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. This model was used to simulate the turbulent flow of power law fluid single-phase in pipe. It is shown that the model has better prediction result than the model. The model was then used to simulate the dense two-phase turbulent up flow of power law fluid with particles. With the increase of the flow exponent, the velocities of power law fluid and particles increase near the pipe centre. Comparison between the two-phase flow of power law fluid-particle and of liquid-particle indicates that the axial fluctuation velocity of fluid phase and particle phase in liquid-particle two-phase flow is smaller than that in the power law fluid two-phase flow, but the two-phase velocities of power law fluid-particle and liquid-particle are close to each other.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
On Developments of k-τ and k-ω Models for Near-Wall Turbulence of Engineering Duct Flows
DEFF Research Database (Denmark)
Rokni, Masoud; Sundén, Bengt
2009-01-01
The performance of a modified k-tau model is assessed in predicting the turbulent flow and forced convective heat transfer in ducts with arbitrary cross-sections, under fully developed conditions. The presented model is based on more physical grounds using bounded time-scale, local turbulent...
Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows
Energy Technology Data Exchange (ETDEWEB)
Pettersson, Bjoern Anders
1997-12-31
This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.
Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames
Shahbazian, Nasim
Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress
Explosive Turbulent Magnetic Reconnection
Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro
2013-01-01
We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...
Directory of Open Access Journals (Sweden)
E. Krepper
2012-01-01
Full Text Available The paper presents CFD calculations of the void distribution tests of the PSBT benchmark using ANSYS CFX-12.1. First, relevant aspects of the implemented wall boiling model are reviewed highlighting the uncertainties in several model parameters. It is then shown that the measured cross-sectionally averaged values can be reproduced well with a single set of calibrated model parameters for different test cases. For the reproduction of patterns of void distribution cross-sections, attention has to be focussed on the modelling of turbulence in the narrow channel. Only a turbulence model with the capability to resolve turbulent secondary flows is able to reproduce at least qualitatively the observed void distribution patterns.
Wang, Jian-Xun; Xiao, Heng
2016-01-01
Turbulence modeling is a critical component in numerical simulations of industrial flows based on Reynolds-averaged Navier-Stokes (RANS) equations. However, after decades of efforts in the turbulence modeling community, universally applicable RANS models with predictive capabilities are still lacking. Recently, data-driven methods have been proposed as a promising alternative to the traditional approaches of turbulence model development. In this work we propose a data-driven, physics-informed machine learning approach for predicting discrepancies in RANS modeled Reynolds stresses. The discrepancies are formulated as functions of the mean flow features. By using a modern machine learning technique based on random forests, the discrepancy functions are first trained with benchmark flow data and then used to predict Reynolds stresses discrepancies in new flows. The method is used to predict the Reynolds stresses in the flow over periodic hills by using two training flow scenarios of increasing difficulties: (1) ...
Energy Technology Data Exchange (ETDEWEB)
Joo, W. K.; Kong, D. W.; Park, H. Z. [Yonsei University, Seoul (Korea)
2001-04-01
The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Subchannel flow in a nuclear bundle having vanes to mix flow appears complex turbulent flow. Objective of this study is to develop turbulence model which can predict complex flow. Also, the module will be produced, which can implement the developed turbulence model in the CFX code. The selected turbulence models are k-epsilon model, non-linear k-epsilon model, Reynolds stress model and modified Reynolds stress model to test their performance in the prediction of the flow in nuclear assembly. These models are tested for a 2-D backwise step flow, square duct flow, rod bundle flow and subchannel flow using CFX. The modules, which can implement Reynolds stress model and non-linear k-epsilon odel in CFX code, are produced. The advantages and disadvantages for these turbulence models are described and the limitation of implementation of non-linear model in CFX code is discussed. The results obtained from the research would give a help for the development of turbulence model which can accurately predict the flow through the rod bundles with mixing vanes. 18 refs., 37 figs., 8 tabs. (Author)
A semi-analytic model of the turbulent multi-phase interstellar medium
Braun, H.; Schmidt, W.
