WorldWideScience

Sample records for two-engine functional model

  1. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    Science.gov (United States)

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  2. Two Models of Engineering Education for the Professional Practice

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots; Ir. Peter van Kollenburg

    2002-01-01

    Two models for engineering education that may answer the needs for "Renaissance Engineers" are described in this paper. They were the outcome of an educational renewal project, funded by the Dutch Ministry of Education and industrial companies. The first model (Corporate Curriculum) aims to bring

  3. Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Cheon, Se Woo

    1999-01-01

    Most of the complex systems are formed through some hierarchical evolution. Therefore, those systems can be best described through hierarchical frameworks. This paper describes some fundamental attributes of complex physical systems and several hierarchies such as functional, behavioral, goal/condition, and event hierarchies, then presents a function-centered approach to system modeling. Based on the function-centered concept, this paper describes the joint goal tree-success tree (GTST) and the master logic diagram (MLD) as a framework for developing models of complex physical systems. A function-based lexicon for classifying the most common elements of engineering systems for use in the GTST-MLD framework has been proposed. The classification is based on the physical conservation laws that govern the engineering systems. Functional descriptions based on conservation laws provide a simple and rich vocabulary for modeling complex engineering systems

  4. Goal-Function Tree Modeling for Systems Engineering and Fault Management

    Science.gov (United States)

    Johnson, Stephen B.; Breckenridge, Jonathan T.

    2013-01-01

    The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to

  5. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    Science.gov (United States)

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  6. Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Climent, H.; Varnier, O.

    2010-01-01

    Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed.

  7. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  8. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  9. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  10. Correlation functions of two-matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.

    1993-11-01

    We show how to calculate correlation functions of two matrix models without any approximation technique (except for genus expansion). In particular we do not use any continuum limit technique. This allows us to find many solutions which are invisible to the latter technique. To reach our goal we make full use of the integrable hierarchies and their reductions which were shown in previous papers to naturally appear in multi-matrix models. The second ingredient we use, even though to a lesser extent, are the W-constraints. In fact an explicit solution of the relevant hierarchy, satisfying the W-constraints (string equation), underlies the explicit calculation of the correlation functions. The correlation functions we compute lend themselves to a possible interpretation in terms of topological field theories. (orig.)

  11. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  12. Altering Height Data by Using Natural Logarithm as 3D Modelling Function for Reverse Engineering Application

    Science.gov (United States)

    Ilham Aminullah Abdulqawi, Nur; Salman Abu Mansor, Mohd

    2018-01-01

    The raw data extracted from reverse engineering based on vision mostly do not resemble the actual geometrical representation yet. Even though the higher object surface reflected the most visible light towards the camera and yield higher number of value based on Lambertian illumination model, this does not mean the curvature profile are always accurate. After all, there are many mathematical models to shape curvature profiles into the correct representation. However, one of the most appropriate models found is the natural logarithm function. The function itself has alteration properties towards the raw data generated from reverse engineering based on vision.

  13. Two-dimensional threshold voltage model and design considerations for gate electrode work function engineered recessed channel nanoscale MOSFET: I

    International Nuclear Information System (INIS)

    Chaujar, Rishu; Kaur, Ravneet; Gupta, Mridula; Gupta, R S; Saxena, Manoj

    2009-01-01

    This paper discusses a threshold voltage model for novel device structure: gate electrode work function engineered recessed channel (GEWE-RC) nanoscale MOSFET, which combines the advantages of both RC and GEWE structures. In part I, the model accurately predicts (a) surface potential, (b) threshold voltage and (c) sub-threshold slope for single material gate recessed channel (SMG-RC) and GEWE-RC structures. Part II focuses on the development of compact analytical drain current model taking into account the transition regimes from sub-threshold to saturation. Furthermore, the drain conductance evaluation has also been obtained, reflecting relevance of the proposed device for analogue design. The analysis takes into account the effect of gate length and groove depth in order to develop a compact model suitable for device design. The analytical results predicted by the model confirm well with the simulated results. Results in part I also provide valuable design insights in the performance of nanoscale GEWE-RC MOSFET with optimum threshold voltage and negative junction depth (NJD), and hence serves as a tool to optimize important device and technological parameters for 40 nm technology

  14. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    Science.gov (United States)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  15. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  16. On computing special functions in marine engineering

    Science.gov (United States)

    Constantinescu, E.; Bogdan, M.

    2015-11-01

    Important modeling applications in marine engineering conduct us to a special class of solutions for difficult differential equations with variable coefficients. In order to be able to solve and implement such models (in wave theory, in acoustics, in hydrodynamics, in electromagnetic waves, but also in many other engineering fields), it is necessary to compute so called special functions: Bessel functions, modified Bessel functions, spherical Bessel functions, Hankel functions. The aim of this paper is to develop numerical solutions in Matlab for the above mentioned special functions. Taking into account the main properties for Bessel and modified Bessel functions, we shortly present analytically solutions (where possible) in the form of series. Especially it is studied the behavior of these special functions using Matlab facilities: numerical solutions and plotting. Finally, it will be compared the behavior of the special functions and point out other directions for investigating properties of Bessel and spherical Bessel functions. The asymptotic forms of Bessel functions and modified Bessel functions allow determination of important properties of these functions. The modified Bessel functions tend to look more like decaying and growing exponentials.

  17. Two simple models of classical heat pumps.

    Science.gov (United States)

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  18. Swirling flow in model of large two-stroke diesel engine

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Schnipper, Teis

    2012-01-01

    A scale model of a simplified cylinder in a uniflow scavenged large two-stroke marine diesel engine is constructed to investigate the scavenging process. Angled ports near the bottom of the cylinder liner are uncovered as the piston reaches the bottom dead center. Fresh air enters through the ports...... forcing the gas in the cylinder to leave through an exhaust valve located in the cylinder head. The scavenging flow is a transient (opening/closing ports) confined port-generated turbulent swirl flow, with complex phenomena such as central recirculation zones, vortex breakdown and vortex precession...

  19. Carbonaceous species emitted from handheld two-stroke engines

    Science.gov (United States)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  20. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  1. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  2. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications

    International Nuclear Information System (INIS)

    Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.

    2015-01-01

    Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.

  3. In vivo engineering of a functional tendon sheath in a hen model.

    Science.gov (United States)

    Xu, Liang; Cao, Dejun; Liu, Wei; Zhou, Guangdong; Zhang, Wen Jie; Cao, Yilin

    2010-05-01

    Repair of injured tendon sheath remains a major challenge and this study explored the possibility of in vivo reconstruction of a tendon sheath with tendon sheath derived cells and polyglycolic acid (PGA) fibers in a Leghorn hen model. Total 55 Leghorn hens with a 1cm tendon sheath defect created in the left middle toe of each animal were randomly assigned into: (1) experimental group (n=19) that received a cell-PGA construct; (2) scaffold control group (n=18) that received a cell-free PGA scaffold; (3) blank control group (n=18) with the defect untreated. Tendon sheath cells were isolated, in vitro expanded, and seeded onto PGA scaffolds. After in vitro culture for 7 days, the constructs were in vivo implanted to repair the sheath defects. Alcian blue staining confirmed the ability of cultured cells to produce specific matrices containing acidic carboxyl mucopolysaccharide (mainly hyaluronic acid). In addition, the engineered sheath formed a relatively mature structure at 12 weeks post-surgery, which was similar to that of native counterpart, including a smooth inner surface, a well-developed sheath histological structure with a clear space between the tendon and the engineered sheath. More importantly, Work of Flexion assay revealed that the tendons needed less power consumption to glide inside the engineered sheath when compared to the tendons which were surrounded by scar-repaired tissues, indicating that the engineered sheaths had gained the function to a certain extent of preventing tendon adhesion. Taken together, these results suggest that tendon sheaths that are functionally and structurally similar to native sheaths are possible to be engineered in vivo using tendon sheath cells and PGA scaffolds. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Modeling syngas-fired gas turbine engines with two dilutants

    Science.gov (United States)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  5. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    Science.gov (United States)

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  6. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  7. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  8. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  9. Turbulent swirling flow in a model of a uniflow-scavenged two-stroke engine

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore

    2013-01-01

    The turbulent and swirling flow of a uniflow-scavenged two-stroke engine cylinder is investigated using a scale model with a static geometry and a transparent cylinder. The swirl is generated by 30 equally spaced ports with angles of 0°, 10°, 20°, and 30°. A detailed characterization of the flow...

  10. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  11. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  12. Customer Focused Product Design Using Integrated Model of Target Costing, Quality Function Deployment and Value Engineering

    Directory of Open Access Journals (Sweden)

    Hossein Rezaei Dolatabadi

    2013-01-01

    Full Text Available Target costing by integrating customer requirements, technical attributes and cost information into the product design phase and eliminating the non-value added functions, plays a vital role in different phases of the product life cycle. Quality Function Deployment (QFD and Value Engineering (VE are two techniques which can be used for applying target costing, successfully. The purpose of this paper is to propose an integrated model of target costing, QFD and VE to explore the role of target costing in managing product costs while promoting quality specifications meeting customers’ needs. F indings indicate that the integration of target costing, QFD and VE is an essential technique in managing the costs of production process. Findings also imply that integration of the three techniques provides a competitive cost advantage to companies.

  13. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  14. THE INDUSTRIAL ENGINEER: CAUGHT BETWEEN TWO REVOLUTIONS?

    Directory of Open Access Journals (Sweden)

    Niek Du Preez

    2012-01-01

    Full Text Available The .Industrial Engineer is caught between the Industrial Revolution and the Information revolution. He is confronted with choosing between pragmatic improvements in productivity and efficiency of a single operation or the opportunistic modelling and reshaping of the networked "virtual enterprise" to become more competitive in a global marketplace . The diagram below depicts the different extremes of the Industrial Engineering timeline. This implies that the two societies (Industrial and information might have conflicting characteristics which requires careful repositioning of the Industrial Engineer to ensure that the benefits that can be obtained from the two societies are maximised.

    This paper documents the development of Industrial engineering , then evaluates the nature of the much publicized Information revolution and its impact on society. In order to establish the nature and composition of contemporary Industrial Engineering in the 1990' s, an analysis and categorization of the literature in four journals for the last two years are performed. This is enhanced with an INTERNET search into Industrial Engineering Research and developments that are currently under development.

  15. Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Trullo, Gianluca

    2016-01-01

    Highlights: • A Two-Stroke diesel engine for aircraft propulsion was modeled with a 0D/1D approach. • The results of the 0D/1D model are compared with those resulting from a 3D model. • The effect of several design and thermodynamic parameters have been analyzed. • Guidelines for the optimization of engine performance are provided. - Abstract: In Two-Stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency; moreover, both of them are influenced by geometric and thermodynamic parameters characterizing the design and operation of both the engine and the related supercharging system. Aim of this work is to provide several guidelines about the definition of design and operation parameters for a Two-Stroke two banks Uniflow diesel engine, supercharged with two sequential turbochargers and an aftercooler per bank, with the goal of either increasing the engine brake power at take-off or decreasing the engine fuel consumption in cruise conditions. The engine has been modeled with a 0D/1D modeling approach. Then, the model capability in describing the effect of several parameters on engine performance has been assessed comparing the results of 3D simulations with those of 0D/1D model. The validated 0D/1D model has been used to simulate the engine behavior varying several design and operation engine parameters (exhaust valves opening and closing angles and maximum valve lift, scavenging ports opening angle, distance between bottom edge of the scavenging ports and bottom dead center, area of the single scavenging port and number of ports, engine volumetric compression ratio, low and high pressure compressor pressure ratios, air/fuel ratio) on a wide range of possible values. The parameters most influencing the engine performance are then recognized and their effect on engine thermodynamic behavior is discussed. Finally, the system configurations leading to best engine power at sea level and lowest fuel consumption in cruise

  16. Advancements in engineering turbulence modeling

    Science.gov (United States)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  17. Parisi function for two spin glass models

    International Nuclear Information System (INIS)

    Sibani, P.; Hertz, J.A.

    1984-01-01

    The probability distribution function P(q) for the overlap of pairs of metastable states and the associated Parisi order function q(x) are calculated exactly at zero temperature for two simple models. The first is a chain in which each spin interacts randomly with the sum of all the spins between it and one end of the chain; the second is an infinite-range limit of a spin glass version of Dyson's hierarchical model. Both have nontrivial overlap distributions: In the first case the problem reduces to a variable-step-length random walk problem, leading to q(x)=sin(πx). In the second model P(q) can be calculated by a simple recursion relation which generates devil's staircase structure in q(x). If the fraction p of antiferromagnetic bonds is less than 1/√2, the staircase is complete and the fractal dimensionality of the complement of the domain where q(x) is flat is log 2/log (1/p 2 ). In both models the space of metastable states can be described in terms of Cayley trees, which however have a different physical interpretation than in the S.K. model. (orig.)

  18. Numerical Modelling of the Operation of a Novel Two Stroke V4 Engine

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2017-02-01

    Full Text Available The paper presents simulations of the operation of a novel two-stroke engine for road Super Sport motorcycles. Two-stroke engines were preferred to four-stroke engines in Grand Prix motorcycle racing until the start of the Moto GP era when new rules phased out the two-stroke engines. Reasons for the change were the poor fuel economy and significant pollutant emissions. The paper discusses the opportunity of a came back at least in road Super Sport motorcycles thanks to the recent advantages in direct injection and precise lubrication for two-stroke engines, plus the opportunity to use jet ignition, based on performance simulations.

  19. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  20. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  1. Heat transfer modeling in exhaust systems of high-performance two-stroke engines

    OpenAIRE

    Lujan Martinez, José Manuel; Climent Puchades, Héctor; Olmeda González, Pablo Cesar; JIMENEZ MACEDO, VICTOR DANIEL

    2014-01-01

    Heat transfer from the hot gases to the wall in exhaust systems of high-performance two-stroke engines is underestimated using steady state with fully developed flow empirical correlations. This fact is detected when comparing measured and modeled pressure pulses in different positions in the exhaust system. This can be explained taking into account that classical expressions have been validated for fully developed flows, a situation that is far from the flow behavior in reciprocating interna...

  2. Numerical Modelling of the Operation of a Novel Two Stroke V4 Engine

    OpenAIRE

    Albert Boretti

    2017-01-01

    The paper presents simulations of the operation of a novel two-stroke engine for road Super Sport motorcycles. Two-stroke engines were preferred to four-stroke engines in Grand Prix motorcycle racing until the start of the Moto GP era when new rules phased out the two-stroke engines. Reasons for the change were the poor fuel economy and significant pollutant emissions. The paper discusses the opportunity of a came back at least in road Super Sport motorcycles thanks to the recent advantages i...

  3. Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2011-01-01

    Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.

  4. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  5. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  6. Engineering analysis of the two-stage trifluoride precipitation process

    International Nuclear Information System (INIS)

    Luerkens, D.w.W.

    1984-06-01

    An engineering analysis of two-stage trifluoride precipitation processes is developed. Precipitation kinetics are modeled using consecutive reactions to represent fluoride complexation. Material balances across the precipitators are used to model the time dependent concentration profiles of the main chemical species. The results of the engineering analysis are correlated with previous experimental work on plutonium trifluoride and cerium trifluoride

  7. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    Science.gov (United States)

    Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    Building upon the purpose, theoretical approach, and use of a Goal-Function Tree (GFT) being presented by Dr. Stephen B. Johnson, described in a related Infotech 2013 ISHM abstract titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management", this paper will describe the core framework used to implement the GFTbased systems engineering process using the Systems Modeling Language (SysML). These two papers are ideally accepted and presented together in the same Infotech session. Statement of problem: SysML, as a tool, is currently not capable of implementing the theoretical approach described within the "Goal-Function Tree Modeling for Systems Engineering and Fault Management" paper cited above. More generally, SysML's current capabilities to model functional decompositions in the rigorous manner required in the GFT approach are limited. The GFT is a new Model-Based Systems Engineering (MBSE) approach to the development of goals and requirements, functions, and its linkage to design. As a growing standard for systems engineering, it is important to develop methods to implement GFT in SysML. Proposed Method of Solution: Many of the central concepts of the SysML language are needed to implement a GFT for large complex systems. In the implementation of those central concepts, the following will be described in detail: changes to the nominal SysML process, model view definitions and examples, diagram definitions and examples, and detailed SysML construct and stereotype definitions.

  8. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model.

    Science.gov (United States)

    Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T

    2010-03-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.

  9. THE INDUSTRIAL ENGINEER: CAUGHT BETWEEN TWO REVOLUTIONS?

    OpenAIRE

    Niek Du Preez; Liliane Pintelon

    2012-01-01

    The .Industrial Engineer is caught between the Industrial Revolution and the Information revolution. He is confronted with choosing between pragmatic improvements in productivity and efficiency of a single operation or the opportunistic modelling and reshaping of the networked "virtual enterprise" to become more competitive in a global marketplace . The diagram below depicts the different extremes of the Industrial Engineering timeline. This implies that the two societies (Industrial and info...

  10. Studies on combined model based on functional objectives of large scale complex engineering

    Science.gov (United States)

    Yuting, Wang; Jingchun, Feng; Jiabao, Sun

    2018-03-01

    As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.

  11. Training Public School Special Educators to Implement Two Functional Analysis Models

    Science.gov (United States)

    Rispoli, Mandy; Neely, Leslie; Healy, Olive; Gregori, Emily

    2016-01-01

    The purpose of this study was to investigate the efficacy and efficiency of a training package to teach public school special educators to conduct functional analyses of challenging behavior. Six public school educators were divided into two cohorts of three and were taught two models of functional analysis of challenging behavior: traditional and…

  12. Model-driven engineering of information systems principles, techniques, and practice

    CERN Document Server

    Cretu, Liviu Gabriel

    2015-01-01

    Model-driven engineering (MDE) is the automatic production of software from simplified models of structure and functionality. It mainly involves the automation of the routine and technologically complex programming tasks, thus allowing developers to focus on the true value-adding functionality that the system needs to deliver. This book serves an overview of some of the core topics in MDE. The volume is broken into two sections offering a selection of papers that helps the reader not only understand the MDE principles and techniques, but also learn from practical examples. Also covered are the

  13. Green function of the model two-centre quantum-mechanical problem

    International Nuclear Information System (INIS)

    Khoma, M.V.; Lazur, V.Yu.

    2002-01-01

    The expansions of a Green function for the Simmons molecular potential (SMP) in terms of spheroidal function are built. The solutions of degenerate hypergeometric equation are used as basis function system while expanding regular and irregular model spheroidal functions into series. Rather simple three-terms recurrence relations are obtained for the coefficients of these expansions. Much attentions is given to different asymptotic representation as well as Sturmian expansions of the Green function of the two-centre SMP wave functions. In all cases considered the Green function is reduced to the form similar to the Hostler's representation of the Coulomb Green function

  14. Using Lambert W function and error function to model phase change on microfluidics

    Science.gov (United States)

    Bermudez Garcia, Anderson

    2014-05-01

    Solidification and melting modeling on microfluidics are solved using Lambert W's function and error's functions. Models are formulated using the heat's diffusion equation. The generic posed case is the melting of a slab with time dependent surface temperature, having a micro or nano-fluid liquid phase. At the beginning the solid slab is at melting temperature. A slab's face is put and maintained at temperature greater than the melting limit and varying in time. Lambert W function and error function are applied via Maple to obtain the analytic solution evolution of the front of microfluidic-solid interface, it is analytically computed and slab's corresponding melting time is determined. It is expected to have analytical results to be useful for food engineering, cooking engineering, pharmaceutical engineering, nano-engineering and bio-medical engineering.

  15. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  16. Swirling flow in a two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  17. Simulation Modeling and Optimization of Uniflow Scavenging System Parameters on Opposed-Piston Two-Stroke Engines

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2018-04-01

    Full Text Available Based on the introduction of opposed-piston two-stroke (OP2S gasoline direct injection (GDI engines, the OP2S-GDI engine working principle and scavenging process were analyzed. GT-Power software was employed to model the working process based on the structural style and principle of OP2S-GDI engine. The tracer gas method and OP2S-GDI engine experiment were employed for model validation at full load of 6000 rpm. The OP2S-GDI engine scavenging system parameters were optimized, including intake port height stroke ratio, intake port circumference ratio, exhaust port height stroke ratio, exhaust port circumference ratio, and opposed-piston motion phase difference. At the same time, the effect of the port height stroke ratio and opposed-piston motion phase difference on effective compression ratio and expansion ratio were considered, and the indicated work was employed as the optimization objective. A three-level orthogonal experiment was applied in the calculation process to reduce the calculation work. The influence and correlation coefficient on the scavenging efficiency and delivery ratio were investigated by the orthogonal experiment analysis of intake and exhaust port height stroke ratio and circular utilization. The effect of the scavenging system parameters on delivery ratio, scavenging efficiency and indicated work were calculated to obtain the best parameters. The results show that intake port height stroke ratio is the main factor for the delivery ratio, while exhaust port height stroke ratio is the main factor to engine delivery ratio and scavenging efficiency.

