International Nuclear Information System (INIS)
Niehaus, T A; Suhai, S; March, N H
2008-01-01
Holas, Howard and March (2003 Phys. Lett. A 310 451) have obtained analytic solutions for ground-state properties of a whole family of two-electron spin-compensated harmonically confined model atoms whose different members are characterized by a specific interparticle potential energy u(r 12 ). Here, we make a start on the dynamic generalization of the harmonic external potential, the motivation being the serious criticism levelled recently against the foundations of time-dependent density-functional theory (e.g., Schirmer and Dreuw 2007 Phys. Rev. A 75 022513). In this context, we derive a simplified expression for the time-dependent electron density for arbitrary interparticle interaction, which is fully determined by a one-dimensional non-interacting Hamiltonian. Moreover, a closed solution for the momentum space density in the Moshinsky model is obtained
International Nuclear Information System (INIS)
March, Norman H.; Akbari, Ali; Rubio, Angel
2007-01-01
For arbitrary interparticle interaction u(r 12 ), the model two-electron atom in the title is shown to be such that the ground-state electron density ρ(r) is determined uniquely by the correlated kinetic energy density t R (r) of the relative motion. Explicit results for t R (r) are presented for the Hookean atom with force constant k=1/4, and also for u(r 12 )=(λ)/(r 12 2 ) . Possible relevance of the Hookean atom treatment to the ground state of the helium atom itself is briefly discussed
Spectroscopy of two-electron atoms
International Nuclear Information System (INIS)
Desesquelles, J.
1988-01-01
Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)
International Nuclear Information System (INIS)
Holas, A.; Howard, I.A.; March, N.H.
2003-01-01
A class of model two-electron 'artificial atoms' is proposed which embraces both Hookean and Moshinsky models. Particle densities and spinless first-order density matrices are obtained for this class of models. These quantities and the interacting system kinetic energy can be calculated using the ground-state solution of an explicit single-particle radial Schroedinger equation
International Nuclear Information System (INIS)
March, N.H.; Ludena, Eduardo V.
2004-01-01
For three model problems concerning two-electron spin-compensated ground states with spherical density, the third-order linear homogeneous differential equation constructed for the determination of ρ(r) is used here in conjunction with the von Weizsacker functional to characterize the one-body potential of density functional theory (DFT). Correlated von Weizsacker-type terms are compared to the exact DFT functional
Regular perturbation theory for two-electron atoms
International Nuclear Information System (INIS)
Feranchuk, I.D.; Triguk, V.V.
2011-01-01
Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.
Dimensional perturbation theory for the two-electron atom
International Nuclear Information System (INIS)
Goodson, D.Z.
1987-01-01
Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed
An exciton approach to the excited states of two electron atoms. I Formalism and interpretation
International Nuclear Information System (INIS)
Schipper, P.E.
1985-01-01
The exciton model is formally applied to a description of the excited states of two electron atoms with the explicit inclusion of exchange. The model leads to a conceptually simple framework for the discussion of the electronic properties of the archetypical atomic electron pair
International Nuclear Information System (INIS)
March, N.H.
2002-08-01
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
A simple parameter-free wavefunction for the ground state of two-electron atoms
International Nuclear Information System (INIS)
Ancarani, L U; Rodriguez, K V; Gasaneo, G
2007-01-01
We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models
Wave functions and two-electron probability distributions of the Hooke's-law atom and helium
International Nuclear Information System (INIS)
O'Neill, Darragh P.; Gill, Peter M. W.
2003-01-01
The Hooke's-law atom (hookium) provides an exactly soluble model for a two-electron atom in which the nuclear-electron Coulombic attraction has been replaced by a harmonic one. Starting from the known exact position-space wave function for the ground state of hookium, we present the momentum-space wave function. We also look at the intracules, two-electron probability distributions, for hookium in position, momentum, and phase space. These are compared with the Hartree-Fock results and the Coulomb holes (the difference between the exact and Hartree-Fock intracules) in position, momentum, and phase space are examined. We then compare these results with analogous results for the ground state of helium using a simple, explicitly correlated wave function
Quadrupole moments as measures of electron correlation in two-electron atoms
International Nuclear Information System (INIS)
Ceraulo, S.C.; Berry, R.S.
1991-01-01
We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments
Atomic-batched tensor decomposed two-electron repulsion integrals
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-01
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
International Nuclear Information System (INIS)
Kimura, M.
1986-01-01
A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)
International Nuclear Information System (INIS)
Ho, Yew Kam; Lin, Chien-Hao
2015-01-01
In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)
Photoelectron spectra as a probe of double-core resonsance in two-electron atoms
International Nuclear Information System (INIS)
Grobe, R.; Haan, S.L.; Eberly, J.H.
1996-01-01
The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields
Two-electron one-photon decay rates in doubly ionized atoms
International Nuclear Information System (INIS)
Baptista, G.B.
1984-01-01
The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt
International Nuclear Information System (INIS)
Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I
2015-01-01
The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)
International Nuclear Information System (INIS)
Amovilli, C; March, N H
2012-01-01
Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)
1,3Do and 1,3Pe states of two electron atoms under Debye plasma screening
International Nuclear Information System (INIS)
Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T.K.; Mukherjee, P.K.
2010-01-01
Extensive non-relativistic variational calculations for estimating the energy values of 2pnd( 1,3 D o ) states [n=3-6] of two electron atoms (He, Li + ,Be 2+ ) and 2pnp( 1 P e )[n=3-8] and 2pnp( 3 P e ) states [n=2-7] of Be 2+ under weakly coupled plasma screening have been performed using explicitly correlated Hylleraas type basis. The modified energy eigenvalues of 1,3 P e states arising from two p electrons of Be 2+ ion and 1,3 D o states due to 2pnd configuration of Li + and Be 2+ ion in the Debye plasma environment are being reported for the first time. The effect of plasma has been incorporated through the Debye screening model. The system tends towards gradual instability and the number of bound states reduces with increasing plasma coupling strength. The wavelengths for 2pn ' p( 1 P e )[n ' =3-8]→2pnd( 1 D o )[n=3-6] and 2pn ' p( 3 P e )[n ' =2-8]→2pnd( 3 D o )[n=3-6] transitions in plasma embedded two electron atoms have also been reported.
Ionization of a two-electron atom in a strong electromagnetic field
International Nuclear Information System (INIS)
Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.
1997-01-01
A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case
International Nuclear Information System (INIS)
Kimura, M.; Rice Univ., Houston, TX
1990-01-01
The two-electron capture or excitation process resulting from collisions of H + and O 6+ ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O 4+ ions and He** atoms and their (n ell, n'ell ') populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs
Two-Electron Time-Delay Interference in Atomic Double Ionization by Attosecond Pulses
International Nuclear Information System (INIS)
Palacios, A.; Rescigno, T. N.; McCurdy, C. W.
2009-01-01
A two-color two-photon atomic double ionization experiment using subfemtosecond uv pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.
Two-electron time-delay interference in atomic double ionization by attosecond pulses
Energy Technology Data Exchange (ETDEWEB)
Rescigno, Thomas N
2009-10-04
A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.
International Nuclear Information System (INIS)
Cooke, W.E.
1981-01-01
This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed
International Nuclear Information System (INIS)
Sarkadi, L.; Orban, A.
2007-01-01
Complete text of publication follows. In this report we present experimental data for a process when two electrons with velocity vectors equal to that of the projectile are emitted from collisions. By observing the two electron cusp the study of the threshold phenomenon for two-electron break-up is possible. It is a particularly interesting question whether the outgoing charged projectile can attract the two repulsing electrons so strongly that the two-electron cusp is formed. If it is so, a further question arises: Are the two electrons correlated in the final state as it is predicted by the Wannier theory? The experiments have been done at the 1 MeV VdG accelerator of ATOMKI using our TOF spectrometer. The first measurements clearly showed the formation of the two-electron cusp and signature of the electron correlation in 200 keV He 0 +He collisions. These promising results motivated us to carry out the experiment at 100 keV beam energy where the coincidence count rate is still reasonable but the energy resolution is better. For an acceptable data acquisition time we improved our data acquisition and data processing system for triple coincidence measurements. In Fig. 1a we present our measured relative fourfold differential cross section (FDCS) that shows strong electron correlation. For a comparison, in Fig. 1b we displayed the contour plot for uncorrelated electron pair emission. These latter data were synthesized artificially, generating the energies of the electron pairs from two independent double coincidence experiments. In both figures the distributions are characterized by two ridges. In Fig. 1b the ridges are perpendicular straight lines (E 1 = E 2 .13.6 eV). As a result of the correlation, the ridges in Fig. 1a are distorted in such a way that they have a joint straight-line section following the line E 1 + E 2 = 27.2 eV. This means that the electron pairs in the vicinity of the cusp maximum are emitted with a center of- mass velocity equal to that of
International Nuclear Information System (INIS)
Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.
2011-01-01
Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N 2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.
International Nuclear Information System (INIS)
Suric, T.; Drukarev, E.G.; Pratt, R.H.
2003-01-01
We describe single and double photoionization of two-electron atoms by photoabsorption at high incident photon energies ω (but still ω 2 ) using a unified approach based on asymptotic Fourier transform (AFT) theory modified by Coulombic interactions. Within this approach the matrix elements for photoabsorption processes at high energies can be understood in terms of the singularities of the many-body Coulomb potential. These singularities (e-e and e-N) result in the singularities of the wave functions and the singularities of the e-γ interaction, which determine the asymptotic behavior of the matrix element. Within our unified approach we explain the dominant contributions, including both the dominant contributions to the total cross section for single ionization and for ionization with excitation, and the dominant contributions to the double ionization spectrum, as a Fourier transform asymptotic in a single large momentum (dependent on the process and the region of the spectrum). These dominant contributions are connected, through AFT, with either the e-N singularity or the e-e singularity. The AFT results are modified by Coulombic interactions. We include these modifications, for the cases of single ionization and of double ionization in the shake-off region at high energies, and extract a slowly convergent factor (Stobbe factor). In this way we obtain rapid convergence of the cross sections to their high-energy behaviors. This also allows us to discuss the convergence of ratios of cross sections
Temkin, A.
1984-01-01
Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).
Two-Electron Transfer Pathways.
Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N
2015-06-18
The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
International Nuclear Information System (INIS)
Petrescu, Florian Ion
2012-01-01
The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v 2 ) and the radius (r). The second relation between v 2 and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.
Energy Technology Data Exchange (ETDEWEB)
Petrescu, Florian Ion
2012-07-01
The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v{sup 2}) and the radius (r). The second relation between v{sup 2} and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.
International Nuclear Information System (INIS)
Richards, J.D.; Breinig, M.; Gaither, C.C.; Berryman, J.W.; Hasson, B.F.
1993-01-01
Two electrons, excited just above the double-ionization threshold of an Ag q+ (q=5,6) core in a single collision of a 0.1-MeV/u Ag 4+ projectile ion with an Ar atom, are detected. The electron detector consists of electrically isolated anode segments located behind a microchannel-plate electron multiplier. A large electrostatic 30 degree parallel-plate analyzer is used to deflect the two free electrons, which move with approximately the projectile velocity, into the detector. The cross sections for producing final states consisting of a positively charged ionic core and two electrons just above the threshold for double ionization in ion-atom collisions have been measured. The cross sections for producing states with one electron moving with a kinetic energy less than 0.13 eV in the projectile frame and the other moving with somewhat higher kinetic energy are presented
Energy Technology Data Exchange (ETDEWEB)
Barrachina, R.O., E-mail: barra@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, Comisíon Nacional de Energía Atómica and Universidad Nacional de Cuyo, 8400 Bariloche, Río Negro (Argentina); Gulyás, L.; Sarkadi, L. [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Pf. 51, H-4001 Debrecen (Hungary)
2016-02-15
The double electron capture into the continuum states of the projectile (double ECC) is investigated theoretically in collisions of 100 keV He{sup 2+} ions with He atoms. The process is described within the framework of the impact parameter and frozen-correlation approximations where the single-electron events are treated by the continuum distorted wave method. On the other hand, the Wannier theory is employed for describing the angular correlation between both ejected electrons. This treatment substantially improved the agreement between the theory and experiment as compared to the previous version of the theory (Gulyás et al., 2010) in which the correlation between the ejected electrons was taken into account by the Coulomb density of states approximation.
International Nuclear Information System (INIS)
Liberman, D.A.
1985-01-01
The author describes in this paper the atom-in-jellium calculations he has been doing over the last ten years. He tries to emphasize reasons for doing this sort of calculations and why he devised a model which is different in some respects from others
Timing analysis of two-electron photoemission
International Nuclear Information System (INIS)
Kheifets, A S; Ivanov, I A; Bray, Igor
2011-01-01
We predict a significant delay of two-electron photoemission from the helium atom after absorption of an attosecond XUV pulse. We establish this delay by solving the time-dependent Schroedinger equation and by subsequently tracing the field-free evolution of the two-electron wave packet. This delay can also be related to the energy derivative of the phase of the complex double-photoionization (DPI) amplitude which we evaluate by using the convergent close-coupling method. Our observations indicate that future attosecond time delay measurements on DPI of He can provide information on the absolute quantum phase and elucidate various mechanisms of this strongly correlated ionization process. (fast track communication)
Empirical atom model of Vegard's law
International Nuclear Information System (INIS)
Zhang, Lei; Li, Shichun
2014-01-01
Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model
Collective vs atomic models of the hadrons
International Nuclear Information System (INIS)
Stokar, S.
1983-02-01
We examine the relationship between heavy and light quark systems. Using a Bogoliubov-Valatin transformation we show how to interpolate continuously between heavy quark atomic models and light quark collective models of the hadrons. (author)
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Natural occupation numbers in two-electron quantum rings
Energy Technology Data Exchange (ETDEWEB)
Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr [Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex (France); Loos, Pierre-François [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Complex dynamics in planar two-electron quantum dots
International Nuclear Information System (INIS)
Schroeter, Sebastian Josef Arthur
2013-01-01
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an
Complex dynamics in planar two-electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schroeter, Sebastian Josef Arthur
2013-06-25
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron
The optical model in atomic physics
International Nuclear Information System (INIS)
McCarthy, I.E.
1978-01-01
The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de
Modeling Atom Probe Tomography: A review
Energy Technology Data Exchange (ETDEWEB)
Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)
2015-12-15
Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.
Hydrogen atom model for nucleon and pion
International Nuclear Information System (INIS)
Baiquni, A.
1976-01-01
Discussion on Dion as double charge particle, covering that on semi classical model, proton Dionium model consequence, symmetry group in hydrogen, hydrogen atom dynamic group, and discussion on relativistic dynamic group, covering relativistic equation for hydrogen, operator extension of SO(4, 2), application of SO(4,2)O SO(4,2), and hydrogen complete equation, are given. (author)
Contemporary models of the atomic nucleus
Nemirovskii, P E
2013-01-01
Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o
Comment on atomic independent-particle models
International Nuclear Information System (INIS)
Doda, D.D.; Gravey, R.H.; Green, A.E.S.
1975-01-01
The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with this model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model
An atomic model of the Big Bang
Lasukov, V. V.
2013-03-01
An atomic model of the Big Bang has been developed on the basis of quantum geometrodynamics with a nonzero Hamiltonian and on the concept of gravitation developed by Logunov asymptotically combined with the Gliner's idea of a material interpretation of the cosmological constant. The Lemaître primordial atom in superpace-time, whose spatial coordinate is the so-called scaling factor of the Logunov metric of the effective Riemann space, acts as the Big Bang model. The primordial atom in superspace-time corresponds to spatialtime structures(spheres, lines, and surfaces of a level) of the Minkowski spacetime real within the Logunov gravitation theory, the foregoing structures being filled with a scalar field with a negative density of potential energy.
Angular correlation in the two-electron continuum
International Nuclear Information System (INIS)
Kheifets, A. S.; Bray, I.
2006-01-01
Following absorption of a single photon, angles of simultaneous emission of two electrons from a He(n 1 S) atom become more correlated with increasing n. We find that the strength of this correlation is due to the two-electron continuum of the electron-impact ionization of the He + (ns) ion. The strength is determined by the width of the momentum profile of the ionic ns state but not the strength of the electron correlation in the He initial state. This can explain the increasing (over He) angular correlation strength found in double photoionization of targets such as Be, Ne, and H 2
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
International Nuclear Information System (INIS)
Gyergyek, T.; Jurcic-Zlobec, B.; Cercek, M.
2008-01-01
Potential formation in a bounded plasma system that contains electrons with a two-temperature velocity distribution and is terminated by a floating, electron emitting electrode (collector) is studied by a one-dimensional kinetic model. A method on how to determine the boundary conditions at the collector for the numerical solution of the Poisson equation is presented. The difference between the regular and the irregular numerical solutions of the Poisson equation is explained. The regular numerical solution of the Poisson equation fulfills the boundary conditions at the source and can be computed for any distance from the collector. The irregular solution does not fulfill the source boundary conditions and the computation breaks down at some distance from the collector. An excellent agreement of the values of the potential at the inflection point found from the numerical solution of the Poisson equation with the values predicted by the analytical model is obtained. Potential, electric field, and particle density profiles found by the numerical solution of the Poisson equation are compared to the profiles obtained with the particle in cell computer simulation. A very good quantitative agreement of the potential and electric field profiles is obtained. For certain values of the parameters the analytical model predicts three possible values of the potential at the inflection point. In such cases always only one of the corresponding numerical solutions of the Poisson equation is regular, while the other two are irregular. The regular numerical solution of the Poisson equation always corresponds to the solution of the model that predicts the largest ion flux to the collector
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
International Nuclear Information System (INIS)
Schipper, P.E.; Martire, B.
1985-01-01
The exciton model is applied quantitatively to a description of the excited states of representative members of the helium isoelectronic series; viz. H + , He, Li + , Be 2+ and Ne 8+ . The energies of the eight lowest excited states are in good agreement with experiment, for a relatively small (1s-4p) hydrogenic basis; the ground state is obtained with slightly less precision. Response properties including oscillator strengths, polarizabilites and dispersion interaction coefficients are also calculated. The method leads to particularly simple interpretations of the wave functions and the energies
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
An enlarged superfluid model of atomic nucleus
International Nuclear Information System (INIS)
Dumitrescu, O.; Horoi, M.
1989-01-01
The well known superfluid model (or quasiparticle phonon nuclear model (QPNM)) of atomic nucleus is enlarged by including an adequate four-nucleon effective interaction in addition to the pairing and long-range effective residual interactions. New experimental data can be explained without affecting those observables already described by the QPNM and in addition new features can be enumerated: 1) superfluidities of the neutron and proton systems may be generated by one another; 2) the phase structure is enriched by a new superfluid phase dominated by alpha-type correlations (ATC) and 3) superfluid isomers and their bands of elementary excitations are predicted. Unusual large two-nucleon and alpha transfer reactions cross sections as well as some unusual large alpha decay widths can be explained. (author). 46 refs, 3 figs, 2 tabs
Atomic data for integrated tokamak modelling
International Nuclear Information System (INIS)
Toekesi, K.
2013-01-01
The Integrated Tokamak Modeling Task Force (ITM-TF) was set up in 2004. The main target is to coordinate the European fusion modeling effort and providing a complete European modeling structure for International Thermonuclear Experimental Reactor (ITER), with the highest degree of flexibility. For the accurate simulation of the processes in the active fusion reactor in the ITM-TF, numerous atomic, molecular, nuclear and surface related data are required. In this work we present total-, single- and multiple-ionization and charge exchange cross sections in close connection to the ITM-TF. Interpretation of these cross sections in multi-electron ion-atom collisions is a challenging task for theories. The main difficulty is caused by the many-body feature of the collision, involving the projectile, projectile electron(s), target nucleus, and target electron(s). The classical trajectory Monte Carlo (CTMC) method has been quite successful in dealing with the atomic processes in ion-atom collisions. One of the advantages of the CTMC method is that many-body interactions are exactly taken into account related CTMC simulations for a various collision systems are presented. To highlight the efficiency of the method we present electron emission cross sections in collision between dressed Al q+ ions with He target. The theory delivers separate spectra for electrons emitted from the target and the projectile. By summing these two components in the rest frame of the target we may make a comparison with available experimental data. For the collision system in question, a significant contribution from Fermi-shuttle ionization has to be expected in the spectra at energies higher than E=0.5 m e (nV) 2 , where m e is the mass of the electron, V the projectile velocity and n an integer greater than 1. We found enhanced electron yields compared to first order theory in this region of CTMC spectra, which can be directly attributed to the contribution of Fermi-shuttle type multiple
Atomic Models for Motional Stark Effects Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K
2007-07-26
We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
Empirical atom model of Vegard's law
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei, E-mail: zhleile2002@163.com [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China); School of Electromechanical Automobile Engineering, Yantai University, Yantai 264005 (China); Li, Shichun [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China)
2014-02-01
Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model.
Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.
2015-09-01
Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.
AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.
Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team
2018-06-01
The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.
Electron correlation energy in confined two-electron systems
Energy Technology Data Exchange (ETDEWEB)
Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)
2010-09-27
Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.
Two Electron States in a Quantum Ring on a Sphere
International Nuclear Information System (INIS)
Kazaryan, Eduard M.; Shahnazaryan, Vanik A.; Sarkisyan, Hayk A.
2014-01-01
Two electron states in a quantum ring on a spherical surface are discussed. The problem is discussed within the frameworks of Russell–Saunders coupling scheme, that is, the spin–orbit coupling is neglected. Treating Coulomb interaction as a perturbation, the energy correction for different states is calculated. The dependence of the Coulomb interaction energy on external polar boundary angle of quantum ring is obtained. In analogue with the helium atom the concept of states exchange time is introduced, and its dependence on geometrical parameters of the ring is shown. (author)
Stark shifting two-electron quantum dot
International Nuclear Information System (INIS)
Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.
2003-01-01
Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots
International Nuclear Information System (INIS)
Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean
2014-01-01
Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)
A model for the physical adsorption of atomic hydrogen
Bruch, L.W.; Ruijgrok, Th.W.
1979-01-01
The formation of the holding potential of physical adsorption is studied with a model in which a hydrogen atom interacts with a perfectly imaging substrate bounded by a sharp planar surface; the exclusion of the atomic electron from the substrate is an important boundary condition in the model. The
Multimode quantum model of a cw atom laser
International Nuclear Information System (INIS)
Hope, J.J.; Haine, S.A.; Savage, C.M.
2002-01-01
Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality
CMS: Simulated Higgs to two jets and two electrons
1997-01-01
This track is an example of simulated data modelled for the CMS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. Here a Higgs boson is produced which decays into two jets of hadrons and two electrons. The lines represent the possible paths of particles produced by the proton-proton collision in the detector while the energy these particles deposit is shown in blue.
Dynamics of two-electron excitations in helium
Energy Technology Data Exchange (ETDEWEB)
Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others
1997-04-01
Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.
International Nuclear Information System (INIS)
Auffray, J.P.