2012-04-01
We present a semi-analytic model for the interstellar medium that considers local processes and structures of turbulent star-forming gas. A volume element of the interstellar medium is described as a multi-phase system, comprising a cold and a warm gas phase in effective (thermal plus turbulent) pressure equilibrium and a stellar component. The cooling instability of the warm gas feeds the cold phase, while various heating processes transfer cold gas to the warm phase. The cold phase consists of clumps embedded in diffuse warm gas, where only the molecular fraction of the cold gas may be converted into stars. The fraction of molecular gas is approximately calculated, using a Strömgren-like approach and the efficiency of star formation is determined by the state of the cold gas and the turbulent velocity dispersion on the clump length-scale. Gas can be heated by supernovae and ultraviolet emission of massive stars, according to the evolutionary stages of the stellar populations and the initial mass function. Since turbulence has a critical impact on the shape of the gaseous phases, on the production of molecular hydrogen and on the formation of stars, the consistent treatment of turbulent energy - the kinetic energy of unresolved motions - is an important new feature of our model. Besides turbulence production by supernovae and the cooling instability, we also take into account the forcing by large-scale motions. We formulate a set of ordinary differential equations, which statistically describes star formation and the exchange between the different budgets of mass and energy in a region of the interstellar medium with given mean density, size, metallicity and external turbulence forcing. By exploring the behaviour of the solutions, we find equilibrium states, in which the star formation efficiencies are consistent with observations. Kennicutt-Schmidt-like relations naturally arise from the equilibrium solutions, while conventional star formation models in
Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I
Wey, Thomas Changju; Liu, Nan-suey
2011-01-01
This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.
Physical model for turbulent friction on rough surfaces
Li, Zhuoqun
2016-01-01
We present an analytical expression for turbulent friction on rough surfaces with regularly distributed roughness elements. Wall shear stresses are expressed as functions of physical quantities. Surfaces with varying roughness densities and roughness elements with different aspect ratios are considered. As the drag on each roughness element decreases as roughness density increases, we propose a straight forward method based on momentum conservation to deduce drag on elements by expressing it as a function of the maximum drag on elements and drag reductions ratios. We proposed a drag reduction effect of momentum redistribution and studied the mutual sheltering effect. Reduction ratios for redistribution effect and mutual sheltering effect are deduced, for different rough surfaces. These two drag reduction mechanisms are significant for sparse and dense surfaces, respectively. The shear stress on elements and the total shear stress are obtained as the result of the drag analysis. The estimated wall shear stress...
Modeling turbulent/chemistry interactions using assumed pdf methods
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
Turbulent convection in the Sun: modeling in unstructured meshes
Olshevsky, Vyacheslav; Ham, Frank
2014-01-01
We adopted an unstructured hydrodynamical solver CharLES to the problem of global convection in the Sun. With the aim to investigate the properties of solar turbulent convection and reproduce differential rotation pattern. We performed simulations in two spherical shells, with 1.3 and 10 million cells. In the first, coarse mesh, the solution does not reproduce realistic convection, and is dominated by numerical effects. In the second mesh, thermal conduction leads to cooling of bottom layers, that could not be compensated by solar irradiance. More simulations in the 10M cells mesh should be performed to investigate the influence of transport coefficients and numerical effects. Our estimate of the code performance suggests, that realistic simulations in even finer grids could be performed for reasonable computational cost.
Global MHD Modelling of the ISM - From large towards small scale turbulence
D'Avillez, M A; Avillez, Miguel A. de; Breitschwerdt, Dieter
2005-01-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 $\\mu$G. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteris...
Vertical structure and turbulent saturation level in fully radiative protoplanetary disc models
Flaig, M.; Kley, W.; Kissmann, R.