  18. Complex curve of the two-matrix model and its tau-function

    International Nuclear Information System (INIS)

    Kazakov, Vladimir A; Marshakov, Andrei

    2003-01-01

    We study the Hermitian and normal two-matrix models in planar approximation for an arbitrary number of eigenvalue supports. Its planar graph interpretation is given. The study reveals a general structure of the underlying analytic complex curve, different from the hyperelliptic curve of the one-matrix model. The matrix model quantities are expressed through the periods of meromorphic generating differential on this curve and the partition function of the multiple support solution, as a function of filling numbers and coefficients of the matrix potential, is shown to be a quasiclassical tau-function. The relation to N = 1 supersymmetric Yang-Mills theories is discussed. A general class of solvable multi-matrix models with tree-like interactions is considered

  19. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  20. Real-time modelling of the diesel engine combustion process; Echtzeitfaehige Modellierung des dieselmotorischen Verbrennungsprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Merz, B.

    2008-07-01

    The publication investigates single-zone models of diesel engine combustion which are capable, in addition to pre-injection and main injection, to represent post-injection processes on a physical basis. These must function in real time as they are used in ''hardware-in-the-loop'' test stands. Methods to adapt the models to other engine types are explained. Validation is made across the whole characteristic field on the basis of measured data provided by two serial engines. For assessing pollutant production, models are integrated that are capable of calculating NOx and soot formation. These, too, are calculated in real time using appropriate hardware systems. A runtime analysis compares the computing times of the models. (orig.)

  1. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  2. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  3. Asymptotic behaviour of two-point functions in multi-species models

    Directory of Open Access Journals (Sweden)

    Karol K. Kozlowski

    2016-05-01

    Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  4. Covariant two-particle wave functions for model quasipotential allowing exact solutions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.

    1982-01-01

    Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of relative motion of a bound state of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials

  5. Covariant two-particle wave functions for model quasipotentials admitting exact solutions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.

    1983-01-01

    Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of the internal motion of the bound system of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials

  6. Functional roles of an engineer species for coastal benthic invertebrates and demersal fish.

    Science.gov (United States)

    Chaalali, Aurélie; Brind'Amour, Anik; Dubois, Stanislas F; Le Bris, Hervé

    2017-08-01

    Through their tissues or activities, engineer species create, modify, or maintain habitats and alter the distribution and abundance of many plants and animals. This study investigates key ecological functions performed by an engineer species that colonizes coastal ecosystems. The gregarious tubiculous amphipod Haploops nirae is used as a biological model. According to previous studies, the habitat engineered by H. nirae (i.e., Haploops habitat) could provide food and natural shelter for several benthic species such as benthic diatoms belonging to the gender Navicula , the micrograzer Geitodoris planata, or the bivalve Polititapes virgineus . Using data from scientific surveys conducted in two bays, this study explored whether (1) the Haploops sandy-mud community modifies invertebrate and ichthyologic community structure (diversity and biomass); (2) H. nirae creates a preferential feeding ground; and (3) this habitat serves as a refuge for juvenile fish. Available Benthic Energy Coefficients, coupled with more traditional diversity indices, indicated higher energy available in Haploops habitat than in two nearby habitats (i.e., Sternaspis scutata and Amphiura filiformis/Owenia fusiformis habitats). The use of isotopic functional indices (IFIs) indicated (1) a higher functional richness in the Haploops habitat, related to greater diversity in food sources and longer food chains; and (2) a higher functional divergence, associated with greater consumption of a secondary food source. At the invertebrate-prey level, IFIs indicated little specialization and little trophic redundancy in the engineered habitat, as expected for homogenous habitats. Our results partly support empirical knowledge about engineered versus nonengineered habitats and also add new perspectives on habitat use by fish and invertebrate species. Our analyses validated the refuge-area hypothesis for a few fish species. Although unique benthic prey assemblages are associated with Haploops habitat, the

  7. A proposal of ecologic taxes based on thermo-economic performance of heat engine models

    International Nuclear Information System (INIS)

    Barranco-Jimenez, M. A.; Ramos-Gayosso, I.; Rosales, M. A.; Angulo-Brown, F.

    2009-01-01

    Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton's law of cooling and the Dulong-Petit's law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP) and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine's wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME) conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production. (author)

  8. Development and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Saad, Charbel; Aubertin, Fabrice

    2015-01-01

    Highlights: • Modelling of Diesel engine combustion with multi-injection mode was conducted. • Double and single Wiebe correlations for pilot, main and post combustion processes were calibrated. • Ignition delay time correlations have been developed and calibrated using experimental data for each injection. • The complete in-cylinder model has been applied successfully to real time simulations on HiL test bed. - Abstract: The improvement of Diesel engine performances in terms of fuel consumption and pollutant emissions has a huge impact on management system and diagnostic procedure. Validation and testing of engine performances can benefit from the use of theoretical models, for the reduction of development time and costs. Hardware in the Loop (HiL) test bench is a suitable way to achieve these objectives. However, the increasing complexity of management systems rises challenges for the development of very reduced physical models able to run in real time applications. This paper presents an extension of a previously developed phenomenological Diesel combustion model suitable for real time applications on a HiL test bench. In the earlier study, the modelling efforts have been targeted at high engine speeds with a very short computational time window, and where the engine operates with single injection. In the present work, a modelling of in-cylinder processes at low and medium engine speeds with multi-injection is performed. In order to reach an adequate computational time, the combustion progress during the pilot and main injection periods has been treated through a double Wiebe function, while the post combustion period has required a single Wiebe function. This paper describes the basic system models and their calibration and validation against experimental data. The use of the developed correlations of Wiebe coefficients and ignition delay times for each combustion phase, included in the in-cylinder crank angle global model, is applied for the prediction

  9. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  10. Development of field programmable gate array-based reactor trip functions using systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon; Ahmed, Ibrahim [Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

  11. Model engineering in a modular PSA

    International Nuclear Information System (INIS)

    Friedlhuber, Thomas

    2014-01-01

    For the purpose of PSA (Probabilistic Safety Analysis) for complex industrial systems, often PSA models in the form of fault and event trees are developed to model the risk of unwanted situations (hazards). While the recent decades, PSA models have gained high acceptance and have been developed massively. This lead to an increase in model sizes and complexity. Today, PSA models are often difficult to understand and maintain. This manuscript presents the concept of a modular PSA. A modular PSA tries to cope with the increased complexity by the techniques of modularization and instantiation. Modularization targets to treat a model by smaller pieces (the 'modules') to regain control over models. Instantiation aims to configure a generic model to different contexts. Both try to reduce model complexity. A modular PSA proposes new functionality to manage PSA models. Current model management is rather limited and not efficient. This manuscript shows new methods to manage the evolutions (versions) and deviations (variants) of PSA models in a modular PSA. The concepts of version and variant management are presented in this thesis. In this context, a model comparison and fusion of PSA models is precised. Model comparison provides important feedback to model engineers and model fusion kind of combines the work from different model engineers (concurrent model engineering). Apart from model management, methods to understand the content of PSA models are presented. The methods focus to highlight the dependencies between modules rather than their contents. Dependencies are automatically derived from a model structure. They express relations between model objects (for example a fault tree may have dependencies to basic events). To visualize those dependencies (for example in form of a model cartography) can constitute a crucial aid to model engineers for understanding complex interrelations in PSA models. Within the scope of this thesis, a software named 'Andromeda' has been

  12. Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines

    Science.gov (United States)

    Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad

    2008-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.

  13. Modeling the Distribution of Sulfur Compounds in a Large Two Stroke Diesel Engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Schramm, Jesper; Andreasen, Anders

    2013-01-01

    In many years large low speed marine diesel engines have consumed heavy fuel oils with sulfur contents in the order of 2.5 - 4.5wt%. Present legislations require that the fuel sulfur is reduced and in near future the limit will be 0.5wt% globally. During combustion most of the sulfur is oxidized...... conditions and sulfur feed. This work presents a computational model of a large low speed two-stroke diesel engine where a 0D multi-zone approach including a detailed reaction mechanism is employed in order to investigate in cylinder formation of gaseous SO3 where fuel injection rates are determined using...... experimental pressure traces. Similarly to NO the SO3 is very sensitive to the rate that fresh air mixes with hot combustion products. Therefore a simple mixing rate is proposed and calibrated in order to meet experimental results of NO. Generally 3 - 5 % of the injected sulfur is oxidized to SO3...

  14. EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.

  15. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Science.gov (United States)

    de Vries, Natalie Jane; Carlson, Jamie; Moscato, Pablo

    2014-01-01

    Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  16. A data-driven approach to reverse engineering customer engagement models: towards functional constructs.

    Directory of Open Access Journals (Sweden)

    Natalie Jane de Vries

    Full Text Available Online consumer behavior in general and online customer engagement with brands in particular, has become a major focus of research activity fuelled by the exponential increase of interactive functions of the internet and social media platforms and applications. Current research in this area is mostly hypothesis-driven and much debate about the concept of Customer Engagement and its related constructs remains existent in the literature. In this paper, we aim to propose a novel methodology for reverse engineering a consumer behavior model for online customer engagement, based on a computational and data-driven perspective. This methodology could be generalized and prove useful for future research in the fields of consumer behaviors using questionnaire data or studies investigating other types of human behaviors. The method we propose contains five main stages; symbolic regression analysis, graph building, community detection, evaluation of results and finally, investigation of directed cycles and common feedback loops. The 'communities' of questionnaire items that emerge from our community detection method form possible 'functional constructs' inferred from data rather than assumed from literature and theory. Our results show consistent partitioning of questionnaire items into such 'functional constructs' suggesting the method proposed here could be adopted as a new data-driven way of human behavior modeling.

  17. Two methodologies for optical analysis of contaminated engine lubricants

    International Nuclear Information System (INIS)

    Aghayan, Hamid; Yang, Jun; Bordatchev, Evgueni

    2012-01-01

    The performance, efficiency and lifetime of modern combustion engines significantly depend on the quality of the engine lubricants. However, contaminants, such as gasoline, moisture, coolant and wear particles, reduce the life of engine mechanical components and lubricant quality. Therefore, direct and indirect measurements of engine lubricant properties, such as physical-mechanical, electro-magnetic, chemical and optical properties, are intensively utilized in engine condition monitoring systems and sensors developed within the last decade. Such sensors for the measurement of engine lubricant properties can be used to detect a functional limit of the in-use lubricant, increase drain interval and reduce the environmental impact. This paper proposes two new methodologies for the quantitative and qualitative analysis of the presence of contaminants in the engine lubricants. The methodologies are based on optical analysis of the distortion effect when an object image is obtained through a thin random optical medium (e.g. engine lubricant). The novelty of the proposed methodologies is in the introduction of an object with a known periodic shape behind a thin film of the contaminated lubricant. In this case, an acquired image represents a combined lubricant–object optical appearance, where an a priori known periodic structure of the object is distorted by a contaminated lubricant. In the object shape-based optical analysis, several parameters of an acquired optical image, such as the gray scale intensity of lubricant and object, shape width at object and lubricant levels, object relative intensity and width non-uniformity coefficient are newly proposed. Variations in the contaminant concentration and use of different contaminants lead to the changes of these parameters measured on-line. In the statistical optical analysis methodology, statistical auto- and cross-characteristics (e.g. auto- and cross-correlation functions, auto- and cross-spectrums, transfer function

  18. Thermodynamic modeling of direct injection methanol fueled engines

    International Nuclear Information System (INIS)

    Shen Yuan; Bedford, Joshua; Wichman, Indrek S.

    2009-01-01

    In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.

  19. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  20. Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Rakopoulos, D.C.; Giakoumis, E.G.; Kyritsis, D.C.

    2004-01-01

    The present two zone model of a direct injection (DI) Diesel engine divides the cylinder contents into a non-burning zone of air and another homogeneous zone in which fuel is continuously supplied from the injector and burned with entrained air from the air zone. The growth of the fuel spray zone, which comprises a number of fuel-air conical jets equal to the injector nozzle holes, is carefully modelled by incorporating jet mixing, thus determining the amount of oxygen available for combustion. The mass, energy and state equations are applied in each of the two zones to yield local temperatures and cylinder pressure histories. The concentration of the various constituents in the exhaust gases are calculated by adopting a chemical equilibrium scheme for the C-H-O system of the 11 species considered, together with chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of the soot formation and oxidation rates is included. The theoretical results from the relevant computer program are compared very favourably with the measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI Diesel engine installed at the authors' laboratory. In-cylinder pressure and temperature histories, nitric oxide concentration and soot density are among the interesting quantities tested for various loads and injection timings. As revealed, the model is sensitive to the selection of the constants of the fuel preparation and reaction sub-models, so that a relevant sensitivity analysis is undertaken. This leads to a better understanding of the physical mechanisms governed by these constants and also paves the way for construction of a reliable and relatively simple multi-zone model, which incorporates in each zone (packet) the philosophy of the present two zone model

  1. Validation and sensitivity analysis of a two zone diesel engine model for combustion and emissions prediction

    Energy Technology Data Exchange (ETDEWEB)

    Rakopoulos, C.D.; Rakopoulos, D.C.; Giakoumis, E.G. [National Technical University of Athens (Greece). Mechanical Engineering Dept.; Kyritsis, D.C. [University of Illinois at Urbana-Champaign, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering

    2004-06-01

    The present two zone model of a direct injection (DI) diesel engine divides the cylinder contents into a non-burning zone of air and another homogeneous zone in which fuel is continuously supplied from the injector and burned with entrained air from the air zone. The growth of the fuel spray zone, which comprises a number of fuel-air conical jets equal to the injector nozzle holes, is carefully modelled by incorporating jet mixing, thus determining the amount of oxygen available for combustion. The mass, energy and state equations are applied in each of the two zones to yield local temperatures and cylinder pressure histories. The concentration of the various constituents in the exhaust gases are calculated by adopting a chemical equilibrium scheme for the C-H-O system of the 11 species considered, together with chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of the soot formation and oxidation rates is included. The theoretical results from the relevant computer program are compared very favourably with the measurements from an experimental investigation conducted on a fully automated test bed, standard ''Hydra'', DI diesel engine installed at the authors' laboratory. In-cylinder pressure and temperature histories, nitric oxide concentration and soot density are among the interesting quantities tested for various loads and injection timings. As revealed, the model is sensitive to the selection of the constants of the fuel preparation and reaction sub-models, so that a relevant sensitivity analysis is undertaken. This leads to a better understanding of the physical mechanisms governed by these constants and also paves the way for construction of a reliable and relatively simple multi-zone model, which incorporates in each zone (packet) the philosophy of the present two zone model. (author)

  2. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  3. Introducing Model-Based System Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    Web  Presentation...Software  .....................................................  20   Figure  6.  Published   Web  Page  from  Data  Collection...the  term  Model  Based  Engineering  (MBE),  Model  Driven  Engineering  ( MDE ),  or  Model-­‐Based  Systems  

  4. Comparing Two Approaches for Engineering Education Development

    DEFF Research Database (Denmark)

    Edström, Kristina; Kolmos, Anette

    2012-01-01

    During the last decade there have been two dominating models for reforming engineering education: Problem/Project Based Learning (PBL) and the CDIO Initiative. The aim of this paper is to compare the PBL and CDIO approaches to engineering education reform, to identify and explain similarities...... and differences. CDIO and PBL will each be defined and compared in terms of the original need analysis, underlying educational philosophy and the essentials of the respective approaches to engineering education. In these respects we see many similarities. Circumstances that explain differences in history...... approaches have much in common and can be combined, and especially that the practitioners have much to learn from each other’s experiences through a dialogue between the communities. This structured comparison will potentially indicate specifically what an institution experienced in one of the communities...

  5. Genetically engineered tissue to screen for glycan function in tissue formation

    DEFF Research Database (Denmark)

    M., Adamopoulou; E.M., Pallesen; A., Levann

    2017-01-01

    engineered GlycoSkin tissue models can be used to study biological interactions involving glycan structure on lipids, or glycosaminoglycans. This engineering approach will allow us to investigate the functions of glycans in homeostasis and elucidate the role of glycans in normal epithelial formation....... We use genetic engineering with CRISPR/Cas9 combined with 3D organotypic skin models to examine how distinct glycans influence epithelial formation. We have performed knockout and knockin of more than 100 select genes in the genome of human immortalized human keratinocytes, enabling a systematic...... analysis of the impact of specific glycans in the formation and transformation of the human skin. The genetic engineered human skin models (GlycoSkin) was designed with and without all major biosynthetic pathways in mammalian glycan biosynthesis, including GalNAc-O-glycans, O-fucosylation, O...

  6. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  7. Two-point functions in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, D-97074 Würzburg (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); O’Bannon, Andy [STAG Research Centre, Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste, Via Bonomea 265, I 34136 Trieste (Italy); Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Wu, Jackson M.S. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-03-07

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)-dimensional impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O{sup †}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green’s function of the form −i〈O〉{sup 2}, which is characteristic of a Kondo resonance.

  8. A proposal of ecologic taxes based on thermo-economic performance of heat engine models

    Energy Technology Data Exchange (ETDEWEB)

    Barranco-Jimenez, M. A. [Departamento de Ciencias Basicas, Escuela Superior de Computo del IPN, Av. Miguel Bernal Esq. Juan de Dios Batiz U.P. Zacatenco CP 07738, D.F. (Mexico); Ramos-Gayosso, I. [Unidad de Administracion de Riesgos, Banco de Mexico, 5 de Mayo, Centro, D.F. (Mexico); Rosales, M. A. [Departamento de Fisica y Matematicas, Universidad de las Americas, Puebla Exhacienda Sta. Catarina Martir, Cholula 72820, Puebla (Mexico); Angulo-Brown, F. [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Edif. 9 U.P. Zacatenco CP 07738, D.F. (Mexico)

    2009-07-01

    Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton's law of cooling and the Dulong-Petit's law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP) and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine's wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME) conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production. (author)

  9. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  10. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine

    Directory of Open Access Journals (Sweden)

    Grabowski Łukasz

    2017-01-01

    Full Text Available This paper presents the research results on a 1D model of an opposed-piston two-stroke aircraft Diesel engine. The research aimed at creating a model of the engine in question to investigate how engine performance is affected by the compressor gear ratio. The power was constant at all the operating points. The research results are presented as graphs of power consumed by the compressor, compressor efficiency and brake specific fuel consumption. The optimal range of compressor gear ratio in terms of engine efficiency was defined from the research results.

  11. Energy transfer modelling of active thermoacoustic engines via Lagrangian thermoacoustic dynamics

    International Nuclear Information System (INIS)

    Hong, Boe-Shong; Chou, Chia-Yu

    2014-01-01

    Highlights: • Resonant control on thermoacoustic engines to amplify power rating. • Least-action principle of thermoacoustic dynamics to shape engine chamber. • Spatiotemporal transfer function into feedback systems. • Conservation law of thermoacoustic storage to figure out engine cycles. • Robin boundary condition to identify flow leakage. - Abstract: This paper develops energy-transfer modelling of active thermoacoustic engines resonantly controlled on boundary for amplification of power rating toward satisfaction of renewable industry. Therein the wave equation of thermoacoustic dynamics in resonators with non-uniform media and boundary actuations is derived and then turned into a least-action principle. With this least-action principle, we obtain the governing equation of longitudinal resonators with spatially variant cross-section areas to investigate how to shape the resonator for boosting piston stroke and power-transmission efficiency. It is followed by spatiotemporal transfer-function modelling that functionally represents the dynamics and interprets the boundary actuations into internal inputs. This helps formulate the overall dynamics into feedback-interconnection between the thermoacoustic dynamics in the resonator and the mechatronic dynamics of the alternative current generator, so that synthesis of feedback systems can be applied to design the entire engine. Transfer-function modelling following least-action principle leads to the conservation law of thermoacoustic storage, which figures out engine cycles, the most fundamental principle in designing active thermoacoustic engines. Based on such feedback realization, digital signal processing is programmed to numerically assess power ratings of active designs

  12. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  13. Lexical bundles in an advanced INTOCSU writing class and engineering texts: A functional analysis

    Science.gov (United States)

    Alquraishi, Mohammed Abdulrahman

    The purpose of this study is to investigate the functions of lexical bundles in two corpora: a corpus of engineering academic texts and a corpus of IEP advanced writing class texts. This study is concerned with the nature of formulaic language in Pathway IEPs and engineering texts, and whether those types of texts show similar or distinctive formulaic functions. Moreover, the study looked into lexical bundles found in an engineering 1.26 million-word corpus and an ESL 65000-word corpus using a concordancing program. The study then analyzed the functions of those lexical bundles and compared them statistically using chi-square tests. Additionally, the results of this investigation showed 236 unique frequent lexical bundles in the engineering corpus and 37 bundles in the pathway corpus. Also, the study identified several differences between the density and functions of lexical bundles in the two corpora. These differences were evident in the distribution of functions of lexical bundles and the minimal overlap of lexical bundles found in the two corpora. The results of this study call for more attention to formulaic language at ESP and EAP programs.

  14. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  15. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  16. Comparing Two Definitions of Work for a Biological Quantum Heat Engine

    International Nuclear Information System (INIS)

    Xu You-Yang; Zhao Shun-Cai; Liu Juan

    2015-01-01

    Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference — a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B. (paper)

  17. Understanding the modeling skill shift in engineering: the impact of self-efficacy, epistemology, and metacognition

    Science.gov (United States)

    Yildirim, Tuba Pinar

    A focus of engineering education is to prepare future engineers with problem solving, design and modeling skills. In engineering education, the former two skill areas have received copious attention making their way into the ABET criteria. Modeling, a representation containing the essential structure of an event in the real world, is a fundamental function of engineering, and an important academic skill that students develop during their undergraduate education. Yet the modeling process remains under-investigated, particularly in engineering, even though there is an increasing emphasis on modeling in engineering schools (Frey 2003). Research on modeling requires a deep understanding of multiple perspectives, that of cognition, affect, and knowledge expansion. In this dissertation, the relationship between engineering modeling skills and students' cognitive backgrounds including self-efficacy, epistemic beliefs and metacognition is investigated using model-eliciting activities (MEAs). Data were collected from sophomore students at two time periods, as well as senior engineering students. The impact of each cognitive construct on change in modeling skills was measured using a growth curve model at the sophomore level, and ordinary least squares regression at the senior level. Findings of this dissertation suggest that self-efficacy, through its direct and indirect (moderation or interaction term with time) impact, influences the growth of modeling abilities of an engineering student. When sophomore and senior modeling abilities are compared, the difference can be explained by varying self-efficacy levels. Epistemology influences modeling skill development such that the more sophisticated the student beliefs are, the higher the level of modeling ability students can attain, after controlling for the effects of conceptual learning, gender and GPA. This suggests that development of modeling ability may be constrained by the naivete of one's personal epistemology

  18. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    Science.gov (United States)

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  19. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  20. Service Modeling for Service Engineering

    Science.gov (United States)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  1. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  2. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.

    1991-01-01

    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  3. Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model

    International Nuclear Information System (INIS)

    An, Sung-Min; Cho, Kyu-Jin; Ryu, Junghyun; Cho, Maenghyo

    2012-01-01

    A shape memory alloy (SMA) coil spring actuator is fabricated by annealing an SMA wire wound on a rod. Four design parameters are required for the winding: the wire diameter, the rod diameter, the pitch angle and the number of active coils. These parameters determine the force and stroke produced by the actuator. In this paper, we present an engineering design framework to select these parameters on the basis of the desired force and stoke. The behavior of the SMA coil spring actuator is described in detail to provide information about the inner workings of the actuator and to aid in selecting the design parameters. A new static two-state model, which represents a force–deflection relation of the actuator at the fully martensitic state (M 100% ) and fully austenitic state (A 100% ), is derived for use in the design. Two nonlinear effects are considered in the model: the nonlinear detwinning effect of the SMA and the nonlinear geometric effect of the coil spring for large deformations. The design process is organized into six steps and is presented with a flowchart and design equations. By following this systematic approach, an SMA coil spring actuator can be designed for various applications. Experimental results verified the static two-state model for the SMA coil spring actuator and a case study showed that an actuator designed using this framework met the design requirements. The proposed design framework was developed to assist application engineers such as robotics researchers in designing SMA coil spring actuators without the need for full thermomechanical models. (paper)

  4. Engineering Play: Exploring Associations with Executive Function, Mathematical Ability, and Spatial Ability in Preschool

    Science.gov (United States)

    Gold, Zachary Samuel

    Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive

  5. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  6. Study of Modern Approach to Build the Functional Models of Managerial and Engineering Systems in Training Specialists for Space Industry

    Directory of Open Access Journals (Sweden)

    N. V. Arhipova

    2016-01-01

    Full Text Available The SM8 Chair at Bauman Moscow State Technological University (BMSTU trains specialists majoring not only in design and manufacture, but also in operation and maintenance of space ground-based infrastructure.The learning courses in design, production, and operation of components of the missile and space technology, give much prominence to modeling. The same attention should be given to the modeling of managerial and engineering systems, with which deal both an expert and a leadman. It is important to choose the modeling tools for managerial and engineering systems with which they are to work and to learn how to apply these tools.The study of modern approach to functional modeling of managerial and engineering systems is held in the format of business game in laboratory class. A structural analysis and design technique (IDEFØ is considered as the means of modeling.The article stresses the IDEFØ approach advantages, namely: comprehensible graphical language, applicability to all-types and all-levels-of-hierarchy managerial and engineering systems modeling, popularity, version control means, teamwork tools. Moreover, the IDEFØ allows us to illustrate such notions, as point of view, system bounders, structure, control, feedback as applied to the managerial and engineering systems.The article offers a modified procedure to create an IDEFØ model in the context of training session. It also suggests a step-by-step procedure of the instruction session to be held, as well as of student self-training to have study credits, and a procedure of the work defense (final test.The approach under consideration can be applied to other training courses. The article proves it giving information about positive experience of its application.

  7. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  8. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  9. Calculation of the operational behaviour of uniflow-scavenged two-stroke ship's diesel engines. Beitrag zur berechnung des betriebsverhaltens gleichstromgespuelter zweitakt-schiffsdieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Heeschen, K

    1984-01-01

    The object of this dissertation was to calculate the operational behaviour of supercharged uniflow-scavenged two-stroke engines; this includes a description of the scavenging process and its effect on the thermodynamics of the whole cycle. The aim is to optimize the diesel engine's functioning and to allow joint operation with other machines for instance propellers. A calculation model is developed for the 3-zone mixed scavenging which, together with the step-by-step cycle calculation supplies the operational data of this type of diesel-engine. This method also allows to make calculations with simplified scavening models for complete mixture and pure displacement and to make comparisons. The calculation model of the 3-zone mixed scavenging also makes it possible to test engines by varying their design parameters. It was proven that an increasing stroke causes the fuel consumption to drop slighty, due to the improved thermodynamics. By varying the compression ratio it was possible to optimize engines for partial-load operation. (HWJ)

  10. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Applications of Green's functions in science and engineering

    CERN Document Server

    Greenberg, Michael D

    2015-01-01

    Concise and highly regarded, this treatment of Green's functions and their applications in science and engineering is geared toward undergraduate and graduate students with only a moderate background in ordinary differential equations and partial differential equations. The text also includes a wealth of information of a more general nature on boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. The two-part treatment begins with an overview of applications to ordinary differential equations. Topics include the adjoint operato

  12. A model for the two-point velocity correlation function in turbulent channel flow

    International Nuclear Information System (INIS)

    Sahay, A.; Sreenivasan, K.R.

    1996-01-01

    A relatively simple analytical expression is presented to approximate the equal-time, two-point, double-velocity correlation function in turbulent channel flow. To assess the accuracy of the model, we perform the spectral decomposition of the integral operator having the model correlation function as its kernel. Comparisons of the empirical eigenvalues and eigenfunctions with those constructed from direct numerical simulations data show good agreement. copyright 1996 American Institute of Physics

  13. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    Science.gov (United States)

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology

  14. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    Science.gov (United States)

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  15. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  16. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.

    Science.gov (United States)

    Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M

    2008-12-01

    Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction

  17. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  18. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order...... to minimize the computational runtime, an in-house skeletal n-heptane chemical mechanism is coupled with the CFD model. This surrogate fuel model comprises 89 reactions with 32 species essential to diesel ignition/combustion processes as well as the formation of soot precursors and nitrogen monoxide (NO......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...

  19. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  20. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  1. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  2. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  3. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    Science.gov (United States)

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling.

    Science.gov (United States)

    Abilez, Oscar J; Tzatzalos, Evangeline; Yang, Huaxiao; Zhao, Ming-Tao; Jung, Gwanghyun; Zöllner, Alexander M; Tiburcy, Malte; Riegler, Johannes; Matsa, Elena; Shukla, Praveen; Zhuge, Yan; Chour, Tony; Chen, Vincent C; Burridge, Paul W; Karakikes, Ioannis; Kuhl, Ellen; Bernstein, Daniel; Couture, Larry A; Gold, Joseph D; Zimmermann, Wolfram H; Wu, Joseph C

    2018-02-01

    The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin + flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 10 6 hPSC-CMs were mixed with 0.4 × 10 6 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t

  5. TOPSIS Multi-Criteria Decision Modeling Approach for Biolubricant Selection for Two-Stroke Petrol Engines

    Directory of Open Access Journals (Sweden)

    Masoud Dehghani Soufi

    2015-12-01

    Full Text Available Exhaust pollutants from two-stroke petrol engines are a problem for the environment. Biolubricants are a new generation of renewable and eco-friendly vegetable-based lubricants, which have attracted a lot of attention in recent years. In this paper, the applicability of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS method to support the process of building the scoring system for selecting an appropriate two-stroke lubricant has been analyzed. For this purpose, biolubricants (TMP-triesters based on castor oil, palm oil, and waste cooking oil were produced and then utilized in a 200 cc two-stroke gasoline engine to investigate their effects on its performance and exhaust emissions. The results obtained from the use of the entropy technique in the TOPSIS algorithm showed that palm oil-based lubricant took up the greatest distance from the Negative Ideal Solution (NIS and was selected as the most optimal lubricant for these types of engines.

  6. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  7. Engineering functional anisotropy in fibrocartilage neotissues.

    Science.gov (United States)

    MacBarb, Regina F; Chen, Alison L; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-12-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study's objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM + BA synergistically increased Col/WW, Young's modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  9. The Concurrent Engineering Design Paradigm Is Now Fully Functional for Graphics Education

    Science.gov (United States)

    Krueger, Thomas J.; Barr, Ronald E.

    2007-01-01

    Engineering design graphics education has come a long way in the past two decades. The emergence of solid geometric modeling technology has become the focal point for the graphical development of engineering design ideas. The main attraction of this 3-D modeling approach is the downstream application of the data base to analysis and…

  10. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  11. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  12. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  13. Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics

    Science.gov (United States)

    Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.

    2018-06-01

    The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.

  14. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  15. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Downsizing concept with two-cylinder CNG engine; Downsizingkonzept mit Zweizylinder-Erdgasmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bey, Ralf; Ohrem, Carsten [Meta Motoren- und Energie-Technik GmbH, Herzogenrath (Germany); Biermann, Jan-Welm; Buetterling, Patrick [RWTH Aachen Univ. (Germany). Inst. fuer Kraftfahrzeuge

    2013-09-15

    Meta Motoren- und Energie-Technik, ika and fka have jointly developed a new downsized engine concept to reduce CO{sub 2} emissions specifically in subcompact and small cars. The power unit combines a two-cylinder engine running on natural gas and using an innovative piston supercharger with a newly developed, active system to ensure smooth running of the drivetrain. On the vehicle side, the concept is rounded off by optimisation of driving resistances, the integration of a start/stop function and energy recovery. (orig.)

  17. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  18. Integrated Analysis of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland

    Large commercial ships such as container vessels and bulk carriers are propelledby low-speed, uniow scavenged two-stroke diesel engines. An integralin-cylinder process in this type of engine is the scavenging process, where the burned gases from the combustion process are evacuated through...... receiver fora two-stroke diesel engine. Time resolved boundary conditions corresponding to measurements obtained from an operating engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder ow from exhaust valve opening (EVO...... in the scavenge and exhaust receivers increase while the scavenge port exposure time, tscav, decrease. Further the scavenging pressure is varied while the engine speed is kept constant. From the perspective of the scavenging process this will resemble a load sweep following a generator curve. The scavenge port...

  19. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  20. Study of two-stage turbine characteristic and its influence on turbo-compound engine performance

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yang, Mingyang; Martinez-Botas, Ricardo; Yin, Yong

    2015-01-01

    Highlights: • An analytical model was built to study the interactions between two turbines in series. • The impacts of HP VGT and LP VGT on turbo-compound engine performance were investigated. • The fuel reductions obtained by HP VGT at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively. • The optimum value of AR ranged from 2.0 to 2.5 as the turbo-compound engine speed decreases. - Abstract: Turbo-compounding is an effective way to recover waste heat from engine exhaust and reduce fuel consumption for internal combustion engine (ICE). The characteristics of two-stage turbine, including turbocharger turbine and power turbine, have significant effects on the overall performance of turbo-compound engine. This paper investigates the interaction between two turbines in a turbo-compound engine and its impact on the engine performance. Firstly an analytical model is built to investigate the effects of turbine equivalent flow area on the two-stage turbine characteristics, including swallowing capacity and load split. Next both simulation and experimental method are carried out to study the effects of high pressure variable geometry turbine (HP VGT), low pressure variable geometry turbine (LP VGT) and combined VGT on the engine overall performance. The results show that the engine performance is more sensitive to HP VGT compared with LP VGT at all the operation conditions, which is caused by the larger influences of HP VGT on the total expansion ratio and engine air–fuel ratio. Using the HP VGT method, the fuel reductions of the turbo-compound engine at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively, in comparison with the baseline engine. The corresponding optimum values of AR are 2.0 and 2.5

  1. A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2009-11-01

    Full Text Available Within the context of Finite-Time Thermodynamics (FTT a simplified thermal power plant model (the so-called Novikov engine is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton’s law of cooling and the Dulong-Petit’s law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine’s wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production.

  2. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  3. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  4. Functional Security Model: Managers Engineers Working Together

    Science.gov (United States)

    Guillen, Edward Paul; Quintero, Rulfo

    2008-05-01

    Information security has a wide variety of solutions including security policies, network architectures and technological applications, they are usually designed and implemented by security architects, but in its own complexity this solutions are difficult to understand by company managers and they are who finally fund the security project. The main goal of the functional security model is to achieve a solid security platform reliable and understandable in the whole company without leaving of side the rigor of the recommendations and the laws compliance in a single frame. This paper shows a general scheme of the model with the use of important standards and tries to give an integrated solution.

  5. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    Science.gov (United States)

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  6. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    Science.gov (United States)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  7. Supervisor synthesis in model-based automotive systems engineering

    NARCIS (Netherlands)

    van de Mortel - Fronczak, J.M.; van der Heijden, M.H.R.; Huisman, R.G.M.; Reniers, M.A.

    2014-01-01

    It is recognized by various engineering disciplines that models support and speed up the development of systems consisting of numerous closely related computational and physical elements, since they enable extensive and early functional and performance analysis of the designs and allow for control

  8. Influence of outlet geometry on the swirling flow in a simplfied model of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Haider, Sajjad; Schnipper, Teis; Meyer, Knud Erik

    We present Stereoscopic particle image velocimetry measurements of the effect of a dummy-valve on the in-cylinder swirling flow in a simplified scale model of a large two-stroke marine diesel engine cylinder using air at room temperature and pressure as the working fluid and Reynolds number 19500...

  9. Software-Engineering Process Simulation (SEPS) model

    Science.gov (United States)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  10. Two-point boundary correlation functions of dense loop models

    Directory of Open Access Journals (Sweden)

    Alexi Morin-Duchesne, Jesper Lykke Jacobsen

    2018-06-01

    Full Text Available We investigate six types of two-point boundary correlation functions in the dense loop model. These are defined as ratios $Z/Z^0$ of partition functions on the $m\\times n$ square lattice, with the boundary condition for $Z$ depending on two points $x$ and $y$. We consider: the insertion of an isolated defect (a and a pair of defects (b in a Dirichlet boundary condition, the transition (c between Dirichlet and Neumann boundary conditions, and the connectivity of clusters (d, loops (e and boundary segments (f in a Neumann boundary condition. For the model of critical dense polymers, corresponding to a vanishing loop weight ($\\beta = 0$, we find determinant and pfaffian expressions for these correlators. We extract the conformal weights of the underlying conformal fields and find $\\Delta = -\\frac18$, $0$, $-\\frac3{32}$, $\\frac38$, $1$, $\\tfrac \\theta \\pi (1+\\tfrac{2\\theta}\\pi$, where $\\theta$ encodes the weight of one class of loops for the correlator of type f. These results are obtained by analysing the asymptotics of the exact expressions, and by using the Cardy-Peschel formula in the case where $x$ and $y$ are set to the corners. For type b, we find a $\\log|x-y|$ dependence from the asymptotics, and a $\\ln (\\ln n$ term in the corner free energy. This is consistent with the interpretation of the boundary condition of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell. For the other values of $\\beta = 2 \\cos \\lambda$, we use the hypothesis of conformal invariance to predict the conformal weights and find $\\Delta = \\Delta_{1,2}$, $\\Delta_{1,3}$, $\\Delta_{0,\\frac12}$, $\\Delta_{1,0}$, $\\Delta_{1,-1}$ and $\\Delta_{\\frac{2\\theta}\\lambda+1,\\frac{2\\theta}\\lambda+1}$, extending the results of critical dense polymers. With the results for type f, we reproduce a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and Saleur.

  11. Strategies for the Curation of CAD Engineering Models

    Directory of Open Access Journals (Sweden)

    Manjula Patel

    2009-06-01

    Full Text Available Normal 0 Product Lifecycle Management (PLM has become increasingly important in the engineering community over the last decade or so, due to the globalisation of markets and the rising popularity of products provided as services. It demands the efficient capture, representation, organisation, retrieval and reuse of product data over its entire life. Simultaneously, there is now a much greater reliance on CAD models for communicating designs to manufacturers, builders, maintenance crews and regulators, and for definitively expressing designs. Creating the engineering record digitally, however, presents problems not only for its long-term maintenance and accessibility - due in part to the rapid obsolescence of the hardware, software and file formats involved - but also for recording the evolution of designs, artefacts and products. We examine the curation and preservation requirements in PLM and suggest ways of alleviating the problems of sustaining CAD engineering models through the use of lightweight formats, layered annotation and the collection of Representation Information as defined in the Open Archival Information System (OAIS Reference Model.  We describe two tools which have been specifically developed to aid in the curation of CAD engineering models in the context of PLM: Lightweight Models with Multilayered Annotation (LiMMA and a Registry/Repository of Representation Information for Engineering (RRoRIfE.

  12. Transfer function modeling of parallel connected two three-phase induction motor implementation using LabView platform

    DEFF Research Database (Denmark)

    Gunabalan, R.; Sanjeevikumar, P.; Blaabjerg, Frede

    2015-01-01

    This paper presents the transfer function modeling and stability analysis of two induction motors of same ratings and parameters connected in parallel. The induction motors are controlled by a single inverter and the entire drive system is modeled using transfer function in LabView. Further...

  13. ESTIMATION OF GAS EXCHANGE INDICATORS AT 3-D MODELING OF THE WORKING PROCESS OF THE TWO-STROKE PETROL ENGINE

    Directory of Open Access Journals (Sweden)

    V. Korohodskyi

    2017-06-01

    Full Text Available With the help of 3-D modeling of the workflow of a two-stroke engine with spark ignition, crank-chamber scavenging and a carburetor feeding system in the modes of external speed characteristic the indices of gas exchange were evaluated. The simulation results are consistent with the experimental data and 3D simulation results in the AVL FIRE and MTFS® software complexes. The model allows performing optimized calculations of multiphase flow in ICE during experimental design work.

  14. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  15. Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine

    Science.gov (United States)

    Ingvorsen, K. M.; Meyer, K. E.; Walther, J. H.; Mayer, S.

    2014-06-01

    It is desirable to use computational fluid dynamics for optimization of the in-cylinder processes in low-speed two-stroke uniflow-scavenged marine diesel engines. However, the complex nature of the turbulent swirling in-cylinder flow necessitates experimental data for validation of the used turbulence models. In the present work, the flow in a dynamic scale model of a uniflow-scavenged cylinder is investigated experimentally. The model has a transparent cylinder and a moving piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry (PIV) and time-resolved laser Doppler anemometry (LDA). Radial profiles of the phase-locked mean and rms velocities are computed from the velocity fields recorded with PIV, and the accuracy of the obtained profiles is demonstrated by comparison with reference LDA measurements. Measurements are carried out at five axial positions for 15 different times during the engine cycle and show the temporal and spatial development of the swirling in-cylinder flow. The tangential velocity profiles in the bottom of the cylinder near the end of the scavenge process are characterized by a concentrated swirl resulting in wake-like axial velocity profiles and the occurrence of a vortex breakdown. After scavenge port closing, the axial velocity profiles indicate that large transient swirl-induced structures exist in the cylinder. Comparison with profiles obtained under steady-flow conditions shows that the scavenge flow cannot be assumed to be quasi-steady. The temporal development of the swirl strength is investigated by computing the angular momentum. The swirl strength shows an exponential decay from scavenge port closing to scavenge port opening corresponding to a reduction of 34 %, which is in good agreement with theoretical predictions.

  16. Transforming Systems Engineering through Model Centric Engineering

    Science.gov (United States)

    2017-08-08

    Contract No. HQ0034-13-D-0004 Report No. SERC-2017-TR-110 Date: August 8, 2017 Transforming Systems Engineering through Model-Centric... Engineering Technical Report SERC-2017-TR-110 Update: August 8, 2017 Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co...Evangelista Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for

  17. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  18. The construction of a two-dimensional reproducing kernel function and its application in a biomedical model.

    Science.gov (United States)

    Guo, Qi; Shen, Shu-Ting

    2016-04-29

    There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.

  19. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.

    Science.gov (United States)

    Kalnenieks, Uldis; Pentjuss, Agris; Rutkis, Reinis; Stalidzans, Egils; Fell, David A

    2014-01-01

    Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

  20. Schwinger functions for the Yukawa model in two dimensions with space-time cutoff

    International Nuclear Information System (INIS)

    Seiler, E.

    1975-01-01

    It is shown that a Euclidean version of the formulae of Matthews and Salam for the Green's functions of a two-dimensional Yukawa model with interaction in a finite space-time volume makes sense, if renormalized correctly. (orig.) [de

  1. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  2. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the

  3. Spatial and functional modeling of carnivore and insectivore molariform teeth.

    Science.gov (United States)

    Evans, Alistair R; Sanson, Gordon D

    2006-06-01

    The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models. (c) 2004 Wiley-Liss, Inc.

  4. Transforming Systems Engineering through Model-Centric Engineering

    Science.gov (United States)

    2018-02-28

    Contract No. HQ0034-13-D-0004 Research Tasks: 48, 118, 141, 157, 170 Report No. SERC-2018-TR-103 Transforming Systems Engineering through...Model-Centric Engineering Technical Report SERC-2018-TR-103 February 28, 2018 Principal Investigator Dr. Mark Blackburn, Stevens Institute of...Systems Engineering Research Center This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

  5. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  6. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  7. Value Engineering and Function Analysis: Frameworks for Innovation in Antenna Systems

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fartookzadeh

    2018-04-01

    Full Text Available Value engineering (VE and function analysis (FA are technological tools for the functional enhancement and cost reduction of engineering projects. They also help to overcome mental inertia by acknowledging the voice of the customer in complicated systems. Antenna engineering, providing electromagnetic remote links, is an important area in engineering science, with a large number of innovative concepts. However, managing innovative ideas to improve performance, reliability, quality, safety, and reduce life cycle costs, is still a work in progress. This research was designed to apply VE and FA as frameworks for innovative ideas in antenna systems, especially with regard to imaging and radar systems. FA diagrams free a designers’ mind from tools to instead focus on purpose, which can help them to obtain better ideas for solutions to problems. It was identified that there were several options available for functionality enhancement and cost reduction. The required functionalities of the components of antenna systems, and their advantages and limitations were indicated. In addition, it was identified that some of the advantages and limitations appeared for combinations of the components. Alternative methods for applications, such as polarization conversion and the separation of outgoing and incoming electromagnetic waves, were studied. Circular polarization (CP is important for two-way communication, since left-handed circularly polarized waves usually return with right-handed CP from targets. Therefore, various methods for producing CP were discussed, such as metamaterial-based linear to circular polarization converters and waveguide polarizers. Also, potential extra applications for these systems were explained. Two examples were: (1 merging multiple systems with different operating frequencies using multiband components; and (2 applying a feeding system for multiple reflectors using surfaces that reflect half of the wave and transmit the other

  8. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J L; Desaulty, M [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1997-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  9. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  10. Calibration of two complex ecosystem models with different likelihood functions

    Science.gov (United States)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model

  11. A Comparison of Different Engineering Models for Computation of Lightning Magnetic Field of Negative First Strokes

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-11-01

    Full Text Available A comparison of different engineering models results for a lightning magnetic field of negative first strokes is presented in this paper. A new function for representing double-peaked channel-base current is used for lightning stroke modeling. This function includes the initial and subsidiary peak in a current waveform. For experimentally measured currents, a magnetic field is calculated for the three engineering models: transmission line (TL model, TL model with linear decay (MTLL, and TL model with exponential decay (MTLE.

  12. Near wall combustion modeling in spark ignition engines. Part A: Flame–wall interaction

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • A model for flame–wall interaction in addition to flame wrinkling by turbulence is proposed. • Two sparkplug positions and two lengths are used in a test engine for model validation. • Flame–wall interaction decreases the maximum values of cylinder pressure and heat release rates. • The impact of combustion chamber geometry is taken into account by the flame–wall interaction model. - Abstract: Research and design in the field of spark ignition engines seek to achieve high performance while conserving fuel economy and low pollutant emissions. For the evaluation of various engine configurations, numerical simulations are favored, since they are quick and less expensive than experiments. Various zero-dimensional combustion models are currently used. Both flame front reactions and post-flame processes contribute to the heat release rate. The first part of this study focuses on the role of the flame front on the heat release rate, by modeling the interaction of the flame front with the chamber wall. Post-flame reactions are dealt with in Part B of the study. The basic configurations of flame quenching in laminar flames are also applicable in turbulent flames, which is the case in spark ignition engines. A simplified geometric model of the combustion chamber was used to calculate the mean flame surface, the flame volume and the distribution of flame surface as a function of the distance from the wall. The flame–wall interaction took into account the geometry of the combustion chamber and of the flame, aerodynamic turbulence and the in-cylinder pressure and temperature conditions, through a phenomenological attenuation function of the wrinkling factor. A modified global wrinkling factor as a function of the mean surface distance distribution from the wall was calculated. The impact of flame–wall interaction was simulated for four configurations of the sparkplug position and length: centered and lateral position, and standard and projected

  13. Application of Gaussian cubature to model two-dimensional population balances

    Directory of Open Access Journals (Sweden)

    Bałdyga Jerzy

    2017-09-01

    Full Text Available In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.

  14. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.

    2014-01-01

    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  15. Mutual information as a two-point correlation function in stochastic lattice models

    International Nuclear Information System (INIS)

    Müller, Ulrich; Hinrichsen, Haye

    2013-01-01

    In statistical physics entropy is usually introduced as a global quantity which expresses the amount of information that would be needed to specify the microscopic configuration of a system. However, for lattice models with infinitely many possible configurations per lattice site it is also meaningful to introduce entropy as a local observable that describes the information content of a single lattice site. Likewise, the mutual information between two sites can be interpreted as a two-point correlation function which quantifies how much information a lattice site has about the state of another one and vice versa. Studying a particular growth model we demonstrate that the mutual information exhibits scaling properties that are consistent with the established phenomenological scaling picture. (paper)

  16. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  17. Solving bi-level optimization problems in engineering design using kriging models

    Science.gov (United States)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  18. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  19. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  20. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  1. A Model for Freshman Engineering Retention

    Science.gov (United States)

    Veenstra, Cindy P.; Dey, Eric L.; Herrin, Gary D.

    2009-01-01

    With the current concern over the growing need for more engineers, there is an immediate need to improve freshman engineering retention. A working model for freshman engineering retention is needed. This paper proposes such a model based on Tinto's Interactionalist Theory. Emphasis in this model is placed on pre-college characteristics as…

  2. Applications of computational modeling in metabolic engineering of yeast.

    Science.gov (United States)

    Kerkhoven, Eduard J; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-02-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Mathematical modeling of the complete thermodynamic cycle of a new Atkinson cycle gas engine

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hassan; Keshavarz, Mojtaba

    2015-01-01

    The Atkinson cycle provides the potential to increase the efficiency of SI engines using overexpansion concept. This also will suggest decrease in CO_2 generation by internal combustion engine. In this study a mathematical modeling of complete thermodynamic cycle of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis in order to make the model predict exhaust emission so that its values could be compared with the values of conventional SI engine. The model also is validated against experimental tests in that increase in efficiency is achieved compared to conventional SI engines. - Highlights: • The complete cycle model for the rotary Atkinson engine was developed. • Comparing the results with experimental data shows good model validity. • The model needs further improvement for the scavenging phase. • There is 5% increment in thermal efficiency with new engine compared to conventional SI engines.

  4. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  5. Hyperkaehlerian manifolds and exact β functions of two-dimensional N=4 supersymmetric σ models

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Perelomov, A.M.

    1984-01-01

    Two-dimensional supersymmetric sigma-models on cotangent bundles over CPsup(n) are investigated. These mannfolds are supplied with hyperkaehlerian metrics, and the corresponding σ-models possess N=4 supersymmetry. Also they admit instantonic solutions, which permits to apply the Novikov-Shifman-Vainshtein-Zakharov method and calculate exact β-functions. βsup(gsup(2)) = 0, as was expected

  6. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  7. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  8. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    Science.gov (United States)

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  9. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  10. Modeling the condensation of sulfuric acid and water on the cylinder liner of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov; Mayer, Stefan; Eskildsen, Svend S.

    2018-01-01

    Corrosive wear of cylinder liners in large two-stroke marine diesel engines that burn heavy fuel oil containing sulfur is coupled to the formation of gaseous sulfur trioxide (SO3) and subsequent combined condensation of sulfuric acid (H2SO4) and water (H2O) vapor. The present work seeks to address...... vapor liquid equilibrium. By assuming homogenous cylinder gas mixtures condensation is modeled using a convective heat and mass transfer analogy combined with realistic liner temperature profiles. Condensation of water is significantly altered by the liner temperature and charge air humidity while...... how fuel sulfur content, charge air humidity and liner temperature variations affects the deposition of water and sulfuric acid at low load operation. A phenomenological engine model is applied to simulate the formation of cylinder/bulk gas combustion products and dew points comply with H2O–H2SO4...

  11. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr; Bari, Saiful [Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, Univ. of South Australia, Mawson Lakes SA 5095 (Australia)

    2009-12-15

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air. (author)

  12. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Bari, Saiful

    2009-01-01

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.

  13. Evaluation of the Use of Two Teaching Techniques in Engineering

    Directory of Open Access Journals (Sweden)

    Jose Antonio Alvarez Salas

    2014-06-01

    Full Text Available This paper presents an analysis of the practical implementation of two teaching techniques so-called Problem-Based Learning and Cooperative Learning. These techniques were applied to some courses in the Department of Mechanical and Electrical Engineering and evaluated through assessment rubrics. In a sample of students and teachers, the assessment rubrics were applied to numerically evaluate the proportion of each course, in which the teacher uses traditional teaching versus teaching for meaningful learning. The results of the presented analysis allow to verify the use of these teaching techniques by professors of the Department of Mechanical and Electrical Engineering. This activity was developed as a part of the work established by the Institutional Development Plan of the Faculty of Engineering, which includes the strategic objective of developing an innovative educational model in the following ten years.

  14. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

    Science.gov (United States)

    Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long

    2018-05-01

    The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

  15. PBL and CDIO: complementary models for engineering education development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  16. A two component model describing nucleon structure functions in the low-x region

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, E.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary prospect, Moscow 117312 (Russian Federation); Mangazeev, B.V. [Irkutsk State University, 1, Karl Marx Street, Irkutsk 664003 (Russian Federation)

    2009-12-15

    A two component model describing the electromagnetic nucleon structure functions in the low-x region, based on generalized vector dominance and color dipole approaches is briefly described. The model operates with the mesons of rho-family having the mass spectrum of the form m{sub n}{sup 2}=m{sub r}ho{sup 2}(1+2n) and takes into account the nondiagonal transitions in meson-nucleon scattering. The special cut-off factors are introduced in the model, to exclude the gamma-qq-bar-V transitions in the case of narrow qq-bar-pairs. For the color dipole part of the model the well known FKS-parameterization is used.

  17. Comparison of two different modelling tools

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2009-01-01

    In this paper a test case is solved using two different modelling tools, Engineering Equation Solver (EES) and WinDali, in order to compare the tools. The system of equations solved, is a static model of an evaporator used for refrigeration. The evaporator consists of two parallel channels......, and it is investigated how a non-uniform airflow influences the refrigerant mass flow rate distribution and the total cooling capacity of the heat exchanger. It is shown that the cooling capacity decreases significantly with increasing maldistribution of the airflow. Comparing the two simulation tools it is found...

  18. Anti-Money Laundry regulation and Crime: A two-period model of money-in-the-utility-function

    OpenAIRE

    Fanta, F; Mohsin, H

    2010-01-01

    The paper presents a two period model with two types of money i.e. dirty and cleans (legal) money in utility function. Clean money is earned from working in legal sector and dirty from illegal sector. Our two-two period model reveals that an increase in labor wage in legal sector unambiguously decease the labor hours allocated for illegal sector by increasing the opportunity cost for illegal activities. However, the crime-reducing impact of anti-money laundry regulation and the probability of...

  19. Gas Turbine Engine Behavioral Modeling

    OpenAIRE

    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris

    2014-01-01

    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  20. Modeling student success in engineering education

    Science.gov (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  1. On the Potential of Functional Modeling Extensions to the CIM for Means-Ends Representation and Reasoning

    DEFF Research Database (Denmark)

    Heussen, Kai; Kullmann, Daniel

    2010-01-01

    Engineering is the art of making complicated things work. There are few things an engineer can’t do. Explaining his work to a computer may be one of them. This paper introduces Functional Modeling with Multilevel Flow Models as an information modeling approach that explicitly relates the functions...

  2. Small Engine Repair. Two-Stroke and Four-Stroke Cycle.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide is intended to assist persons teaching a course in repairing two- and four-stroke cycle small engines. Addressed in the individual units of instruction are the following topics: safety, tools, fasteners, and measurement techniques; basic small engine theory (engine identification and inspection, basic engine principles and…

  3. Research on engineering simulator for function validating of DCS in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Lin Meng; Hou Dong; Yang Yanhua; Chen Zhi

    2009-01-01

    An engineering simulator for the function validating of Distributed Control System in Nuclear Power Plant (NPP) was developed in this paper.In the engineering simulator, the thermal-hydraulics was modeled by Relap5, the main control system of the NPP was modeled by Matlab/Simulink, the database was built by MySQL, and the control panel was developed by the Visual Studio. NET.Data acquisition system was used to realize the real-time communication between the simulator and the real Distributed Control System in the NPP. The validating results show that the simulator can meet the requirements of validating the hardware and logic control system of DCS in NPP. (authors)

  4. A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network.

    Science.gov (United States)

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.

  5. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  6. STEADY STATE PERFORMANCES ANALYSIS OF MODERN MARINE TWO-STROKE LOW SPEED DIESEL ENGINE USING MLP NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Ozren Bukovac

    2016-01-01

    Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.

  7. Incorporation of stochastic engineering models as prior information in Bayesian medical device trials.

    Science.gov (United States)

    Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh

    2017-01-01

    Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.

  8. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  9. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    Science.gov (United States)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of

  10. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  11. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Science.gov (United States)

    2010-01-01

    ... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are...-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the... Airplane Flight Manual, allows the airplane to fly from the point where the two engines are assumed to fail...

  12. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  13. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States)

    2016-04-15

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  14. Engineering modelling. A contribution to the CommonKADS library

    Energy Technology Data Exchange (ETDEWEB)

    Top, J.L.; Akkermans, J.M.

    1993-12-01

    Generic knowledge components and models for the task of in particular engineering modelling are presented.It is intended as a contribution to the CommonKADS library. In the first chapter an executive summary is provided. Next, the Conceptual Modelling Language (CML) definitions of the various generic library components are given. In the following two chapters the underlying theory is developed. First, a task-oriented analysis is made, based upon the similarities between modelling and design tasks. Second, an ontological analysis is given, which shows that ontology differentiation constitutes an important problem-solving method (PSM) for engineering modelling, on a par with task-decomposition PSMs. Finally, three different modelling applications, based on existing knowledgeable systems, are analyzed, which analysis illustrates and provides data points for the discussed generic components and models for modelling. 50 figs., 77 refs.

  15. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    Science.gov (United States)

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  16. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    Science.gov (United States)

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  17. Collaborative Engineering Environments. Two Examples of Process Improvement

    NARCIS (Netherlands)

    Spee, J.B.R.M.; Bijwaard, D.; Laan, D.J.

    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation

  18. A model for engineering education in the new millennium

    NARCIS (Netherlands)

    Ir Reinder Bakker; Dr.Ir. Hay Geraedts; Ir. Dick van Schenk Brill

    2000-01-01

    This paper describes a model for education in innovative engineering. The kernel of this model is, that students from different departments of the faculty of Applied Science and Technology are placed in industry for a period of eighteen months after two-and-a-half year of theoretical studies. During

  19. Functional tissue engineering : ten more years of progress

    NARCIS (Netherlands)

    Guilak, F.; Baaijens, F.P.T.

    2014-01-01

    "Functional tissue engineering" is a subset of the field of tissue engineering that was proposed by the United States National Committee on Biomechanics over a decade ago in order to place more emphasis on the roles of biomechanics and mechanobiology in tissue repair and regeneration. Over the past

  20. Two site spin correlation function in Bethe-Peierls approximation for Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Roorkee Univ. (India). Dept. of Physics

    1976-07-01

    Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.

  1. 2D modelling and its applications in engineering

    International Nuclear Information System (INIS)

    Altinbalik, M. Tahir; İRSEL, Gürkan

    2013-01-01

    A model, in computer aided engineering applications, may be created by either using a two- dimensional or a three-dimensional design depending on the purpose of design. What matters most in this regard is the selection of a right method to meet system solution requirements in the most economical way. Manufacturability of a design that is developed by utilising computer aided engineering is important, but usability of the data obtained in the course of design works in the production is also equally important. In the applications consisting of such production operations as CNC or plasma cutting, two-dimensional designs can be directly used in production. These machines are equipped with interfaces which converts two-dimensional drawings into codes. In this way, a design can be directly transferred to production, and any arrangements during production process can be synchronously evaluated. As a result of this, investment expenses will be lowered, and thus the costs can be reduced to some extent. In the presented study, we have studied two-dimensional design applications and requirements. We created a two-dimensional design for a part for which a three-dimensional model have previously been generated, and then, we transferred this design to plasma cutting machine, and thus, the operation has been realized experimentally. Key words: Plasma Cutting, 2D modelling, flexibility

  2. 2D modelling and its applications in engineering

    Energy Technology Data Exchange (ETDEWEB)

    Altinbalik, M. Tahir; İRSEL, Gürkan [Trakya University, Faculty of Engineering and Architecture Mechanical Engineering Department, Edİrne (Turkey)

    2013-07-01

    A model, in computer aided engineering applications, may be created by either using a two- dimensional or a three-dimensional design depending on the purpose of design. What matters most in this regard is the selection of a right method to meet system solution requirements in the most economical way. Manufacturability of a design that is developed by utilising computer aided engineering is important, but usability of the data obtained in the course of design works in the production is also equally important. In the applications consisting of such production operations as CNC or plasma cutting, two-dimensional designs can be directly used in production. These machines are equipped with interfaces which converts two-dimensional drawings into codes. In this way, a design can be directly transferred to production, and any arrangements during production process can be synchronously evaluated. As a result of this, investment expenses will be lowered, and thus the costs can be reduced to some extent. In the presented study, we have studied two-dimensional design applications and requirements. We created a two-dimensional design for a part for which a three-dimensional model have previously been generated, and then, we transferred this design to plasma cutting machine, and thus, the operation has been realized experimentally. Key words: Plasma Cutting, 2D modelling, flexibility.

  3. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  4. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  5. Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine

    DEFF Research Database (Denmark)

    Obeidat, Anas Hassan MohD; Schnipper, Teis; Ingvorsen, Kristian Mark

    2014-01-01

    Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one...... qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research...

  6. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  7. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan

    2014-01-01

    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  8. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  9. Intelligent quality function deployment system in concurrent engineering environment

    Science.gov (United States)

    Lin, Zhihang; Che, Ada

    1998-10-01

    This paper describes work being undertaken in the development of an intelligent distributed quality function deployment (IDQFD) system, which supports product design team to transfer and deployment the `Voice of Customer' through `House of Quality' into the various stages of product planning, engineering and manufacturing. The requirement modeling of products, the optimization in QFD are indicated. The framework of the system, including QFD tools and platform for distributed collaborative work in QFD, is described. The strategy and methods for the collaboration processing in QFD process are presented. It shows promise for application in practice.

  10. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  11. COGNITIVE COMPUTER GRAPHICS AS A MEANS OF "SOFT" MODELING IN PROBLEMS OF RESTORATION OF FUNCTIONS OF TWO VARIABLES

    Directory of Open Access Journals (Sweden)

    A.N. Khomchenko

    2016-08-01

    Full Text Available The paper considers the problem of bi-cubic interpolation on the final element of serendipity family. With cognitive-graphical analysis the rigid model of Ergatoudis, Irons and Zenkevich (1968 compared with alternative models, obtained by the methods: direct geometric design, a weighted averaging of the basis polynomials, systematic generation of bases (advanced Taylor procedure. The emphasis is placed on the phenomenon of "gravitational repulsion" (Zenkevich paradox. The causes of rising of inadequate physical spectra nodal loads on serendipity elements of higher orders are investigated. Soft modeling allows us to build a lot of serendipity elements of bicubic interpolation, and you do not even need to know the exact form of the rigid model. The different interpretations of integral characteristics of the basis polynomials: geometrical, physical, probability are offered. Under the soft model in the theory of interpolation of function of two variables implies the model amenable to change through the choice of basis. Such changes in the family of Lagrangian finite elements of higher orders are excluded (hard simulation. Standard models of serendipity family (Zenkevich were also tough. It was found that the "responsibility" for the rigidity of serendipity model rests on ruled surfaces (zero Gaussian curvature - conoids that predominate in the base set. Cognitive portraits zero lines of standard serendipity surfaces suggested that in order to "mitigate" of serendipity pattern conoid should better be replaced by surfaces of alternating Gaussian curvature. The article shows the alternative (soft bases of serendipity models. The work is devoted to solving scientific and technological problems aimed at the creation, dissemination and use of cognitive computer graphics in teaching and learning. The results are of interest to students of specialties: "Computer Science and Information Technologies", "System Analysis", "Software Engineering", as well as

  12. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  13. Influence of piston position on the scavenging and swirling flow in two-stoke diesel engines

    DEFF Research Database (Denmark)

    Obeidat, Anas; Haider, Sajjad; Meyer, Knud Erik

    2011-01-01

    We study the eect of piston position on the in-cylinder swirling flow in a low speed large two-stroke marine diesel engine model. We are using Large Eddy Simulations in OpenFOAM, with three different models for the turbulent flow: a one equation model (OEM), a dynamic one equation model (DOEM...

  14. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  15. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    Science.gov (United States)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  16. Encyclopedia of two-phase heat transfer and flow IV modeling methodologies, boiling of CO₂, and micro-two-phase cooling

    CERN Document Server

    2018-01-01

    Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous "must read" chapters are also included here for the two-phase community. Set IV constitutes a "must have" engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.

  17. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  18. Model engineering : balancing between virtuality and reality

    NARCIS (Netherlands)

    Hee, van K.M.

    2011-01-01

    Model engineering concerns the development of models of complex systems. This modeling is performed for a variety of reasons, such as system behavior prediction, system optimization or system construction. Model engineering requires a modeling framework that includes a language to represent the

  19. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  20. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    Science.gov (United States)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  1. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Science.gov (United States)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  2. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  3. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    International Nuclear Information System (INIS)

    Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram

    2014-01-01

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  4. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Karuppuswamy, Priyadharsini [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Navaneethan, Balchandar [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2014-12-15

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  5. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  6. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  7. Hierarchical functional model for automobile development; Jidosha kaihatsu no tame no kaisogata kino model

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, S [U-shin Ltd., Tokyo (Japan); Nagamatsu, M; Maruyama, K [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.

  8. Functional techniques in quantum field theory and two-dimensional models

    International Nuclear Information System (INIS)

    Souza, C. Farina de.

    1985-03-01

    Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)

  9. Profiling Osteogenic microRNAs For RNAi-Functionalization Of Scaffolds In Bone Tissue Engineering

    DEFF Research Database (Denmark)

    Chang, Chi-Chih (Clare); Chen, Li; Venø, Morten Trillingsgaard

    is limited and grafts are required to assist in bone repair. The use of allografts can cause immunological complications, whilst autografts subject the patient to two surgeries. Bone tissue engineering is a multidisciplinary field encompassing material science, medicine, chemistry and molecular biology aimed...... both miRNAs that have been reported previously and many novel miRNAs with potent osteogenic capabilities. For tissue engineering applications, we then functionalized scaffolds with the miRNAs we identified and observed an increase in osteogenic capabilities in our 3D cultures. Our findings depicted...... the miRNA expression landscape as mesenchymal stem cells underwent osteogenic differentiation. We also highlight the potency of miRNAs as biological therapeutics in bone tissue engineering....

  10. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    Increased awareness of the detrimental effects on climate, ecosystems and human health have led to numerous restrictions of the emissions from internal combustion engines. Recently the International Maritime Organization has introduced the Tier III standard, which includes a significantly stricter...... the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows...... of the Tier III standard, while still maintaining maneuverability performance without smoke formation. The design methods acknowledge that engine specific parameter tuning is a scarce resource in the industry and controller complexity is kept to a minimum. An existing dynamic model of the engine and EGR...

  11. Asymptotic analysis soot model and experiment for a directed injection engine

    Science.gov (United States)

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor Φinjection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  12. Quantitative estimation of renal function with dynamic contrast-enhanced MRI using a modified two-compartment model.

    Directory of Open Access Journals (Sweden)

    Bin Chen

    Full Text Available To establish a simple two-compartment model for glomerular filtration rate (GFR and renal plasma flow (RPF estimations by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI.A total of eight New Zealand white rabbits were included in DCE-MRI. The two-compartment model was modified with the impulse residue function in this study. First, the reliability of GFR measurement of the proposed model was compared with other published models in Monte Carlo simulation at different noise levels. Then, functional parameters were estimated in six healthy rabbits to test the feasibility of the new model. Moreover, in order to investigate its validity of GFR estimation, two rabbits underwent acute ischemia surgical procedure in unilateral kidney before DCE-MRI, and pixel-wise measurements were implemented to detect the cortical GFR alterations between normal and abnormal kidneys.The lowest variability of GFR and RPF measurements were found in the proposed model in the comparison. Mean GFR was 3.03±1.1 ml/min and mean RPF was 2.64±0.5 ml/g/min in normal animals, which were in good agreement with the published values. Moreover, large GFR decline was found in dysfunction kidneys comparing to the contralateral control group.Results in our study demonstrate that measurement of renal kinetic parameters based on the proposed model is feasible and it has the ability to discriminate GFR changes in healthy and diseased kidneys.

  13. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  14. An algebraic approach to modeling in software engineering

    International Nuclear Information System (INIS)

    Loegel, C.J.; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  15. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  16. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  17. Rigorous derivation of the mean-field green functions of the two-band Hubbard model of superconductivity

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    2007-01-01

    The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions

  18. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  19. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  20. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  1. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies

    International Nuclear Information System (INIS)

    Gottschalk, Fadri; Sun, TianYin; Nowack, Bernd

    2013-01-01

    Scientific consensus predicts that the worldwide use of engineered nanomaterials (ENM) leads to their release into the environment. We reviewed the available literature concerning environmental concentrations of six ENMs (TiO 2 , ZnO, Ag, fullerenes, CNT and CeO 2 ) in surface waters, wastewater treatment plant effluents, biosolids, sediments, soils and air. Presently, a dozen modeling studies provide environmental concentrations for ENM and a handful of analytical works can be used as basis for a preliminary validation. There are still major knowledge gaps (e.g. on ENM production, application and release) that affect the modeled values, but over all an agreement on the order of magnitude of the environmental concentrations can be reached. True validation of the modeled values is difficult because trace analytical methods that are specific for ENM detection and quantification are not available. The modeled and measured results are not always comparable due to the different forms and sizes of particles that these two approaches target. -- Highlights: •Modeled environmental concentrations of engineered nanomaterials are reviewed. •Measured environmental concentrations of engineered nanomaterials are reviewed. •Possible validation of modeled data by measurements is critically evaluated. •Different approaches in modeling and measurement methods complicate validation. -- Modeled and measured environmental concentrations of engineered nanomaterials are reviewed and critically discussed

  2. Application of Intuitionistic Fuzzy Topsis Model for Troubleshooting an Offshore Patrol Boat Engine

    Directory of Open Access Journals (Sweden)

    Aikhuele Daniel Osezua

    2017-06-01

    Full Text Available In this paper, an Intuitionistic Fuzzy TOPSIS model which is based on a score function is proposed for detecting the root cause of failure in an Offshore Boat engine, using groups of expert’s opinions. The study which has provided an alternative approach for failure mode identification and analysis in machines, addresses the machine component interaction failures which is a limitation in existing methods. The results from the study show that although early detection of failures in engines is quite difficult to identify due to the dependency of their systems from each other. However, with the Intuitionistic Fuzzy TOPSIS model which is based on an improved score function such faults/failures are easily detected using expert’s based opinions.

  3. Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2018-01-01

    This paper aims to simulate diesel spray flames across a wide range of engine-like conditions using the Eulerian Stochastic Field probability density function (ESF-PDF) model. The ESF model is coupled with the Chemistry Coordinate Mapping approach to expedite the calculation. A convergence study...... is carried out for a number of stochastic fields at five different conditions, covering both conventional diesel combustion and low-temperature combustion regimes. Ignition delay time, flame lift-off length as well as distributions of temperature and various combustion products are used to evaluate...... the performance of the model. The peak values of these properties generated using thirty-two stochastic fields are found to converge, with a maximum relative difference of 27% as compared to those from a greater number of stochastic fields. The ESF-PDF model with thirty-two stochastic fields performs reasonably...

  4. Logarithmic two-point correlation functions from a z=2 Lifshitz model

    International Nuclear Information System (INIS)

    Zingg, T.

    2014-01-01

    The Einstein-Proca action is known to have asymptotically locally Lifshitz spacetimes as classical solutions. For dynamical exponent z=2, two-point correlation functions for fluctuations around such a geometry are derived analytically. It is found that the retarded correlators are stable in the sense that all quasinormal modes are situated in the lower half-plane of complex frequencies. Correlators in the longitudinal channel exhibit features that are reminiscent of a structure usually obtained in field theories that are logarithmic, i.e. contain an indecomposable but non-diagonalizable highest weight representation. This provides further evidence for conjecturing the model at hand as a candidate for a gravity dual of a logarithmic field theory with anisotropic scaling symmetry

  5. A J matrix engine for density functional theory calculations

    International Nuclear Information System (INIS)

    White, C.A.; Head-Gordon, M.

    1996-01-01

    We introduce a new method for the formation of the J matrix (Coulomb interaction matrix) within a basis of Cartesian Gaussian functions, as needed in density functional theory and Hartree endash Fock calculations. By summing the density matrix into the underlying Gaussian integral formulas, we have developed a J matrix open-quote open-quote engine close-quote close-quote which forms the exact J matrix without explicitly forming the full set of two electron integral intermediates. Several precomputable quantities have been identified, substantially reducing the number of floating point operations and memory accesses needed in a J matrix calculation. Initial timings indicate a speedup of greater than four times for the (pp parallel pp) class of integrals with speedups increasing to over ten times for (ff parallel ff) integrals. copyright 1996 American Institute of Physics

  6. Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability

    Directory of Open Access Journals (Sweden)

    Ruichao LI

    2018-06-01

    Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine

  7. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  8. First experiments results about the engineering model of Rapsodie

    International Nuclear Information System (INIS)

    Chalot, A.; Ginier, R.; Sauvage, M.

    1964-01-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [fr

  9. Classification and moral evaluation of uncertainties in engineering modeling.

    Science.gov (United States)

    Murphy, Colleen; Gardoni, Paolo; Harris, Charles E

    2011-09-01

    Engineers must deal with risks and uncertainties as a part of their professional work and, in particular, uncertainties are inherent to engineering models. Models play a central role in engineering. Models often represent an abstract and idealized version of the mathematical properties of a target. Using models, engineers can investigate and acquire understanding of how an object or phenomenon will perform under specified conditions. This paper defines the different stages of the modeling process in engineering, classifies the various sources of uncertainty that arise in each stage, and discusses the categories into which these uncertainties fall. The paper then considers the way uncertainty and modeling are approached in science and the criteria for evaluating scientific hypotheses, in order to highlight the very different criteria appropriate for the development of models and the treatment of the inherent uncertainties in engineering. Finally, the paper puts forward nine guidelines for the treatment of uncertainty in engineering modeling.

  10. Biomimetic engineering of colloidal nanoarchitectures with "in vitro" and "in vivo" functionality

    OpenAIRE

    Einfalt, Tomaž

    2017-01-01

    Biomimetic engineering opens unprecedented possibilities of combining biomolecules (i.e. proteins, DNA, polysaccharides) with synthetic materials (i.e. synthetic polymers). This combination results in unique hybrid systems with functionalities that mimic processes in living organisms. While the translational value of functional biomimetically engineered structures is of exceptional importance in fields such as technology, engineering, chemistry, biology and medicine, due to the properties the...

  11. The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines

    OpenAIRE

    Eric T. Bradlow; David C. Schmittlein

    2000-01-01

    This research examines the ability of six popular Web search engines, individually and collectively, to locate Web pages containing common marketing/management phrases. We propose and validate a model for search engine performance that is able to represent key patterns of coverage and overlap among the engines. The model enables us to estimate the typical additional benefit of using multiple search engines, depending on the particular set of engines being considered. It also provides an estim...

  12. Heat Transfer in Two-Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Christiansen, Caspar Ask

    Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (diesel engines) have been continuously increasing in recent years. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. A very......%, 30% and 50% load) was performed on a MAN Diesel & Turbo SE test engine, which shows very promising results for further investigations of dynamic temperature and heat flux in large bore engines. Instantaneous heat flux is derived using both an analytical and a numerical model and compared. More...... was investigated by computer simulations using a 3-D numerical finite volume model made in STAR-CD. General trends are observed from the temperature measurements in the limited part load range. These include among others: local increase in mean surface temperature and mean surface heat flux with increasing load...

  13. Relativistic wave functions of two spin 1/2 quarks in a model with QCD interaction

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solovtsov, I.L.

    1981-01-01

    Within the hamiltonian formulation of quantum field theory an equation is obtained for the vertex and wave functions of a composite system of two spin 1/2 quarks. Exact solutions are found for the relativistic potential having in the momentum representation the ''asymptotically-free'' behaviour at large values of momentum transfer Q 2 . It is shown that within the given model the π-meson wave function has zero at a finite distance corresponding to the point of discontinuity of the effective potential [ru

  14. Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel

    International Nuclear Information System (INIS)

    Nunes de Faria, Mário M.; Vargas Machuca Bueno, Juan P.; Ayad, Sami M.M. Elmassalami; Belchior, Carlos R. Pereira

    2017-01-01

    Highlights: • A 0-D model for performance prediction of SI ICE fueled with biogas is proposed. • Relative difference between simulated and experimental values was under 5%. • Can be adapted for different biogas compositions and operating ranges. • Could be a valuable tool for predicting trends and guiding experimentation. • Is suitable for use with biogas supplies in developing regions. - Abstract: Biogas found its way from developing countries and is now an alternative to fossil fuels in internal combustion engines and with the advantage of lower greenhouse gas emissions. However, its use in gas engines requires engine modifications or adaptations that may be costly. This paper reports the results of experimental performance and emissions tests of an engine-generator unit fueled with biogas produced in a sewage plant in Brazil, operating under different loads, and with suitable engine modifications. These emissions and performance results were in agreement with the literature and it was confirmed that the penalties to engine performance were more significant than emission reduction in the operating range tested. Furthermore, a zero dimensional simulation model was employed to predict performance characteristics. Moreover, a differential thermodynamic equation system was solved, obtaining the pressure inside the cylinder as a function of the crank angle for different engine conditions. Mean effective pressure and indicated power were also obtained. The results of simulation and experimental tests of the engine in similar conditions were compared and the model validated. Although several simplifying assumptions were adopted and empirical correlations were used for Wiebe function, the model was adequate in predicting engine performance as the relative difference between simulated and experimental values was lower than 5%. The model can be adapted for use with different raw or enriched biogas compositions and could prove to be a valuable tool to guide

  15. A comparison of two adaptive algorithms for the control of active engine mounts

    Science.gov (United States)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  16. A discussion of the several types of two-stroke-cycle engines

    Science.gov (United States)

    Venediger, Herbert J

    1935-01-01

    This report discusses different types of two-stroke engines as well as the three most important design factors: volume of scavenge and charge delivery, scavenging process (scavenging result), and result of charge. Some of the types of engines discussed include: single cylinder with crank-chamber scavenge pump and auxiliary suction piston linked to working connecting rod; and two cylinder engines with a rotary scavenge pump arrangement. Three and four cylinder engines are also discussed in various designs.

  17. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Science.gov (United States)

    2010-01-01

    ... in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine...

  18. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  19. Modified pressure loss model for T-junctions of engine exhaust manifold

    Science.gov (United States)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  20. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  1. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  2. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  3. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  4. Two Strokes Diesel Engine - Promising Solution to Reduce CO2 Emissions

    OpenAIRE

    Tribotte, Pascal; Ravet, Frederic; Dugue, Vincent; Obernesser, Philippe; Quechon, Nicolas; Benajes, Jesus; Novella, Ricardo; De Lima, Daniela

    2012-01-01

    Two-stroke engines have dropped out of the automobile market for a long time due to severe drawbacks. Unfortunately, the comparison with the performances of four-stroke engines was not in favour of two-stroke ones. Nevertheless, the needs of a more compact engine with a better ratio of the mass and size versus power motivated research efforts at the beginning of the 90's. Regrettably, these efforts did not result in commercial success and automobile manufacturers kept four-stroke engine archi...

  5. PBL and CDIO: Complementary Models for Engineering Education Development

    Science.gov (United States)

    Edström, Kristina; Kolmos, Anette

    2014-01-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines,…

  6. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  7. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  8. Direct Fuel Injection of LPG in Small Two-Stroke Engines

    OpenAIRE

    Yew Heng Teoh; Horizon Gitano-Briggs

    2011-01-01

    The commonly used carburetted two-stroke engines in developing countries have high exhaust emission and poor fuel efficiency. To meet more rigid emissions requirements, two-stroke vehicles are typically phase out in favour of four-stroke engines. The problems of ubiquitous legacy two-stroke vehicles remain unsolved by these measures and they are likely to be a major source of transport for many years to come. A number of technologies are available for solving the problems associated with two-...

  9. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  10. Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.

    2008-01-01

    The development of a zero-dimensional, multi-zone combustion model is presented for predicting the performance and nitric oxide (NO) emissions of a spark ignition (SI) engine. The model is validated against experimental data from a multi-cylinder, four-stroke, turbocharged and aftercooled, SI gas engine running with syngas fuel. This alternative fuel, the combustible part of which consists mainly of CO and H 2 with the rest containing non-combustible gases, has been recently identified as a promising substitute of fossil fuels in view of environmentally friendly engine operation. The basic concept of the model is the division of the burned gas into several distinct zones, unlike the simpler two-zone models, for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. The multi-zone formulation provides the chemical species concentrations gradient existing in the burned zones, as well as the relative contribution of each burned zone to the total in-cylinder NO formation. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. All model's constants are calibrated at one operating point and then kept unchanged. Zone-resolved combustion related information is obtained, assisting in the understanding of the complex phenomena occurring during combustion in SI engines. Combustion characteristics of the lean-burn gas engine tested are provided for the complete load range, aiding the interpretation of its performance and knocking tendency. Computed NO emissions from the multi-zone model for various values of the engine load (i.e. air-fuel ratios) are presented and found to be in good agreement with the respective experimental ones, providing confidence for the predictive capability of the model. The superiority of the multi-zone model over its two

  11. Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document

    National Research Council Canada - National Science Library

    1999-01-01

    The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...

  12. Four-Stroke and Two-Stroke Marine Engines Comparison and Application

    OpenAIRE

    Eng. Waleed Alturki

    2017-01-01

    Marine engines have evolved a lot through time. From the earliest instances of rowing equipment to the advanced machinery, propulsion engines have become a critical part in the efficiency of marine vessels. These engines can be classified and selected using various characteristics and types, such as its operating cycle. Engines can come in either the four-stroke or the two-stroke version. Four-stroke engines are primarily used in cars, buses, and trucks due to their lower noise production and...

  13. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker

    2015-11-01

    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  14. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  15. Measurement and Calculation of Frictional Loss in Large Two-Stroke Engines

    DEFF Research Database (Denmark)

    Vølund, Anders

    2003-01-01

    The total frictional loss in a large two-stroke marine diesel engine is rather well determined. However, the contribution (size and distribution) from the different machine elements are not well known. The aim of this study is to establish methods to measure and calculate friction in the piston...... assembly and guide shoe system for a large two-stroke marine diesel engine. These components are the two major contributors to the total friction in a two-stroke marine diesel engine. The piston pack represents approximately 60% of the total mechanical loss at full load and the guide shoe system 23...

  16. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  17. NUMERICAL WITHOUT ITERATION METHOD OF MODELING OF ELECTROMECHANICAL PROCESSES IN ASYNCHRONOUS ENGINES

    Directory of Open Access Journals (Sweden)

    D. G. Patalakh

    2018-02-01

    Full Text Available Purpose. Development of calculation of electromagnetic and electromechanic transients is in asynchronous engines without iterations. Methodology. Numeral methods of integration of usual differential equations, programming. Findings. As the system of equations, describing the dynamics of asynchronous engine, contents the products of rotor and stator currents and product of rotation frequency of rotor and currents, so this system is nonlinear one. The numeral solution of nonlinear differential equations supposes an iteration process on every step of integration. Time-continuing and badly converging iteration process may be the reason of calculation slowing. The improvement of numeral method by the way of an iteration process removing is offered. As result the modeling time is reduced. The improved numeral method is applied for integration of differential equations, describing the dynamics of asynchronous engine. Originality. The improvement of numeral method allowing to execute numeral integrations of differential equations containing product of functions is offered, that allows to avoid an iteration process on every step of integration and shorten modeling time. Practical value. On the basis of the offered methodology the universal program of modeling of electromechanics processes in asynchronous engines could be developed as taking advantage on fast-acting.

  18. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  19. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  20. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  1. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  2. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    Science.gov (United States)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  3. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  4. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  5. An adjustable Brownian heat engine

    International Nuclear Information System (INIS)

    Asfaw, Mesfin; Bekele, Mulugeta

    2002-09-01

    A microscopic heat engine is modeled as a Brownian particle in a sawtooth potential (with load) moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot and cold heat reservoirs. We found a closed form expression for the current as a function of the parameters characterizing the model. Depending on the values these model parameters take, the engine is also found to function as a refrigerator. Expressions for the efficiency as well as for the refrigerator performance are also reported. Study of how these quantities depend on the model parameters enabled us in identifying the points in the parameter space where the engine performs either with maximum power or with optimized efficiency. The corresponding efficiencies of the engine are then compared with those of the endoreversible and Carnot engines. (author)

  6. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    Science.gov (United States)

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  7. WAsP engineering flow model for wind over land and sea

    DEFF Research Database (Denmark)

    Astrup, P.; Larsen, Søren Ejling

    1999-01-01

    This report presents the basic wind flow model of WAsP Engineering. The model consists in principle of three parts: the LINCOM model for neutrally stable flow over terrain with hills and varying surface roughness, a sea surface roughness model, and anobstacle model. To better predict flow over...... of literature data for the Charnock parameter as function of the so called wave age, the ratio between wave velocity and friction velocity, plus a correlation ofwave age to the geometrically obtainable water fetch. A model for the influence on the wind of multiple, finite size, interacting obstacles with any...

  8. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  9. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    Science.gov (United States)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  10. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  11. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  12. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  13. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li

    2015-05-01

    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  14. A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs

    International Nuclear Information System (INIS)

    Luo, Xiaoguang; Long, Kailin; Wang, Jun; Qiu, Teng; He, Jizhou; Liu, Nian

    2014-01-01

    Theoretical thermoelectric nanophysics models of low-dimensional electronic heat engine and refrigerator devices, comprising two-dimensional hot and cold reservoirs and an interconnecting filtered electron transport mechanism have been established. The models were used to numerically simulate and evaluate the thermoelectric performance and energy conversion efficiencies of these low-dimensional devices, based on three different types of electron transport momentum-dependent filters, referred to herein as k x , k y , and k r filters. Assuming the Fermi-Dirac distribution of electrons, expressions for key thermoelectric performance parameters were derived for the resonant transport processes, in which the transmission of electrons has been approximated as a Lorentzian resonance function. Optimizations were carried out and the corresponding optimized design parameters have been determined, including but not limited to the universal theoretical upper bound of the efficiency at maximum power for heat engines, and the maximum coefficient of performance for refrigerators. From the results, it was determined that k r filter delivers the best thermoelectric performance, followed by the k x filter, and then the k y filter. For refrigerators with any one of three filters, an optimum range for the full width at half maximum of the transport resonance was found to be B T.

  15. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    Science.gov (United States)

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-06

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  16. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    Science.gov (United States)

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  17. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  18. Characteristic function analysis of lattice CPN-1 models with θ-term in two - dimensions

    International Nuclear Information System (INIS)

    Hassan, A.S.

    2004-01-01

    The present work is devoted to study the phase structure of CP N-1 N m odel with θ-term in two dimensions and to calculate the topological charge distribution P(Q) by using the characteristic function. P(Q) shows a Gaussian behavior. Information concerning the phase structure is obtained through the analysis of the behavior of the characteristic function for various coupling constants β. For N = 2, 4 it is shown that the model has a deconfining phase transition in θ. The critical value of θ approaches zero as β tends to infinity. This suggests that θ goes to zero in the continuum limit. These results may resolve the strong CP problem

  19. Two-step rocket engine bipropellant valve concept

    Science.gov (United States)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  20. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  1. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  2. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    The Journal of Modeling, Design & Management of Engineering Systems publishes original ... systems Electronic/Electrical systems Engineering management systems Fuel and Energy systems Information Technology ... systems Pubic Health systems Software Engineering systems Systems and Industrial Engineering ...

  3. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco

    2007-01-01

    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity....

  4. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris

    1999-01-01

    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  5. Two-stage supercharging of a passenger car diesel engine; Zweistufige Aufladung eines Pkw-Dieselmotors

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, A.; Albrecht, P.; Becker, B.; Vogt, G.; Fischer, R. [Erphi Elektronik GmbH, Holzkirchen (Germany)

    2004-07-01

    Two-stage supercharging of internal combustion engines with specific capacities beyond 70 kW/l opens up new options for smaller charge volumes. A low-pressure and a high-pressure supercharger are connected in series, with by-passes. The control strategy is described in this contribution using a model of exhaust counterpressure. The potential of a two-stage supercharged diesel engine with CR injection was proved in two engines and in dynamic driving tests. The new concept offers optimum chances for downsizing provided that the driving performance is not affected. (orig.) [German] Die zweistufige Aufladung von Verbrennungsmotoren eroeffnet mit spezifischen Leistungen jenseits von 70 kW/l weitere Moeglichkeiten der Hubraumverkleinerung. Dabei werden ein Niederdruck- und ein Hochdrucklader mit Umgehungsleitungen in Reihe geschaltet. Die erforderliche Regelungsstrategie zum kontrollierten Uebergang von einer Stufe auf die naechste erfolgt in dem hier vorliegenden Beitrag anhand eines Modells fuer den Abgasgegendruck. Hierbei wird das Regelorgan so angesteuert, dass sich der gewuenschte Druck vor den Turbinen einstellt. An zwei Motoren konnten stationaere Ergebnisse das Leistungspotential eines zweistufig aufgeladenen Dieselmotors mit 'Common Rail' Einspritzung nachgewiesen werden. Die dynamischen Fahrversuche belegen eindrucksvoll den schnellen Ladedruckaufbau auch aus tiefen Drehzahlbereichen bei gleichzeitig gutem Uebergangsverhalten von der Hochdruck- auf die Niederdruckstufe. Damit bietet der zweistufig aufgeladene Dieselmotor mit dem hier dargestellten Regelungsverfahren optimale Voraussetzungen fuer 'Downsizing' unter der Randbedingung, dass moeglichst keine Einbussen bei den Fahrleistungen hinzunehmen sind. (orig.)

  6. Engineering the functional fitness of transglycosidases and ...

    African Journals Online (AJOL)

    The artificial implementation of the Darwinian theory of evolution to create new variants of functional proteins, a process referred to as directed evolution, has acquired many applications in biochemical engineering. Directed evolution is a handy tool in the nascent science of glycobiology, where it is used in the conversion of ...

  7. Design and simulation of a two- or four-stroke free-piston engine generator for range extender applications

    International Nuclear Information System (INIS)

    Jia, Boru; Smallbone, Andrew; Zuo, Zhengxing; Feng, Huihua; Roskilly, Anthony Paul

    2016-01-01

    Highlights: • A FPE model operated in two thermodynamic cycles is presented. • The engine performance for both gas exchange cycles are described. • Power distribution with different operation parameters are provided. • Advantages and disadvantages for the two thermodynamic cycles are summarised. - Abstract: Free-piston engines (FPEs) are known to have a greater thermal efficiency (40–50%) than an equivalent and more conventional four-stroke reciprocating engines (30–40%). Modern FPEs are proposed for the generation of electric and hydraulic power, with a potential application in hybrid electric vehicles. The numerous FPE configurations considered to date have almost exclusively operated using a two-stroke thermodynamic cycle to improve the thermal efficiency, however it is well known that the application of two-stoke cycles can be limited by noise and exhaust gas emissions constraints. In this article, a numerical model is used to investigate the techno-feasibility of operating Newcastle University’s FPE prototype using a two- or four-stroke thermodynamic cycle. If operated as a four-stroke cycle, the linear generator must be used as both a motor and a generator resulting in a more irregular piston motion compared to corresponding operating in a two-stroke cycle. In four-stroke cycles, almost half the indicated power is consumed in overcoming the pumping losses of the motoring process. Whilst the heat release process is appears to be closer to a constant volume process when operated on two-stroke engine cycle, the peak cylinder pressure and compression ratio proved lower. In addition, a narrower power range is reported for a four-stroke cycle despite a corresponding higher thermal efficiency.

  8. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain

    1999-01-01

    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  9. The engineering function in Scottish Nuclear

    International Nuclear Information System (INIS)

    Grant, J.

    1991-01-01

    The work of the Engineering and Development Division of Scottish Nuclear is described in this article. This company, formed since the privatization of electricity generation in the United Kingdom, owns and operates the two Hunterston Magnox reactors and the Torness Advanced Gass Cooled Reactors. Principle responsibilities such as maintaining safety standards, formulating policy for radioactive waste disposal and decommissioning and optimally controlling the nuclear generation cycle are outlined. Objectives for the next five years are identified and explained separately. The experience, knowledge and expertise of engineering staff is stressed as being of key importance to the future success of Scottish Nuclear. (UK)

  10. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Journal Home > Vol 5, No 1 (2007) ... or mathematical modeling, computing, simulation, design and/or operations research tools for solving engineering problems.

  11. Correlation functions of the Ising model and the eight-vertex model

    International Nuclear Information System (INIS)

    Ko, L.F.

    1986-01-01

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. In Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations

  12. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  13. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  14. Multipole expansion of vertex functions with two final particles

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    The expansions of the usual vertex functions are generalized to the vertex functions with two final particles. For four vector functions, expressions are similar to those of Chew, Goldberger, Low and Nambu, and of Adler and the consequences of the isobaric model are studied [fr

  15. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  16. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  17. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    Science.gov (United States)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  18. Engineering an in vitro model of a functional ligament from bone to bone.

    Science.gov (United States)

    Paxton, Jennifer Z; Grover, Liam M; Baar, Keith

    2010-11-01

    For musculoskeletal tissues that transmit loads during movement, the interfaces between tissues are essential to minimizing injury. Therefore, the reproduction of functional interfaces within engineered musculoskeletal tissues is critical to the successful transfer of the technology to the clinic. The goal of this work was to rapidly engineer ligament equivalents in vitro that contained both the soft tissue sinew and a hard tissue bone mimetic. This goal was achieved using cast brushite (CaHPO(4)·2H(2)O) anchors to mimic bone and a fibrin gel embedded with fibroblasts to create the sinew. The constructs formed within 7 days. Fourteen days after seeding, the interface between the brushite and sinew could withstand a stress of 9.51 ± 1.7  kPa before failure and the sinew reached a Young's modulus value of 0.16 ± 0.03  MPa. Treatment with ascorbic acid and proline increased the collagen content of the sinew (from 1.34% ± 0.2% to 8.34% ± 0.37%), strength of the interface (29.24 ± 6  kPa), and modulus of the sinew (2.69 ± 0.25  MPa). Adding transforming growth factor-β resulted in a further increase in collagen (11.25% ± 0.39%), interface strength (42 ± 8  kPa), and sinew modulus (5.46 ± 0.68  MPa). Both scanning electron and Raman microscopy suggested that the interface between the brushite and sinew mimics the in vivo tidemark at the enthesis. This work describes a major step toward the development of tissue-engineered ligaments for the repair of ligament ruptures in humans.

  19. Quality functions for requirements engineering in system development methods.

    Science.gov (United States)

    Johansson, M; Timpka, T

    1996-01-01

    Based on a grounded theory framework, this paper analyses the quality characteristics for methods to be used for requirements engineering in the development of medical decision support systems (MDSS). The results from a Quality Function Deployment (QFD) used to rank functions connected to user value and a focus group study were presented to a validation focus group. The focus group studies take advantage of a group process to collect data for further analyses. The results describe factors considered by the participants as important in the development of methods for requirements engineering in health care. Based on the findings, the content which, according to the user a MDSS method should support is established.

  20. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  1. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  2. Modeling planarian regeneration: a primer for reverse-engineering the worm.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    Full Text Available A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an

  3. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  4. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  5. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    Science.gov (United States)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  6. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    Science.gov (United States)

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  7. Restoring nervous system structure and function using tissue engineered living scaffolds

    Institute of Scientific and Technical Information of China (English)

    Laura A Struzyna; James P Harris; Kritika S Katiyar; H Isaac Chen; D KacyCullen

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner-vous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance ifbers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regenera-tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi-neered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a deifned, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  8. Restoring nervous system structure and function using tissue engineered living scaffolds

    Directory of Open Access Journals (Sweden)

    Laura A Struzyna

    2015-01-01

    Full Text Available Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  9. 76 FR 8321 - Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine

    Science.gov (United States)

    2011-02-14

    ... considerations for function and reliability are common between these two engine types in this regard, making... appropriate manuals and certification documents, the following definition applies to this special condition...

  10. Model-driven software engineering

    NARCIS (Netherlands)

    Amstel, van M.F.; Brand, van den M.G.J.; Protic, Z.; Verhoeff, T.; Hamberg, R.; Verriet, J.

    2014-01-01

    Software plays an important role in designing and operating warehouses. However, traditional software engineering methods for designing warehouse software are not able to cope with the complexity, size, and increase of automation in modern warehouses. This chapter describes Model-Driven Software

  11. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  12. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  13. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  14. HPC Institutional Computing Project: W15_lesreactiveflow KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-05

    KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5th generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media

  15. Adaptive Engine Torque Compensation with Driveline Model

    Directory of Open Access Journals (Sweden)

    Park Jinrak

    2018-01-01

    Full Text Available Engine net torque is the total torque generated by the engine side, and includes the fuel combustion torque, the friction torque, and additionally the starter motor torque in case of hybrid vehicles. The engine net torque is utilized to control powertrain items such as the engine itself, the transmission clutch, also the engine clutch, and it must be accurate for the precise powertrain control. However, this net torque can vary with the engine operating conditions like the engine wear, the changes of the atmospheric pressure and the friction torque. Thus, this paper proposes the adaptive engine net torque compensator using driveline model which can cope with the net torque change according to engine operating conditions. The adaptive compensator was applied on the parallel hybrid vehicle and investigated via MATLAB Simcape Driveline simulation.

  16. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  17. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments.

    Science.gov (United States)

    Lee, Cassandra A; Lee-Barthel, Ann; Marquino, Louise; Sandoval, Natalie; Marcotte, George R; Baar, Keith

    2015-05-15

    Women are more likely to suffer an anterior cruciate ligament (ACL) rupture than men, and the incidence of ACL rupture in women rises with increasing estrogen levels. We used an engineered ligament model to determine how an acute rise in estrogen decreases the mechanical properties of ligaments. Using fibroblasts isolated from human ACLs from male or female donors, we engineered ligaments and determined that ligaments made from female ACL cells had more collagen and were equal in strength to those made from male ACL cells. We then treated engineered ligaments for 14 days with low (5 pg/ml), medium (50 pg/ml), or high (500 pg/ml) estrogen, corresponding to the range of in vivo serum estrogen concentrations and found that collagen within the grafts increased without a commensurate increase in mechanical strength. Mimicking the menstrual cycle, with 12 days of low estrogen followed by 2 days of physiologically high estrogen, resulted in a decrease in engineered ligament mechanical function with no change in the amount of collagen in the graft. The decrease in mechanical stiffness corresponded with a 61.7 and 76.9% decrease in the activity of collagen cross-linker lysyl oxidase with 24 and 48 h of high estrogen, respectively. Similarly, grafts treated with the lysyl oxidase inhibitor β-aminoproprionitrile (BAPN) for 24 h showed a significant decrease in ligament mechanical strength [control (CON) = 1.58 ± 0.06 N; BAPN = 1.06 ± 0.13 N] and stiffness (CON = 7.7 ± 0.46 MPa; BAPN = 6.1 ± 0.71 MPa) without changing overall collagen levels (CON = 396 ± 11.5 μg; BAPN = 382 ± 11.6 μg). Together, these data suggest that the rise in estrogen during the follicular phase decreases lysyl oxidase activity in our engineered ligament model and if this occurs in vivo may decrease the stiffness of ligaments and contribute to the elevated rate of ACL rupture in women. Copyright © 2015 the American Physiological Society.

  18. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    Science.gov (United States)

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  19. Influence of piston displacement on the scavenging and swirling flow in two-stroke diesel engines

    DEFF Research Database (Denmark)

    Obeidat, Anas; Haider, Sajjad; Ingvorsen, Kristian Mark

    We study the effect of piston motion on the in-cylinder swirling flow in a low speed, large two-stroke marine diesel engine. The work involves experimental, and numerical simulation using OpenFOAM platform, Large Eddy Simulation was used with three different models, One equation Eddy, Dynamic One...

  20. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  3. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  4. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2012-12-01

    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  5. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  6. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  7. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    Science.gov (United States)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  8. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  9. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  10. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    International Nuclear Information System (INIS)

    Domm, T.D.; Underwood, R.S.

    1999-01-01

    than a single computer-aided manufacturing (CAM) system. The Inteznet was a technology that all companies were considering to either transport information more easily throughout the corporation or as a conduit for business, as the small firm was doing Successfully. Because PrdEngineer is the de facto CAD standard fbr the NWC, the Benchmark Team targeted companies using Parametric Technology Corporation (PTC) software tools. Most of the companies used Pm'Engineer for design to some degree, but found the PTC CAM product, PdManufacture lacking as compared to alternate CAM solutions. All of the companies visited found the data exchange between CAD/CAM systems problematic. It was apparent that these companies were trying to consolidate their software tools to reduce translation but had not been able to do so because no single solution had all the needed capabilities. In regard to organizational structure and human resources, two companies were found to be using product or program teams. These teams consisted of the technical staff capable of completing the entire task and were xmintained throughout the project. This same strategy was evident at another of the companies but with more mobility of members. For all companies visited except the small work structure breakdown and responsibility were essentially the same as Y-12's at this time. The functions of numerical control (NC), desi and process planning were separate and distinct. The team made numerous recommendations that are detailed in the report

  11. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  12. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  13. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model

    International Nuclear Information System (INIS)

    Wang, Buyu; Mosbach, Sebastian; Schmutzhard, Sebastian; Shuai, Shijin; Huang, Yaqing; Kraft, Markus

    2016-01-01

    Highlights: • Soot formation from a wall film in a GDI engine is simulated. • Spray impingement and wall film evaporation models are added to SRM Engine Suite. • Soot is modelled using a highly detailed population balance model. • Particle size distributions are measured experimentally. • Evolution of wall region is shown in equivalence ratio-temperature diagrams. - Abstract: In this study, soot formation in a Gasoline Direct Injection (GDI) engine is simulated using a Stochastic Reactor Model (SRM Engine Suite) which contains a detailed population balance soot model capable of describing particle morphology and chemical composition. In order to describe the soot formation originating from the wall film, the SRM Engine Suite is extended to include spray impingement and wall film evaporation models. The cylinder is divided into a wall and a bulk zone to resolve the equivalence ratio and temperature distributions of the mixture near the wall. The combustion chamber wall is assumed to exchange heat directly only with the wall zone. The turbulent mixing within each zone and between the two zones are simulated with different mixing models. The effects of key parameters on the temperature and equivalence ratio in the two zones are investigated. The mixing rate between the wall and bulk zone has a significant effect on the wall zone, whilst the mixing rate in the wall zone only has a negligible impact on the temperature and equivalence ratio below a certain threshold. Experimental data are obtained from a four-cylinder, gasoline-fuelled direct injection spark ignition engine operated stoichiometrically. An injection timing sweep, ranging from 120 CAD BTDC to 330 CAD BTDC, is conducted in order to investigate the effect of spray impingement on soot formation. The earliest injection case (330 CAD BTDC), which produces significantly higher levels of particle emissions than any other case, is simulated by the current model. It is found that the in-cylinder pressure

  14. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  15. Factorisations for partition functions of random Hermitian matrix models

    International Nuclear Information System (INIS)

    Jackson, D.M.; Visentin, T.I.

    1996-01-01

    The partition function Z N , for Hermitian-complex matrix models can be expressed as an explicit integral over R N , where N is a positive integer. Such an integral also occurs in connection with random surfaces and models of two dimensional quantum gravity. We show that Z N can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connection between the two models. We also give an alternative computation of the partition function for the φ 4 -model.The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring. (orig.)

  16. Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  17. High precision wavefront control in point spread function engineering for single emitter localization

    Science.gov (United States)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  18. Engineering workstation: Sensor modeling

    Science.gov (United States)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  19. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package....... The model can easily be run on a Personal Computer (PC) using a ordinary differential equation (ODE) integrating routine or package. This makes the model is useful for control system design and evaluation....

  20. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  1. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    Science.gov (United States)

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  2. Linear functional analysis for scientists and engineers

    CERN Document Server

    Limaye, Balmohan V

    2016-01-01

    This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...

  3. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    International Nuclear Information System (INIS)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-01-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  4. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina PR (Brazil)

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  5. Analysis and modelling of engineering structures in frequency domain

    International Nuclear Information System (INIS)

    Ishtev, K.; Bonev, Z.; Petrov, P.; Philipov, P.

    1987-01-01

    This paper deals with some possible applications for modelling and analysis of engineering structures, basing on technique, mentioned above. The governing system of equations is written by using frequency domain approach since elemination technique has computational significance in this field. Modelling is made basing on the well known relationship Y(jw) = W(jw) * X(jw). Here X(jw) is a complex Fourier spectra associated with the imput signals being defined as earthquake, wind, hydrodynamic, control or other type of action. W(jw) is a matrix complex transfer function which reveals the correlation between input X und output Y spectra. Y (ja) represents a complex Fourier spectra of output signals. Input and output signals are both associated with master degrees of freedom, thus matrix transfer function is composed of elements in such a manner that solve unknown parameters are implemented implicitly. It is available an integration algorithm of 'condensed' system of equations. (orig./GL)

  6. Discrete two-sex models of population dynamics: On modelling the mating function

    Science.gov (United States)

    Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean

    2010-09-01

    Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.

  7. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  8. Modeling as an Engineering Habit of Mind and Practice

    Science.gov (United States)

    Lammi, Matthew D.; Denson, Cameron D.

    2017-01-01

    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  9. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery

    International Nuclear Information System (INIS)

    Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

    2013-01-01

    PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ∼ 100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery. - Highlights: ► A new nuclear targeted drug delivery system based on micelles is developed. ► This micellar system features a core-shell structure with the size peaked at 100 nm. ► PV7, a short peptide sequence, is adopted as a nuclear targeting ligand. ► PV7 functionalized drug loaded micelles are more potent in killing tumor cells

  10. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  11. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  12. Full spectrum of the two-photon and the two-mode quantum Rabi models

    International Nuclear Information System (INIS)

    Dossa, Anselme F.; Avossevou, Gabriel Y. H.

    2014-01-01

    This paper is concerned with the rigorous analytical determination of the spectrum of the two-photon and the two-mode quantum Rabi models. To reach this goal, we exploit the hidden symmetries in these models by means of the unitary and similarity transformations in addition to the Bargmann-Fock space description. In each case, the purely quantum mechanical problem of the Rabi model studied is reduced to solutions for differential equations. This eventually gives a third-order differential equation for each of these models, which is reduced to a second-order differential equation by additional transformations. The analytical expressions of the wave functions describing the energy levels are obtained in terms of the confluent hypergeometric functions

  13. Implicit approximate Riemann solver for two fluid two phase flow models

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.; Kumbaro, A.

    1993-01-01

    This paper is devoted to the description of new numerical methods developed for the numerical treatment of two phase flow models with two velocity fields which are now widely used in nuclear engineering for design or safety calculations. These methods are finite volumes numerical methods and are based on the use of Approximate Riemann Solver's concepts in order to define convective flux versus mean cell quantities. The first part of the communication will describe the numerical method for a three dimensional drift flux model and the extensions which were performed to make the numerical scheme implicit and to have fast running calculations of steady states. Such a scheme is now implemented in the FLICA-4 computer code devoted to 3-D steady state and transient core computations. We will present results obtained for a steady state flow with rod bow effect evaluation and for a Steam Line Break calculation were the 3-D core thermal computation was coupled with a 3-D kinetic calculation and a thermal-hydraulic transient calculation for the four loops of a Pressurized Water Reactor. The second part of the paper will detail the development of an equivalent numerical method based on an approximate Riemann Solver for a two fluid model with two momentum balance equations for the liquid and the gas phases. The main difficulty for these models is due to the existence of differential modelling terms such as added mass effects or interfacial pressure terms which make hyperbolic the model. These terms does not permit to write the balance equations system in a conservative form, and the classical theory for discontinuity propagation for non-linear systems cannot be applied. Meanwhile, the use of non-conservative products theory allows the study of discontinuity propagation for a non conservative model and this will permit the construction of a numerical scheme for two fluid two phase flow model. These different points will be detailed in that section which will be illustrated by

  14. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  15. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  16. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón

    2005-01-01

    With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...... turbocharges with radial compressors for either Spark Ignition (SI) or diesel engines...

  17. Two-stroke engine with gaseous and liquid fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, Rene Sejer [MAN Diesel and Turbo SE, Copenhagen (Denmark)

    2012-08-15

    The need to lower emissions of CO{sub 2}, NO{sub x}, SO{sub x} and particulates as well as rising oil prices have increased engine operators' interest in alternative fuels and fuel flexibility. The low speed two-stroke ME-GI and ME-LGI dual-fuel engines with diesel pilot injection from MAN Diesel and Turbo offer the opportunity of utilising fuels such as LNG, LPG, and methanol in a wide range of liquid to gaseous fuel ratios. (orig.)

  18. Combining engineering and data-driven approaches

    DEFF Research Database (Denmark)

    Fischer, Katharina; De Sanctis, Gianluca; Kohler, Jochen

    2015-01-01

    Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many assump...... to the calibration of a generic fire risk model for single family houses to Swiss insurance data. The example demonstrates that the bias in the risk estimation can be strongly reduced by model calibration.......Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many...... assumptions that may result in a biased risk assessment. In two related papers we show how engineering and data-driven modelling can be combined by developing generic risk models that are calibrated to statistical data on observed fire events. The focus of the present paper is on the calibration procedure...

  19. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  20. [Reconstruction and measurement of a digital dental model using grating projection and reverse engineering].

    Science.gov (United States)

    Zhenzhen, Wang; Yi, Lu; Jun, Song; Jun, Chen; Qin, Zhou

    2015-02-01

    This work lays the foundation for establishing a digital model database with normal occlusion. A digital dental cast is acquired through grating projection, and model features are measured through reverse engineering. The grating projection system controlled by a computer was projected onto the surface of a normal dental model. Three-dimensional contour data were obtained through multi-angle shooting. A three-dimensional model was constructed, and the model features were analyzed by using reverse engineering. The digital model was compared with the plaster model to determine the accuracy of the measurement system. The structure of three-dimensional reconstruction model was clear. The digital models of two measurements exhibited no significant difference (P > 0.05). When digital and plaster models were measured, we found that the crown length and arch width were not statistically different (P > 0.05), whereas the difference between the crown width and arch length was statistically significant (P model by using the grating projection technique and reverse engineering can be used for dental model measurement in clinic al and scientific research and can provide a scientific method for establishing a digital model database with normal occlusion.

  1. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  2. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...... are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing...

  3. Maintenance Decision Based on Data Fusion of Aero Engines

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Maintenance has gained a great importance as a support function for ensuring aero engine reliability and availability. Cost-effectiveness and risk control are two basic criteria for accurate maintenance. Given that aero engines have much condition monitoring data, this paper presents a new condition-based maintenance decision system that employs data fusion for improving accuracy of reliability evaluation. Bayesian linear model has been applied, so that the performance degradation evaluation of aero engines could be realized. A reliability evaluation model has been presented based on gamma process, which achieves the accurate evaluation by information fusion. In reliability evaluation model, the shape parameter is estimated by the performance degradation evaluation result, and the scale parameter is estimated by failure, inspection, and repair information. What is more, with such reliability evaluation as input variables and by using particle swarm optimization (PSO, a stochastic optimization of maintenance decision for aircraft engines has been presented, in which the effectiveness and the accuracy are demonstrated by a numerical example.

  4. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  5. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  6. Digital Model-Based Engineering: Expectations, Prerequisites, and Challenges of Infusion

    Science.gov (United States)

    Hale, J. P.; Zimmerman, P.; Kukkala, G.; Guerrero, J.; Kobryn, P.; Puchek, B.; Bisconti, M.; Baldwin, C.; Mulpuri, M.

    2017-01-01

    Digital model-based engineering (DMbE) is the use of digital artifacts, digital environments, and digital tools in the performance of engineering functions. DMbE is intended to allow an organization to progress from documentation-based engineering methods to digital methods that may provide greater flexibility, agility, and efficiency. The term 'DMbE' was developed as part of an effort by the Model-Based Systems Engineering (MBSE) Infusion Task team to identify what government organizations might expect in the course of moving to or infusing MBSE into their organizations. The Task team was established by the Interagency Working Group on Engineering Complex Systems, an informal collaboration among government systems engineering organizations. This Technical Memorandum (TM) discusses the work of the MBSE Infusion Task team to date. The Task team identified prerequisites, expectations, initial challenges, and recommendations for areas of study to pursue, as well as examples of efforts already in progress. The team identified the following five expectations associated with DMbE infusion, discussed further in this TM: (1) Informed decision making through increased transparency, and greater insight. (2) Enhanced communication. (3) Increased understanding for greater flexibility/adaptability in design. (4) Increased confidence that the capability will perform as expected. (5) Increased efficiency. The team identified the following seven challenges an organization might encounter when looking to infuse DMbE: (1) Assessing value added to the organization. Not all DMbE practices will be applicable to every situation in every organization, and not all implementations will have positive results. (2) Overcoming organizational and cultural hurdles. (3) Adopting contractual practices and technical data management. (4) Redefining configuration management. The DMbE environment changes the range of configuration information to be managed to include performance and design models

  7. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  8. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Science.gov (United States)

    2011-07-25

    ... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... for transport category airplanes. These design features include engine size and the potential torque... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load...

  9. Application of heuristic and machine-learning approach to engine model calibration

    Science.gov (United States)

    Cheng, Jie; Ryu, Kwang R.; Newman, C. E.; Davis, George C.

    1993-03-01

    Automation of engine model calibration procedures is a very challenging task because (1) the calibration process searches for a goal state in a huge, continuous state space, (2) calibration is often a lengthy and frustrating task because of complicated mutual interference among the target parameters, and (3) the calibration problem is heuristic by nature, and often heuristic knowledge for constraining a search cannot be easily acquired from domain experts. A combined heuristic and machine learning approach has, therefore, been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of a machine learning program called GID3* for automatic acquisition of heuristic rules for ordering target parameters.

  10. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    Science.gov (United States)

    2018-02-28

    Interactive Model-Centric Systems Engineering (IMCSE) Phase 5 Technical Report SERC-2018-TR-104 Feb 28, 2018 Principal Investigator...Date February 28, 2018 Copyright © 2018 Stevens Institute of Technology, Systems Engineering ...Research Center The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research Center managed by Stevens

  11. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  12. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  13. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  14. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  15. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  16. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    Science.gov (United States)

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  17. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  18. Functional summary statistics for the Johnson-Mehl model

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....

  19. Testing Danegaptide Effects on Kidney Function after Ischemia/Reperfusion Injury in a New Porcine Two Week Model.

    Directory of Open Access Journals (Sweden)

    Chris Amdisen

    Full Text Available Ischemia/reperfusion injury (I/R-I is a leading cause of acute kidney injury (AKI and is associated with increased mortality. Danegaptide is a selective modifier of the gap junction protein connexion 43. It has cytoprotective as well as anti-arrhythmic properties and has been shown to reduce the size of myocardial infarct in pigs. The aim of this study was to investigate the ischemia-protective effect of Danegaptide in a porcine renal I/R-I model with two weeks follow up.Unilateral renal I/R-I was induced in pigs by clamping the left renal artery over a two hour period. The model allowed examination of renal blood flow by magnetic resonance imaging (MRI and the measurement of single kidney GFR two weeks after injury. Eleven animals were randomized to Danegaptide-infusion while nine animals received placebo. Kidney histology and urinary neutrophil gelatinase-associated lipocalin (NGAL excretion were included as markers of AKI.Unilateral kidney I/R-I resulted in an immediate ~50% GFR reduction, associated with a four-fold increase in urinary NGAL-excretion. Fourteen days after I/R-I, the total GFR was ~75% of baseline with a significantly lower GFR in the injured left kidney compared to the right kidney. No differences in GFR were observed between the treated and non-treated animals immediately after I/R-I or at Day 14. Furthermore, no differences were observed in the urinary excretion of NGAL, renal blood flow or other markers of renal function.As expected this porcine renal I/R-I model was associated with reduced GFR two weeks after injury. Danegaptide did not improve renal function after I/R-I.

  20. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    Science.gov (United States)

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  1. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  2. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  3. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  4. An introductory model of a one-piston engine

    International Nuclear Information System (INIS)

    GlarIa, Jaime; Wendler, Thomas; Goodwin, Graham

    2005-01-01

    Reciprocating internal combustion engine models have the antithetical goals of accurately describing complex nonlinear behaviour and being simple enough for such purposes as automatic control and online diagnosis. A one-piston four-stroke engine is modelled here by recursively stating simple physical equations. To do that, the domestic ideas of domination and dependence are called as methodological tools for modelling, since they hand out necessary and sufficient equations with few manoeuvres, allocate simulations with the same characteristic and, hopefully, provide a fine way to understanding. The resulting model reveals both steady cycles and transient behaviour

  5. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  6. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  7. Characteristics of Sulfuric Acid Condensation on Cylinder Liners of Large Two-Stroke Marine Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Mayer, Stefan; Schramm, Jesper

    . Formation of corrosive sulfuric acid in the cylinder gas is modeled with a cali-brated engine model that incorporates a detailed sulfur reaction mechanism. Condensation of sulfuric acid follows the analogy between heat and mass transfer. Average bulk gas acid dew points are calculated by applying two......-phase thermochemistry of the binary H2O-H2SO4 system. Max dew points of typically more than 200 °C are modeled close to max pressure and variations in terms of operating conditions are not large. However small increments of the dew point provided by e.g. the residual gas fraction, operating pressure, sulfur content...

  8. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  9. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Science.gov (United States)

    2011-09-01

    ... diesel piston engines, with high-pressure (HP) fuel pump, part number (P/N) E4A- 30-100-000, installed... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed...

  10. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  11. Numerical model and investigations of the externally heated valve Joule engine

    Energy Technology Data Exchange (ETDEWEB)

    Wojewoda, Jerzy [University of Aberdeen, School of Engineering, Fraser Noble Bldg, Aberdeen AB24 3UE (United Kingdom); Kazimierski, Zbyszko [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska Str., 93-005 Lodz (Poland)

    2010-05-15

    The mineral fuels used recently, i.e., oil and gas, will be soon exploited out. This paper presents an idea of the engine where any fuel or solar heat can be used as a source of energy. The proposed model is an externally heated, 2-stroke, valve engine (EHVE). This is a piston-type engine, entirely different from the well-known Stirling one, which is the best known example of such a solution. It works in a closed Joule cycle and is designed to produce a moderate amount of energy. The engine is composed of typical parts met in piston designs: an expander, a compressor, a heater, a cooler and, additionally, two recirculation blowers, which consume a small amount of produced power. An additional advantage is its working medium, which may be simply atmospheric air and the engine has a conventional crankshaft and an oil lubrication system. It has already been proven that operation of the EHVE is possible with satisfactory power and efficiency at the output. Comparisons of the EHVE action with and without recirculation blowers are performed. (author)

  12. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    Science.gov (United States)

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  13. Functioning with a Sticky Model.

    Science.gov (United States)

    Reys, Robert E.

    1981-01-01

    A model that can be effectively used to develop the notion of function and provide varied practice by using "real world" examples and concrete objects is covered. The use of Popsicle-sticks is featured, with some suggestions for tasks involving functions with one operation, two operations, and inverse operations covered. (MP)

  14. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    Science.gov (United States)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  15. Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response

    International Nuclear Information System (INIS)

    Han, Renji; Dai, Binxiang

    2017-01-01

    Highlights: • We model general two-dimensional reaction-diffusion with nonlocal delay. • The existence of unique positive steady state is studied. • The bilinear form for the proposed system is given. • The existence, direction of Hopf bifurcation are given by symmetry method. - Abstract: A nonlocal delayed reaction-diffusive two-species model with Dirichlet boundary condition and general functional response is investigated in this paper. Based on the Lyapunov–Schmidt reduction, the existence, bifurcation direction and stability of Hopf bifurcating periodic orbits near the positive spatially nonhomogeneous steady-state solution are obtained, where the time delay is taken as the bifurcation parameter. Moreover, the general results are applied to a diffusive Lotka–Volterra type food-limited population model with nonlocal delay effect, and it is found that diffusion and nonlocal delay can also affect the other dynamic behavior of the system by numerical experiments.

  16. Introducing trimming and function ranking to Solid Works based on function analysis

    NARCIS (Netherlands)

    Chechurin, Leonid S.; Wits, Wessel Willems; Bakker, Hans M.; Cascini, G.; Vaneker, Thomas H.J.

    2011-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  17. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, Wessel Willems; Bakker, Hans M.; Vaneker, Thomas H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  18. The two-hole ground state of the Hubbard-Anderson model, approximated by a variational RVB-type wave function

    NARCIS (Netherlands)

    Traa, M.R.M.J.; Traa, M.R.M.J.; Caspers, W.J.; Caspers, W.J.; Banning, E.J.; Banning, E.J.

    1994-01-01

    In this paper the Hubbard-Anderson model on a square lattice with two holes is studied. The ground state (GS) is approximated by a variational RVB-type wave function. The holes interact by exchange of a localized spin excitation (SE), which is created or absorbed if a hole moves to a

  19. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  20. Determination of a Two Variable Approximation Function with Application to the Fuel Combustion Charts

    Directory of Open Access Journals (Sweden)

    Irina-Carmen ANDREI

    2017-09-01

    Full Text Available Following the demands of the design and performance analysis in case of liquid fuel propelled rocket engines, as well as the trajectory optimization, the development of efficient codes, which frequently need to call the Fuel Combustion Charts, became an important matter. This paper presents an efficient solution to the issue; the author has developed an original approach to determine the non-linear approximation function of two variables: the chamber pressure and the nozzle exit pressure ratio. The numerical algorithm based on this two variable approximation function is more efficient due to its simplicity, capability to providing numerical accuracy and prospects for an increased convergence rate of the optimization codes.

  1. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  2. Research on Control-Oriented Modeling for Turbocharged SI and DI Gasoline Engines

    Directory of Open Access Journals (Sweden)

    Feitie Zhang

    2015-01-01

    Full Text Available In order to analyze system performance and develop model-based control algorithms for turbocharged spark ignition and direct injection (SIDI gasoline engines, a control oriented mean value model is developed and validated. The model is constructed based on theoretical analysis for the different components, including the compressor, turbine, air filter, intercooler, throttle, manifold, and combustion chamber. Compressor mass flow and efficiency are modeled as parameterized functions. A standard nozzle model is used to approximate the mass flow through the turbine, and the turbine efficiency is modeled as a function of blade speed ratio (BSR. The air filter is modeled as a tube for capturing its pressure drop feature. The effectiveness number of transfer units (NTU modeling method is utilized for the intercooler. The throttle model consists of the standard nozzle model with an effective area regressed to throttle position. Manifolds are modeled for their dynamically varying pressure state. For the cylinder, the air mass flow into cylinders, fuel mass, torque, and exhaust temperature are modeled. Compared to the conventional lookup table approach, transient dynamics error can be improved significantly through using the model from this work.

  3. Software quality engineering a practitioner's approach

    CERN Document Server

    Suryn, Witold

    2014-01-01

    Software quality stems from two distinctive, but associated, topics in software engineering: software functional quality and software structural quality. Software Quality Engineering studies the tenets of both of these notions, which focus on the efficiency and value of a design, respectively. The text addresses engineering quality on both the application and system levels with attention to Information Systems and Embedded Systems as well as recent developments. Targeted at graduate engineering students and software quality specialists, the book analyzes the relationship between functionality

  4. Self-similar two-particle separation model

    DEFF Research Database (Denmark)

    Lüthi, Beat; Berg, Jacob; Ott, Søren

    2007-01-01

    .g.; in the inertial range as epsilon−1/3r2/3. Particle separation is modeled as a Gaussian process without invoking information of Eulerian acceleration statistics or of precise shapes of Eulerian velocity distribution functions. The time scale is a function of S2(r) and thus of the Lagrangian evolving separation......We present a new stochastic model for relative two-particle separation in turbulence. Inspired by material line stretching, we suggest that a similar process also occurs beyond the viscous range, with time scaling according to the longitudinal second-order structure function S2(r), e....... The model predictions agree with numerical and experimental results for various initial particle separations. We present model results for fixed time and fixed scale statistics. We find that for the Richardson-Obukhov law, i.e., =gepsilont3, to hold and to also be observed in experiments, high Reynolds...

  5. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  6. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  7. Design study of pyrochemical process operation by using virtual engineering models

    International Nuclear Information System (INIS)

    Kakehi, I.; Tozawa, K.; Matsumoto, T.; Tanaka, K.

    2000-04-01

    This report describes accomplishment of simulations of Pyrochemical Process Operation by using virtual engineering models. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. This system is a batch treatment system of reprocessing and re-fabrication, which transports products of solid form from a process to next process. As a results, this system needs automated transport system for process operations by robotics. In this study, a simulation code system has been prepared, which provides virtual engineering environment to evaluate the pyrochemical process operation of a batch treatment system using handling robots. And the simulation study has been conducted to evaluate the required system functions, which are the function of handling robots, the interactions between robot and process equipment, and the time schedule of process, in the automated transport system by robotics. As a result of simulation of the process operation, which we have designed, the automated transport system by robotics of the pyrochemical process is realistic. And the issues for the system development have been pointed out. (author)

  8. SQED two-loop beta function in the context of Implicit regularization

    International Nuclear Information System (INIS)

    Cherchiglia, Adriano Lana; Sampaio, Marcos; Nemes, Maria Carolina

    2013-01-01

    Full text: In this work we present the state-of-art for Implicit Regularization (IReg) in the context of supersymmetric theories. IReg is a four-dimensional regularization technique in momentum space which disentangles, in a consistent way at arbitrary order, the divergencies, regularization dependent and finite parts of any Feynman amplitude. Since it does not resort to modifications on the physical space-time dimensions of the underlying quantum field theoretical model, it can be consistently applied to supersymmetric theories. First we describe the technique and present previous results for supersymmetric models: the two-loop beta function for the Wess-Zumino model (both in the component and superfield formalism); the two-loop beta function for Super Yang-Mills (in the superfield formalism using the background field technique). After, we present our calculation of the two-loop beta function for massless and massive SQED using the superfield formalism with and without resorting to the background field technique. We find that only in the second case the two-loop divergence cancels out. We argue it is due to an anomalous Jacobian under the rescaling of the fields in the path-integral which is necessary for the application of the supersymmetric background field technique. We find, however, that in both cases the two-loop coefficients of beta function are non-null. Finally we briefly discuss the anomaly puzzle in the context of our technique. (author)

  9. Interactive training model of TRIZ for mechanical engineers in China

    Science.gov (United States)

    Tan, Runhua; Zhang, Huangao

    2014-03-01

    Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-1, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.

  10. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  11. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  12. The weathervane model, a functional and structural organization of the two-component alkanesulfonate oxidoreductase SsuD from Xanthomonas citri

    International Nuclear Information System (INIS)

    Pegos, V.R.; Oliveira, P.S.L.; Balan, A.

    2012-01-01

    Full text: In Xanthomonas citri, the phytopathogen responsible for the canker citrus disease, we identified in the ssuABCDE operon, genes encoding the alkanesulfonate ABC transporter as well as the two enzymes responsible for oxido reduction of the respective substrates. SsuD and SsuE proteins represent a two-component system that can be assigned to the group of FMNH 2 -dependent monooxygenases. How- ever, despite of the biochemical information about SsuD and SsuE orthologs from Escherichia coli, there is no structural information of how the two proteins work together. In this work, we used ultracentrifugation, SAXS data and molecular modeling to construct a structural/functional model, which consists of eight molecules organized in a weathervane shape. Through this model, SsuD ligand-binding site for NADPH 2 and FMN substrates is clearly exposed, in a way that might allow the protein-protein interactions with SsuE. Moreover, based on molecular dynamics simulations of SsuD in apo state, docked with NADPH 2 , FMN or both substrates, we characterized the residues of the pocket, the mechanism of substrate interaction and transfer of electrons from NADPH 2 to FMN. This is the first report that links functional and biochemical data with structural analyses. (author)

  13. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  14. Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel–diesel blends containing expanded polystyrene

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Tabatabaei, Meisam; Aghbashlo, Mortaza; Yee, Por Lip; Petković, Dalibor

    2016-01-01

    Highlights: • SVM-based thermodynamic modelling of a DI diesel engine working with diesel/biodiesel blends containing EPS. • Comparison of SVM-WT, SVM-FFA, SVM-RBF, SVM-QPSO, and ANN approaches for exergetic modelling of the engine. • Satisfactory performance of the SVM-WT for performance modelling of the engine over the other approaches. - Abstract: In the present study, four Support Vector Machine-based (SVM-based) approaches and the standard artificial neural network (ANN) model were designed and compared in modelling the exergetic parameters of a DI diesel engine running on diesel/biodiesel blends containing expanded polystyrene (EPS) wastes. For this aim, the SVM was coupled with discrete wavelet transform (SVM-WT), firefly algorithm (SVM-FFA), radial basis function (SVM-RBF) and quantum particle swarm optimization (SVM-QPSO). The exergetic data were computed using mass, energy, and exergy balance equations for the engine at different speeds and loads as well as various biodiesel and EPS wastes quantities. Three statistical indicators namely root means square error, coefficient of determination and Pearson coefficient were used to access the capability of the developed approaches for exergetic performance modelling of the DI diesel engine. The modelling results indicated that the SVM-WT approach was more efficient in exergetic modelling of the engine than the other three approaches. Moreover, the results obtained confirmed the effectiveness of the SVM-WT model in identifying the most exergy-efficient combustion conditions and the best fuel composition for achieving the most cost-effective and eco-friendly combustion process.

  15. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development

    Science.gov (United States)

    Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M.

    2017-01-01

    NASA's Human Research Program's Exploration Medical Capabilities (ExMC) element is defining the medical system needs for exploration class missions. ExMC's Systems Engineering (SE) team will play a critical role in successful design and implementation of the medical system into exploration vehicles. The team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." Development of the medical system is being conducted in parallel with exploration mission architecture and vehicle design development. Successful implementation of the medical system in this environment will require a robust systems engineering approach to enable technical communication across communities to create a common mental model of the emergent engineering and medical systems. Model-Based Systems Engineering (MBSE) improves shared understanding of system needs and constraints between stakeholders and offers a common language for analysis. The ExMC SE team is using MBSE techniques to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. Systems Modeling Language (SysML) is the specific language the SE team is utilizing, within an MBSE approach, to model the medical system functional needs, requirements, and architecture. Modeling methods are being developed through the practice of MBSE within the team, and tools are being selected to support meta-data exchange as integration points to other system models are identified. Use of MBSE is supporting the development of relationships across disciplines and NASA Centers to build trust and enable teamwork, enhance visibility of team goals, foster a culture of unbiased learning and serving, and be responsive to customer needs. The MBSE approach to medical system design offers a paradigm shift toward greater integration between

  16. Simulation of horizontal pipe two-phase slug flows using the two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)

  17. RELAP5 based engineering simulator

    International Nuclear Information System (INIS)

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper presents an overview of the INEL Engineering Simulation Center, and discusses the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It provides an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation

  18. Interfacial functionalization and engineering of nanoparticles

    Science.gov (United States)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but

  19. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    Science.gov (United States)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  20. Adaptive filters and internal models: multilevel description of cerebellar function.

    Science.gov (United States)

    Porrill, John; Dean, Paul; Anderson, Sean R

    2013-11-01

    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Observations and model calculations of B747 engine exhaust products at cruise altitude and inferred initial OH emissions

    Energy Technology Data Exchange (ETDEWEB)

    Tremmel, H.G.; Schlager, H.; Konopka, P.; Schulte, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Klemm, M.; Droste-Franke, B. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1997-06-01

    NO{sub y} (NO, HNO{sub 2} and HNO{sub 3}) exhaust emissions in the near-field plume of two B747 jet airliners cruising in the upper troposphere were measured in situ using the DLR Falcon research aircraft. In addition CO{sub 2} was measured providing exhaust plume dilution rates for the species. The observations were used to estimate the initial OH concentration and NO{sub 2}/NO{sub x} ratio at the engine exit and the combustor exit by back calculations using a chemistry box model. From the two different plume events, and using two different model simulation modes in each case, we inferred OH emission indices EI(OH) = 0.32-0.39 g/kg fuel (OH{sub 0} = 9-14.4 ppmv) and (NO{sub 2}/NO{sub x}){sub 0} = 0.12-0.17. Furthermore, our results indicate that the chemistry of the exhaust species during the short period between the combustion chamber exit and the engine exit must be considered, because OH is already consumed to a great extent in this engine section, due to conversion to HNO{sub 2} and HNO{sub 3}. For the engines discussed here, the modeled OH concentration between combustor exit und engine exit decreases by a factor of about 350, leading to OH concentrations of 1-2.10{sup 12} molec/cm{sup 3} at the engine exit. (orig.) 45 refs.

  2. Functions of an engineered barrier system for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance

  3. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  4. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded

  5. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  6. A Memristor Model with Piecewise Window Function

    Directory of Open Access Journals (Sweden)

    J. Yu

    2013-12-01

    Full Text Available In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models.

  7. Dynamic Value Engineering Method Optimizing the Risk on Real Time Operating System

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Patra

    2014-04-01

    Full Text Available The value engineering is the umbrella of the many more sub-system like quality assurance, quality control, quality function design and development for manufacturability. The system engineering & value engineering is two part of the coin. The value engineering is the high level of technology management for every aspect of engineering fields. The value engineering is the high utilization of System Product (i.e. Processor, Memory & Encryption key, Services, Business and Resources at minimal cost. The high end operating system providing highest services at optimal cost & time. The value engineering provides the maximum performance, accountability, reliability, integrity and availability of processor, memory, encryption key and other inter dependency sub-components. The value engineering is the ratio of the maximum functionality of individual components to the optimal cost. VE=k [(P, M, E, C, A]/optimal cost. Where k is the proportionality constant. The VE is directly proportional to performance of individual components and inversely proportional to the minimal cost. The VE is directly proportional to the risk assessment. The VE maximize the business throughput & decision process mean while minimize the risk and down time. We have to develop the dynamic value engineering model & mechanism for risk optimization over a complex real time operating system This proposed composition model definite will be resolve our objective at top high level. Product

  8. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  9. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool.......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...

  10. Applications and issues of GIS as tool for civil engineering modeling

    Science.gov (United States)

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  11. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  12. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  13. Random trees between two walls: exact partition function

    International Nuclear Information System (INIS)

    Bouttier, J; Di Francesco, P; Guitter, E

    2003-01-01

    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labelled by integers representing their position in the target space, with the solid-on-solid constraint that adjacent vertices have labels differing by ±1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p function with constrained periods. These results are used to analyse the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs

  14. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  15. Bayesian Estimation of Two-Parameter Weibull Distribution Using Extension of Jeffreys' Prior Information with Three Loss Functions

    Directory of Open Access Journals (Sweden)

    Chris Bambey Guure

    2012-01-01

    Full Text Available The Weibull distribution has been observed as one of the most useful distribution, for modelling and analysing lifetime data in engineering, biology, and others. Studies have been done vigorously in the literature to determine the best method in estimating its parameters. Recently, much attention has been given to the Bayesian estimation approach for parameters estimation which is in contention with other estimation methods. In this paper, we examine the performance of maximum likelihood estimator and Bayesian estimator using extension of Jeffreys prior information with three loss functions, namely, the linear exponential loss, general entropy loss, and the square error loss function for estimating the two-parameter Weibull failure time distribution. These methods are compared using mean square error through simulation study with varying sample sizes. The results show that Bayesian estimator using extension of Jeffreys' prior under linear exponential loss function in most cases gives the smallest mean square error and absolute bias for both the scale parameter α and the shape parameter β for the given values of extension of Jeffreys' prior.

  16. Development of a Dynamic Engine Brake Model for Control Purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.

    2006-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  17. Development of a dynamic engine brake model for control purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.; Corde, G.

    2007-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  18. AADL and Model-based Engineering

    Science.gov (United States)

    2014-10-20

    pictures – MDE and MDA with UML – Automatically generated documents We need language for architecture modeling • Strongly typed • Well-defined...Mail Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA Web Wiki.sei.cmu.edu/aadl www.aadl.info

  19. Engineering for All: Classroom Implementation

    Science.gov (United States)

    Hacker, Michael; Cavanaugh, Sandra; DeHaan, Chris; Longware, Alta Jo; McGuire, Matt; Plummer, Matthew

    2018-01-01

    This is the second of two articles about the National Science Foundation-funded Engineering for All (EfA) program which focuses on engineering as a potential social good, revisits major Technology and Engineering (T&E) themes (design, modeling, systems, resources, and human values) in two authentic social contexts (Food and Water), and uses…

  20. Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-01-01

    Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.

  1. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  2. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    Science.gov (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  3. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  4. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Yan, Wende

    2014-01-01

    Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.

  5. Analysis and simulation on two types of thrust reversers in an aircraft engine

    Directory of Open Access Journals (Sweden)

    Tian Feng

    2017-01-01

    Full Text Available With rapid development of new composite material and manufacturing, innovative engineering solutions are supplied to the advanced nacelle, such as integrated propulsion system(IPS, carbon-fiber composite inner skin by single-piece molding process,which offers a reduction in fuel burn and less noise produced by engines. The advanced nacelle has an O-duct thrust reverser demonstrator whose composite structure is in the form of an “O” as opposed to the traditional “D-duct”. A comparative study is to be conducted to investigate the differences between the latest O-duct and conventional D-duct in numerical approaches. To focus on the quantitative analysis of thrust reverser’s operation, this paper mainly uses CATIA/Digital Mock Up(DMU to simulate under deployment and stowed conditions of two different thrust reverser. After comparing the structural weight, the design models of blocker door are built for kinematic analysis of relevant mechanism and simulation. The results show that simplified design and elimination of multiple interfaces generates weight saving, O-duct improves airflows within the engine, meanwhile D-duct has excellent cost effective and maintainability.

  6. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Karvounis, Nikolas; Pang, Kar Mun

    2016-01-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO4) and water (H2O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subsetto simulate the combustion process...

  7. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  8. Toponium and two-Higgs models

    International Nuclear Information System (INIS)

    Franzini, P.J.

    1986-04-01

    Bounds from B 0 - anti B 0 mixing on charged-Higgs-boson masses and couplings in two-Higgs-doublet models are presented. These bounds are comparable to those obtained, with additional assumptions, from the neutral-K-system. The effects of the neutral Higgs bosons of these models on the spectrum and wave function of toponium are discussed. These effects could, in the future, lead to limits on, or the discovery of, these Higgs bosons. 8 refs., 3 figs

  9. Affective strategies, attitudes, and a model of speaking performance development for engineering students

    Science.gov (United States)

    Wijirahayu, S.; Dorand, P.

    2018-01-01

    Learning English as a Foreign language (EFL) as one of the challenges especially for students majoring in Telecommunication Engineering to develop their communication skill as a professional could be one of the chances for them to face a more global era. Yet, there are important factors that may influence the progress of the speaking performance and attitude is one of them. Therefore, a survey involving two main psychological variables in language learning namely attitude and affective strategies and the third variable is speaking performance was conducted and a model of affective strategies in language learning developing through the application of Content Language Integrated Learning and multimedia instruction was introduced. This study involved 71 sophomore students and two classes of university students majoring in Telecommunication Engineering and Electrical Engineering. The researchers used both survey and action research method with quantitative as well as qualitative in approach.

  10. Turbofan engine mathematic model for its static and dynamic characteristics research

    Directory of Open Access Journals (Sweden)

    О.Є. Карпов

    2004-01-01

    Full Text Available  Demands to mathematical model of the turbofan engine are determined in the article. The mathematical model is used for calculations static and dynamic parameters, which are required for estimation of engine technical state in operation. There are the mathematical model of the turbofan engine AИ-25 and the results of calculations static and dynamic parameters at initial condition in the article.

  11. Study for engine conversion from gasoline to natural gas by using the two-zone combustion predictive model; Estudio de la conversion del motor de gasolina a gas natural mediante modelo de combustion predictivo de dos zonas

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Espinoza; Moreno, Jesus; Perez, Andres [Universidad de Oriente, Puerto la Cruz (Venezuela). Dept. de Mecanica; Baduy, Franklin [Universidad Central de Venezuela, Caracas (Venezuela). Dept. de Termoenergetica

    1995-07-01

    Great scale conversion of automation engines is a policy used by many countries as a strategy to save gasoline. Previous studies on the effects that this transformation can have over the engine performance are required for the implantation of this type of conversion. also, modifications in components and tuning for each engine have to be analyzed. This paper studies the effect of the conversion from gasoline to natural gas over the engine output, indicate mean pressure, combustion rate etc. It also analyze how to find the starting angle and the best air/fuel ratio for a specific engine, using a two-zone combustion model. (author)

  12. Building robust functionality in synthetic circuits using engineered feedback regulation.

    Science.gov (United States)

    Chen, Susan; Harrigan, Patrick; Heineike, Benjamin; Stewart-Ornstein, Jacob; El-Samad, Hana

    2013-08-01

    The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback control, implemented in silico or with biological components, was successfully employed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. D Model Visualization Enhancements in Real-Time Game Engines

    Science.gov (United States)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  14. Expanding the Use of Solid Modeling throughout the Engineering Curriculum.

    Science.gov (United States)

    Baxter, Douglas H.

    2001-01-01

    Presents the initial work that Rensselaer Polytechnic Institute has done to integrate solid modeling throughout the engineering curriculum. Aims to provide students the opportunity to use their solid modeling skills in several courses and show students how solid modeling tools can be used to help solve a variety of engineering problems.…

  15. Two-Q-boson interferometry and generalization of the Wigner function

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)]. E-mail: padula@ift.unesp.br; Zhang, Q.H. [McGill Univ., Montreal (Canada). Physics Dept.

    2004-07-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q {yields} 1. (author)

  16. Two-Q-boson interferometry and generalization of the Wigner function

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Zhang, Q.H.

    2004-01-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1

  17. Two-Q-boson interferometry and generalization of the Wigner function

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Zhang, Q.H.

    2004-01-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1. (author)

  18. The Effects Of Gender, Engineering Identification, and Engineering Program Expectancy On Engineering Career Intentions: Applying Hierarchical Linear Modeling (HLM) In Engineering Education Research

    Science.gov (United States)

    Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.

    2017-01-01

    This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…

  19. Electrospinning versus knitting: two scaffolds for tisssue engineering of the aortic valve

    NARCIS (Netherlands)

    Lieshout, van M.I.; Vaz, C.M.; Rutten, M.C.M.; Peters, G.W.M.; Baaijens, F.P.T.

    2006-01-01

    Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded

  20. CFD analysis of the scavenging process in marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland; Hult, Johan; Nogenmyr, Karl-Johan

    2014-01-01

    /charge before the subsequent compression stroke. This implies that the scavenging process is integral to engine performance as it influence the initial condition for the combustion process, thus affecting the fuel economy, power output and emission of hazardous gases. Two-stroke diesel engines for marine...