1997-01-01
The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)
Four-parameter analytical local model potential for atoms
International Nuclear Information System (INIS)
Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang
2009-01-01
Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)
Energy Technology Data Exchange (ETDEWEB)
Errea, L.F.; Mendez, L.; Riera, A.
1983-06-01
In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He/sup +/ + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes.
International Nuclear Information System (INIS)
Errea, L.F.; Mendez, L.; Riera, A.
1983-01-01
In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He + + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes
Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows
Directory of Open Access Journals (Sweden)
Narayana P. Rayapati
2011-06-01
Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.
Surface Adsorption in Nonpolarizable Atomic Models.
Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J
2014-12-09
Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.
Model for pairing phase transition in atomic nuclei
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.
2002-01-01
A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
Physically representative atomistic modeling of atomic-scale friction
Dong, Yalin
Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the
Optical-model analysis of exotic atom data. Pt. 1
International Nuclear Information System (INIS)
Batty, C.J.
1981-01-01
Data for kaonic atoms are fitted using a simple optical model with a potential proportional to the nuclear density. Very satisfactory fits to strong interaction shift and width values are obtained but difficulties in fitting yield values indicate that the model is not completely satisfactory. The potential strength can be related to the free kaon-nucleon scattering lengths using a model due to Deloff. A good overall representation of the data is obtained with a black-sphere model. (orig.)
Modeling noncontact atomic force microscopy resolution on corrugated surfaces
Directory of Open Access Journals (Sweden)
Kristen M. Burson
2012-03-01
Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.
Considerations about the atomic model of Bohr
International Nuclear Information System (INIS)
Levada, Celso Luis; Maceti, Huemerson; Lautenschleguer, Ivan Jose; De Magalhaes Oliveira Levada, Miriam
2013-01-01
The Bohr model, introduced in 1913, was the end result of very important work done by various scientists in the late nineteenth and early twentieth century. Isolated groups of investigators pursued different objectives and the genius Bohr led to a combination of a large number of knowledge to formulate the first hypothesis on the actual structure of the material.
Modelling atomic scale manipulation with the non-contact atomic force microscope
International Nuclear Information System (INIS)
Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S
2006-01-01
We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally
Atomic-scale modeling of cellulose nanocrystals
Wu, Xiawa
Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to
Modeling of the atomic and electronic structures of interfaces
International Nuclear Information System (INIS)
Sutton, A.P.
1988-01-01
Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature
Gas Atomization of Aluminium Melts: Comparison of Analytical Models
Directory of Open Access Journals (Sweden)
Georgios Antipas
2012-06-01
Full Text Available A number of analytical models predicting the size distribution of particles during atomization of Al-based alloys by N2, He and Ar gases were compared. Simulations of liquid break up in a close coupled atomizer revealed that the finer particles are located near the center of the spray cone. Increasing gas injection pressures led to an overall reduction of particle diameters and caused a migration of the larger powder particles towards the outer boundary of the flow. At sufficiently high gas pressures the spray became monodisperse. The models also indicated that there is a minimum achievable mean diameter for any melt/gas system.
International Nuclear Information System (INIS)
Gruber, B.; Thomas, M.S.
1980-01-01
In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)
Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope
Energy Technology Data Exchange (ETDEWEB)
Quan, Wei; Lv, Lin, E-mail: lvlinlch1990@163.com; Liu, Baiqi [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)
2014-11-15
In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.
Classroom: inexpensive models for teaching atomic structure and ...
African Journals Online (AJOL)
Classroom: inexpensive models for teaching atomic structure and compounds at junior secondary school level of education. WHK Hordzi, BA Mensah. Abstract. No Abstract. Global Journal of Educational Research Vol. 2(1&2) 2003: 33-40. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...
A collisional-radiative average atom model for hot plasmas
International Nuclear Information System (INIS)
Rozsnyai, B.F.
1996-01-01
A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab
Atomic Data and Modelling for Fusion: the ADAS Project
International Nuclear Information System (INIS)
Summers, H. P.; O'Mullane, M. G.
2011-01-01
The paper is an update on the Atomic Data and Analysis Structure, ADAS, since ICAM-DATA06 and a forward look to its evolution in the next five years. ADAS is an international project supporting principally magnetic confinement fusion research. It has participant laboratories throughout the world, including ITER and all its partner countries. In parallel with ADAS, the ADAS-EU Project provides enhanced support for fusion research at Associated Laboratories and Universities in Europe and ITER. OPEN-ADAS, sponsored jointly by the ADAS Project and IAEA, is the mechanism for open access to principal ADAS atomic data classes and facilitating software for their use. EXTENDED-ADAS comprises a variety of special, integrated application software, beyond the purely atomic bounds of ADAS, tuned closely to specific diagnostic analyses and plasma models.The current scientific content and scope of these various ADAS and ADAS related activities are briefly reviewed. These span a number of themes including heavy element spectroscopy and models, charge exchange spectroscopy, beam emission spectroscopy and special features which provide a broad baseline of atomic modelling and support. Emphasis will be placed on 'lifting the fundamental data baseline'--a principal ADAS task for the next few years. This will include discussion of ADAS and ADAS-EU coordinated and shared activities and some of the methods being exploited.
Interfacial Thermal Transport via One-Dimensional Atomic Junction Model
Directory of Open Access Journals (Sweden)
Guohuan Xiong
2018-03-01
Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.
Atomic process calculations in hot dense plasmas using average atom models
International Nuclear Information System (INIS)
Velarde, G.; Aragones, J.M.; Gamez, L.; Honrubia, J.J.; Martinez-Val, J.M.; Minguez, E.; Ocana, J.L.; Perlado, J.M.; Serrano, J.F.
1987-01-01
During the past years, an important effort has been devoted in the authors Institute to develop the NORCLA code, which in the first version was characterized by the following features: one-dimensional lagrangian mesh; equilibrium between radiation, ion and electron species; local alpha energy deposition; neutron transport by the discrete ordinates method and analytical equation of state, opacities and conductivities. In the successive versions of NORCLA, EOS and electron conductivities were modified by the pressure ionization and degeneracy corrections; a module was also developed for computing the energy deposition of the incident ion beams coupled to the energy equation, and a code to calculate the alpha particle transport and energy deposition. Recently, a 3T version of the NORCLA code, with tabular EOS, opacities and conductivities, laser ray tracing and suprathermal electrons transport has been produced. In this article, the atomic physic models developed to determine more accurate the atomic data, such as EOS and opacities are explained, giving a brief description and a comparison of them. As a result of this development, a DENIM Atomic Data Library is being generated, taking some data and procedures from the SESAME Library. This library is presented, including a comparison of the opacity data for aluminium and iron at different densities and temperatures. Conclusions about this work are presented, and the ongoing developments summarized
First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction
International Nuclear Information System (INIS)
Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing
2017-01-01
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)
Squeezing effects of an atom laser: Beyond the linear model
International Nuclear Information System (INIS)
Jing Hui; Ge Molin; Chen Jingling
2002-01-01
We investigate the quantum dynamics and statistics of an atom laser by taking into account binary atom-atom collisions. The rotating wave approximation Hamiltonian of the system is solved analytically . We show that the nonlinear atom-atom interactions could yield periodic quadrature squeezing effects in the atom laser output beam, although the input radio frequency field is in a Glauber coherent state
Atomic scale modelling of materials of the nuclear fuel cycle
International Nuclear Information System (INIS)
Bertolus, M.
2011-10-01
This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)
Quantum simulation of transverse Ising models with Rydberg atoms
Schauss, Peter
2018-04-01
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
Atomic structure of graphene supported heterogeneous model catalysts
International Nuclear Information System (INIS)
Franz, Dirk
2017-04-01
Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp"2 → sp"3) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure, whereupon
ADAS: Atomic data, modelling and analysis for fusion
International Nuclear Information System (INIS)
Summers, H. P.; O'Mullane, M. G.; Whiteford, A. D.; Badnell, N. R.; Loch, S. D.
2007-01-01
The Atomic Data and Analysis Structure, ADAS, comprises extensive fundamental and derived atomic data collections, interactive codes for the manipulation and generation of collisional-radiative data and models, off-line codes for large scale fundamental atomic data production and codes for diagnostic analysis in the fusion and astrophysical environments. ADAS data are organized according to precise specifications, tuned to application and are assigned to numbered ADAS data formats. Some of these formats contain very large quantities of data and some have achieved wide-scale adoption in the fusion community.The paper focuses on recent extensions of ADAS designed to orient ADAS to the needs of ITER. The issue of heavy atomic species, expected to be present as ITER wall and divertor materials, dopants or control species, will be addressed with a view to the economized handling of the emission and ionisation state data needed for diagnostic spectral analysis. Charge exchange and beam emission spectroscopic capabilities and developments in ADAS will be reviewed from an ITER perspective and in the context of a shared analysis between fusion laboratories. Finally an overview and summary of current large scale fundamental data production in the framework of the ADAS project will be given and its intended availability in both fusion and astrophysics noted
Extended Hubbard models for ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Juergensen, Ole
2015-06-05
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Extended Hubbard models for ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Juergensen, Ole
2015-01-01
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Liguori, Lucia
2014-01-01
Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…
Two electron response to an intense x-ray free electron laser pulse
International Nuclear Information System (INIS)
Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T
2009-01-01
New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .
Two electron response to an intense x-ray free electron laser pulse
Energy Technology Data Exchange (ETDEWEB)
Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)
2009-11-01
New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.
Macromolecular refinement by model morphing using non-atomic parameterizations.
Cowtan, Kevin; Agirre, Jon
2018-02-01
Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.;
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
Multi-atom Jaynes-Cummings model with nonlinear effects
International Nuclear Information System (INIS)
Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido
2001-01-01
The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter
Model study in chemisorption: atomic hydrogen on beryllium clusters
International Nuclear Information System (INIS)
Bauschlicher, C.W. Jr.
1976-08-01
The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be 22 cluster are discussed
Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere
International Nuclear Information System (INIS)
Swaczyna, Paweł; Bzowski, Maciej
2017-01-01
Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10 6 times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.
Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere
Energy Technology Data Exchange (ETDEWEB)
Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)
2017-09-10
Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.
Models of the atomic nucleus. With interactive software
International Nuclear Information System (INIS)
Cook, N.D.
2006-01-01
This book-and-CD-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus, a largely non-technical introduction to nuclear theory, explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously ''non-visual'' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on the accompanying CD. (orig.)
Confinement control mechanism for two-electron Hulthen quantum dots in plasmas
Bahar, M. K.; Soylu, A.
2018-05-01
In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Many-electron model for multiple ionization in atomic collisions
International Nuclear Information System (INIS)
Archubi, C D; Montanari, C C; Miraglia, J E
2007-01-01
We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data
Many-electron model for multiple ionization in atomic collisions
Energy Technology Data Exchange (ETDEWEB)
Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)
2007-03-14
We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.
Terrestrial magnetospheric imaging: Numerical modeling of low energy neutral atoms
International Nuclear Information System (INIS)
Moore, K.R.; Funsten, H.O.; McComas, D.J.; Scime, E.E.; Thomsen, M.F.
1993-01-01
Imaging of the terrestrial magnetosphere can be performed by detection of low energy neutral atoms (LENAs) that are produced by charge exchange between magnetospheric plasma ions and cold neutral atoms of the Earth's geocorona. As a result of recent instrumentation advances it is now feasible to make energy-resolved measurements of LENAs from less than I key to greater than 30 key. To model expected LENA fluxes at a spacecraft, we initially used a simplistic, spherically symmetric magnetospheric plasma model. 6 We now present improved calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. We also estimate expected image count rates based on realistic instrument geometric factors, energy passbands, and image accumulation intervals. The results indicate that presently proposed LENA instruments are capable of imaging of storm time ring current and potentially even quiet time ring current fluxes, and that phenomena such as ion injections from the tail and subsequent drifts toward the dayside magnetopause may also be deduced
Computer simulation of liquid cesium using embedded atom model
International Nuclear Information System (INIS)
Belashchenko, D K; Nikitin, N Yu
2008-01-01
The new method is presented for the inventing an embedded atom potential (EAM potential) for liquid metals. This method uses directly the pair correlation function (PCF) of the liquid metal near the melting temperature. Because of the specific analytic form of this EAM potential, the pair term of potential can be calculated using the pair correlation function and, for example, Schommers algorithm. Other parameters of EAM potential may be found using the potential energy, module of compression and pressure at some conditions, mainly near the melting temperature, at very high temperature or in strongly compressed state. We used the simple exponential formula for effective EAM electronic density and a polynomial series for embedding energy. Molecular dynamics method was applied with L. Verlet algorithm. A series of models with 1968 atoms in the basic cube was constructed in temperature interval 323-1923 K. The thermodynamic properties of liquid cesium, structure data and self-diffusion coefficients are calculated. In general, agreement between the model data and known experimental ones is reasonable. The evaluation is given for the critical temperature of cesium models with EAM potential
Reduction of collisional-radiative models for transient, atomic plasmas
Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai
2017-10-01
Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).
Theoretical description of high-lying two-electrons states
International Nuclear Information System (INIS)
Greene, C.H.; Cavagnero, M.; Sadeghpour, H.R.
1993-01-01
Within the past two years, experiments on high-lying doubly-excited states in He and H- have shown spectra at energies near excited hydrogenic thresholds having principal quantum numbers in the range N=5--9. While they display some nontrivial complexities, the spectra are tremendously simpler than might be anticipated on the basis of independent electron models, in that only a small fraction of the total number of anticipated resonances are observed experimentally. Moreover, for principal quantum number N that are not too high, specifically N - , the resonance positions are described accurately by adiabatic calculations using hyperspherical coordinates and can be parametrized by a remarkably simple two-electron Rydberg formula. The observed propensity for excitation of only a small subset of the possible resonance states has been codified by several groups into approximate selection rules based on alternative (but apparently equivalent) classification schemes. Comparatively few attempts have been made at quantitative tests of the validity of these rules. The present review describes recent efforts to quantify their accuracy and limitations using R-matrix and quantum defect techniques, and Smith's delay-time matrix. Prospensity rules for exciting different degrees of freedom are found to differ greatly in their degree of validity
Atomic structure of graphene supported heterogeneous model catalysts
Energy Technology Data Exchange (ETDEWEB)
Franz, Dirk
2017-04-15
Graphene on Ir(111) forms a moire structure with well defined nucleation centres. Therefore it can be utilized to create hexagonal metal cluster lattices with outstanding structural quality. At diffraction experiments these 2D surface lattices cause a coherent superposition of the moire cell structure factor, so that the measured signal intensity scales with the square of coherently scattering unit cells. This artificial signal enhancement enables the opportunity for X-ray diffraction to determine the atomic structure of small nano-objects, which are hardly accessible with any experimental technique. The uniform environment of every metal cluster makes the described metal cluster lattices on graphene/Ir(111) an attractive model system for the investigation of catalytic, magnetic and quantum size properties of ultra-small nano-objects. In this context the use of x-rays provides a maximum of flexibility concerning the possible sample environments (vacuum, selected gases, liquids, sample temperature) and allows in-situ/operando measurements. In the framework of the present thesis the structure of different metal clusters grown by physical vapor deposition in an UHV environment and after gas exposure have been investigated. On the one hand the obtained results will explore many aspects of the atomic structure of these small metal clusters and on the other hand the presented results will proof the capabilities of the described technique (SXRD on cluster lattices). For iridium, platinum, iridium/palladium and platinum/rhodium the growth on graphene/Ir(111) of epitaxial, crystalline clusters with an ordered hexagonal lattice arrangement has been confirmed using SXRD. The clusters nucleate at the hcp sites of the moire cell and bind via rehybridization of the carbon atoms (sp{sup 2} → sp{sup 3}) to the Ir(111) substrate. This causes small displacements of the substrate atoms, which is revealed by the diffraction experiments. All metal clusters exhibit a fcc structure
Analytical local electron-electron interaction model potentials for atoms
International Nuclear Information System (INIS)
Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen
2002-01-01
Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter
Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field
Garagiola, Mariano; Pont, Federico M.; Osenda, Omar
2018-04-01
Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.
Near-atomic model of microtubule-tau interactions.
Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva
2018-06-15
Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
International Nuclear Information System (INIS)
Colonna, G.; Pietanza, L.D.; D’Ammando, G.
2012-01-01
Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.
Calculation of the two-electron Darwin term using explicitly correlated wave functions
International Nuclear Information System (INIS)
Middendorf, Nils; Höfener, Sebastian; Klopper, Wim; Helgaker, Trygve
2012-01-01
Graphical abstract: The two-electron Darwin term is computed analytically at the MP2-F12 level of theory using density fitted integrals. Highlights: ► Two-electron Darwin term computed analytically at the MP2-F12 level. ► Darwin two-electron integrals computed using density fitting techniques. ► Two-electron Darwin term dominated by singlet pair contributions. ► Much improved basis set convergence is achieved with F12 methods. ► Interference correction works well for the two-electron Darwin term. - Abstract: This article is concerned with the calculation of the two-electron Darwin term (D2). At the level of explicitly correlated second-order perturbation theory (MP2-F12), the D2 term is obtained as an analytic energy derivative; at the level of explicitly correlated coupled-cluster theory, it is obtained from finite differences. To avoid the calculation of four-center integrals, a density-fitting approximation is applied to the D2 two-electron integrals without loss of accuracy, even though the absolute value of the D2 term is typically about 0.1 mE h . Explicitly correlated methods provide a qualitatively correct description of the short-range region around the Coulomb hole, even for small orbital basis sets. Therefore, explicitly correlated wave functions remedy the otherwise extremely slow convergence of the D2 contribution with respect to the basis-set size, yielding more accurate results than those obtained by two-point basis-set extrapolation. Moreover, we show that the interference correction of Petersson’s complete-basis-set model chemistry can be used to compute a D2 basis-set correction at the MP2-F12 level to improve standard coupled-cluster singles-and-doubles results.
Hydrogen atom as test field of theoretical models
International Nuclear Information System (INIS)
Baiquni, A.
1976-01-01
Semi classical theory, covering Bohr atom theory, Bohr Sommerfeld theory, Sommerfeld relativistic theory, and quantum theory such as particle and complementarity dualism, wave mechanics, approximation method, relativistic quantum mechanics, and hydrogen atom fine structure, are discussed. (SMN)
Beyond Modeling: All-Atom Olfactory Receptor Model Simulations
Directory of Open Access Journals (Sweden)
Peter C Lai
2012-05-01
Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.
Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2018-03-01
Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.
ATLAS proton-proton event containing two electrons and two muons
ATLAS Collaboration
2011-01-01
An event with two identified muons and two identified electrons from a proton- proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: one Z decays to two muons, the other to two electrons. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. The two muons are picked out as red tracks penetrating right through the detector. The two electrons are picked out as green tracks in the central, inner detector, matching narrow green clusters of energy in the barrel part of the calorimeters. The inset at the bottom right shows a map of the energy seen in the detector: the two big yellow spikes correspond to the two electrons.
Hyperpolarizabilities of one and two electron ions under strongly coupled plasma
International Nuclear Information System (INIS)
Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard
2013-01-01
Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...
Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube
DEFF Research Database (Denmark)
Pecker, S.; Kuemmeth, Ferdinand; Secchi, A.
2013-01-01
Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be...
Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies
International Nuclear Information System (INIS)
Lin, C.D.; Fritsch, W.
1983-01-01
In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H + + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported
A more comprehensive modeling of atomic force microscope cantilever
International Nuclear Information System (INIS)
Mahdavi, M.H.; Farshidianfar, A.; Tahani, M.; Mahdavi, S.; Dalir, H.
2008-01-01
This paper focuses on the development of a complete model of an atomic force microscope (AFM) micro-cantilever beam, based on considering the effects of four major factors in modeling the cantilever. They are: rotary inertia and shear deformation of the beam and mass and rotary inertia of the tip. A method based on distributed-parameter modeling approach is proposed to solve the governing equations. The comparisons generally show a very good agreement between the present results and the results of other investigators. As expected, rotary inertia and shear deformation of the beam decrease resonance frequency especially at high ratio of cantilever thickness to its length, and it is relatively more pronounced for higher-order frequencies, than lower ones. Mass and rotary inertia of the tip have similar effects when the mass-ratio of the tip to the cantilever is high. Moreover, the influence of each of these four factors, thickness of the cantilever, density of the tip and inclination of the cantilever on the resonance frequencies has been investigated, separately. It is felt that this work might help the engineers in reducing AFM micro-cantilever design time, by providing insight into the effects of various parameters with the micro-cantilever.
Doubly excited 3Pe resonance states of two-electron positive ions in Debye plasmas
International Nuclear Information System (INIS)
Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi; Jiang, Zishi; Jiang, Pinghui
2015-01-01
We investigate the doubly excited 3 P e resonance states of two-electron positive ions Li + , Be 2+ , B 3+ , and C 4+ by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of 3 P e resonances below the N = 3 threshold. The 3 P e resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time
International Nuclear Information System (INIS)
Khater, Antoine; Szczesniak, Dominik
2011-01-01
An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.
Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms
International Nuclear Information System (INIS)
Raoult, B.; Farges, J.; Feraudy, M.F. de; Torchet, G.
1989-01-01
We present a study of the stability of clusters models made of a number N of atoms in the range 500 to 6000 atoms, freely interacting through the Lennard-Jones potential. The potential energy per atom, calculated for relaxed models, shows that stable models belong to an icosahedral sequence when N<1600 and to a decahedral sequence beyond. A coexistence size range of both structures is discussed in connection with experimental results on argon clusters in free jet expansions. (orig.)
Global atmospheric model for mercury including oxidation by bromine atoms
Directory of Open Access Journals (Sweden)
C. D. Holmes
2010-12-01
Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg^{0} to Hg^{II} and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg^{0} oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg^{0} oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O_{3} model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O_{3} models, we add an aqueous photochemical reduction of Hg^{II} in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O_{3} models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg^{II} deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a^{−1}. Summertime events of depleted Hg^{0} at Antarctic sites due to subsidence are much better simulated by
Development of a phenomenological model for coal slurry atomization
Energy Technology Data Exchange (ETDEWEB)
Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)
1995-11-01
Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.
Confined quantum systems: spectral properties of two-electron quantum dots
International Nuclear Information System (INIS)
Sako, T; Diercksen, G H F
2003-01-01
The spectrum, electron-density distribution and ground-state correlation energy of two electrons confined by an anisotropic harmonic oscillator potential have been studied for different confinement strengths ω by using the quantum chemical configuration interaction (CI) method employing a large Cartesian anisotropic Gaussian basis set and a full CI wavefunction. Energy level diagrams and electron-density distributions are displayed for selected electronic states and confinement parameters. The total energy and spacing between energy levels increase in all cases with increasing ω. The energy level structure cannot be matched by scaling with respect to ω. The correlation energy of the ground state is comparable in magnitude to that of the helium atom. It increases for increasing ω. The percentage of the correlation energy with respect to the total energy of the ground state is considerably larger than that of the helium atom
Two-electron Rabi oscillations in real-time time-dependent density-functional theory
International Nuclear Information System (INIS)
Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.
2014-01-01
We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation
Self-consistent assessment of Englert-Schwinger model on atomic properties
Lehtomäki, Jouko; Lopez-Acevedo, Olga
2017-12-01
Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-1/5 vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.
Kinetic model of the bichromatic dark trap for atoms
Krasnov, I. V.
2017-08-01
A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.
Four shells atomic model to computer the counting efficiency of electron-capture nuclides
International Nuclear Information System (INIS)
Grau Malonda, A.; Fernandez Martinez, A.
1985-01-01
The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs
Improving the Ni I atomic model for solar and stellar atmospheric models
International Nuclear Information System (INIS)
Vieytes, M. C.; Fontenla, J. M.
2013-01-01
Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.
Improving the Ni I atomic model for solar and stellar atmospheric models
Energy Technology Data Exchange (ETDEWEB)
Vieytes, M. C. [Instituto de de Astronomía y Física del Espacio, CONICET and UNTREF, Buenos Aires (Argentina); Fontenla, J. M., E-mail: mariela@iafe.uba.ar, E-mail: johnf@digidyna.com [North West Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)
2013-06-01
Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.
International Nuclear Information System (INIS)
Beck, W.A.
2000-01-01
The semiclassical model of atomic collisions, especially in different areas of the maximum stopping, when proton collides at the velocity of the boron order velocity, providing as the result for interactions of many bodies with an electron target, enabling application of the model with high degree of confidence to a clearly expressed experimental problem, such the antiproton capture on helium, is presented. The semiclassical collision model and stopping energy are considered. The stopping and capture of negatively-charged particles are investigated. The capture and angular moments of antiprotons, captures at the end of the collision cascade, are presented [ru
A three-level atomicity model for decentralized workflow management systems
Ben-Shaul, Israel Z.; Heineman, George T.
1996-12-01
A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.
Small-polaron model of light atom diffusion
International Nuclear Information System (INIS)
Emin, D.
1977-01-01
A number of researchers have treated the diffusion of light interstitials in metals in strict analogy with the theory for the hopping diffusion of electrons in low-mobility insulators. In other words, these authors view the diffusion of light atoms as simply being an example of small-polaron hopping motion. In this paper the motion of a small polaron is introduced, and the mechanism of its motion is described. The experimental results are then succinctly presented. Next the physical assumptions implicit in the theory are compared with the situation which is believed to characterize the existence and motion of light interstitial atoms in metals. Concomitantly, the modifications of the small-polaron theory required in applying it to light atom diffusion are ennumerated
Nonadiabatic two-electron transfer mediated by an irregular bridge
International Nuclear Information System (INIS)
Petrov, E.G.; Shevchenko, Ye.V.; May, V.
2004-01-01
Nonadiabatic two-electron transfer (TET) mediated by a linear molecular bridge is studied theoretically. Special attention is put on the case of a irregular distribution of bridge site energies as well as on the inter-site Coulomb interaction. Based on the unified description of electron transfer reactions [J. Chem. Phys. 115 (2001) 7107] a closed set of kinetic equations describing the TET process is derived. A reduction of this set to a single exponential donor-acceptor (D-A) TET is performed together with a derivation of an overall D-A TET rate. The latter contains a contribution of the stepwise as well as of the concerted route of D-A TET. The stepwise contribution is determined by two single-electron steps each of them associated with a sequential and a superexchange pathway. A two-electron unistep superexchange transition between the D and A forms the concerted contribution to the overall rate. Both contributions are analyzed in their dependency on the bridge length. The irregular distribution of the bridge site energies as well as the influence of the Coulomb interaction facilitates the D-A TET via a modification of the stepwise and the concerted part of the overall rate. At low temperatures and for short bridges with a single or two units the concerted contribution exceeds the stepwise contribution. If the bridge contains more than two units, the stepwise contribution dominates the overall rate
Electron structure of atoms in laser plasma: The Debye shielding model
International Nuclear Information System (INIS)
Sako, Tokuei; Okutsu, Hiroshi; Yamanouchi, Kaoru
2005-01-01
The electronic structure and the energy spectra of multielectron atoms in laser plasmas are examined by the Debye shielding model. The effect of the plasma environment on the electrons bound in an atom is taken into account by introducing the screened Coulomb-type potentials into the electronic Hamiltonian of an atom in place of the standard nuclear attraction and electron repulsion potentials. The capabilities of this new Hamiltonian are demonstrated for He and Li in laser plasmas. (author)
Energy Technology Data Exchange (ETDEWEB)
Brics, Martins
2016-12-09
-called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.
International Nuclear Information System (INIS)
Brics, Martins
2016-01-01
-called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.
Atomic force microscopy on domains in biological model membranes
Rinia, H.A.
2001-01-01
This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force
Baron, R; de Vries, AH; Hunenberger, PH; van Gunsteren, WF
2006-01-01
Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
Energy Technology Data Exchange (ETDEWEB)
Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)
2006-04-24
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
International Nuclear Information System (INIS)
Romero, Rodolfo H.; Gomez, Sergio S.
2006-01-01
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown
Nonclassical Effects of a Four-Level Excited-Doublet Atom Model
International Nuclear Information System (INIS)
Zhang Jiansong; Xu Jingbo
2006-01-01
We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
Electron acoustic solitary waves in unmagnetized two electron population dense plasmas
International Nuclear Information System (INIS)
Mahmood, S.; Masood, W.
2008-01-01
The electron acoustic solitary waves are studied in unmagnetized two population electron quantum plasmas. The quantum hydrodynamic model is employed with the Sagdeev potential approach to describe the arbitrary amplitude electron acoustic waves in a two electron population dense Fermi plasma. It is found that hot electron density hump structures are formed in the subsonic region in such type of quantum plasmas. The wave amplitude as well as the width of the soliton are increased with the increase of percentage presence of cold (thinly populated) electrons in a multicomponent quantum plasma. It is found that an increase in quantum diffraction parameter broadens the nonlinear structure. Furthermore, the amplitude of the nonlinear electron acoustic wave is found to increase with the decrease in Mach number. The numerical results are also presented to understand the formation of solitons in two electron population Fermi plasmas.
Modeling linear and cyclic PKS intermediates through atom replacement.
Shakya, Gaurav; Rivera, Heriberto; Lee, D John; Jaremko, Matt J; La Clair, James J; Fox, Daniel T; Haushalter, Robert W; Schaub, Andrew J; Bruegger, Joel; Barajas, Jesus F; White, Alexander R; Kaur, Parminder; Gwozdziowski, Emily R; Wong, Fiona; Tsai, Shiou-Chuan; Burkart, Michael D
2014-12-03
The mechanistic details of many polyketide synthases (PKSs) remain elusive due to the instability of transient intermediates that are not accessible via conventional methods. Here we report an atom replacement strategy that enables the rapid preparation of polyketone surrogates by selective atom replacement, thereby providing key substrate mimetics for detailed mechanistic evaluations. Polyketone mimetics are positioned on the actinorhodin acyl carrier protein (actACP) to probe the underpinnings of substrate association upon nascent chain elongation and processivity. Protein NMR is used to visualize substrate interaction with the actACP, where a tetraketide substrate is shown not to bind within the protein, while heptaketide and octaketide substrates show strong association between helix II and IV. To examine the later cyclization stages, we extended this strategy to prepare stabilized cyclic intermediates and evaluate their binding by the actACP. Elongated monocyclic mimics show much longer residence time within actACP than shortened analogs. Taken together, these observations suggest ACP-substrate association occurs both before and after ketoreductase action upon the fully elongated polyketone, indicating a key role played by the ACP within PKS timing and processivity. These atom replacement mimetics offer new tools to study protein and substrate interactions and are applicable to a wide variety of PKSs.
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
Santhanam, K S V; Chen, Xu; Gupta, S
2014-04-01
Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy.
Impurity effects in two-electron coupled quantum dots: entanglement modulation
International Nuclear Information System (INIS)
Acosta Coden, Diego S; Romero, Rodolfo H; Ferrón, Alejandro; Gomez, Sergio S
2013-01-01
We present a detailed analysis of the electronic and optical properties of two-electron quantum dots with a two-dimensional Gaussian confinement potential. We study the effects of Coulomb impurities and the possibility of manipulating the entanglement of the electrons by controlling the confinement potential parameters. The degree of entanglement becomes highly modulated by both the location and charge screening of the impurity atom, resulting in two regimes: one of low entanglement and the other of high entanglement, with both of them mainly determined by the magnitude of the charge. It is shown that the magnitude of the oscillator strength of the system could provide an indication of the presence and characteristics of impurities and, therefore, the degree of entanglement. (paper)
An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface
Directory of Open Access Journals (Sweden)
Yan-Zi Yu
2015-01-01
Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.
Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling
International Nuclear Information System (INIS)
Tawara, H.
1997-01-01
This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)
Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms
CSIR Research Space (South Africa)
Tokarev, A
2015-03-01
Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...
Energy Technology Data Exchange (ETDEWEB)
Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.
Optical-potential model for electron-atom scattering
International Nuclear Information System (INIS)
Callaway, J.; Oza, D.H.
1985-01-01
It is proposed that the addition of a matrix optical potential to a close-coupling calculation should lead to improved results in studies of electron-atom scattering. This procedure is described with use of a pseudostate expansion to evaluate the optical potential. The integro-differential equations are solved by a linear-algebraic method. As a test case, applications are made to electron-hydrogen scattering, and the results are compared with those obtained by other calculational procedures, and with experiment
Dynamics of atom-field entanglement for Tavis-Cummings models
Bashkirov, Eugene K.
2018-04-01
An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.
Properties of model atomic free-standing thin films.
Shi, Zane; Debenedetti, Pablo G; Stillinger, Frank H
2011-03-21
We present a computational study of the thermodynamic, dynamic, and structural properties of free-standing thin films, investigated via molecular dynamics simulation of a glass-forming binary Lennard-Jones mixture. An energy landscape analysis is also performed to study glassy states. At equilibrium, species segregation occurs, with the smaller minority component preferentially excluded from the surface. The film's interior density and interface width depend solely on temperature and not the initialization density. The atoms at the surface of the film have a higher lateral diffusivity when compared to the interior. The average difference between the equilibrium and inherent structure energies assigned to individual particles, as a function of the distance from the center of the film, increases near the surface. A minimum of this difference occurs in the region just under the liquid-vapor interface. This suggests that the surface atoms are able to sample the underlying energy landscape more effectively than those in the interior, and we suggest a possible relationship of this observation to the recently reported formation of stable glasses by vapor phase deposition.
Solitary Langmuir waves in two-electron temperature plasma
Prudkikh, V. V.; Prudkikh
2014-06-01
Nonlinear interaction of Langmuir and ion-acoustic waves in two-electron temperature plasma is investigated. New integrable wave interaction regime was discovered, this regime corresponds to the Langmuir soliton with three-hump amplitude, propagating with a speed close to the ion-sound speed in the conditions of strong non-isothermality of electronic components. It was discovered that besides the known analytical solution in the form of one- and two-hump waves, there exists a range of solutions in the form of solitary waves, which in the form of envelope has multi-peak structure and differs from the standard profiles described by hyperbolic functions. In case of fixed plasma parameters, different group velocities correspond to the waves with different number of peaks. It is found that the Langmuir wave package contains both even and uneven numbers of oscillations. Low-frequency potential here has uneven number of peaks. Interrelation of obtained and known earlier results are also discussed.
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Nonlinear Jaynes–Cummings model for two interacting two-level atoms
International Nuclear Information System (INIS)
Santos-Sánchez, O de los; González-Gutiérrez, C; Récamier, J
2016-01-01
In this work we examine a nonlinear version of the Jaynes–Cummings model for two identical two-level atoms allowing for Ising-like and dipole–dipole interplays between them. The model is said to be nonlinear in the sense that it can incorporate both a general intensity-dependent interaction between the atomic system and the cavity field and/or the presence of a nonlinear medium inside the cavity. As an example, we consider a particular type of atom-field coupling based upon the so-called Buck–Sukumar model and a lossless Kerr-like cavity. We describe the possible effects of such features on the evolution of some quantities of current interest, such as atomic excitation, purity, concurrence, the entropy of the field and the evolution of the latter in phase space. (paper)
Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling
International Nuclear Information System (INIS)
Liu, Jie
2014-01-01
Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.
Optical model theory of elastic electron- and positron-atom scattering at intermediate energies
International Nuclear Information System (INIS)
Joachain, C.J.
1977-01-01
It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)
Farrell, Kathryn; Oden, J. Tinsley
2014-07-01
Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and
Studying the Consistency between and within the Student Mental Models for Atomic Structure
Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios
2017-01-01
Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…
Energy exchange in thermal energy atom-surface scattering: impulsive models
International Nuclear Information System (INIS)
Barker, J.A.; Auerbach, D.J.
1979-01-01
Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)
DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.
Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav
2018-02-08
Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.
Hydrogen ADPs with Cu Kα data? Invariom and Hirshfeld atom modelling of fluconazole.
Orben, Claudia M; Dittrich, Birger
2014-06-01
For the structure of fluconazole [systematic name: 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol] monohydrate, C13H12F2N6O·H2O, a case study on different model refinements is reported, based on single-crystal X-ray diffraction data measured at 100 K with Cu Kα radiation to a resolution of sin θ/λ of 0.6 Å(-1). The structure, anisotropic displacement parameters (ADPs) and figures of merit from the independent atom model are compared to `invariom' and `Hirshfeld atom' refinements. Changing from a spherical to an aspherical atom model lowers the figures of merit and improves both the accuracy and the precision of the geometrical parameters. Differences between results from the two aspherical-atom refinements are small. However, a refinement of ADPs for H atoms is only possible with the Hirshfeld atom density model. It gives meaningful results even at a resolution of 0.6 Å(-1), but requires good low-order data.
Ion-reversibility studies in amorphous solids using the two-atom scattering model
International Nuclear Information System (INIS)
Oen, O.S.
1981-06-01
An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%
Atomic scale simulations for improved CRUD and fuel performance modeling
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.
The contribution of atom accessibility to site of metabolism models for cytochromes P450
DEFF Research Database (Denmark)
Rydberg, Patrik; Rostkowski, M.; Gloriam, D.E.
2013-01-01
Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...... coordinates. The method was implemented in the SMARTCyp site of metabolism prediction models and improved the results by up to 4 percentage points for nine cytochrome P450 isoforms. The final models are made available at http://www.farma.ku.dk/smartcyp.......Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...
Two-electron states of a group-V donor in silicon from atomistic full configuration interactions
Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib
2018-05-01
Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
An atomic-scale model of fcc crystal-growth
Energy Technology Data Exchange (ETDEWEB)
Waal, B.W. van de (Technische Hogeschool Twente, Enschede (Netherlands). Dept. of Physics)
1991-01-01
Nearly perfect fcc growth may be simulated by the application of a simple growth-algorithm - only sites that are at least 4-coordinated are occupied - to a selected seed. The seed is a 22-atom cluster, being the smallest close-packed structure with two crossing stacking-faults. The stacking-faults produce active surface-sites, that can not be exhausted by occupation; they are arranged in non-vanishing steps, similar to those produced by screw-dislocations. The algorithm prevents further stacking-faults, and ensures ABC-stacking of close-packed (111)-layers, characteristic of the fcc structure. The same algorithm would not produce further growth of perfect fcc clusters or of Mackay icosahedra. It is proposed that the ability to grow fast under near-equilibrium conditions is a better criterion to select clusters as precursors of the bulk-structure than their cohesive energy. The crystal structure problem of the rare gases - why fcc, not hcp - is discussed in connection with the apparent impossibility to simulate hcp growth by an analogous procedure. (orig.).
Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma
International Nuclear Information System (INIS)
Gyergyek, T.; Cercek, M.; Erzen, D.
2003-01-01
Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities
On the exact spectra of two electrons confined by two-dimensional quantum dots
International Nuclear Information System (INIS)
Soldatov, A.V.; Bogolubov Jr, N.N.
2005-12-01
Applicability of the method of intermediate problems to investigation of the energy spectrum and eigenstates of a two- electron two-dimensional quantum dot (QD) formed by a parabolic confining potential is discussed. It is argued that the method of intermediate problems, which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic variational method thus providing an efficient tool of verification of the results obtained so far by various analytical and numerical methods being of current usage for studies of quantum dot models. (author)
Energy Technology Data Exchange (ETDEWEB)
Peng, Bo [William R. Wiley Environmental; Kowalski, Karol [William R. Wiley Environmental
2017-08-11
The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.
Park, Eun Jung
The nature of matter based upon atomic theory is a principal concept in science; hence, how to teach and how to learn about atoms is an important subject for science education. To this end, this study explored student perceptions of atomic structure and how students learn about this concept by analyzing student mental models of atomic structure. Changes in student mental models serve as a valuable resource for comprehending student conceptual development. Data was collected from students who were taking the introductory chemistry course. Responses to course examinations, pre- and post-questionnaires, and pre- and post-interviews were used to analyze student mental models of atomic structure. First, this study reveals that conceptual development can be achieved, either by elevating mental models toward higher levels of understanding or by developing a single mental model. This study reinforces the importance of higher-order thinking skills to enable students to relate concepts in order to construct a target model of atomic structure. Second, Bohr's orbital structure seems to have had a strong influence on student perceptions of atomic structure. With regard to this finding, this study suggests that it is instructionally important to teach the concept of "orbitals" related to "quantum theory." Third, there were relatively few students who had developed understanding at the level of the target model, which required student understanding of the basic ideas of quantum theory. This study suggests that the understanding of atomic structure based on the idea of quantum theory is both important and difficult. Fourth, this study included different student assessments comprised of course examinations, questionnaires, and interviews. Each assessment can be used to gather information to map out student mental models. Fifth, in the comparison of the pre- and post-interview responses, this study showed that high achieving students moved toward more improved models or to advanced
Model Development for Atomic Force Microscope Stage Mechanisms
National Research Council Canada - National Science Library
Smith, Ralph C; Hatch, Andrew G; De, Tathagata; Salapaka, Murti V; Raye, Julie K; del Rosario, Ricardo C
2005-01-01
In this paper, we develop nonlinear constitutive equations and resulting system models quantifying the nonlinear and hysteretic field-displacement relations inherent to lead zirconate titanate (PZT...
Free-free opacity in dense plasmas with an average atom model
International Nuclear Information System (INIS)
Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; Kilcrease, David Parker; Starrett, Charles Edward
2017-01-01
A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Basharov, A. M.
2018-03-01
The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.
Interaction of attosecond electromagnetic pulses with atoms: The exactly solvable model
International Nuclear Information System (INIS)
Popov, Yu. V.; Kouzakov, K. A.; Vinitsky, S. I.; Gusev, A. A.
2007-01-01
We consider the exactly solvable model of interaction of zero-duration electromagnetic pulses with an atom. The model has a number of peculiar properties which are outlined in the cases of a single pulse and two opposite pulses. In perspective, it can be useful in different fields of physics involving interaction of attosecond laser pulses with quantum systems
A comparison of two atomic models for the radiative properties of dense hot low Z plasmas
International Nuclear Information System (INIS)
Minguez, E.; Sauvan, P.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Florido, R.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.
2003-01-01
In this work, two different atomic models (ANALOP based on parametric potentials and IDEFIX based on the dicenter model) are used to calculate the opacities for bound-bound transitions in hot dense, low Z plasmas, and the results are compared to each other. In addition, the ANALOP code has been used to compute free-bound cross sections for hydrogen-like ions
COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM
DEFF Research Database (Denmark)
Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo
2009-01-01
The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...
UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions
International Nuclear Information System (INIS)
Siebert, Xavier; Navaza, Jorge
2009-01-01
UROX is software designed for the interactive fitting of atomic models into electron-microscopy reconstructions. The main features of the software are presented, along with a few examples. Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30–10 Å range and sometimes even beyond 10 Å. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/
Galilean invariance in the exponential model of atomic collisions
International Nuclear Information System (INIS)
del Pozo, A.; Riera, A.; Yaez, M.
1986-01-01
Using the X/sup n/ + (1s 2 )+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He + (1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed
Pseudo potentials and model potentials in atomic collisions
International Nuclear Information System (INIS)
Reyes, O.; Jouin, H.; Fuentealba, P.
1988-01-01
In this work, it is discussed the main differences between the use of pseudo-potentials and model potentials in collision problems . It is shown the potential energy curves for distinct systems obtained with both kinds of potentials. (A.C.A.S.) [pt
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
Gorzyca, T.W.; Bautista, M.A.; Hasoglu, M.F.; García, J.; Gatuzz, E.; Kaastra, J.S.; Kallman, T.R.; Manson, S.T.; Mendoza, C.; Raassen, A.J.J.; de Vries, C.P.; Zatsarinny, O.
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects,
Galilean invariance in the exponential model of atomic collisions
Energy Technology Data Exchange (ETDEWEB)
del Pozo, A.; Riera, A.; Yaez, M.
1986-11-01
Using the X/sup n//sup +/(1s/sup 2/)+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He/sup +/(1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed.
Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling
International Nuclear Information System (INIS)
Osetsky, Yu.N.; Bacon, D.J.
2005-01-01
Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects
An atomic model of brome mosaic virus using direct electron detection and real-space optimization
Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah
2014-09-01
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model
International Nuclear Information System (INIS)
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En
2012-01-01
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.
Modeling and understanding of effects of randomness in arrays of resonant meta-atoms
DEFF Research Database (Denmark)
Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka
2013-01-01
In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...
DEFF Research Database (Denmark)
Valentin, Jan B.; Andreetta, Christian; Boomsma, Wouter
2014-01-01
We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length s....... The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. © 2013 Wiley Periodicals, Inc....
Building a pseudo-atomic model of the anaphase-promoting complex
International Nuclear Information System (INIS)
Kulkarni, Kiran; Zhang, Ziguo; Chang, Leifu; Yang, Jing; Fonseca, Paula C. A. da; Barford, David
2013-01-01
This article describes an example of molecular replacement in which atomic models are used to interpret electron-density maps determined using single-particle electron-microscopy data. The anaphase-promoting complex (APC/C) is a large E3 ubiquitin ligase that regulates progression through specific stages of the cell cycle by coordinating the ubiquitin-dependent degradation of cell-cycle regulatory proteins. Depending on the species, the active form of the APC/C consists of 14–15 different proteins that assemble into a 20-subunit complex with a mass of approximately 1.3 MDa. A hybrid approach of single-particle electron microscopy and protein crystallography of individual APC/C subunits has been applied to generate pseudo-atomic models of various functional states of the complex. Three approaches for assigning regions of the EM-derived APC/C density map to specific APC/C subunits are described. This information was used to dock atomic models of APC/C subunits, determined either by protein crystallography or homology modelling, to specific regions of the APC/C EM map, allowing the generation of a pseudo-atomic model corresponding to 80% of the entire complex
Explicit all-atom modeling of realistically sized ligand-capped nanocrystals
Kaushik, Ananth P.
2012-01-01
We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.
Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas
International Nuclear Information System (INIS)
Guo Yonghui; Duan Yaoyong; Kuai Bin
2007-01-01
The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)
De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S
2013-11-01
In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.
Two-electron spin correlations in precision placed donors in silicon.
Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y
2018-03-07
Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
One- and two-electron processes in collisions of heavy ions with H2 and He
International Nuclear Information System (INIS)
Richard, P.; Hall, J.; Shinpaugh, J.L.; Sanders, J.M.; Tipping, T.N.; Zouros, T.J.M.; Lee, D.H.; Schmidt-Boecking, H.
1987-01-01
In this paper we present a description of the apparatus and results for experiments involving one- and two-electron processes in collisions of heavy ions with H 2 and He. The experiments were performed using one-electron and bare projectiles. In the first section we describe the measurement of pure ionization of one-electron projectiles by H 2 targets and compare with previous results for He targets. We also present the results for one-electron capture by the projectile from H 2 targets. The energy dependence of the cross sections is compared to theoretical predictions for atomic and molecular hydrogen targets. Both experiments were performed by measuring only the final charge state of the projectile. In the second section we describe the measurement of partial cross sections for the same collisions by measuring the target recoil charge state in coincidence with the projectile charge state. By this method we can measure pure single- and double-ionization of the target, pure single-electron transfer and transfer ionization, and pure double-electron transfer. This experiment is presently being performed for bare flourine on He; however, absolute cross sections are not available at the time of this conference. (orig.)
Two-electron germanium centers with a negative correlation energy in lead chalcogenides
International Nuclear Information System (INIS)
Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.
2007-01-01
It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms
Application of a distorted wave model to electron capture in atomic collisions
International Nuclear Information System (INIS)
Deco, G.R.; Martinez, A.E.; Rivarola, R.D.
1988-01-01
In this work, it is presented the CDW-EIS approximation applied to the description of processes of electron capture in ion-atom collisions. Differential and total cross sections are compared to results obtained by other theoretical models, as well as, to experimental data. (A.C.A.S.) [pt
Lattice location of dopant atoms: An N-body model calculation
Indian Academy of Sciences (India)
Here we applied the superior -body model to study the yield from bismuth in silicon. The finding that bismuth atom occupies a position close to the silicon substitutional site is new. The transverse displacement of the suggested lattice site from the channelling direction is consistent with the experimental results. The above ...
Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep
2015-02-02
Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Institute of Scientific and Technical Information of China (English)
LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong
2008-01-01
We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.
Dynamics for a two-atom two-mode intensity-dependent Raman coupled model
Energy Technology Data Exchange (ETDEWEB)
Singh, S., E-mail: vasudha-rnc1@rediffmail.com, E-mail: sudhhasingh@gmail.com; Gilhare, K. [Ranchi University, Department of Physics (India)
2016-06-15
We study the quantum dynamics of a two-atom Raman coupled model interacting with a quantized bimodal field with intensity-dependent coupling terms in a lossless cavity. The unitary transformation method used to solve the time-dependent problem also gives the eigensolutions of the interaction Hamiltonian. We study the atomic-population dynamics and dynamics of the photon statistics in the two cavity modes, and present evidence of cooperative effects in the production of antibunching and anticorrelations between the modes. We also investigate the effect of detuning on the evolution of second-order correlation functions and observe that the oscillations become more rapid for large detuning.
Model analysis of molecular conformations in terms of weak interactions between non bonded atoms
International Nuclear Information System (INIS)
Lombardi, E.
1988-01-01
The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed
Effect of atomic spontaneous decay on entanglement in the generalized Jaynes-Cummings model
International Nuclear Information System (INIS)
Hessian, H.A.; Obada, A.-S.F.; Mohamed, A.-B.A.
2010-01-01
Some aspects of the irreversible dynamics of a generalized Jaynes-Cummings model are addressed. By working in the dressed-state representation, it is possible to split the dynamics of the entanglement and coherence. The exact solution of the master equation in the case of a high-Q cavity with atomic decay is found. Effects of the atomic spontaneous decay on the temporal evolution of partial entropies of the atom or the field and the total entropy as a quantitative measure entanglement are elucidated. The degree of entanglement, through the sum of the negative eigenvalues of the partially transposed density matrix and the negative mutual information has been studied and compared with other measures.
Bai, Si-Yin; Bao, Qian-Qian; Tian, Xue-Dong; Liu, Yi-Mou; Wu, Jin-Hui
2018-04-01
We study the steady optical responses of a cold atomic ensemble driven into the three-level ladder configuration involving a Rydberg state at finite temperatures. By improving the superatom model with thermal movement included, we calculate relevant atomic coherence effects and find that the residual Doppler broadening at the mK-K temperatures will weaken the nonclassical properties of transmitted probe photons. Furthermore, propagation directions of the probe and coupling fields have a great influence on various properties related to electromagnetically induced transparency. That is, the residual Doppler effect is more destructive to relevant atomic coherence effects in the co-propagation case but can be partially eliminated in the counter-propagation case.
Berry phase in a two-atom Jaynes-Cummings model with Kerr medium
International Nuclear Information System (INIS)
Bu Shenping; Zhang Guofeng; Liu Jia; Chen Ziyu
2008-01-01
The Jaynes-Cummings model (JCM) is an very important model for describing interaction between quantized electromagnetic fields and atoms in cavity quantum electrodynamics (QED). This model is generalized in many different directions since it predicts many novel quantum effects that can be verified by modern physics experimental technologies. In this paper, the Berry phase and entropy of the ground state for arbitrary photon number n of a two-atom Jaynes-Cummings model with Kerr-like medium are investigated. It is found that there is some correspondence between their images, especially the existence of a curve in the Δ-ε plane along which the energy, Berry phase and entropy all reach their special values. So it is available for detecting entanglement by applying Berry phase.
Berry phase in a two-atom Jaynes-Cummings model with Kerr medium
Energy Technology Data Exchange (ETDEWEB)
Bu Shenping; Zhang Guofeng; Liu Jia; Chen Ziyu [Department of Physics, School of Science, BeiHang University, Xueyuan Road, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn
2008-12-15
The Jaynes-Cummings model (JCM) is an very important model for describing interaction between quantized electromagnetic fields and atoms in cavity quantum electrodynamics (QED). This model is generalized in many different directions since it predicts many novel quantum effects that can be verified by modern physics experimental technologies. In this paper, the Berry phase and entropy of the ground state for arbitrary photon number n of a two-atom Jaynes-Cummings model with Kerr-like medium are investigated. It is found that there is some correspondence between their images, especially the existence of a curve in the {delta}-{epsilon} plane along which the energy, Berry phase and entropy all reach their special values. So it is available for detecting entanglement by applying Berry phase.
Comparative study of dense plasma state equations obtained from different models of average-atom
International Nuclear Information System (INIS)
Fromy, Patrice
1991-01-01
This research thesis addresses the influence of temperature and density effects on magnitudes such as pressure, energy, ionisation, and on energy levels of a body described according to the approximation of an electrically neutral isolated atomic sphere. Starting from the general formalism of the functional density, with some approximations, the author deduces the Thomas-Fermi, Thomas-Fermi-Dirac, and Thomas-Fermi-Dirac-Weizsaecker models, and an average-atom approximated quantum model. For each of these models, the author presents an explicit method of resolution, as well as the determination of different magnitudes taken into account in this study. For the different studied magnitudes, the author highlights effects due to the influence of temperature and of density, as well as variations due to the different models [fr
The entanglement between two isolated atoms in the double mode–mode competition model
International Nuclear Information System (INIS)
Qin, Wu; Mao-Fa, Fang; Yao-Hua, Hu; Jian-Wu, Cai
2009-01-01
Extending the double Jaynes–Cummings model to a more complicated case where the mode–mode competition is considered, we investigate the entanglement character of two isolated atoms by means of concurrence, and discuss the dependence of atom–atom entanglement on the different initial state and the relative coupling strength between the atom and the corresponding cavity field. The results show that the amplitude and the period of the atom–atom entanglement evolution can be controlled by the choice of initial state and relative coupling strength, respectively. We find that the phenomenon of entanglement sudden death (ESD) is sensitive to the initial conditions. The length of the time interval for zero entanglement depends not only on the initial degree of entanglement between two atoms but also on the relative coupling strength of atom–field interaction. The ESD effect can be weakened by enhancing the mode–mode competition between the three- and single-photon processes. (classical areas of phenomenology)
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
International Nuclear Information System (INIS)
Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.
2002-01-01
Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling
Energy Technology Data Exchange (ETDEWEB)
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
Full two-electron calculations of antiproton collisions with molecular hydrogen
DEFF Research Database (Denmark)
Lühr, Armin Christian; Saenz, Alejandro
2010-01-01
Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energies from 1 keV to 6.5 MeV. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons....... Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description...... is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models....
A comparison and benchmark of two electron cloud packages
Energy Technology Data Exchange (ETDEWEB)
Lebrun, Paul L.G.; Amundson, James F; Spentzouris, Panagiotis G; Veitzer, Seth A
2012-01-01
We present results from precision simulations of the electron cloud (EC) problem in the Fermilab Main Injector using two distinct codes. These two codes are (i)POSINST, a F90 2D+ code, and (ii)VORPAL, a 2D/3D electrostatic and electromagnetic code used for self-consistent simulations of plasma and particle beam problems. A specific benchmark has been designed to demonstrate the strengths of both codes that are relevant to the EC problem in the Main Injector. As differences between results obtained from these two codes were bigger than the anticipated model uncertainties, a set of changes to the POSINST code were implemented. These changes are documented in this note. This new version of POSINST now gives EC densities that agree with those predicted by VORPAL, within {approx}20%, in the beam region. The root cause of remaining differences are most likely due to differences in the electrostatic Poisson solvers. From a software engineering perspective, these two codes are very different. We comment on the pros and cons of both approaches. The design(s) for a new EC package are briefly discussed.
Polat-Yaseen, Zeynep
2012-01-01
This study was designed for two major goals, which are to describe students' mental models about atom concept from 6th to 8th grade and to compare students' mental models with visual representations of atom in textbooks. Qualitative and quantitative data were collected with 4 open-ended questions including drawings which were quantified using the…
Protein Nano-Object Integrator (ProNOI for generating atomic style objects for molecular modeling
Directory of Open Access Journals (Sweden)
Smith Nicholas
2012-12-01
Full Text Available Abstract Background With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system. Results Here we report the Protein Nano-Object Integrator (ProNOI which allows for generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited number of objects can be created and combined with biological macromolecules in Protein Data Bank (PDB format file. Once the objects are generated, the users can use sliders to manipulate their shape, dimension and absolute position. In addition, the software offers the option to charge the objects with either specified surface or volumetric charge density and to model them with user-desired dielectric constants. According to the user preference, the biological macromolecule atoms can be assigned charges and radii according to four different force fields: Amber, Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are exported as a position, charge and radius (PQR file, or if a default dielectric constant distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE file. As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge densities and holds the barnase-barstar protein complex in its hand. Conclusions The Protein Nano-Object Integrator (ProNOI is a convenient tool for
International Nuclear Information System (INIS)
Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.
2014-10-01
Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)
Energy Technology Data Exchange (ETDEWEB)
Mishra, R.; Beg, F. N. [Center for Energy Research, University of California, San Diego, California 92093 (United States); Leblanc, P.; Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Wei, M. S. [General Atomics, San Diego, California 92121 (United States)
2013-07-15
Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.
A model for the stabilization of atomic hydrogen centers in borate glasses
International Nuclear Information System (INIS)
Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.
1989-04-01
A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)
Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.
2018-01-01
This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O + H → OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O + O → O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is
Finite-temperature stress calculations in atomic models using moments of position
Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi
2018-07-01
Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.
Niels Bohr and the Atomic Structure
Indian Academy of Sciences (India)
IAS Admin
principle with the restriction that no more than two electrons occupy a given ... displacement laws. Early in his ... The only difference between them is their atomic weight. F Soddy ... validity, Bohr took his theory to Rutherford. Unfortunately,.
Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?
Niaz, Mansoor; Cardellini, Liberato
2011-12-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.
Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling
Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.
2004-01-01
Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).
International Nuclear Information System (INIS)
Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.
1993-01-01
In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Auger, P; Pareige, P [Rouen Univ., 76 - Mont-Saint-Aignan (France); Akamatsu, M; Van Duysen, J C [Electricite de France (EDF), 77 - Ecuelles (France)
1994-12-31
In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ``clouds`` more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs.
Characterization of atom clusters in irradiated pressure vessel steels and model alloys
International Nuclear Information System (INIS)
Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.
1993-12-01
In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs
A distributed atomic physics database and modeling system for plasma spectroscopy
International Nuclear Information System (INIS)
Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W.; Salter, J.M.
1995-08-01
We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community
Bakowies, Dirk
2009-04-01
A theoretical composite approach, termed ATOMIC for Ab initio Thermochemistry using Optimal-balance Models with Isodesmic Corrections, is introduced for the calculation of molecular atomization energies and enthalpies of formation. Care is taken to achieve optimal balance in accuracy and cost between the various components contributing to high-level estimates of the fully correlated energy at the infinite-basis-set limit. To this end, the energy at the coupled-cluster level of theory including single, double, and quasiperturbational triple excitations is decomposed into Hartree-Fock, low-order correlation (MP2, CCSD), and connected-triples contributions and into valence-shell and core contributions. Statistical analyses for 73 representative neutral closed-shell molecules containing hydrogen and at least three first-row atoms (CNOF) are used to devise basis-set and extrapolation requirements for each of the eight components to maintain a given level of accuracy. Pople's concept of bond-separation reactions is implemented in an ab initio framework, providing for a complete set of high-level precomputed isodesmic corrections which can be used for any molecule for which a valence structure can be drawn. Use of these corrections is shown to lower basis-set requirements dramatically for each of the eight components of the composite model. A hierarchy of three levels is suggested for isodesmically corrected composite models which reproduce atomization energies at the reference level of theory to within 0.1 kcal/mol (A), 0.3 kcal/mol (B), and 1 kcal/mol (C). Large-scale statistical analysis shows that corrections beyond the CCSD(T) reference level of theory, including coupled-cluster theory with fully relaxed connected triple and quadruple excitations, first-order relativistic and diagonal Born-Oppenheimer corrections can normally be dealt with using a greatly simplified model that assumes thermoneutral bond-separation reactions and that reduces the estimate of these
International Nuclear Information System (INIS)
Errea, L.F.; Mendez, L.; Riera, A.
1991-01-01
To offset the defective behavior of the molecular method of atomic collisions at intermediate energies, we propose a method to approximate the probability flux towards continuum and discrete states not included in the molecular basis. We check the degree of accuracy and limitations of the method for a model case where transition probabilities can be calculated exactly. An application to the benchmark case of He + +H + collisions is also presented, and yields complementary information on the properties of this approach
A quasi-stationary numerical model of atomized metal droplets, II: Prediction and assessment
DEFF Research Database (Denmark)
Pryds, Nini H.; Hattel, Jesper Henri; Thorborg, Jesper
1999-01-01
been illustrated.A comparison between the numerical model and the experimental results shows an excellent agreement and demonstrates the validity of the present model, e.g. the calculated gas temperature which has an important influence on the droplet solidification behaviour as well as the calculated......A new model which extends previous studies and includes the interaction between enveloping gas and an array of droplets has been developed and presented in a previous paper. The model incorporates the probability density function of atomized metallic droplets into the heat transfer equations....... The main thrust of the model is that the gas temperature was not predetermined and calculated empirically but calculated numerically based on heat balance consideration. In this paper, the accuracy of the numerical model and the applicability of the model as a predictive tool have been investigated...
Stimulated transitions in resonant atom Majorana mixing
Bernabéu, José; Segarra, Alejandro
2018-02-01
Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Δ L = 2 mixing between a parent A Z atom and a daughter A ( Z - 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant "stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.
Reduced order dynamic model for polysaccharides molecule attached to an atomic force microscope
International Nuclear Information System (INIS)
Tang Deman; Li Aiqin; Attar, Peter; Dowell, Earl H.
2004-01-01
A dynamic analysis and numerical simulation has been conducted of a polysaccharides molecular structure (a ten (10) single-α-D-glucose molecule chain) connected to a moving atomic force microscope (AFM). Sinusoidal base excitation of the AFM cantilevered beam is considered. First a linearized perturbation model is constructed for the complex polysaccharides molecular structure. Then reduced order (dynamic) models based upon a proper orthogonal decomposition (POD) technique are constructed using global modes for both the linearized perturbation model and for the full nonlinear model. The agreement between the original and reduced order models (ROM/POD) is very good even when only a few global modes are included in the ROM for either the linear case or for the nonlinear case. The computational advantage of the reduced order model is clear from the results presented
Institute of Scientific and Technical Information of China (English)
李春先; 方卯发
2003-01-01
We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.
Institute of Scientific and Technical Information of China (English)
李春先; 方卯发; 等
2003-01-01
We study the squeezing for a two-level atom in the Jaynes-Cumings model with intensity-dependent coupling using quantum information entropy,and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing.Our results show that,the squeezed component number depends on the atomic initial distribution angle,while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing.Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.
An improved model of fission gas atom transport in irradiated uranium dioxide
Shea, J. H.
2018-04-01
The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.
Double ionization of atoms by ion impact: two-step models
Energy Technology Data Exchange (ETDEWEB)
Fiori, Marcelo [Departamento de Fisica, Universidad Nacional de Salta, Salta (Argentina); Rocha, A B [Instituto de Quimica, Departamento de FIsico-Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ (Brazil); Bielschowsky, C E [Instituto de Quimica, Departamento de FIsico-Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-900, RJ (Brazil); Jalbert, Ginette [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21941-972, RJ (Brazil); Garibotti, C R [CONICET and Centro Atomico Bariloche, 8400 S. C. Bariloche, RIo Negro (Argentina)
2006-04-14
Total cross sections for the double ionization of He and Li atoms by the impact of H{sup +}, He{sup 2+} and Li{sup 3+} are calculated at intermediate and high energies within two-step models. The double ionization of He by the impact of other bare projectiles at a fixed energy is obtained as well. Single ionization probabilities are calculated within the continuum distorted wave -eikonal-initial-state (CDW-EIS) approximation. The required atomic bound and continuum wave functions are evaluated by numerically solving the atomic wave equation with an optimized potential model (OPM). Correlation between events is introduced by considering ion relaxation. The final state electronic correlation is considered by means of the so-called Gamow factor. We compare the transition probabilities resulting from our approach with those resulting from the use of a Rootham-Hartree-Fock initial state and a Coulomb continuum state with an effective charge. We find that the use of OPM waves gives a better agreement with the experimental results than with Coulomb waves.
Modeling of thin films growth processes in the early stage for atoms with covalent bonds
International Nuclear Information System (INIS)
Tupik, V A; Margolin, V I; Su, Chu Trong
2017-01-01
Computer simulation for obtaining thin film’s growth process at an early stage with the proposed model of atoms with isotropic and anisotropic interactions been considered. Carrying out the procedure for analyzing the problem on the basis of the program being implemented, computer simulation of thin film growth processes has been carried out on several examples. The results of computer simulation of the growth process of thin film on a given substrate and an aggregate in a vacuum condition are shown. Some characteristic distributions of the obtained structure have been carried out to evaluate the proposed adequate model and to reflect the high complexity of thin films growth process. (paper)
Energy Technology Data Exchange (ETDEWEB)
Toset, J; Casuso, I; Samitier, J; Gomila, G [Departament d' Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-CREBEC, Parc CientIfic de Barcelona, C/Josep Samitier 1-5, 08028 Barcelona (Spain)
2007-01-10
A model of deflection-voltage curves in atomic force microscopy and its use in DC electrostatic nanomanipulation experiments are presented. The proposed model predicts the deflection of the atomic force microscope probe as a function of the applied probe-substrate voltage, as well as the distance and voltage at which the tip collapses irreversibly onto the substrate due to electrostatic forces. The model is verified experimentally and its use in DC electrostatic manipulation of 25 nm radius gold nanoparticles is demonstrated.
Incorporation of defects into the central atoms model of a metallic glass
International Nuclear Information System (INIS)
Lass, Eric A.; Zhu Aiwu; Shiflet, G.J.; Joseph Poon, S.
2011-01-01
The central atoms model (CAM) of a metallic glass is extended to incorporate thermodynamically stable defects, similar to vacancies in a crystalline solid, within the amorphous structure. A bond deficiency (BD), which is the proposed defect present in all metallic glasses, is introduced into the CAM equations. Like vacancies in a crystalline solid, BDs are thermodynamically stable entities because of the increase in entropy associated with their creation, and there is an equilibrium concentration present in the glassy phase. When applied to Cu-Zr and Ni-Zr binary metallic glasses, the concentration of thermally induced BDs surrounding Zr atoms reaches a relatively constant value at the glass transition temperature, regardless of composition within a given glass system. Using this 'critical' defect concentration, the predicted temperatures at which the glass transition is expected to occur are in good agreement with the experimentally determined glass transition temperatures for both alloy systems.
International Nuclear Information System (INIS)
Silfvast, W.T.; Wood, O.R. II; Al-Salameh, D.Y.
1986-01-01
The two-electron (shake-up) photoionization process has been shown to be an effective mechanism for producing large population inversions in He/sup +/ with gain at 164 nm and in Ar/sup +/ with gain at 428 and 477 nm and for observing the first autoionizing states in Cd/sup +/. Such a mechanism was recently proposed as an excitation mechanism for a VUV laser in lithium. In each species the rapid excitation and detection using broadband emission from a 30-mJ 100-ps duration laser-produced plasma and a detection system with subnanosecond time resolution were essential in observing these effects. In He, gains of up to 0.8 cm/sup -1/ for durations of 2-4 ns at 164.0 nm on the He-like (n = 3-2) transition in He/sup +/ were measured by comparing the plasma emission from a well-defined volume with and without the presence of a mirror of known reflectivity. The n = 3 upper laser level is pumped not only directly via two-electron photoionization from the neutral ground state but also indirectly (in times of the order of 1-2 ns) via electron collisions from photoionization-pumped higher-lying levels. The decay rate of the photoionization-pumped radiation-trapped lower laser level is increased by a unique process involving absorption of radiation via photoionization of ground state neutral helium atoms
A model-free description of the experience of the Japanese atomic bomb survivors
International Nuclear Information System (INIS)
Zaider, M.; Brenner, D.J.
1985-01-01
The effects of low doses of radiation on human populations are primarily evaluated from the experience of the Japanese atomic bomb survivors. Most evaluations performed to date have in common: a) the use of a parametric model for estimating risks, and b) factorizing, in the model, the time post-exposure and dose dependencies. Since there is very little theoretical understanding of carcinogenesis the choice of any one model is arbitrary. Furthermore different models make risk predictions which might differ by factors as large as 100. The Japanese data base is analyzed here using non-parametric monotonic regression methods. These methods make use of only one assumption, namely that the effect is monotonically changing with its covariates (neutron and gamma dose, and time). With these mild restrictions, model-free risk predictions are made of the risks of being irradiated with indirectly ionizing radiation, whether singly or in combination
Models of the atomic nucleus. Unification through a lattice of nucleons. 2. ed.
International Nuclear Information System (INIS)
Cook, Norman D.
2010-01-01
This book-and-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously 'nonvisual' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on extras.springer.com. This new edition has been updated completely and expanded to cover recent developments in low energy nuclear reactions (LENR), and to show how the fcc nucleon lattice explains both the asymmetric fragments produced by the fission of Uranium and the symmetric fragments produced by the fission of Palladium. The associated software to visualize the models of atomic nuclei had been rewritten and updated to include all new developments. (orig.)
Models of the atomic nucleus. Unification through a lattice of nucleons. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Cook, Norman D. [Kansai Univ., Osaka (Japan). Dept. Informatics
2010-07-01
This book-and-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously 'nonvisual' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on extras.springer.com. This new edition has been updated completely and expanded to cover recent developments in low energy nuclear reactions (LENR), and to show how the fcc nucleon lattice explains both the asymmetric fragments produced by the fission of Uranium and the symmetric fragments produced by the fission of Palladium. The associated software to visualize the models of atomic nuclei had been rewritten and updated to include all new developments. (orig.)
Two-electrons quantum dot in plasmas under the external fields
Bahar, M. K.; Soylu, A.
2018-02-01
In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.
Modelling and simulation of lamp-pumped thallium atomic line filters
International Nuclear Information System (INIS)
Molisch, A.F.
1994-06-01
Atomic Line Filters (ALFs) are ultra-narrow-band, wide-field-of-view optical filters for the detection of weak optical signals embedded in broadband background noise. The central component is a quartz cell filled with atomic vapor where signal photons are absorbed and subsequently re-emitted at a different wavelength. At the 'Institut fuer Nachrichtentechnik und Hochfrequenztechnik', an ALF based on Thallium (Tl) vapor, which is pumped by a Tl spectral lamp, has been under development. The aim of this thesis is to model the physical processes in this filter (especially in the vapor cell) and to make simulations in order to find the optimum design. For this purpose, a theoretical 'toolbox' is to be created, which should be capable of describing quantitatively the various physical effects. The accuracy of the simulation should be about ±10 %, i.e. about the accuracy of the available atomic data. In part I, the physics that form the basis of ALFs are briefly explained. In chapter 1, the principle of an ALF is explained, and the parameters that describe such filters are defined. In the next two chapters, atomic energy levels and atomic line shapes are described. We then summarize the data of the UV and green resonance lines of Thallium. After giving an overview over the methods of description for trapping problems, (Holstein equation, equation-of-radiative-transfer plus rate-equation, Monte Carlo simulation), we describe the (generalized) Milne theory, an approximate method which allows a description of trapping by a differential equation. In part II, we then make use of these formalisms to describe the Tl ALF mathematically. After giving a description of the whole filter system, we show the various influences on the lifetime of the metastable Tl atoms. Then the pump phase of the filter is described. In that phase, we have non-linear trapping in a 3-level system. This problem is solved by a combination of finite-difference solution of the equation of radiative
The A Theory Of Magnitude (ATOM) model in temporal perception and reproduction tasks.
Fabbri, Marco; Cancellieri, Jennifer; Natale, Vincenzo
2012-01-01
According to the A Theory of Magnitude (ATOM) model, time, numbers and space are processed by a common analog magnitude system. The model proposes that time, numbers and space are influenced by each other. Indeed, spatial-temporal (STEARC effect), spatial-numerical (SNARC effect) and temporal-numerical (TiNARC effect) interactions have been observed. However, the processing of time, numbers and space has not yet been studied within the same experimental procedure. The goal of this study is to test the ATOM model using a procedure in which time, numbers and space are all present. The participants were asked to perform temporal estimation (Experiment 1) and reproduction (Experiment 2) tasks in two different conditions, with either numbers or letters as stimuli. In Experiment 1, significant STEARC, SNARC and TiNARC effects were found in general and when numbers were presented. Moreover, a significant triple interaction between space, time and magnitude was observed, indicating associations between the left key, short duration and small magnitudes, as well as between the right key, long duration and large magnitudes. These results were similar in reaction times and accuracy. In Experiment 2, the results of reproduction times mirrored the previous data but the triple interaction was not found on reproduction times. Considering the temporal accuracy, the STEARC, SNARC and TiNARC effects as well as triple interaction were found. The results seem to partially confirm the ATOM model, even if differences between temporal tasks should be posited. Copyright © 2011 Elsevier B.V. All rights reserved.
Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter
2015-06-01
Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.
International Nuclear Information System (INIS)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-01
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
From deep TLS validation to ensembles of atomic models built from elemental motions
International Nuclear Information System (INIS)
Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.
2015-01-01
Procedures are described for extracting the vibration and libration parameters corresponding to a given set of TLS matrices and their simultaneous validation. Knowledge of these parameters allows the generation of structural ensembles corresponding to these matrices. The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project
From deep TLS validation to ensembles of atomic models built from elemental motions
Energy Technology Data Exchange (ETDEWEB)
Urzhumtsev, Alexandre, E-mail: sacha@igbmc.fr [Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy (France); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Van Benschoten, Andrew H.; Fraser, James S. [University of California, San Francisco, San Francisco, CA 94158 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); University of California Berkeley, Berkeley, CA 94720 (United States); Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France)
2015-07-28
Procedures are described for extracting the vibration and libration parameters corresponding to a given set of TLS matrices and their simultaneous validation. Knowledge of these parameters allows the generation of structural ensembles corresponding to these matrices. The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.
Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D
2015-12-01
An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
Realistic Gamow shell model for resonance and continuum in atomic nuclei
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.
2018-05-01
Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.
Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale.
Groß, Axel
2018-04-23
There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on first-principles electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.
Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)
Energy Technology Data Exchange (ETDEWEB)
Holland, Christopher [Univ. of California, San Diego, CA (United States); Orlov, Dmitri [Univ. of California, San Diego, CA (United States); Izzo, Valerie [Univ. of California, San Diego, CA (United States)
2018-02-05
This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.
Valentin, Jan B; Andreetta, Christian; Boomsma, Wouter; Bottaro, Sandro; Ferkinghoff-Borg, Jesper; Frellsen, Jes; Mardia, Kanti V; Tian, Pengfei; Hamelryck, Thomas
2014-02-01
We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. Copyright © 2013 Wiley Periodicals, Inc.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms
Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.
2018-04-01
We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M.; Vargas, Rubicelia; Garza, Jorge, E-mail: jgo@xanum.uam.mx [Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa C. P. 09340, México D. F., México (Mexico)
2015-07-21
In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.
Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M; Vargas, Rubicelia; Garza, Jorge
2015-07-21
In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.
Lu, Shih-I.
2018-01-01
We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.
A cluster expansion model for predicting activation barrier of atomic processes
International Nuclear Information System (INIS)
Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit
2013-01-01
We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog
On the enhancement of the back-to-back two-electron-one photon ionization in molecules
Amusia, Miron; Drukarev, Eugene
2014-05-01
Recently, the long ago predicted quasi-free mechanism of two-electron photoionization was detected already at relatively low energy photoionization in He. It was observed that some pairs of electrons are leaving the target atom back-to-back, i.e. in opposite direction with almost the same energy. They have opposite spin directions. The cross-section of this process depends upon the probability for a pair of electrons to be close to each other before meeting the incoming photon. Such probability is greatly enhanced in molecules with covalent bonding, like H2. In this and similar molecules the electrons spend an essential part of time being between nuclei and thus screening them from each other. We demonstrate that indeed the back-to-back contribution is much bigger in H2 than in He. We analyze qualitatively some other situations that lead to relative growth of back-to-back contribution. Atoms with electrons with bigger principal quantum numbers have bigger back-to-back contributions. An external pressure applied to molecules forces electrons to be closer to each other. As a result for them the back-to-back contribution can be controllable enhanced.
Directory of Open Access Journals (Sweden)
Nuri Yazdani
2014-03-01
Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.
Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo
2014-01-01
Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.
Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor
Directory of Open Access Journals (Sweden)
Curtisha D. Travis
2013-08-01
Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.
Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models
Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.
2018-02-01
We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.
Energy Technology Data Exchange (ETDEWEB)
Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Sherrill, M. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Brown, C. R. D.; Morton, J. W. [AWE Aldermaston, Berkshire, Reading RG7 4PR (United Kingdom); Hager, J. D. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Lockheed-Martin, 497 Electronics Parkway, Syracuse, New York 13221 (United States)
2016-11-15
We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T{sub e} changes of ∼3 eV.
Small atoms in superstrong magnetic fields
International Nuclear Information System (INIS)
Jones, M.D.; Ortiz, G.
1996-01-01
The authors have investigated the ground and excited state properties of two electron atoms using their Fixed-Phase method, including an analysis of exchange and correlation. They present results of their calculations with a trial phase which corresponds to the atomic Hartree-Fock one
Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei
2015-12-28
Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.
Electron excitation of alkali atoms
International Nuclear Information System (INIS)
Ormonde, S.
1979-02-01
The development and testing of a synthesized close-coupling effective model potential ten-channel electron-atom scattering code and some preliminary calculations of resonances in cross sections for the excitation of excited states of potassium by low energy electrons are described. The main results obtained are: identification of 1 S and 1 D structures in excitation cross sections below the 5 2 S threshold of neutral potassium; indications of additional structures - 1 P and 1 D between the 5 2 S and 5 2 D thresholds; and a suggested explanation of anomalously high interstate-electron impact excitation cross sections inferred from experiments on potassium-seeded plasmas. The effective potential model imbedded in the code can be used to simulate any atomic system that can be approximated by a single bound electron outside an ionic core. All that is needed is a set of effective potential parameters--experimental or theoretical. With minor modifications the code could be adapted to calculations of electron scattering by two-electron systems
International Nuclear Information System (INIS)
Quinn, C.M.; Schwartz, M.E.
1981-01-01
The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory
The Pre-Service Science Teachers' Mental Models for Concept of Atoms and Learning Difficulties
Kiray, Seyit Ahmet
2016-01-01
The purpose of this study is to reveal the pre-service science teachers' difficulties about the concept of atoms. The data was collected from two different sources: The Draw an Atom Test (DAAT) and face-to-face interviews. Draw an atom test (DAAT) were administered to the 142 science teacher candidates. To elaborate the results, the researcher…
Diffuse versus square-well confining potentials in modelling A-C60 atoms
International Nuclear Information System (INIS)
Dolmatov, V K; King, J L; Oglesby, J C
2012-01-01
A perceived advantage for the replacement of a discontinuous square-well pseudo-potential, which is often used by various researchers as an approximation to the actual C 60 cage potential in calculations of endohedral atoms A-C 60 , by a more realistic diffuse potential is explored. The photoionization of endohedral H-C 60 and Xe-C 60 is chosen as the case study. The diffuse potential is modelled by a combination of two Woods-Saxon potentials. It is demonstrated that photoionization spectra of A-C 60 atoms are largely insensitive to the degree η of diffuseness of the potential borders, in a reasonably broad range of ηs. These spectra are found to be insensitive to discontinuity of the square-well potential as well. Both potentials result in practically identical calculated spectra. New numerical values for the set of square-well parameters, which lead to a better agreement between experimental and theoretical data for A-C 60 spectra, are recommended for future studies. (paper)
Non-local correlation and quantum discord in two atoms in the non-degenerate model
International Nuclear Information System (INIS)
Mohamed, A.-B.A.
2012-01-01
By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis–Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole–dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole–dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: ► Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. ► There is no asymptotic decay for MIN while asymptotic decay exists for GQD. ► Quantum correlations can be strengthened by introducing the dipole–dipole interaction. ► There exists not only quantum nonlocality without entanglement but also without discord. ► Weak initial entanglement leads to MIN and entanglement in intervals of death discord.
How Sommerfeld extended Bohr's model of the atom (1913-1916)
Eckert, Michael
2014-04-01
Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.
HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
International Nuclear Information System (INIS)
MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.
2006-01-01
HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations
Deformed model Sp(4) model for studying pairing correlations in atomic nuclei
Georgieva, A I; Sviratcheva, K
2002-01-01
A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom
Dynamics in ion-molecule collisions at high velocities: One- and two-electron processes
International Nuclear Information System (INIS)
Wang, Yudong.
1992-01-01
This dissertation addresses the dynamic interactions in ion-molecule collisions. Theoretical methods are developed for single and multiple electron transitions in fast collisions with diatomic molecules by heavy-ion projectiles. Various theories and models are developed to treat the three basic inelastic processes (excitation, ionization and charge transfer) involving one and more electrons. The development, incorporating the understanding of ion-atom collision theories with some unique characteristics for molecular targets, provides new insights into phenomena that are absent from collisions with atomic targets. The influence from the multiple scattering centers on collision dynamics is assessed. For diatomic molecules, effects due to a fixed molecular orientation or alignment are calculated and compared with available experimental observations. Compared with excitation and ionization, electron capture, which probes deeper into the target, presents significant two-center interference and strong orientation dependence. Attention has been given in this dissertation to exploring mechanisms for two-and multiple electron transitions. Application of independent electron approximation to transfer excitation from molecular hydrogen is studied. Electron-electron interaction originated from projectile and target nuclear centers is studied in conjunction with the molecular nature of target. Limitations of the present theories and models as well as possible new areas for future theoretical and experimental applications are also discussed. This is the first attempt to describe multi-electron processes in molecular dynamics involving fast highly charged ions
Akaygun, Sevil
2016-01-01
Visualizing the chemical structure and dynamics of particles has been challenging for many students; therefore, various visualizations and tools have been used in chemistry education. For science educators, it has been important to understand how students visualize and represent particular phenomena--i.e., their mental models-- to design more…
International Nuclear Information System (INIS)
Braams, B.J.
2012-03-01
The Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data was held from 23-27 January 2012 at Abdus Salam International Centre for Theoretical Physics in Trieste, Italy. Ten lecturers presented tutorials and reviews on topics in fusion plasma modelling and atomic, molecular and plasma-material interaction processes. There were 20 participants, generally early-career researchers in the area of A+M+PMI processes and also plasma modellers. The participants presented their work in short talks and a poster session. The proceedings of the workshop are summarized here. (author)
Self-consistent finite-temperature model of atom-laser coherence properties
International Nuclear Information System (INIS)
Fergusson, J.R.; Geddes, A.J.; Hutchinson, D.A.W.
2005-01-01
We present a mean-field model of a continuous-wave atom laser with Raman output coupling. The noncondensate is pumped at a fixed input rate which, in turn, pumps the condensate through a two-body scattering process obeying the Fermi golden rule. The gas is then coupled out by a Gaussian beam from the system, and the temperature and particle number are self-consistently evaluated against equilibrium constraints. We observe the dependence of the second-order coherence of the output upon the width of the output-coupling beam, and note that even in the presence of a highly coherent trapped gas, perfect coherence of the output matter wave is not guaranteed
Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic-scale modelling
International Nuclear Information System (INIS)
Osetsky, Yu.N.; Stoller, R.E.; Matsukawa, Y.
2004-01-01
The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, ∼100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations
Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments
Xie, Hui; Régnier, Stéphane; Sitti, Metin
2012-01-01
The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.
Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model
Links, Jon; Shen, Yibing
2018-05-01
We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.
Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels
Energy Technology Data Exchange (ETDEWEB)
Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)
2015-11-15
For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.
New method of ionization energy calculation for two-electron ions
International Nuclear Information System (INIS)
Ershov, D.K.
1997-01-01
A new method for calculation of the ionization energy of two-electron ions is proposed. The method is based on the calculation of the energy of second electron interaction with the field of an one-electron ion the potential of which is well known
Bridge mediated two-electron transfer reactions: Analysis of stepwise and concerted pathways
International Nuclear Information System (INIS)
Petrov, E.G.; May, V.
2004-01-01
A theory of nonadiabatic donor (D)-acceptor (A) two-electron transfer (TET) mediated by a single regular bridge (B) is developed. The presence of different intermediate two-electron states connecting the reactant state D -- BA with the product state DBA -- results in complex multiexponential kinetics. The conditions are discussed at which a reduction to two-exponential as well as single-exponential kinetics becomes possible. For the latter case the rate K TET is calculated, which describes the bridge-mediated reaction as an effective two-electron D-A transfer. In the limit of small populations of the intermediate TET states D - B - A, DB -- A, D - BA - , and DB - A - , K TET is obtained as a sum of the rates K TET (step) and K TET (sup) . The first rate describes stepwise TET originated by transitions of a single electron. It starts at D -- BA and reaches DBA -- via the intermediate state D - BA - . These transitions cover contributions from sequential as well as superexchange reactions all including reduced bridge states. In contrast, a specific two-electron superexchange mechanism from D -- BA to DBA -- defines K TET (sup) . An analytic dependence of K TET (step) and K TET (sup) on the number of bridging units is presented and different regimes of D-A TET are studied
Are we ready to test QED in two-electron ions
International Nuclear Information System (INIS)
Ermolaev, A.M.
1981-01-01
The great improvement on the accuracy of the measured transition intervals in two-electron ions achieved recently is discussed with reference to reports of Berry (ANL) and Silver (Oxford) on the precision determination of the 2s 3 S 1 - 2p 3 P/sub J/, J = 0, and 2, intervals in the ions with intermediate Z
Bell-Nonlocality Dynamics of Three Remote Atoms in Tavis—Cummings and Jaynes—Cummings Models
International Nuclear Information System (INIS)
Zhen Xiu-Lan; Yang Qing; Yang Ming; Cao Zhuo-Liang
2014-01-01
We study the Bell-nonlocality dynamics of three remote atoms, two of which are trapped in one single-mode cavity and the third atom is trapped in another remote single-mode cavity. The interactions between the atoms and the cavity modes are studied via Tavis Cummings and Jaynes Cummings models. Here, the two single-mode cavities are introduced to simulate two different enviroments of the three atoms. The tripartite nonlocal correlations are studied in terms of the Svetlichny inequality and the WWZB inequality, respectively. The results show that the tripartite Bell-nonlocality sudden death will occur for the W state and GHZ state initial conditions. The detailed results demonstrate that the tripartite nonlocality of GHZ state is more robust than that of W state when suffering from the effect of environments. (general)
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto
2000-12-01
The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.
International Nuclear Information System (INIS)
Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Roelof, E.C.
1997-01-01
Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies
A quasi-stationary numerical model of atomized metal droplets, I: Model formulation
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Pryds, Nini H; Thorborg, Jesper
1999-01-01
A mathematical model for accelerating powder particles by a gas and for their thermal behavior during flight has been developed. Usually, dealing with the solidification of metal droplets, the interaction between an array of droplets and the surrounding gas is not integrated into the modeling...
Angular momentum branching ratios for electron-induced ionization: Atomic and model calculations
International Nuclear Information System (INIS)
Mehl, M.J.; Einstein, T.L.
1987-01-01
We present calculations of the matrix elements for electron-induced ionization of core electrons of atoms. We use both self-consistent atomic potentials for accuracy and model potentials to gain physical insight. We pay particular attention to the angular momentum distribution of the two final-state electrons, especially when one of them lies near what would be the Fermi energy in a solid (i.e., as in an absorption fine-structure experiment). For nodeless core wave functions, in the dominant channel both final-state electrons have angular momentum one greater than that of the initial core state. For sufficiently deeply bound states, this first approximate selection rule holds until the incident electron energy exceeds the ionization threshold by at least 500 eV, i.e., over the experimentally relevant range. It is also possible to determine the angular momentum distribution of the final-state electron. The EXAFS-like electron tends to have angular momentum one greater than that of the initial core state, even in some cases where the first approximate selection rule does not hold. (EXAFS is extended x-ray-absorption fine structure.) The strongest trend is that the dipole component in a partial-wave expansion of the Coulomb interaction dominates the matrix element. In these studies, careful treatment of not just the core state but also the unbound states is crucial; we show that the conventional orthogonalized plane-wave approximation is inadequate, giving incorrect ordering of the channels. For model potentials with an adjustable screening length, low-lying bound resonances are found to play an important role
Filinov, A.; Bonitz, M.; Loffhagen, D.
2018-06-01
A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.
International Nuclear Information System (INIS)
Bogaerts, Annemie; Okhrimovskyy, Andriy; Baguer, Neyda; Gijbels, Renaat
2005-01-01
A model is developed for a cylindrical hollow cathode discharge (HCD), with an axial gas flow (entering through a hole in the cathode bottom). The model combines a commercial computational fluid dynamics program 'FLUENT' to compute the gas flow, with home-developed Monte Carlo and fluid models for the plasma behaviour. In this paper, we focus on the behaviour of the sputtered atoms, and we investigate how the gas flow affects the sputtered atom density profiles and the fluxes, which is important for sputter deposition. The sputtered atom density profiles are not much affected by the gas flow. The flux, on the other hand, is found to be significantly enhanced by the gas flow, but in the present set-up it is far from uniform in the radial direction at the open end of the HCD, where a substrate for deposition could be located
Bag-model analyses of proton-antiproton scattering and atomic bound states
International Nuclear Information System (INIS)
Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.
1983-01-01
We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal
2017-07-17
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.
International Nuclear Information System (INIS)
Collins, R.; Perez-Martin, A.M.C.; Dominguez-Vazquez, J.; Jimenez-Rodriguez, J.J.
1994-01-01
A simple model for three-dimensional material relaxation associated with atomic mixing is presented. The relaxation of the solid to accommodate the extra effective displacement volume Ω of an implanted or relocated atom is modelled by treating the surrounding solid as an incompressible medium. This leads to a tractable general formalism which can be used to predict implant distribution and changes in surface topography induced by ion beams, both in monatomic and multicomponent targets. The two-component case is discussed in detail. (orig.)
International Nuclear Information System (INIS)
Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.
2014-01-01
We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained
Protein folding simulations: from coarse-grained model to all-atom model.
Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei
2009-06-01
Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL
International Nuclear Information System (INIS)
Wells, E.; Carnes, K.D.; Tawara, H.; Ali, R.; Sidky, Emil Y.; Illescas, Clara; Ben-Itzhak, I.
2005-01-01
A coincidence time-of-flight technique coupled with projectile charge state analysis was used to study electron capture in collisions between slow highly charged ions and hydrogen molecules. We found single electron capture with no target excitation to be the dominant process for both C 6+ projectiles at a velocity of 0.8 atomic units and Ar 11+ projectiles at v 0.63 a.u. Double electron capture and transfer excitation, however, were found to be comparable and occur about 30% of the time relative to single capture. Most projectiles (96%) auto-ionize quickly following double capture into doubly excited states. The data are compared to classical and quantum mechanical model calculations
Adsorption of metal atoms at a buckled graphene grain boundary using model potentials
International Nuclear Information System (INIS)
Helgee, Edit E.; Isacsson, Andreas
2016-01-01
Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable
Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li
2014-01-01
Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.
Cantrell, John H., Jr.; Cantrell, Sean A.
2008-01-01
A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.
Prather, M. J.; Flynn, C.; Wennberg, P. O.; Kim, M. J.; Ryerson, T. B.; Hanisco, T. F.; Diskin, G. S.; Daube, B. C.; Commane, R.; McKain, K.; Apel, E. C.; Blake, N. J.; Blake, D. R.; Elkins, J. W.; Hall, S.; Steenrod, S.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Murray, L. T.; Mao, J.; Shindell, D. T.; Wofsy, S. C.
2017-12-01
The NASA Atmospheric Tomography Mission (ATom) is building a photochemical climatology of the remote troposphere based on objective sampling and profiling transects over the Pacific and Atlantic Oceans. These statistics provide direct tests of chemistry-climate models. The choice of species focuses on those controlling primary reactivity (a.k.a. oxidative state) of the troposphere, specifically chemical tendencies of O3 and CH4. These key species include, inter alia, O3, CH4, CO, C2H6, other alkanes, alkenes, aromatics, NOx, HNO3, HO2NO2, PAN, other organic nitrates, H2O, HCHO, H2O2, CH3OOH. Three of the four ATom deployments are now complete, and data from the first two (ATom-1 & -2) have been released as of this talk (see espoarchive.nasa.gov/archive/browse/atom). The statistical distributions of key species are presented as 1D and 2D probability densities (PDs) and we focus here on the tropical and mid-latitude regions of the Pacific during ATom-1 (Aug) and -2 (Feb). PDs are computed from ATom observations and 6 global chemistry models over the tropospheric depth (0-12 km) and longitudinal extent of the observations. All data are weighted to achieve equal mass-weighting by latitude regimes to account for spatial sampling biases. The models are used to calculate the reactivity in each ATom air parcel. Reweighting parcels with loss of CH4 or production of O3, for example, allows us to identify which air parcels are most influential, including assessment of the importance of fine pollution layers in the most remote troposphere. Another photochemical climatology developed from ATom, and used to test models, includes the effect of clouds on photolysis rates. The PDs and reactivity-weighted PDs reveal important seasonal differences and similarities between the two campaigns and also show which species may be most important in controlling reactivities. They clearly identify some very specific failings in the modeled climatologies and help us evaluate the chemical
Dynamical localization of two electrons in triple-quantum-dot shuttles
International Nuclear Information System (INIS)
Qu, Jinxian; Duan, Suqing; Yang, Ning
2012-01-01
The dynamical localization phenomena in two-electron quantum-dot shuttles driven by an ac field have been investigated and analyzed by the Floquet theory. The dynamical localization occurs near the anti-crossings in Floquet eigenenergy spectrum. The oscillation of the quantum-dot shuttles may increase the possibility of the dynamical localization. Especially, even if the two electrons are initialized in two neighbor dots, they can be localized there for appropriate intensity of the driven field. The studies may help the understanding of dynamical localization in electron shuttles and expand the application potential of nanoelectromechanical devices. -- Highlights: ► The dynamical localization in electron shuttle is studied by Floquet theory. ► There is a relation between quasi-energy anti-crossings and dynamical localization. ► The oscillation of quantum dot increases the dynamical localization. ► Even the electrons are initialized in different dots, the localization can occur.
Exact exchange-correlation potentials of singlet two-electron systems
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Space-group approach to two-electron states in unconventional superconductors
International Nuclear Information System (INIS)
Yarzhemsky, V. G.
2008-01-01
The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPt 3 only theoretical nodal structure of IR E 2u is in agreement with all the experimental results. On the other hand, in the case of high-T c superconductors the two electron description of Cooper pairs in D 2h symmetry is not sufficient to describe experimental nodal structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron states and hidden symmetry D-4 h . (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Mulder, David W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; King, Paul W. [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Peters, John W. [Institute; Beratan, David N. [Department
2017-08-23
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.
International Nuclear Information System (INIS)
Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris
2014-01-01
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired
Energy Technology Data Exchange (ETDEWEB)
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing
2015-06-14
32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.
International Nuclear Information System (INIS)
Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang
2012-01-01
Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.
Explicit all-atom modeling of realistically sized ligand-capped nanocrystals
Kaushik, Ananth P.; Clancy, Paulette
2012-01-01
We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well
Atomic spin-chain realization of a model for quantum criticality
Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.
The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be
A model for the interaction between F centers and H atoms in ionic crystals
International Nuclear Information System (INIS)
Dumke, V.R.; Souza, M. de
1975-01-01
The interaction between an F center and neutral hydrogen atoms, the most simple paramagnetic defects in ionic crystals, is described in terms of a perturbation theory of two square potential wells. The good agreement with experimental data indicates that lattice distortion due to the presence of the hydrogen atoms is negligible [pt
Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium
Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen
2017-01-01
Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...
Ion emission from laser-produced plasmas with two electron temperatures
International Nuclear Information System (INIS)
Wickens, L.M.; Allen, J.E.; Rumsby, P.T.
1978-01-01
An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented
Electron spectroscopy of collisional excited atoms
International Nuclear Information System (INIS)
Straten, P. van der.
1987-01-01
In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li + -He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li + -He system are erroneously interpretated as a result of electron emission from the (Li-He) + -quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs
Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.
Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki
2016-01-07
Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.
Gillen, D R; Goelich,
2002-01-01
Non-resonant multiphoton ionisation combined with quadrupole and time-of-flight analysis has been used to measure energy distributions of sputtered copper atoms. The sputtering of a polycrystalline copper target by 3.6 keV Ar sup + , N sup + and CF sub 2 sup + and 1.8 keV N sup + and CF sub 2 sup + ion bombardment at 45 deg. has been investigated. The linear collision model in the isotropic limit fails to describe the high energy tail of the energy distributions. However the TRIM.SP computer simulation has been shown to provide a good description. The results indicate that an accurate description of sputtering by low energy, molecular ions requires the use of computer simulation rather than analytical approaches. This is particularly important when considering plasma-surface interactions in plasma etching and deposition systems.
Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom
Clark, Ted M.; Chamberlain, Julia M.
2014-01-01
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Farina, William J., Jr.; Bodzin, Alec M.
2018-01-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified…
Prayekti
2017-01-01
This research was aimed at developing printed teaching materials of Atomic Physics PEFI4421 Course using Research and Development (R & D) model; which consisted of three major set of activities. The first set consisted of seven stages, the second set consisted of one stage, and the third set consisted of seven stages. This research study was…
Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín
2016-01-01
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…
Modeling and simulation of the atomization process in the ceramic tile industry
International Nuclear Information System (INIS)
Favalli, Renata Cristina
2002-01-01
The aim of the present work is to numerically simulate the behaviour of the drying system for several sets of operating conditions in order to improve and optimize this process. However, the mathematical modeling adopted here can be employed to simulate other systems such as the processes that occur in liquid-fueled engines with direct spray injection and ceramic spraying for hard surfacing. Then, mathematical and physical models were established to simulate the interaction of continuous and disperse phases in drying processes of ceramic slurries. Solving the set of governing coupled partial differential equations, it is possible to study the influence of drying air on the atomized droplets of alumina slurry, and vice-versa. The materials used as continuous and disperse phase, air and alumina slurry respectively, are representative since any kind of gas and slurry can be used if its thermodynamic and transport properties are known. Several experimental tests were carried out in a spray dryer in the 'Laboratorio de Insumos', at IPEN - Instituto de Pesquisas Energeticas e Nucleares for different sets of operating conditions: initial temperature of the drying air, the gas flow rate, the slurry feed rate and atomiser configuration among others. Measurements of the wet and the dry bulb temperatures were made in some experimental tests to allow the calculations of the air humidity. The dynamic pressure were also measured in order to determine the gas flow rate. Some samples of the material used in the tile industry and of the one produced at IPEN were analysed to determine: the morphology of the atomized material and the range of granules diameter through scanning electron microscopy; the amount of pores and the bulk density through porosimetry; the residual moisture of the material through thermogravimetry; and the granulometric distribution of granules and particles through laser diffraction. Important information about the process and the final material are given by
Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models
Energy Technology Data Exchange (ETDEWEB)
Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)
2015-04-14
Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in
International Nuclear Information System (INIS)
Seke, J.; Adam, G.; Soldatov, A.V.; Bogolubov, N.N.
2002-01-01
Full text: The dynamics of a discretized atom-field interaction model with a physically relevant form factor is analyzed. It is shown that after some short time interval only a small fraction of eigenvalues and eigenstates (belonging to the close vicinity of the excited atomic state energy E=ω 0 /2) contributes to the nondecay probability amplitudes in the long-time regime, whereas the contribution of all other eigenstates and eigenvalues is negligible. Nevertheless, to describe correctly the non-Markovian dynamics in the short-time regime the contribution of all eigenstates and eigenvalues must be taken into account. (author)
Phase transitions in an Ising model for monolayers of coadsorbed atoms
International Nuclear Information System (INIS)
Lee, H.H.; Landau, D.P.
1979-01-01
A Monte Carlo method is used to study a simple S=1 Ising (lattice-gas) model appropriate for monolayers composed of two kinds of atoms on cubic metal substrates H = K/sub nn/ Σ/sub nn/ S 2 /sub i/zS 2 /sub j/z + J/sub nnn/ Σ/sub nnn/ S/sub i/zS/sub j/z + Δ Σ/sub i/ S 2 /sub i/z (where nn denotes nearest-neighbor and nnn next-nearest-neighbor pairs). The phase diagram is determined over a wide range of Δ and T for K/sub nn//J/sub nnn/=1/4. For small (or negative) Δ we find an antiferromagnetic 2 x 1 ordered phase separated from the disordered state by a line of second-order phase transitions. The 2 x 1 phase is separated by a line of first-order transitions from a c (2 x 2) phase which appears for larger Δ. The 2 x 1 and c (2 x 2) phases become simultaneously critical at a bicritical point and the phase boundary of the c (2 x 2) → disordered transition shows a tricritical point
Modeling of an atomizer for two fluids; Modelacion de un atomizador de dos fluidos
Energy Technology Data Exchange (ETDEWEB)
Tapia Ramirez, Zoili [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1998-09-01
The work reported in this article presents the results of the effort to improve the basic understanding of the flow structure that is formed in a two fluid sprayer before and after the interaction between the sprayed fluid and the spraying fluid. The images in the interior of the mixing chamber of the atomizer are shown, which were taken with a high velocity video camera. Also the results of the numerical simulation of the internal flow obtained by means of a package of commercial modeling are shown. [Espanol] El trabajo reportado en este articulo presenta los resultados del esfuerzo por mejorar el entendimiento basico de la estructura del flujo que se forma en un atomizador de dos fluidos antes y despues de la interaccion entre el fluido atomizado y el fluido atomizante. Se muestran imagenes del flujo en el interior de la camara de mezclado del atomizador, las cuales fueron tomadas con una camara de video de alta velocidad. Tambien se incluyen los resultados de la simulacion numerica del flujo interno obtenidas por medio de un paquete de modelacion comercial.
Energy Technology Data Exchange (ETDEWEB)
Offner, Stella S. R. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Bisbas, Thomas G.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6B (United Kingdom); Bell, Tom A., E-mail: stella.offner@yale.edu [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, E-28850 Madrid (Spain)
2013-06-10
We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C{sup +}, C, H{sub 2}, and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al., who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H{sub 2} abundances are discrepant in the boundary regions (A{sub v} {<=} 5), which is due to the different number of rays used by the two approaches.
Multielectron effects in atomic processes
International Nuclear Information System (INIS)
Amusia, M.Ya.; Chernysheva, L.V.
1999-01-01
One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru
Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.
2016-01-01
A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229
International Nuclear Information System (INIS)
Whitney, K G; Dasgupta, A; Davis, J; Coverdale, C A
2007-01-01
Two atomic models of the population dynamics of substates within the n 4 and n = 3 multiplets of nickel-like tungsten and beryllium-like iron, respectively, are described in this paper. The flexible atomic code (FAC) is used to calculate the collisional and radiative couplings and energy levels of the excited states within these ionization stages. These atomic models are then placed within larger principal-quantum-number-based ionization dynamic models of both tungsten and iron plasmas. Collisional-radiative equilibrium calculations are then carried out using these models that demonstrate how the multiplet substates depart from local thermodynamic equilibrium (LTE) as a function of ion density. The effect of these deviations from LTE on the radiative and collisional deexcitation rates of lumped 3s, 3p, 3d, 4s, 4p, 4d and 4f states is then calculated and least-squares fits to the density dependence of these lumped-state rate coefficients are obtained. The calculations show that, with the use of lumped-state models (which are in common use), one can accurately model the L- and M-shell ionization dynamics occurring in present-day Z-pinch experiments only through the addition of these extra, non-LTE-induced, rate coefficient density dependences. However, the derivation and use of low-order polynomial fits to these density dependences makes lumped-state modelling both viable and of value for post-processing analyses
International Nuclear Information System (INIS)
Pustovit, A.N.
2006-01-01
A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru
A phenomenological model for collisional coherence transfer in an optically pumped atomic system
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, K; Bevilaqua, G; Mariotti, E; Moi, L [Universita degli Studi di Siena, Siena, 53100 (Italy); Khanbekyan, A; Papoyan, A, E-mail: karen.khanbekyan@gmail.com [Institute for Physical Research, National Academy of Sciences, Ashtarak 2 (Armenia)
2011-03-14
We consider a dual {Lambda}-system under double laser excitation to investigate the possibility of indirect coherence transfer between atomic ground states through an excited state. The atomic system is excited by a frequency modulated pump laser and probed by a low-power cw laser. All the decoherence mechanisms are discussed and taken into account. Adjustment of parameters of the two radiations aimed at maximization of coherence transfer is addressed. The study can help to understand the phenomena as collisional transfer of coherence and can find application in the experimental realization of atomic sensors.
Directory of Open Access Journals (Sweden)
Atsushi M. Ito
2017-08-01
Full Text Available The diffusion process of hydrogen and helium in plasma-facing material depends on the grain boundary structures. Whether a grain boundary accelerates or limits the diffusion speed of these impurity atoms is not well understood. In the present work, we proposed the automatic modeling of a kinetic Monte-Carlo (KMC simulation to treat an asymmetric grain boundary structure that corresponds to target samples used in fusion material experiments for retention and permeation. In this method, local minimum energy sites and migration paths for impurity atoms in the grain boundary structure are automatically found using localized molecular dynamics. The grain boundary structure was generated with the Voronoi diagram. Consequently, we demonstrate that the KMC simulation for the diffusion process of impurity atoms in the generated grain boundary structure of tungsten material can be performed.
International Nuclear Information System (INIS)
Mueller, A.; Wickart, M.; Van Nieuwkoop, R.
2001-01-01
This article is a short version of the ENET number 210359. This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made to assess the economic consequences of two models for the opting out of nuclear energy in Switzerland, as proposed in two popular initiatives. The 'Strom ohne Atom' (electricity without atomic power) initiative calls for the shutting down of the existing nuclear power stations and the 'Moratorium Plus' initiative calls for a stop on the building of new atomic power stations for 10 years. The method used for assessing the costs and benefits resulting if the initiatives were accepted in a public vote is described. Basic assumptions made on further factors concerning the electricity and energy markets are discussed. Results of analyses made for various scenarios with respect to CO 2 emissions are presented and include discussions on risk costs, effects on employment and welfare aspects
International Nuclear Information System (INIS)
Mueller, A.; Wickart, M.; Van Nieuwkoop, R.
2001-01-01
This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made to assess the economic consequences of two models for the opting out of nuclear energy in Switzerland, as proposed in two popular initiatives. The 'Strom ohne Atom' (electricity without atomic power) initiative calls for the shutting down of the existing nuclear power stations and the 'Moratorium Plus' initiative calls for a stop on the building of new atomic power stations for 10 years. The method used for assessing the costs and benefits resulting if the initiatives were accepted in a public vote is described. Basic assumptions made on further factors concerning the electricity and energy markets are discussed. Results of analyses made for various scenarios with respect to CO 2 emissions are presented and include discussions on risk costs, effects on employment and welfare aspects
de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine
2018-03-01
We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.
Microfabricated Waveguide Atom Traps.
Energy Technology Data Exchange (ETDEWEB)
Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.
A Hartree–Fock study of the confined helium atom: Local and global basis set approaches
Energy Technology Data Exchange (ETDEWEB)
Young, Toby D., E-mail: tyoung@ippt.pan.pl [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: jgo@xanum.uam.mx [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)
2016-02-15
Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.
International Nuclear Information System (INIS)
Bose, M.
1989-01-01
It is often found, in fusion devices as well as in the auroral ionosphere, that the electrons consist of two distinct group, viz., hot and cold. These two-temperature electron model is sometimes convenient for analytical purposes. Thus the authors have considered a two-temperature electron plasma. In this paper, they investigated analytically the drift dissipative instabilities of modified electron-acoustic and lower-hybrid wve in a two-electron temperature plasma. It is found that the modified electron-acoustic drift dissipative mode are strongly dependent on the number density of cold electrons. From the expression of the growth rate, it is clear that these cold electrons can control the growth of this mode as well
Directory of Open Access Journals (Sweden)
A. Rejo Jeice
2013-09-01
Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure iiifurther decreases due to the application of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.
Directory of Open Access Journals (Sweden)
Qing-Sheng Yang
2014-01-01
Full Text Available This investigation focuses on the design of functionalization configuration at the atomic level to determine the influence of atomic structure on the mechanical properties of functionalized carbon nanotubes (F-CNTs and their composites. Tension and compressive buckling behaviors of different configurations of CNTs functionalized by H atoms are studied by a molecular dynamics (MD method. It is shown that H-atom functionalization reduces Young’s modulus of CNTs, but Young’s modulus is not sensitive to the functionalization configuration. The configuration does, however, affect the tensile strength and critical buckling stress of CNTs. Further, the stress-strain relations of composites reinforced by nonfunctionalized and various functionalized CNTs are analyzed.
Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J
2017-03-09
Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
Two-electron states in double quantum dot in direct electric field
International Nuclear Information System (INIS)
Burdov, V.A.
2001-01-01
One determined analytically the wave functions of stationary states and the spectrum of two-electron system in symmetric binary quantum point. It is shown that in the normal state at the absence of external electric field the electrons due to the Coulomb blockade can not be collectively in one quantum point. In the external electric field the situation changes. When a certain critical value of field intensity is reached the probability of detection of both electrons in one quantum point by a jump increases from zero up to 1 [ru
Impurity with two electrons in the spherical quantum dot with Unite confinement potential
International Nuclear Information System (INIS)
Baghdasaryan, D A; Ghaltaghchyan, H Ts; Kazaryan, E M; Sarkisyan, H A
2016-01-01
Two-electron states in a spherical QD with the hydrogenic impurity located in the center and with a finite height confinement potential barrier are investigated. The effective mass mismatch have been taken into account. The dependence of ground state energy and Coulomb electron-electron interaction energy correction on the QD size is studied. The problem of the state exchange time control in QD is discussed, taking into account the spins of the electrons in the Russell-Saunders approximation. The effect of quantum emission has been shown. (paper)
Two-electron excitation to Rydberg levels in fast I6+ on hydrogen collisions
International Nuclear Information System (INIS)
Liao, C.; Hagmann, S.; Zouros, T.J.M.; Montenegro, E.C.; Toth, G.; Richard, P.; Grabbe, S.; Bhalla, C.P.
1995-01-01
The emission of electrons in the forward direction in collisions of 0.3 MeV/u I 6+ with H 2 has been studied, and strong autoionization peaks are observed on the shoulder of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy. Using the electron projectile final charge state coincidence technique, we probe different collision mechanisms, which create continuum electrons that are slow in the projectile rest frame. We conclude that the observed autoionization lines are due to two electron excitation to projectile Rydberg levels. (orig.)
Critical density for Landau damping in a two-electron-component plasma
Energy Technology Data Exchange (ETDEWEB)
Rupp, Constantin F.; López, Rodrigo A.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)
2015-10-15
The asymptotic evolution of an initial perturbation in a collisionless two-electron-component plasma with different temperatures is studied numerically. The transition between linear and nonlinear damping regimes is determined by slowly varying the density of the secondary electron-component using high-resolution Vlasov-Poisson simulations. It is shown that, for fixed amplitude perturbations, this transition behaves as a critical phenomenon with time scales and field amplitudes exhibiting power-law dependencies on the threshold density, similar to the critical amplitude behavior in a single-component plasma.
International Nuclear Information System (INIS)
Schlegel, H.B.; Binkley, J.S.; Pople, J.A.
1984-01-01
Formulas are developed for the first and second derivatives of two electron integrals over Cartesian Gaussians. Integrals and integral derivatives are evaluated by the Rys polynomial method. Higher angular momentum functions are not used to calculate the integral derivatives; instead the integral formulas are differentiated directly to produce compact and efficient expressions for the integral derivatives. The use of this algorithm in the ab initio molecular orbital programs gaussIan 80 and gaussIan 82 is discussed. Representative timings for some small molecules with several basis sets are presented. This method is compared with previously published algorithms and its computational merits are discussed
Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25 wt.% Co alloy
International Nuclear Information System (INIS)
Ryoo, H.S.; Hwang, S.K.
1998-01-01
During liquid phase sintering, cemented carbide particles grow into either faceted or non-faceted grain shapes depending on ally system. In case of WC-Co alloy, prism-shape faceted grains with (0001) planes and {1 bar 100} planes on each face are observed, and furthermore an abnormal grain growth has been reported to occur. When abnormal grain growth occurs in WC crystals, dimension ratio, R, of the length of the side of the triangular prism face to the height of the prism is higher than 4 whereas that for normal grains is approximately 2. Abnormal grain growth in this alloy is accelerated by the fineness of starting powders and by high sintering temperature. To account for the mechanism of the abnormal grain growth, there are two proposed models which drew much research attention: nucleation and subsequent carburization and transformation of η (W 3 Co 3 C) phase into WC, and coalescence of coarse WC grains through dissolution and re-precipitation. Park et al. proposed a two-dimensional nucleation theory to explain the abnormal grain growth of faceted grains. There are questions, however, on the role of η phase on abnormal grain growth. The mechanism of coalescence of spherical grains as proposed by Kingery is also unsuitable for faceted grains. So far theories on abnormal grain growth do not provide a satisfactory explanation on the change of R value during the growth process. In the present work a new mechanism of nucleation and growth of faceted WC grains is proposed on the ground of anisotropic packing sequence of each atom
Energy Technology Data Exchange (ETDEWEB)
Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)
2010-11-15
Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.
Double-continuum wave functions and double-photoionization cross sections of two-electron systems
International Nuclear Information System (INIS)
Tiwary, S.N.
1996-09-01
The present review briefly presents the growing experimental as well as theoretical interests in recent years in the double-continuum wave functions and double-photoionization cross sections of two-electron systems. The validity of existing double-continuum wave functions is analyzed and the importance of electronic correlations in both the initial as well as final states wave functions involved in the transition amplitude for double-photoionization process is demonstrated. At present, we do not have comprehensive and practical double-continuum wave functions which account the full correlation of two-electron in the continuum. Basic difficulties in making accurate theoretical calculations of double ionization by a single high energy photon especially in the vicinity of the threshold, where the correlation plays an important role, are discussed. Illuminating, illustrative and representative examples are presented in order to show the present status and the progress in this field. Future challenges and directions, in high-precision double-photoionization cross sections calculations, have been discussed and suggested. (author). 133 refs, 9 figs
Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring
DEFF Research Database (Denmark)
Jørgensen, Lars; Cornett, Claus; Justesen, Ulla
1998-01-01
Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16g/mol, and were identified as 2......-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which...... may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin...
Evidence for single metal two electron oxidative addition and reductive elimination at uranium.
Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T
2017-12-01
Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.
Measurements of threshold behavior for one- and two-electron photodetachment from the H- ion
International Nuclear Information System (INIS)
Frost, C.A.
1981-09-01
One and two-electron photodetachment from the H - ion by a single photon has been studied using a crossed beam apparatus. A Q-switched laser beam was directed across the 800 MeV H - beam at LAMPF (β=0.842) resulting in Doppler-shifted photon energies in the H - barycentric frame, which were tunable from 0.4 eV to 15.5 eV by changing the intersection angle. The particles (e - , H 0 , H + ) resulting from photodetachment reactions were magnetically deflected into scintillation detectors allowing the total and partial cross sections for 1e - and 2e - processes to be separately measured. The 2e - signal (H + ) was produced by two different mechanisms, the true signal γ + H - → H + + 2e - and the background process γ + H - → H 0 (n), followed by motional electric field ionization of excited H 0 . Two-electron photodetachment which had been predicted theoretically was observed for the first time, and the relative cross section was measured from threshold to 15.5 eV. Tfrared absorption spectra of intrinsic a-Si:H films by the argon working gas partial pressure, hydrogen partial pressure, and substrate temperature variperiods of time at lower temperatures because aromatic hydrocarbons economic conditions. The symptomology of the various trace metals and oxides isen as potentially more efficient for both employer and employee than is the use of regulatory standards
Energy Technology Data Exchange (ETDEWEB)
De Backer, A.; Bos, K.H.W. van den [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Van den Broek, W. [AG Strukturforschung/Elektronenmikroskopie, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
2016-12-15
An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. - Highlights: • An efficient model-based method for quantitative electron microscopy is introduced. • Images are modelled as a superposition of 2D Gaussian peaks. • Overlap between neighbouring columns is taken into account. • Structure parameters can be obtained with the highest precision and accuracy. • StatSTEM, auser friendly program (GNU public license) is developed.
International Nuclear Information System (INIS)
Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai
2015-01-01
In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)
Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai
2015-12-01
In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.
Quantum phase crossovers with finite atom number in the Dicke model
International Nuclear Information System (INIS)
Hirsch, J G; Castaños, O; Nahmad-Achar, E; López-Peña, R
2013-01-01
Two-level atoms interacting with a one-mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom–cavity coupling strength. Two popular examples are the number of photons inside the cavity and the number of excited atoms. Coherent states provide a mean field description, which becomes exact in the thermodynamic limit. Employing symmetry-adapted (SA) SU(2) coherent states the quantum crossover, precursor of the critical behavior, can be described for a finite number of atoms. A variation after projection treatment, involving a numerical minimization of the SA energy surface, associates the quantum crossover with a discontinuity in the order parameters, which originates from competition between two local minima in the SA energy surface. Although this discontinuity is not present in finite systems, it provides a good description of 1/N effects in the observables. (paper)
Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C
2016-05-20
We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.
Using Balls of Different Sports To Model the Variation of Atomic Sizes
Pinto, Gabriel
1998-06-01
In this article, an analogy is described about the order of magnitude of the variation of atomic sizes that can be used for discussion in introductory chemistry classes. The order of magnitude of this variation, involving microscopic magnitudes, is difficult for students to imagine. For the most part, the students are very familiar with the world of sports. In any case for example, the teacher can make use of the wide, informative coverage given to the olympic games or similar events, where different sports are televised in a few days. The radii of official balls for seven well-known sports are given, and students must assign an atom to each ball by using tabulated single-bond, covalent radii and by assigning the smallest ball (i.e., corresponding to ping-pong) to the smallest atom (i.e., hydrogen). The balls can also be used to show how the ionic radii change upon ionization.
Assessment of ion-atom collision data for magnetic fusion plasma edge modelling
International Nuclear Information System (INIS)
Phaneuf, R.A.
1990-01-01
Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs
The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.
Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A
2013-11-13
The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.
A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies
DEFF Research Database (Denmark)
Andersen, Hans Henrik; Sigmund, Peter
1966-01-01
the asymptotic velocities of the ring atoms as well as the energy loss of the projectile. Furthermore, it can be decided whether the projectile is reflected by the ring. Both the feasibility of assumptions specifying the problem and the validity of different approximations made in the transformation from...... previously. Inelastic contributions to the energy loss can easily be included. The oscillator forces binding lattice atoms turn out to influence the scattering process only at very small energies. The validity of the so-called momentum approximation and a related perturbation method are also investigated....
Numerical and experimental modelling of back stream flow during close-coupled gas atomization
Motaman, S; Mullis, AM; Borman, DJ; Cochrane, RF; McCarthy, IN
2013-01-01
This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five differe...
Energy Technology Data Exchange (ETDEWEB)
McCurdy, C. William [Univ. of California, Davis, CA (United States). Dept. of
2017-12-14
This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.
International Nuclear Information System (INIS)
Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J
2017-01-01
The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)
International Nuclear Information System (INIS)
Sattonnay, G; Tétot, R
2014-01-01
Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd 2 Ti 2 O 7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd 2 Zr 2 O 7 . Therefore, the defect stability in A 2 B 2 O 7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd 2 Ti 2 O 7 amorphization induced by irradiation. (paper)
Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.
2017-01-01
The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.
Santangelo, Paolo E.
2012-12-01
Pressure-swirl atomizers are often employed to generate a water-mist spray, typically employed in fire suppression. In the present study, an experimental characterization of dispersion (velocity and cone angle) and atomization (drop-size axial evolution) was carried out following a previously developed methodology, with specific reference to the initial region of the spray. Laser-based techniques were used to quantitatively evaluate the considered phenomena: velocity field was reconstructed through a Particle Image Velocimetry analysis; drop-size distribution was measured by a Malvern Spraytec device, highlighting secondary atomization and subsequent coalescence along the spray axis. Moreover, a comprehensive set of relations was validated as predictive of the involved parameters, following an inviscid-fluid approach. The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle. The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results. The analysis was carried out at the operative pressure of 80 bar; two injectors were employed featuring different orifice diameters and flow numbers, as a sort of parametric approach to this spray typology.
Atomic Fisher information versus atomic number
International Nuclear Information System (INIS)
Nagy, A.; Sen, K.D.
2006-01-01
It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number
International Nuclear Information System (INIS)
Grudzevich, O.D.; Zelenetskij, A.V.; Pashchenko, A.B.
1986-01-01
The last version of the KOP program for calculating cross sections of neutron and charged particle interaction with atomic nuclei within the scope of the optical model is described. The structure and program organization, library of total parameters of the optical potential, program identificators and peculiarities of its operation, input of source data and output of calculational results for printing are described in detail. The KOP program is described in Fortran- and adapted for EC-1033 computer
Directory of Open Access Journals (Sweden)
Rafał Babilas
2017-05-01
Full Text Available The structure of a multicomponent metallic glass, Mg65Cu20Y10Ni5, was investigated by the combined methods of neutron diffraction (ND, reverse Monte Carlo modeling (RMC and high-resolution transmission electron microscopy (HRTEM. The RMC method, based on the results of ND measurements, was used to develop a realistic structure model of a quaternary alloy in a glassy state. The calculated model consists of a random packing structure of atoms in which some ordered regions can be indicated. The amorphous structure was also described by peak values of partial pair correlation functions and coordination numbers, which illustrated some types of cluster packing. The N = 9 clusters correspond to the tri-capped trigonal prisms, which are one of Bernal’s canonical clusters, and atomic clusters with N = 6 and N = 12 are suitable for octahedral and icosahedral atomic configurations. The nanocrystalline character of the alloy after annealing was also studied by HRTEM. The selected HRTEM images of the nanocrystalline regions were also processed by inverse Fourier transform analysis. The high-angle annular dark-ﬁeld (HAADF technique was used to determine phase separation in the studied glass after heat treatment. The HAADF mode allows for the observation of randomly distributed, dark contrast regions of about 4–6 nm. The interplanar spacing identified for the orthorhombic Mg2Cu crystalline phase is similar to the value of the first coordination shell radius from the short-range order.
International Nuclear Information System (INIS)
Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.
2010-09-01
Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)
International Nuclear Information System (INIS)
Martinez, G.T.; Rosenauer, A.; De Backer, A.; Verbeeck, J.; Van Aert, S.
2014-01-01
High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. - Highlights: • A model-based method is extended from a relative toward an absolute quantification of chemical composition of single atomic columns from HAADF HRSTEM images. • The methodology combines statistical parameter estimation theory with frozen lattice multislice simulations to quantify chemical composition atomic column by atomic column. • Validity and limitations of this model-based method are explored and discussed. • Quantification results obtained for a complex structure show agreement with EDX refinement
International Nuclear Information System (INIS)
Jarlskog, C.
1976-07-01
Parity violation experiments in atoms are probing structure of the weak neutral current couplings of the electrons and the quarks in the same range as the neutrino interactions are measuring couplings of neutrinos and quarks. In addition, leptonic neutral currents determine couplings of neutrinos and electrons. Therefore the three type of experiments give complete information and impose strong restrictions on theoretical possibilities. (BJ) [de
Random model of two-level atoms interacting with electromagnetic field
International Nuclear Information System (INIS)
Kireev, A.N.; Meleshko, A.N.
1983-12-01
A phase transition has been studied in a random system of two-level atoms interacting with an electromagnetic field. It is shown that superradiation can arise when there is short-range order in a spin-subsystem. The existence of long-range order is irrelevant for this phase transition
Modeling inelastic phonon scattering in atomic- and molecular-wire junctions
DEFF Research Database (Denmark)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2005-01-01
Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the f...
Finite Bias Calculations to Model Interface Dipoles in Electrochemical Cells at the Atomic Scale
DEFF Research Database (Denmark)
Hansen, Martin Hangaard; Jin, Chengjun; Thygesen, Kristian Sommer
2016-01-01
The structure of an electrochemical interface is not determined by any external electrostatic field, but rather by external chemical potentials. This paper demonstrates that the electric double layer should be understood fundamentally as an internal electric field set up by the atomic structure...
A Computer-Controlled Classroom Model of an Atomic Force Microscope
Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.
2015-01-01
The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…
International Nuclear Information System (INIS)
Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei
2014-01-01
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO − photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions
Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei
2014-09-01
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Atomic physics with highly charged ions
International Nuclear Information System (INIS)
Richard, P.
1991-08-01
This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations
Variational and robust density fitting of four-center two-electron integrals in local metrics
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Formation of presheath and current-free double layer in a two-electron-temperature plasma
International Nuclear Information System (INIS)
Sato, Kunihiro; Miyawaki, Fujio
1992-02-01
Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)
Electron capture in pseudo-two-electron systems: Ar8++He
International Nuclear Information System (INIS)
Kimura, M.; Olson, R.E.
1985-01-01
Molecular-structure calculations using the pseudopotential method have been performed on the (ArHe) 8+ system. The cross section for single-electron capture in Ar 8+ +He collisions was calculated for energies from 20 eV to 10 keV/amu. The perturbed-stationary-state method [M. Kimura, H. Sato, and R. E. Olson, Phys. Rev. A 28, 2085 (1983)], modified to include electron translation factors appropriate to two-electron systems, was used. The total cross section is relatively energy independent with a value of approximately 2.5 x 10 -15 cm 2 . The n = 4 level of Ar 7+ is found to be preferentially populated, with the 4f level being dominant
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
A Moessbauer study of the germanium two-electron donor centers in PbSe
International Nuclear Information System (INIS)
Terukov, E.I.; Khuzhakulov, Eh.S.
2005-01-01
The 73 As( 73 Ge) Moessbauer emission spectroscopy is used for identification of neutral and ionized two-electron germanium centers in PbSe. It is shown that the charge state of antistructural defect 73 Ge, generating in the anion sublattice after 73 As radioactive decay, does not depend on the Fermi level position. In contrast to this, the 73 Ge center in the cation PbSe sublattice represents the electrically active substitution impurity. The emission spectra correspond to the neutral state of the ( 73 Ge 2+ ) donor center in n-type conductors and to the double ionized state of this ( 73 Ge 4+ ) center in p-type conductors [ru
Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N
2017-09-19
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox
Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.
2018-05-01
The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.
International Nuclear Information System (INIS)
Balykin, V. I.; Jhe, W.
1999-01-01
Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)
International Nuclear Information System (INIS)
Levashov, V. A.
2016-01-01
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ 1 ≥ λ 2 ≥ λ 3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ 2 /λ 1 ) and (λ 3 /λ 2 ) are essentially identical to each other in the liquids state. We also found that λ 2 tends to be equal to the geometric average of λ 1 and λ 3 . In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.
Energy Technology Data Exchange (ETDEWEB)
Levashov, V. A. [Technological Design Institute of Scientific Instrument Engineering, Novosibirsk 630058 (Russian Federation)
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.
Quantum physics of atoms, molecules, solids, nuclei and particles
International Nuclear Information System (INIS)
Eisberg, R.M.; Resnick, R.
1983-01-01
This textbook is intended to be used for students who have been through substantial treatments of elementary differential and integral calculus and elementary level of classical physics. Various phenomena of early quantum physics, basic core of quantum mechanics and its application to one and two-electron atoms, multielectron atoms, quantum statistics and nuclei are discussed
Energy Technology Data Exchange (ETDEWEB)
Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)
2016-06-07
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (
A simple reductionist model for cancer risk in atom bomb survivors
International Nuclear Information System (INIS)
Mendelsohn, M.L.
1995-01-01
1) In data from the atom bomb survivors of Hiroshima and Nagasaki, the roughly linear-quadratic radiation dose responses for chromosome aberration and leukemia correspond closely to each other, as do the linear dose responses for gene mutation and solid cancer incidence. 2) In view of the increasing evidence for multiple oncogene and suppressor gene changes in human cancer, as well as the evidence that human cancer rate is often proportional to age to the power of 6 or so, it is postulated that the radiation has contributed one and only one oncogenic mutational event to the radiation induced cancers. 3) The radiation induced cancers should therefore display a cancer rate versus age relationship that has a power of n-1, where n is the power for the corresponding background cancers. 4) It is shown that this is precisely what is happening in the collective solid cancer incidence of the atom bomb survivors. (author)
Atomic Decay Data for Modeling K Lines of Iron Peak and Light Odd-Z Elements*
Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Garcia, J.; Witthoeft, M. C.; Kallman, T. R.
2012-01-01
Complete data sets of level energies, transition wavelengths, A-values, radiative and Auger widths and fluorescence yields for K-vacancy levels of the F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn isonuclear sequences have been computed by a Hartree-Fock method that includes relativistic corrections as implemented in Cowan's atomic structure computer suite. The atomic parameters for more than 3 million fine-structure K lines have been determined. Ions with electron number N greater than 9 are treated for the first time, and detailed comparisons with available measurements and theoretical data for ions with N less than or equal to 9 are carried out in order to estimate reliable accuracy ratings.
Raju, Subramanian; Saibaba, Saroja
2016-09-01
The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H f L of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity ( ϕ L) and bonding electron density ( n b L ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n b L , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H f L for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.
Energy Technology Data Exchange (ETDEWEB)
Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad; Skopin, Evgenii; Cantelli, Valentina; Ouled, Toufik; Boichot, Raphaël; Crisci, Alexandre; Lay, Sabine; Richard, Marie-Ingrid; Thomas, Olivier; Deschanvres, Jean-Luc; Renevier, Hubert; Fong, Dillon; Ciatto, Gianluca
2017-03-20
ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.
Ab initio and Atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys
Piochaud, J. B.; Becquart, C. S.; Domain, C.
2014-06-01
Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multiscale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe70Cr20Ni10). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT calculations. The point defect properties in the Fe70Cr20Ni10, and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed.
Ab initio and atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys
International Nuclear Information System (INIS)
Piochaud, J.B.; Becquart, C.S.; Domain, C.
2013-01-01
Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multi-scale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe 70 Cr 20 Ni 10 ). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT (Density Functional Theory) calculations. The point defect properties in the Fe 70 Cr 20 Ni 10 , and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation (TNES) and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed. Preliminary results show that it is the solute- grain boundaries interactions which drive TNES
International Nuclear Information System (INIS)
Hla, Saw Wai
2014-01-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen
Barklem, P. S.
2018-02-01
Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data
International Nuclear Information System (INIS)
Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M
2012-01-01
The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)
How far can radiation from atoms be represented by classical models
International Nuclear Information System (INIS)
Haar, D. Ter; Wergeland, H.
1978-01-01
In recent years some phenomena currently assumed to be essentially quantal have found an accurate description in classical terms. An example is Lamb's semiclassical theory of the laser. Consequently many physicists are discussing in how far a full quantum mechanical treatment is necessary. A good many of the formulae for the radiation from atoms can certainly be obtained by classical methods. But these methods fail already at the question of the line profiles. Even though the damping is a simple mechanism - classically speaking. It seems inevitible that the semi-classical formulae must be limited to those phenomena which essentially only involve the averages of photon numbers. (JIW)
Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures
International Nuclear Information System (INIS)
Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny
2009-01-01
The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons
Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots
International Nuclear Information System (INIS)
Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.
2010-01-01
The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.
Investigations of the Lamb shift in heavy one and two electron systems
International Nuclear Information System (INIS)
Reuschl, Regina
2008-01-01
Experiments on the 1s Lamb-shift in heavy H-like ions and on the intra-shell transitions in heavy He-like systems have been performed. These investigations are of particular interest to verify the validity of quantum electrodynamics (QED) in extremely strong Coulomb fields. In addition, in heavy systems not only QED but also relativistic effects start to play a key role. The experiments have been performed at the gas-jet target of the experimental storage ring (ESR) at GSI. In an experiment with He-like uranium we were able to directly measure the intra-shell transition 2 3 P 2 →2 3 S 1 , in a high-Z system for the very first time. This has been achieved by combining the results from a high-resolution Bragg crystal-spectrometer and a standard planar Germanium detector. A fit of the experimental spectrum with data obtained from a simulation shows, the theoretical predictions describe the transition dynamics very well in this two-electron system. Another experiment has been performed on H-like lead to investigate the 1s Lamb-shift in heavy H-like systems. Here, a high-resolution Laue crystal-spectrometer has been commissioned together with novel high-resolution two dimensional micro-strip Ge-detectors. The combination of both instruments is a very promising tool for future high-precision X-ray experiments. (orig.)
Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
Song, Yang; Das Sarma, S.
2017-09-01
We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.
International Nuclear Information System (INIS)
Meinhold, H.
1980-01-01
This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)
Directory of Open Access Journals (Sweden)
Zhichao Wu
2017-01-01
Full Text Available A new electromechanical coupling model was built to quantitatively analyze the tuning fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the second eigenfrequency of the probe was insensitive to the effective force gradient, was found and used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively. By transforming the mechanical parameters to the electrical parameters, a monotonous and concise method without using phase to calculate the power dissipation was proposed.
CDW-EIS model for single-electron capture in ion-atom collisions involving multielectronic targets
International Nuclear Information System (INIS)
Abufager, P N; MartInez, A E; Rivarola, R D; Fainstein, P D
2004-01-01
A generalization of the continuum distorted wave eikonal initial state (CDW-EIS) approximation, for the description of single-electron capture in ion-atom collisions involving multielectronic targets is presented. This approximation is developed within the framework of the independent electron model taking particular care of the representation of the bound and continuum target states. Total cross sections for single-electron capture from the K-shell of He, Ne and Ar noble gases by impact of bare ions are calculated. Present results are compared to previous CDW-EIS ones and to experimental data
Linear-chain model to explain density of states and Tsub(c) changes with atomic ordering
International Nuclear Information System (INIS)
Junod, A.
1978-01-01
The effect of long-range atomic order on the electronic density of states has been recalculated for the A15-type structure within the linear-chain model. It is found that a defect concentration c reduces the density of states at the Fermi level by a factor (1 + c/c 0 )(c/c 0 ) -3 [ln(1 + c/c 0 )] 3 . This result is in qualitative agreement with experimental data on the specific heat, magnetic susceptibility and superconducting transition temperature of V 3 Au. (author)
High-frequency two-electron photoionization cross section of triplet states
International Nuclear Information System (INIS)
Krivec, R.; Amusia, M.Ya.; Mandelzweig, V.B.
2003-01-01
Using high precision wave functions describing the triplet ground and excited 3 S states of the He atom and heliumlike ions, the cross sections of single- and double-electron photoionization are calculated. The dependence of the ratio R of the double and single ionization cross sections on the nuclear charge Z and the principal quantum number of excitation n is studied. The results obtained are compared to those for previously studied singlet states
Excitation and decay of correlated atomic states
International Nuclear Information System (INIS)
Rau, A.R.P.
1992-01-01
Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)
2015-07-01
A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were
International Nuclear Information System (INIS)
Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.
2015-01-01
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed
Energy Technology Data Exchange (ETDEWEB)
Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)
2015-01-22
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.
Foot, Christopher J
2007-01-01
This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen
Atomic and Molecular Systems in Intense Ultrashort Laser Pulses
Saenz, A.
2008-07-01
The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some
Directory of Open Access Journals (Sweden)
Santiago D. Solares
2015-11-01
Full Text Available This paper introduces a quasi-3-dimensional (Q3D viscoelastic model and software tool for use in atomic force microscopy (AFM simulations. The model is based on a 2-dimensional array of standard linear solid (SLS model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
Solares, Santiago D
2015-01-01
This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
Characterization of electron states in dense plasmas and its use in atomic kinetics modeling
International Nuclear Information System (INIS)
Fisher, D.V.; Maron, Y.
2003-01-01
We describe a self-consistent statistical approach to account for plasma density effects in collisional-radiative kinetics. The approach is based on the characterization of three distinct types of electron states, namely, bound, collectivized, and free, and on the formalism of the effective statistical weights (ESW) of the bound states. The present approach accounts for individual and collective effects of the surrounding electrons and ions on atomic (ionic) electron states. High-accuracy expressions for the ESWs of bound states have been derived. The notions of ionization stage population, free electron density, and rate coefficient are redefined in accordance with the present characterization scheme. The modified expressions for the probabilities of electron-impact induced transitions as well as spontaneous and induced radiative transitions are then obtained. The influence of collectivized states on a dense plasma ionization composition is demonstrated to be strong. Examples of calculated ESWs and populations of ionic quantum states for steady state and transient plasmas are given
Advances in Supercomputing for the Modeling of Atomic Processes in Plasmas
International Nuclear Information System (INIS)
Ludlow, J. A.; Ballance, C. P.; Loch, S. D.; Lee, T. G.; Pindzola, M. S.; Griffin, D. C.; McLaughlin, B. M.; Colgan, J.
2009-01-01
An overview will be given of recent atomic and molecular collision methods developed to take advantage of modern massively parallel computers. The focus will be on direct solutions of the time-dependent Schroedinger equation for simple systems using large numerical lattices, as found in the time-dependent close-coupling method, and for configuration interaction solutions of the time-independent Schroedinger equation for more complex systems using large numbers of basis functions, as found in the R-matrix with pseudo-states method. Results from these large scale calculations are extremely useful in benchmarking less accurate theoretical methods and experimental data. To take full advantage of future petascale and exascale computing resources, it appears that even finer grain parallelism will be needed.
Free-parameterless model of high energy particle collisions with atomic nuclei
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
In result of studies, it has been discovered that: a) Intensive emission of fast nucleons of kinetic energy from 20 to 400 MeV proceeds independently of the pion production process; b) The particle production in hadron-nucleon collisions is mediated by intermediate objects produced first in a 2 → 2 type endoergic reaction and decaying after lifetime tausub(g) > or approximately 10 - 22 s into commonly known resonances and particles; c) Inside of massive enough atomic nuclei quasi-onedimensional cascades of the intermediate objects can develop; d) A definite simple connection exists between the characteristics of the secondaries appearing in hadron-nucleus collision events and corresponding hadron-nucleon collision events, the target-nucleus size and the nucleon density distribution in it. The yield of the hadron-nucleus collisions is described in a convincing manner in terms of the hadron-nucleon collision data by means of simple formulas
Scientific models red atoms, white lies and black boxes in a yellow book
Gerlee, Philip
2016-01-01
A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches a...
International Nuclear Information System (INIS)
Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.
1984-01-01
The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
International Nuclear Information System (INIS)
Apetrei, Alin Marian; Enachescu, Cristian; Tanasa, Radu; Stoleriu, Laurentiu; Stancu, Alexandru
2010-01-01
We apply here the Monte Carlo Metropolis method to a known atom-phonon coupling model for 1D spin transition compounds (STC). These inorganic molecular systems can switch under thermal or optical excitation, between two states in thermodynamical competition, i.e. high spin (HS) and low spin (LS). In the model, the ST units (molecules) are linked by springs, whose elastic constants depend on the spin states of the neighboring atoms, and can only have three possible values. Several previous analytical papers considered a unique average value for the elastic constants (mean-field approximation) and obtained phase diagrams and thermal hysteresis loops. Recently, Monte Carlo simulation papers, taking into account all three values of the elastic constants, obtained thermal hysteresis loops, but no phase diagrams. Employing Monte Carlo simulation, in this work we obtain the phase diagram at T=0 K, which is fully consistent with earlier analytical work; however it is more complex. The main difference is the existence of two supplementary critical curves that mark a hysteresis zone in the phase diagram. This explains the pressure hysteresis curves at low temperature observed experimentally and predicts a 'chemical' hysteresis in STC at very low temperatures. The formation and the dynamics of the domains are also discussed.
DEFF Research Database (Denmark)
Krüger, Peter; Hofferberth, S.; Haller, E.
2005-01-01
Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...
Artificial atom and quantum terahertz response in carbon nanotube quantum dots
International Nuclear Information System (INIS)
Ishibashi, K; Moriyama, S; Fuse, T; Kawano, Y; Toyokawa, S; Yamaguchi, T
2008-01-01
Artificial atom behaviours have been observed in single-wall carbon nanotube (SWCNT) quantum dots (QDs). Two-electron shell structures and the Zeeman splitting of single-particle states were revealed in single-electron transport measurements in low temperatures. To demonstrate that the charging energy of the dot lies in a terahertz (THz) range, the THz photon-assisted tunnelling was tested, and was really observed as a satellite Coulomb peak. Some satellite peaks moved as a frequency was changed, but other peaks did not move. We give possible models to explain the existence of two different satellite peaks.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yihang; Zhou, Xueqi; Cao, Kun [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Xiuguo; Deng, Zhang [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Shiyuan, E-mail: shyliu@hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shan, Bin [State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)
2015-10-30
Maxwell–Garnett effective medium approximation (MG-EMA) model is chosen to study Pd ultrathin film grown on Si substrate, as well as its growth on self-assembled monolayers (SAMs) modified substrate respectively. The general oscillator (GO) model with one Drude and two Lorentz oscillators is firstly applied to fix the optical constants of Pd. Compared with Pd bulk model, MG-EMA model with GO is more reliable to predict the film thickness verified by X-ray reflection test. The stable growth rate on Si substrate reveals our methods are feasible and the quartz crystal microbalance measurement confirms the stability of the ALD chamber. For Pd coverage, MG-EMA fitting result is similar to the statistical computation from scanning electron microscope when Pd ALD cycles are over 400, while large bias exists for cycles under 400, might be due to that air is not the proper filling medium between nanoparticles. Then we change the filling medium into SAMs as a comparison, better fitting performance is obtained. It is demonstrated that the filling medium between nanoparticles is important for the application of MG-EMA model. - Highlights: • Ultrathin Pd thin films were grown by atomic layer deposition. • The measurement of thin film was important to understand initial growth behavior. • Maxwell–Garnett effective medium approximation model was applied. • Pd nanoparticle size and coverage were studied. • The filling medium between nanoparticles was important for model application.
Atomic-level computer simulation
International Nuclear Information System (INIS)
Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.
1994-01-01
This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))
International Nuclear Information System (INIS)
Wang Yongguang; Zhao Yongwu; An Wei; Wang Jun
2007-01-01
This paper proposes a novel mathematical model for chemical mechanical polishing (CMP) based on interface solid physical and chemical theory in addition to energy equilibrium knowledge. And the effects of oxidation concentration and particle size on the material removal in CMP are investigated. It is shown that the mechanical energy and removal cohesive energy couple with the particle size, and being a cause of the non-linear size-removal rate relation. Furthermore, it also shows a nonlinear dependence of removal rate on removal cohesive energy. The model predictions are in good qualitative agreement with the published experimental data. The current study provides an important starting point for delineating the micro-removal mechanism in the CMP process at atomic scale
International Nuclear Information System (INIS)
Nesterenko, V.O.; Kleinig, W.
1995-01-01
The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
DEFF Research Database (Denmark)
Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.
2015-01-01
to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate...
International Nuclear Information System (INIS)
Silva, Pedro Maffia da
2017-01-01
The International Atomic Energy Agency's Technical Cooperation Program is the main mechanism through which services are provided to its member states to help them build, strengthen and maintain their capabilities in the safe use of nuclear technology in support of socio-economic development. The technical cooperation program operates in four geographical regions, each regional program helps Member States to meet their specific needs, taking into account existing capacities and different operating conditions. The technical cooperation regions are Asia and the Pacific, Europe, Africa and Latin America and the Caribbean. Developing activities together with the technical cooperation program we have the Regional Cooperation Agreement for the Promotion of Nuclear Science and Technology in Latin America and the Caribbean (ARCAL), which involves the majority of the members of the International Atomic Energy Agency of that region, for Technical Cooperation. All ARCAL's work is guided by the Regional Strategic Profile, which identifies the needs and problems of the region that require support projects. In the technical meeting of the Regional Strategic Profile, the needs and problems that are analyzed through indexes associated with severity, urgency, extension, relevance and difficulty are listed by different thematic areas. To these indexes, values are established by the technical staff on a continuous scale between 1 and 5. From these values an expression is used to arrive at a priority number for the needs and problems. In the face of many criticisms associated with similar approaches, such as Failure Modes and Effects Analysis, and Timing, Trend and Impact Matrix, the aim of this thesis is to propose a methodological approach that can assist in the prioritization of investments of technical cooperation projects and programs that take into account the budget available and the technical and strategic visions of the parties involved. For this, the Probabilistic Composition
Atomic electron correlations in intense laser fields
International Nuclear Information System (INIS)
DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.
1998-01-01
This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear
Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model
Directory of Open Access Journals (Sweden)
Dong Wang
2015-02-01
Full Text Available A modified Prandtl–Ishlinskii (PI model, referred to as a direct inverse asymmetric PI (DIAPI model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace and voltage-decrease-loop (retrace. A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.
International Nuclear Information System (INIS)
Vancura, J.; Kostroun, V.O.
1992-01-01
The absolute total and one and two electron transfer cross sections for Ar 8+ on Ar were measured as a function of projectile laboratory energy from 0.090 to 0.550 keV/amu. The effective one electron transfer cross section dominates above 0.32 keV/amu, while below this energy, the effective two electron transfer starts to become appreciable. The total cross section varies by a factor over the energy range explored. The overall error in the cross section measurement is estimated to be ± 15%
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
One-photon two-electron processes in helium close to the double ionization threshold
International Nuclear Information System (INIS)
Bouri, C.
2007-04-01
This work presents a study of the 1 P 0 excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He + , owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with experimental
Atomic and Molecular Data Needs for Radiation Damage Modeling: Multiscale Approach
International Nuclear Information System (INIS)
Yakubovich, Alexander V.; Solov'yov, Andrey V.; Surdutovich, Eugene
2011-01-01
We present a brief overview of the multiscale approach towards understanding of the processes responsible for the radiation damage caused by energetic ions. This knowledge is very important, because it can be utilized in the ion-beam cancer therapy, which is one of the most advanced modern techniques to cure certain type of cancer. The central element of the multiscale approach is the theoretical evaluation and quantification of the DNA damage within cell environment. To achieve this goal one needs a significant amount of data on various atomic and molecular processes involved into the cascade of events starting with the ion entering and propagation in the biological medium and resulting in the DNA damage. The discussion of the follow up biological processes are beyond the scope of this brief overview. We consider different paths of the DNA damage and focus on the the illustration of the thermo-mechanical effects caused by the propagation of ions through the biological environment and in particular on the possibility of the creation of the shock waves in the vicinity of the ion tracks. We demonstrate that at the initial stages after ion's passage the shock wave is so strong that it can contribute to the DNA damage due to large pressure gradients developed at the distances of a few nanometers from the ionic tracks. This novel mechanism of the DNA damage provides an important contribution to the cumulative biodamage caused by low-energy secondary electrons, holes and free radicals.
Michaud, Georges; Richer, Jacques
2015-01-01
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...
Energy Technology Data Exchange (ETDEWEB)
Grau, A.; Arcos, J. M. los
1986-07-01
The present paper develops a three L-subshell a and K, M-a hells atomic model in order to obtain the counting efficiency in liquid scintillation counting. Mathematical expressions are given to calculate the probabilities of 264 different atomic rearrangement way so as the corresponding effective energies. This new model will permit to test the influence of the different atomic and nuclear parameters upon the counting efficiency nuclides of low and medium atomic number decaying by electron capture. (Author) 8 refs.
Atom-atom collision cascades localization
International Nuclear Information System (INIS)
Kirsanov, V.V.
1980-01-01
The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)
Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms
2008-11-01
Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due
International Nuclear Information System (INIS)
Spruch, G.M.; Spruch, L.
1974-01-01
The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)
International Nuclear Information System (INIS)
Anon.
1976-01-01
Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton
Energy Technology Data Exchange (ETDEWEB)
Glasser, M. L.; March, N. H.; Nieto, L. M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, ES-47011 Valladolid, Spain and Department of Physics, Clarkson University, Potsdam, New York 13699 (United States); Department of Physics, University of Antwerp, BE-2020 Antwerp, Belgium and Department of Theoretical Chemistry, University of Oxford, Oxford OX1 2JD (United Kingdom); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, ES-47011 Valladolid (Spain)
2011-12-15
Here attention is first drawn to the importance of gaining insight into Fock's early proposal for expanding the ground-state wave function for He-like atomic ions in hyperspherical coordinates. We approach the problem via two solvable models, namely, (i) the s-term model put forth by Temkin [Phys. Rev. 126, 130 (1962)] and (ii) the Hookean atom model proposed by Kestner and Sinanoglu [Phys. Rev. 128, 2687 (1962)]. In both cases the local kinetic energy can be obtained explicitly in hyperspherical coordinates. Separation of variables occurs in both model wave functions, though in a different context in the two cases. Finally, a k-space formulation is proposed that should eventually result in distinctive identifying characteristics of Fock's nonanalyticities for He-like atomic ions when both electrons are close to the nucleus.
All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978
Chan, Chi Keung
The aim of this study was to examine the contribution of students' meta-conceptual awareness and modelling skills to their conceptual change when learning atomic-molecular theory. Instructional materials used in the intervention covered three sub-topics: atomic structure, chemical bonding, and structures and properties. Glynn's (1991) Teaching with Analogy model and Chambliss's (2002) guidelines for constructing scientific texts were used as the frameworks for designing and implementing instructional materials for the intervention. Forty-five Secondary 4 chemistry students from two classes at a secondary school in Hong Kong participated in the study. The two classes were taught by the same teacher. The study consisted of two phases. During Phase I, which lasted for 6 weeks, Class A (n = 13) used the above-mentioned instructional materials to learn the three sub-topics, whereas Class B (n = 32) learned the same sub-topics using traditional textbook materials. To further examine the effects of the intervention, a 2-week switching-replication treatment was implemented in Phase II. Class A used traditional textbook materials for revision whereas Class B used the tailor-made instructional materials. A mixed-methods design was used to assess the effectiveness of the intervention. Based on the student misconceptions documented in the literature, a written test of the three sub-topics was developed. The test comprised 33 two-tier multiple-choice items. The test was administered three times: before Phase I (T1), just after Phase I and before Phase II (T2), and 2 weeks after Phase II (T3). Qualitative data were gathered from semi-structured interviews with five students. Three students from Class A and two students from Class B were interviewed individually after Phase I and Phase II, respectively, to assess students' understanding of the essential theoretical concepts and to assess students' modelling skills. The results of paired-samples t-test showed that there was a
Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule
DEFF Research Database (Denmark)
Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens
2009-01-01
We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...
Lattice location of dopant atoms: An N-body model calculation
Indian Academy of Sciences (India)
using a statistical analytical expression or by a binary collision model or a .... Е. The ions then have an equal probability of being found anywhere within an ..... absence of any experimental data for bismuth in the third direction, the inference.
A unified model for diffractive and inelastic scattering of a light atom from a solid surface
International Nuclear Information System (INIS)
Adams, J.E.; Miller, W.H.
1979-01-01
A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)
Oscillator strength of partially ionized high-Z atom on Hartree-Fock Slater model
International Nuclear Information System (INIS)
Nakamura, S.; Nishikawa, T.; Takabe, H.; Mima, K.
1991-01-01
The Hartree-Fock Slater (HFS) model has been solved for the partially ionized gold ions generated when an intense laser light is irradiated on a gold foil target. The resultant energy levels are compared with those obtained by a simple screened hydrogenic model with l-splitting effect (SHML). It is shown that the energy levels are poorly model by SHML as the ionization level becomes higher. The resultant wave functions are used to evaluate oscillator strength of important line radiations and compared with those obtained by a simple model using hydrogenic wave functions. Its demonstrated that oscillator strength of the 4p-4d and 4d-4f lines are well modeled by the simple method, while the 4-5 transitions such as 4f-5g, 4d-5f, 4p-5d, and 4f-5p forming the so-called N-band emission are poorly modeled and HFS results less strong line emissions. (author)
Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules
Energy Technology Data Exchange (ETDEWEB)
Marbach, Johannes
2012-09-20
In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.
Farina, William J.; Bodzin, Alec M.
2017-12-01
Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.
International Nuclear Information System (INIS)
Bertolus, M.; Freyss, M.; Krack, M.; Devanathan, R.
2015-01-01
We focus here on the assessment of the description of interatomic interactions in uranium dioxide using, on the one hand, electronic structure methods, in particular in the Density Functional Theory (DFT) framework, and on the other hand, empirical potential methods. These two types of methods are complementary, the former enabling results to be obtained from a minimal amount of input data and further insight into the electronic and magnetic properties to be achieved, while the latter are irreplaceable for studies where a large number of atoms need to be considered. We consider basic properties as well as specific ones, which are important for the description of nuclear fuel under irradiation. These are especially energies, which are the main data passed on to higher scale models. For this exercise, we limit ourselves to uranium dioxide (UO 2 ) because of the extensive amount of studies available on this system. (authors)
Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules
International Nuclear Information System (INIS)
Marbach, Johannes
2012-01-01
In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.
Time-dependent approach to electron scattering and ionization in the s-wave model
International Nuclear Information System (INIS)
Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.
1995-01-01
The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum
Born, Max
1969-01-01
The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.
Indian Academy of Sciences (India)
https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...
International Nuclear Information System (INIS)
Kodling, K.
1981-01-01
Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru
International Nuclear Information System (INIS)
Horvath, D.; Lambrecht, R.M.
1984-01-01
This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)
Derman, Aysegül; Kayacan, Kadriye
2017-01-01
A non-experimental descriptive and correlational design was used to examine the "notion of the nature of scientific model, atom achievement and correlation between the two" held by a total sample of 76 prospective science teachers. "Students' Understanding of Models in Science" scale was utilized to evaluate the views of the…
Impact of state-specific flowfield modeling on atomic nitrogen radiation
Johnston, Christopher O.; Panesi, Marco
2018-01-01
A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator N as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This decrease is primarily due to the addition of the electron-impact excitation energy-exchange term to the energy equation governing the vibrational-electronic electron temperature. This model also allows the validity of the often applied quasi-steady-state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic-state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher-fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.
International Nuclear Information System (INIS)
Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard
2013-01-01
Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release
Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri
2015-10-01
The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can
Some aspects of forces and fields in atomic models of crack tips
International Nuclear Information System (INIS)
Hoagland, R.G.; Daw, M.S.; Hirth, J.P.
1991-01-01
This paper examines the stresses and displacement gradients in atomistic models of cracks based on an EAM potential devised for aluminum. Methods for computing these quantities are described. Results are presented for two models differing in terms of the orientations of the crack relative to the crystal, a [100](010) orientation that behaves in a brittle fashion and a [111](110) orientation which emits partial dislocations prior to extending. Both models display lattice trapping. The stresses in the brittle crack model are compared with the linear elastic prediction and found to be in remarkably good agreement to within distances of about one lattice parameter of the crack tip and at the free surface where contributions from sources other than strain energy (e.g., surface tension) influence the results. Similar results are observed for the ductile model until dislocation emission occurs. The largest stresses that develop just prior to crack extension or dislocation emission are used to estimate the ratio of theoretical tensile strength to shear strength in this material. Eshelby's conservation integrals, F and M, are also computed. F is found to be essentially contour independent and in agreement with the linear elastic prediction in both models until dislocation emission occurs, at which point a large screening contribution arises from the emitted partials. The contour size dependence of M reveals some interesting features of the crack tip including a slight wobble of the crack tip inside its potential well with changing applied K and the existence of forces acting to move the crack faces apart as blunting occurs
One-photon two-electron processes in helium: Unity and diversity
International Nuclear Information System (INIS)
Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M.G.
2007-01-01
The ab initio HRM-SOW method has established itself as the ideally fit tool to explore the three-body dynamics of the helium atom close to its full break-up threshold. Accordingly, it is used here to perform a 'numerical experiment' designed to enlighten the relations between the various competing processes which may occur in the vicinity of the double ionization threshold, be it double excitation, excitation-ionization, or double ionization. More precisely, double ionization and ionization-excitation cross-sections are produced at 100 meV above the double ionization threshold. The latter, obtained up to as high a level as n=50, are in addition analyzed in terms of spherical and parabolic partial waves in the photo-electron frame. Based on these extensive data, we establish a continuity relation between ionization-excitation and double ionization appropriate to the near threshold region, confirm previous qualitative predictions regarding the dominant angular momentum achieved in these near threshold excitation processes, evidence the relation between ionized-excited and doubly excited states, and promote the partial parabolic ionization-excitation cross-sections as the optimal observation channels of doubly excited states
One-photon two-electron processes in helium: Unity and diversity
Energy Technology Data Exchange (ETDEWEB)
Bouri, Celsus [Quantum Optics and Statistics, Institute of Physics, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder Str.3, D-79104 Freiburg (Germany)]|[LIXAM, Bat. 350, Universite Paris Sud, F-91405 Orsay (France)]|[CEPAMOQ, Universite de Douala, B.P. 8580, Douala (Cameroon); Malegat, Laurence; Selles, Patricia [LIXAM, Bat. 350, Universite Paris Sud, F-91405 Orsay (France); Njock, Moise Kwato [CEPAMOQ, Universite de Douala, B.P. 8580, Douala (Cameroon)
2008-07-01
The ab-initio HRM-SOW method has established itself as the ideally fit tool to explore the three-body dynamics of the helium atom close to the three-body break-up threshold. Accordingly, it is used here to perform a numerical experiment designed to enlighten the relation between the various competing processes which may occur in the vicinity of the double ionization threshold, be it double excitation, excitation-ionization or double ionization. More precisely, double ionization and ionization-excitation cross sections are produced at 100 meV above the double ionization threshold. The latter, obtained up to as high a level as n=50, are in addition analyzed in terms of spherical and parabolic partial waves in the photoelectron frame. Based on these extensive data, we establish a continuity relation between ionization-excitation and double ionization appropriate to the near threshold, confirm previous qualitative predictions regarding the dominant angular momentum achieved in these near threshold excitation processes, evidence the relation between ionized-excited and doubly excited states, and promote the partial parabolic ionization-excitation cross sections as the optimal observation channels of doubly excited states.
One-photon two-electron processes in helium: Unity and diversity
Energy Technology Data Exchange (ETDEWEB)
Bouri, C.; Selles, P. [LIXAM et Federation LUMAT, CNRS et Universite Paris-Sud 11, 91405 Orsay (France); Malegat, L. [LIXAM et Federation LUMAT, CNRS et Universite Paris-Sud 11, 91405 Orsay (France)], E-mail: Laurence.Malegat@lixam.u-psud.fr; Kwato Njock, M.G. [CEPAMOQ, Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)
2007-10-15
The ab initio HRM-SOW method has established itself as the ideally fit tool to explore the three-body dynamics of the helium atom close to its full break-up threshold. Accordingly, it is used here to perform a 'numerical experiment' designed to enlighten the relations between the various competing processes which may occur in the vicinity of the double ionization threshold, be it double excitation, excitation-ionization, or double ionization. More precisely, double ionization and ionization-excitation cross-sections are produced at 100 meV above the double ionization threshold. The latter, obtained up to as high a level as n=50, are in addition analyzed in terms of spherical and parabolic partial waves in the photo-electron frame. Based on these extensive data, we establish a continuity relation between ionization-excitation and double ionization appropriate to the near threshold region, confirm previous qualitative predictions regarding the dominant angular momentum achieved in these near threshold excitation processes, evidence the relation between ionized-excited and doubly excited states, and promote the partial parabolic ionization-excitation cross-sections as the optimal observation channels of doubly excited states.
Students' Visualisation of Chemical Reactions--Insights into the Particle Model and the Atomic Model
Cheng, Maurice M. W.
2018-01-01
This paper reports on an interview study of 18 Grade 10-12 students' model-based reasoning of a chemical reaction: the reaction of magnesium and oxygen at the submicro level. It has been proposed that chemical reactions can be conceptualised using two models: (i) the "particle model," in which a reaction is regarded as the simple…