2010-12-01
We investigate a massive (Sigma ~ 10 000 g cm-2 at 1 au) protoplanetary disc model by means of 3D radiation magnetohydrodynamic simulations. The vertical structure of the disc is determined self-consistently by a balance between turbulent heating caused by the magnetorotational turbulence and radiative cooling. Concerning the vertical structure, two different regions can be distinguished: a gas-pressure-dominated, optically thick mid-plane region where most of the dissipation takes place, and a magnetically dominated, optically thin corona which is dominated by strong shocks. At the location of the photosphere, the turbulence is supersonic (M ~ 2), which is consistent with previous results obtained from the fitting of spectra of young stellar objects. It is known that the turbulent saturation level in simulations of MRI-induced turbulence does depend on numerical factors such as the numerical resolution and the box size. However, by performing a suite of runs at different resolutions (using up to 64 x 128 x 512 grid cells) and with varying box sizes (with up to 16 pressure scaleheights in the vertical direction), we find that both the saturation levels and the heating rates show a clear trend to converge once a sufficient resolution in the vertical direction has been achieved.
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Extending the restricted nonlinear model for wall-turbulence to high Reynolds numbers
Bretheim, Joel; Meneveau, Charles; Gayme, Dennice
2016-11-01
The restricted nonlinear (RNL) model for wall-turbulence is motivated by the long-observed streamwise-coherent structures that play an important role in these flows. The RNL equations, derived by restricting the convective term in the Navier-Stokes equations, provide a computationally efficient approach due to fewer degrees of freedom in the underlying dynamics. Recent simulations of the RNL system have been conducted for turbulent channel flows at low Reynolds numbers (Re), yielding insights into the dynamical mechanisms and statistics of wall-turbulence. Despite the computational advantages of the RNL system, simulations at high Re remain out-of-reach. We present a new Large Eddy Simulation (LES) framework for the RNL system, enabling its use in engineering applications at high Re such as turbulent flows through wind farms. Initial results demonstrate that, as observed at moderate Re, restricting the range of streamwise varying structures present in the simulation (i.e., limiting the band of x Fourier components or kx modes) significantly affects the accuracy of the statistics. Our results show that only a few well-chosen kx modes lead to RNL turbulence with accurate statistics, including the mean profile and the well-known inner and outer peaks in energy spectra. This work is supported by NSF (WindInspire OISE-1243482).
Tribbia, Joseph
2012-10-01
One of the many areas in geophysical fluid dynamics that impacts how we model dissipation in the climate system is the theory of two-dimensional and quasi geostrophic turbulence and its impact on atmospheric flow. Upscale energy and and down scale enstrophy cascades have been observed in the atmosphere along with the -3 power law predicted in two-dimensional turbulence theory put forward by Batchelor and Kraichnan in the late 1960s. A consequence of this observational finding is the fact that, unlike three-dimensional turbulence in which the eddy turnover time decreases with eddy length scale, in two dimensional and quasi-geostrophic turbulence the eddy turnover time is constant independent of eddy length scale in the enstrophy cascading range. A further consequence of this is that the Rossby number is constant through the enstrophy cascade. This implies that instabilities which depend on ageostrophic processes are restricted because the scaling laws which imply balanced, quasi-geostrophic dynamics are valid at all length scales. Recent results show, however, even given that all of the above statements are true and maintained in the dynamics, there is a mechanism through which quasi-geostrophic turbulence becomes inconsistent and develops the seeds of its own destruction at small scales.
Logarithmic discretization and systematic derivation of shell models in two-dimensional turbulence.
Gürcan, Ö D; Morel, P; Kobayashi, S; Singh, Rameswar; Xu, S; Diamond, P H
2016-09-01
A detailed systematic derivation of a logarithmically discretized model for two-dimensional turbulence is given, starting from the basic fluid equations and proceeding with a particular form of discretization of the wave-number space. We show that it is possible to keep all or a subset of the interactions, either local or disparate scale, and recover various limiting forms of shell models used in plasma and geophysical turbulence studies. The method makes no use of the conservation laws even though it respects the underlying conservation properties of the fluid equations. It gives a family of models ranging from shell models with nonlocal interactions to anisotropic shell models depending on the way the shells are constructed. Numerical integration of the model shows that energy and enstrophy equipartition seem to dominate over the dual cascade, which is a common problem of two-dimensional shell models.
Comparison of two stochastic models of scalar diffusion in turbulent flow
Rodean, H. C.; Lange, R.; Nasstrom, J. S.; Gavrilov, V. P.
1992-07-01
This report describes and compares two Lagrangian stochastic models for turbulent diffusion: (1) the random velocity increment model based on the Langevin equation; and (2) the random displacement model. We apply both models to identical test problems for one-dimensional (vertical) diffusion, using identical parameterizations of turbulence statistics as inputs. We compare the results and discuss the advantages and disadvantages of each model. This work is part of an effort to improve the ADPIC dispersion model which is based on the eddy diffusivity model. It is also part of a cooperative research effort on the transport and dispersion of hazardous materials in the atmosphere by the Lawrence Livermore National Laboratory and the Institute of Experimental Meteorology (USSR).
Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces
Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.
1994-01-01
In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.
Propagation of specular and anti-specular Gaussian Schell-model beams in oceanic turbulence
Zhou, Zhaotao; Guo, Mengwen; Zhao, Daomu
2017-01-01
On the basis of the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, we investigate the propagation properties of the specular and anti-specular Gaussian Schell-model (GSM) beams through oceanic turbulence. It is shown that the specularity of specular GSM beams and the anti-specularity of anti-specular GSM beams are destroyed on propagation in oceanic turbulence. The spectral density and the spectral degree of coherence are also studied in detail. The results may be helpful for underwater communication.
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
induced turbulence of the underlying flow and the modification of the turbulent quantities by the dispersed bubbles. Due to the lack of realisable data...is modelled with the coefficient CVM taking the standard value of 0.5. Other forces which mainly act in the lateral direc- tion, like the lift, wall... values were used for αG = 0.033 and the mean gas velocity, in accordance with the case 4 from Hosokawa and Tomiyama (2009). The domain was 160D long in
A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence
Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.
2004-10-01
A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.
Kendl, Alexander
2014-01-01
Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.
Measured 3D turbulent mixing in a small-scale circuit breaker model
Energy Technology Data Exchange (ETDEWEB)
Basse, Nils T; Bini, Riccardo [ABB Switzerland Ltd., Corporate Research, Baden-Daettwil, CH-5405 (Switzerland); Kissing, Christopher, E-mail: nils.basse@npb.dk [Rheinische Fachhochschule Koeln, DE-50676 (Germany)
2011-06-22
Turbulence plays a key role in several physical processes related to the interruption of current in a gas circuit breaker (GCB). In this paper we study one aspect, namely turbulent gas mixing in the heating volume of a small-scale 3D GCB model. Mixing is observed using a shadowgraphy setup; postprocessing extracts information on the time-varying velocity field. Discharges with two different current amplitudes were studied and their repeatability investigated. A measure of mixing completeness, the largest vortex area, was investigated. The experiments reported upon in this paper were done in air at atmospheric pressure.
Joint PDF Modelling of Local Extinction and Pollutant Formation in Non-premixed Turbulent Flames
Tang, Qing; Xu, Jun; Pope, Stephen B.
2000-11-01
A velocity-composition-turbulence frequency joint PDF approach is applied to model piloted methane/air turbulent diffusion flames investigated experimentally by Barlow and Frank. These flames exhibit an increasing amount of local extinction with increasing jet velocity, and are good cases to test the capabilities of turbulence-chemistry and combustion-chemistry models to account for local extinction and pollutant formation. In this study, the chemistry is an augmented reduced mechanism (19 species and 15 reaction steps) derived from the GRI2.11 detailed mechanism for methane oxidation by Sung and co-workers. The mechanism takes account of C2 chemistry, and the formation of oxides of nitrogen is treated by the inclusion of NO, NH3 and HCN. The turbulence models include the simplified Langevin model (SLM) for velocity, a stochastic model of Jayesh and Pope for turbulence frequency, the EMST model of Subramaniam and Pope for molecular mixing. The computational method for the solution of the modeled joint PDF equation features moving particles in a Lagrangian framework. The reaction calculations are performed via the in situ adaptive tabulation (ISAT) algorithm of Pope. The calculation results show good agreement with the experimental data, including the minor species NO and CO. The increase of local extinction (quantitatively characterized by a single variable - burning index) with increasing jet velocity is also accurately predicted by the calculations. It is founded that a small change of the inlet pilot temperature has a significant influence on the calculations and a systematic study has been made to investigate this sensitivity. For the flame with lowest velocity, the large influence is mainly observed close to the nozzle, while for the flame close to extinction, the calculated behavior is exquisitely sensitive to the pilot temperature, i.e., a 10K lower pilot temperature may cause global extinction.
Boundary Layer for the Navier-Stokes-alpha Model of Fluid Turbulence
Cheskidov, A.
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams
Ding, Chaoliang; Liao, Lamei; Wang, Haixia; Zhang, Yongtao; Pan, Liuzhan
2015-03-01
On the basis of the extended Huygens-Fresnel principle, the analytic expression for the cross-spectral density function of the cosine-Gaussian-correlated Schell-model (CGSM) beams propagating in oceanic turbulence is derived and used to investigate the spectral density and spectral degree of coherence of CGSM beams. The dependence of the spectral density and spectral degree of coherence of CGSM beams on the oceanic turbulence parameters including temperature-salinity balance parameter ω, mean square temperature dissipation rate χT and energy dissipation rate per unit mass ɛ is stressed and illustrated numerically. It is shown that oceanic turbulence plays an important role in the evolution of spectral density and spectral degree of coherence of CGSM beams upon propagation.
Energy Technology Data Exchange (ETDEWEB)
Tzeferacos, P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Rigby, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bott, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bell, A. R. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom; Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom; Casner, A. [CEA, DAM, DIF, F-91297 Arpajon, France; Cattaneo, F. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Churazov, E. M. [Max Planck Institute for Astrophysics, D-85741 Garching, Germany; Space Research Institute (IKI), Moscow 117997, Russia; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Flocke, N. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Forest, C. B. [Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Foster, J. [AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, United Kingdom; Graziani, C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Koenig, M. [Laboratoire pour l' Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, France; Li, C. -K. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Meinecke, J. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Petrasso, R. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Park, H. -S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ryu, D. [Department of Physics, UNIST, Ulsan 689-798, South Korea; Ryutov, D. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weide, K. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; White, T. G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom; Miniati, F. [Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland; Schekochihin, A. A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Gregori, G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Lamb, D. Q. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
A phenomenological model for the dynamic response of wind turbines to turbulent wind
Energy Technology Data Exchange (ETDEWEB)
Rauh, Alexander; Peinke, Joachim [Institut fur Physik, Universitat Oldenburg, D-26111 Oldenburg (Germany)
2004-02-01
To predict the average power output of a wind turbine, a response model is proposed which takes into account: (1) the delayed response to the longitudinal wind speed fluctuations; (2) a response function of the turbine with arbitrary frequency dependence; and (3) wind fields of arbitrary turbulence intensity. In the limit of low turbulence intensity, the dynamical ansatz as proposed in 1992 by Rosen and Sheinman is reproduced. It is shown, how the response function of the turbine can be obtained from simulation experiments of a specific wind turbine. For two idealized situations the dynamic effect of fluctuating wind is estimated at turbulence intensities 0{<=}I{sub u}{<=}0.5. At the special mean wind speed V=8m/s, the turbine response function is determined from simulation data published by Sheinman and Rosen in 1992 and 1994.
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence
Sharma, A. S.; Moarref, R.; McKeon, B. J.
2017-03-01
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.
Directory of Open Access Journals (Sweden)
M Safaei
2016-09-01
Full Text Available In the present study, first the turbulent natural convection and then laminar mixed convection of air flow was solved in a room and the calculated outcomes are compared with results of other scientists and after showing validation of calculations, aforementioned flow is solved as a turbulent mixed convection flow, using the valid turbulence models Standard k-ε, RNG k-ε and RSM. To solve governing differential equations for this flow, finite volume method was used. This method is a specific case of residual weighting method. The results show that at high Richardson Numbers, the flow is rather stationary at the center of the enclosure. Moreover, it is distinguished that when Richardson Number increases the maximum of local Nusselt decreases. Therefore, it can be said that less number of Richardson Number, more rate of heat transfer.
On two-dimensionalization of three-dimensional turbulence in shell models
DEFF Research Database (Denmark)
Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.
2010-01-01
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell...