WorldWideScience

Sample records for two-dimensional viscous flow

  1. Self-organization of two-dimensional incompressible viscous flow in a friction-free box

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Y.; Yoshizawa, M.; Nakano, A. [Gunma Univ., Kiryu (Japan). Faculty of Engineering; Yabe, T.

    1995-10-01

    The process by which self-organization occurs for two-dimensional incompressible viscous flow in a friction-free box is investigated theoretically with the use of numerical simulations. It is shown by an eigenfunction spectrum analysis that two basic processes for the self-organization are the spectrum transfer by nonlinear couplings and the selective dissipation among the eigenmodes of the dissipative operator, and they yield spectrum accumulation at the lowest eigenmode. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to a final self-similar coherent structure, determined uniquely by the lowest eigenmode of the dissipative operator. (author).

  2. A viscous-inviscid interactive procedure for rotational flow in cascades of two dimensional airfoils of arbitrary shape

    Science.gov (United States)

    Johnston, W. A.

    1983-01-01

    A viscous-inviscid interactive calculation procedure is developed for application to flow in cascades of two-dimensional airfoils. This procedure has essentially three components. First, a numerical solution of the Eulers equations which can accommodate an arbitrarily specified cascade geometry of the cascade. A method of grid generation has been used which relics in part on a succession of conformal mappings. Second, a viscous solution for use in boundary layers and wake regions was programmed. Finally, an interactive scheme which takes the form of a source-sink distribution along the blade surface and wake centerline is employed. Results were obtained with this procedure for several cascade flow situations, and some comparisons with experiment are presented.

  3. Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids

    Directory of Open Access Journals (Sweden)

    Umar Khan

    2015-03-01

    Full Text Available Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip. Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plates. Nonlinear ordinary differential equations governing the flow are obtained by imposing similarity transformations on conservation laws. Resulting equations are solved by using an efficient analytical technique the variation of parameters method (VPM. Influences of nanoparticle concentration and different emerging parameters on flow profiles are presented graphically coupled with comprehensive discussions. A numerical solution is also sought for the sake of comparison. Effect of different parameters on skin friction coefficient and Nusselt number is also discussed.

  4. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter

    1996-01-01

    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  5. Flow transitions in two-dimensional foams.

    Science.gov (United States)

    Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael

    2006-11-01

    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.

  6. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  7. Slow viscous flow

    CERN Document Server

    Langlois, William E

    2014-01-01

    Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." -    from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...

  8. Two dimensional MHD flows between porous boundaries

    International Nuclear Information System (INIS)

    Gratton, F.T.

    1994-01-01

    Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs

  9. Flow Modelling for partially Cavitating Two-dimensional Hydrofoils

    DEFF Research Database (Denmark)

    Krishnaswamy, Paddy

    2001-01-01

    The present work addresses te computational analysis of partial sheet hydrofoil cavitation in two dimensions. Particular attention is given to the method of simulating the flow at the end of the cavity. A fixed-length partially cavitating panel method is used to predict the height of the re...... of the model and comparing the present calculations with numerical results. The flow around the partially cavitating hydrofoil with a re-entrant jet has also been treated with a viscous/inviscid interactive method. The viscous flow model is based on boundary layer theory applied on the compound foil......, consisting of the union of the cavity and the hydrofoil surface. The change in the flow direction in the cavity closure region is seen to have a slightly adverse effect on the viscous pressure distribution. Otherwise, it is seen that the viscous re-entrant jet solution compares favourably with experimental...

  10. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    Science.gov (United States)

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  11. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  12. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  13. Weakly nonlinear analysis of two dimensional sheared granular flow

    NARCIS (Netherlands)

    Saitoh, K.; Hayakawa, Hisao

    2011-01-01

    Weakly nonlinear analysis of a two dimensional sheared granular flow is carried out under the Lees-Edwards boundary condition. We derive the time dependent Ginzburg–Landau equation of a disturbance amplitude starting from a set of granular hydrodynamic equations and discuss the bifurcation of the

  14. On the origins of vortex shedding in two-dimensional incompressible flows

    Science.gov (United States)

    Boghosian, M. E.; Cassel, K. W.

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  15. Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...

    African Journals Online (AJOL)

    This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...

  16. Analysis of the Scramjet inlet flow field using two-dimensional Navier-Stokes equations

    Science.gov (United States)

    Kumar, A.; Tiwari, S. N.

    1982-01-01

    A computer code was developed to solve the full two dimensional Navier-Stokes equations in a scramjet inlet. The analysis uses a numerical coordinate transformation which generates a set of boundary-fitted curvilinear coordinates. The explicit finite difference algorithm of MacCormack is used to solve the governing equations. A two-layer eddy viscosity model is used for the turbulent flow. The code can analyze both inviscid and viscous flows with multiple struts in the flow field. Detailed results are presented for two model problems and two scramjet inlets with one and two struts. The application of the two dimensional analysis in the preliminary design of the actual scramjet inlet is briefly discussed.

  17. Stochastic and collisional diffusion in two-dimensional periodic flows

    International Nuclear Information System (INIS)

    Doxas, I.; Horton, W.; Berk, H.L.

    1990-05-01

    The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs

  18. Evolution of the vorticity-area density during the formation of coherent structures in two-dimensional flows

    NARCIS (Netherlands)

    Capel, H.W.; Pasmanter, R.A.

    2000-01-01

    It is shown: (1) that in two-dimensional, incompressible, viscous flows the vorticity-area distribution evolves according to an advection-diffusion equation with a negative, time dependent diffusion coefficient and (2) how to use the vorticity-stream function relations, i.e., the so-called

  19. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  20. Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Serizawa, Shunsuke; Nakano, Akihiro; Takahashi, Toshiki; Van Dam, James W.

    2004-01-01

    The final self-similar state of decaying two-dimensional (2D) turbulence in 2D incompressible viscous flow is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical analysis and simulations that the sinh-Poisson state cω=-sinh(βψ) is not realized in the dynamical system of interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to the lowest eigenmode of {(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to the final decaying self-similar state

  1. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  2. Computation of Viscous Incompressible Flows

    CERN Document Server

    Kwak, Dochan

    2011-01-01

    This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...

  3. Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles

    Science.gov (United States)

    Paisley, M. F.

    1997-09-01

    A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.

  4. Numerical method for two-dimensional unsteady reacting flows

    International Nuclear Information System (INIS)

    Butler, T.D.; O'Rourke, P.J.

    1976-01-01

    A method that numerically solves the full two-dimensional, time-dependent Navier-Stokes equations with species transport, mixing, and chemical reaction between species is presented. The generality of the formulation permits the solution of flows in which deflagrations, detonations, or transitions from deflagration to detonation are found. The solution procedure is embodied in the RICE computer program. RICE is an Eulerian finite difference computer code that uses the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations. One first presents the differential equations of motion and the solution procedure of the Rice program. Next, a method is described for artificially thickening the combustion zone to dimensions resolvable by the computational mesh. This is done in such a way that the physical flame speed and jump conditions across the flame front are preserved. Finally, the results of two example calculations are presented. In the first, the artificial thickening technique is used to solve a one-dimensional laminar flame problem. In the second, the results of a full two-dimensional calculation of unsteady combustion in two connected chambers are detailed

  5. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

    1990-01-01

    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  6. Two-dimensional steady unsaturated flow through embedded elliptical layers

    Science.gov (United States)

    Bakker, Mark; Nieber, John L.

    2004-12-01

    New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.

  7. ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW

    International Nuclear Information System (INIS)

    Blondin, John M.

    2013-01-01

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  8. Flow of quasi-two dimensional water in graphene channels

    Science.gov (United States)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  9. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  10. The flow of an aqueous foam through a two-dimensional porous medium

    Science.gov (United States)

    Dollet, B.; Jones, S. A.; Géraud, B.; Meheust, Y.; Cox, S. J.; Cantat, I.

    2013-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soils: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that applications might benefit of. In particular, viscous dissipation arises mostly from the contact zones between the soap films and the walls, which results in peculiar friction laws allowing the foam to invade narrow pores more efficiently than Newtonian fluids would. We investigate the flow of a two-dimensional foam in three geometrical configurations. The flow velocity field and pressure field can both be reconstructed from the kinematics of the foam bubbles. We first consider a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow behavior is highly dependent on the foam structure within the narrowest of the two channels [1]; consequently, the flux ratio between the two channels exhibits a non-monotonic dependence on the ratio of their widths. We then consider two parallel channels that are respectively convergent and divergent. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels; these deformations strongly impact the foam/wall friction, and consequently the flux distribution between the two channels, causing flow irreversibility. We quantitatively predict the flux ratio as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam. We then study how film-wall friction, capillary pressures and bubble deformation impact the flow of a foam in a two-dimensional porous medium consisting of randomly

  11. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  12. Viscous flow solutions with a cubic spline approximation

    Science.gov (United States)

    Rubin, S. G.; Graves, R. A., Jr.

    1975-01-01

    A cubic spline approximation is used for the solution of several problems in fluid mechanics. This procedure provides a high degree of accuracy even with a nonuniform mesh, and leads to a more accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several typical integration schemes are presented. For two-dimensional flows a spline-alternating-direction-implicit (SADI) method is evaluated. The spline procedure is assessed and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.

  13. The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.

    2015-01-01

    An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian

  14. Numerical simulation of viscous transonic airfoil flows

    Science.gov (United States)

    Coakley, Thomas J.

    1987-01-01

    Numerical simulations of transonic airfoil flows using the Reynolds-averaged Navier-Stokes equations and various turbulence models are presented and compared with experimental data. Three different airfoils were investigated under varying flow conditions ranging from subcritical unseparated flows to supercritical separated flows. The turbulence models investigated consisted of three zero-equation models and one two-equation model. For unseparated flows involving weak viscous-inviscid interactions, the four models were comparable in their agreement with experiment. For separated flows involving strong viscous-inviscid interactions, the nonequilibrium zero-equation model of Johnson and King gave the best overall agreement with experiment.

  15. Application of Analytic Function in two Dimensional Horizontal Flow ...

    African Journals Online (AJOL)

    The application of flow equation to analytic function enables one to see physical applicability of complex analysis. This work provides solution to physical problem in fluid flow that formalizes the idea of motion of fluid element. Harmonic functions are used to study fluid flow under the assumption that an incompressible and ...

  16. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  17. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Phys. Fluids 25, 1982) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Russ. J. Eng. Thermophys. 5, 1995) we obtain a closed-form approximation...... filaments with same pitch we use the established results to prove briefly that the velocity field is helical. We discuss the role of the stream function for the topology of the streamlines in incompressible, helical flows. On this basis, we perform a comprehensive study of the topology of the flow field...... which is considerably easier to analyse. Critical points of the stream function can be found from the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. Including the self-induced velocity...

  18. Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir

    Science.gov (United States)

    Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang

    2018-01-01

    This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.

  19. Two - Dimensional Mathematical Model of Water Flow in Open ...

    African Journals Online (AJOL)

    The irrotational flow condition is used for simplification of the system of the governing shallow water equations and the final nonlinear differential equation is solved for the unknown energy head using the finite element method. A one - dimensional problem was solved with diffusion hydraulic model (DHM), energy diffusion ...

  20. Two dimensional RG flows and Yang-Mills instantons

    Science.gov (United States)

    Gava, Edi; Karndumri, Parinya; Narain, K. S.

    2011-03-01

    We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group G. We turn on G instanton gauge fields, with instanton number N, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric AdS 3 × S 3 backgrounds with two different values of AdS 3 and S 3 radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and G = SU(2), there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N = 4 (SU(2) ⋉ R 3)2 three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.

  1. On the renormalization group flow in two dimensional superconformal models

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian

    2014-01-01

    We extend the results on the RG flow in the next to leading order to the case of the supersymmetric minimal models SM p for p≫1. We explain how to compute the NS and Ramond fields conformal blocks in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination expressing the infrared limit of these fields in term of the IR theory SM p−2 is exactly the same as those of the nonsupersymmetric minimal theory

  2. Measurement of flow in viscous fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Chris [NEL Technology for Life (Mexico)

    2011-07-01

    Taking accurate flow measurements of viscous fluids can prove to be a difficult task. The process faces a number of challenges which include pressure losses, varying velocity profiles, higher viscous friction, and the presence of solids or gas. In this presentation NEL, holder of UK's National Standards for flow measurement, shares a test that was conducted to identify the influencing factors of flow measurements for viscous fluids. The test, which was conducted at NEL's National Standards oil flow facility, utilizes three test meters. The first test meter used was a multi-path ultrasonic meter, the other two were twin-tube coriolis meters of different sizes. Readings were taken from each meter for kerosene and primol at varying degrees of viscosity. Adjustments in flowrate and temperature were also made and recorded throughout the test. From the tests, NEL was able to generate data regarding the factors impacting mass flowrate, density, and pressure.

  3. A simplified two-dimensional boundary element method with arbitrary uniform mean flow

    Directory of Open Access Journals (Sweden)

    Bassem Barhoumi

    2017-07-01

    Full Text Available To reduce computational costs, an improved form of the frequency domain boundary element method (BEM is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation (BIE representation solves the two-dimensional convected Helmholtz equation (CHE and its fundamental solution, which must satisfy a new Sommerfeld radiation condition (SRC in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green’s kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole, dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. Keywords: Two-dimensional convected Helmholtz equation, Two-dimensional convected Green’s function, Two-dimensional convected boundary element method, Arbitrary uniform mean flow, Two-dimensional acoustic sources

  4. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  5. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  6. Fundamental interactions of vortical structures with boundary layers in two-dimensional flows

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Lynov, Jens-Peter

    1991-01-01

    The effect of no-slip walls on the evolution of coherent, vortical structures in two-dimensional flows is studied by numerical calculations. The calculations are based on an accurate and efficient spectral scheme which has been developed for the solution of the 2D Navier-Stokes equations in the v......The effect of no-slip walls on the evolution of coherent, vortical structures in two-dimensional flows is studied by numerical calculations. The calculations are based on an accurate and efficient spectral scheme which has been developed for the solution of the 2D Navier-Stokes equations...... down of vortex dipoles by "vortex shielding"....

  7. Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi

    Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.

  8. Viscous flows the practical use of theory

    CERN Document Server

    Brenner, Howard

    1988-01-01

    Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.

  9. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    Science.gov (United States)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  10. Spontaneous angular momentum generation of two-dimensional fluid flow in an elliptic geometry

    NARCIS (Netherlands)

    Keetels, G.H.; Clercx, H.J.H.; van Heijst, G.J.F.

    2008-01-01

    Spontaneous spin-up, i.e., the significant increase of the total angular momentum of a flow that initially has no net angular momentum, is very characteristic for decaying two-dimensional turbulence in square domains bounded by rigid no-slip walls. In contrast, spontaneous spin-up is virtually

  11. Two-dimensional free-surface flow under gravity: A new benchmark case for SPH method

    Science.gov (United States)

    Wu, J. Z.; Fang, L.

    2018-02-01

    Currently there are few free-surface benchmark cases with analytical results for the Smoothed Particle Hydrodynamics (SPH) simulation. In the present contribution we introduce a two-dimensional free-surface flow under gravity, and obtain an analytical expression on the surface height difference and a theoretical estimation on the surface fractal dimension. They are preliminarily validated and supported by SPH calculations.

  12. STRUYA a code for two-dimensional fluid flow analysis with and without structure coupling

    International Nuclear Information System (INIS)

    Katz, F.W.; Schlechtendahl, E.G.; Stoelting, K.

    1979-11-01

    STRUYA is a code for two-dimensional subsonic and supersonic flow analysis. Both Eulerian and Lagrangian grids are allowed. In the third dimension the flow domain may be bounded by a moving wall. The wall movement may be prescribed in a time-and space varying way or computed by a structural model. STRUYA offers a general scheme for adapting various structural models. As a standard feature it includes a cylindrical shell model (CYLDY2). (orig.) [de

  13. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  14. Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow

    Science.gov (United States)

    Berti, S.; Boffetta, G.

    2010-09-01

    We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial nonlinearities, thanks to the feedback of elastic forces on the flow.

  15. Two-dimensional model of flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Zikanov, Oleg; Sun, Haijun; Ziegler, Donald

    2003-11-01

    We derive a two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and nonlinear coupling between the flows and interfacial waves. The model is applied to verify a recently proposed theory that explains the instability through the interaction between perturbations of horizontal electric currents in the aluminum layer and the imposed vertical magnetic field. We investigate the role of other factors, in particular, background melt flows and magnetic field perturbations.

  16. Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality.

    Science.gov (United States)

    Yoshida, Z; Morrison, P J

    2017-12-15

    While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.

  17. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  18. Flow-induced symmetry reduction in two-dimensional reaction-diffusion system

    Science.gov (United States)

    Hu, Hai Xiang; Li, Xiao Chun; Li, Qian Shu

    2009-03-01

    The influence of uniform flow on the pattern formation is investigated in a two-dimensional reaction-diffusion system. It is found that the convective flow plays a key role on pattern modulation. Both traveling and stationary periodic patterns are obtained. At moderate flow rates, the perfect hexagon, phase-shifted hexagon and stable square, which are essentially unstable in unperturbed reaction-diffusion systems, are obtained. These patterns move downstream. If the flow rate is increased further, the stationary flow-oriented stripes develop and compete with the spots. If the flow rate exceeds some critical value, the system is convectively unstable and the stationary stripes prevail against the traveling spots. The above patterns all have the same critical wavenumber associated with Turing bifurcation, which indicates that Turing instability produces the patterns while the flow induces the symmetry reduction, i.e., from six-fold symmetry to four-fold one, and to two-fold one ultimately.

  19. Analysis of two-dimensional flow of epoxy fluids through woven glass fabric

    International Nuclear Information System (INIS)

    Schutz, J.B.; Smith, K.B.

    1997-01-01

    Fabrication of magnet coils for the International Thermonuclear Experimental Reactor will require vacuum pressure impregnation of epoxy resin into the glass fabric of the insulation system. Flow of a fluid through a packed bed of woven glass fabric is extremely complicated, and semiempirical methods must be used to analyze these flows. The previous one-dimensional model has been modified for analysis of two-dimensional isotropic flow of epoxy resins through woven glass fabric. Several two-dimensional flow experiments were performed to validate the analysis, and to determine permeabilities of several fabric weave types. The semiempirical permeability is shown to be a characteristic of the fabric weave, and once determined, may be used to analyze flow of fluids of differing viscosities. Plain weave has a lower permeability than satin weave fabric, possibly due to the increased tortuosity of the preferential flow paths along fiber tows. A flow radius of approximately 2 meters through satin weave fabric is predicted for fluid viscosities of 0.10 Pa s (100 cps) in 20 hours, characteristic of VPI resins

  20. Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibria fluctuations

    International Nuclear Information System (INIS)

    Agim, Y.Z.

    1989-08-01

    A set of reduced ideal MHD equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. It is found that as in the axisymmetric case, general two-dimensional flow equilibria are governed by a second-order quasi-linear partial differential equation for a magnetic flux function, which is coupled to a Bernoulli-type equation for the density. The equation for the magnetic flux function becomes hyperbolic at certain critical flow speeds which follow from its characteristic equation. When the equation is hyperbolic, shock phenomena may exist. As a particular example, unidirectional flow along the lines of symmetry is considered. In this case, the equation mentioned above is always elliptic. An exact solution for the case of helically symmetric unidirectional flow is found and studied to determine flow effects on the magnetic topology. In second part of this thesis, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10

  1. Exact solution of two-dimensional MHD boundary layer flow over a semi-infinite flat plate

    Science.gov (United States)

    Kudenatti, Ramesh B.; Kirsur, Shreenivas R.; Achala, L. N.; Bujurke, N. M.

    2013-05-01

    In the present paper, an exact solution for the two-dimensional boundary layer viscous flow over a semi-infinite flat plate in the presence of magnetic field is given. Generalized similarity transformations are used to convert the governing boundary layer equations into a third order nonlinear differential equation which is the famous MHD Falkner-Skan equation. This equation contains three flow parameters: the stream-wise pressure gradient (β), the magnetic parameter (M), and the boundary stretch parameter (λ). Closed-form analytical solution is obtained for β=-1 and M=0 in terms of error and exponential functions which is modified to obtain an exact solution for general values of β and M. We also obtain asymptotic analyses of the MHD Falkner-Skan equation in the limit of large η and λ. The results obtained are compared with the direct numerical solution of the full boundary layer equation, and found that results are remarkably in good agreement between the solutions. The derived quantities such as velocity profiles and skin friction coefficient are presented. The physical significance of the flow parameters are also discussed in detail.

  2. Transient response in granular quasi-two-dimensional bounded heap flow

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  3. A new Lagrangian random choice method for steady two-dimensional supersonic/hypersonic flow

    Science.gov (United States)

    Loh, C. Y.; Hui, W. H.

    1991-01-01

    Glimm's (1965) random choice method has been successfully applied to compute steady two-dimensional supersonic/hypersonic flow using a new Lagrangian formulation. The method is easy to program, fast to execute, yet it is very accurate and robust. It requires no grid generation, resolves slipline and shock discontinuities crisply, can handle boundary conditions most easily, and is applicable to hypersonic as well as supersonic flow. It represents an accurate and fast alternative to the existing Eulerian methods. Many computed examples are given.

  4. Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation

    Science.gov (United States)

    Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.

    2012-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same

  5. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  6. Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

    Science.gov (United States)

    Maillet; Coveney

    2000-08-01

    The behavior of two-dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice-gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focused on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects is described. The influence of a third component, namely, surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellization. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process-the invading fluid takes a more tortuous path to invade the porous medium-and reduces the oil recovery (the residual oil saturation increases).

  7. Irreversible Time Flow in a Two-Dimensional Dilaton Black Hole with Matter

    CERN Document Server

    Diamandis, G A; Georgalas, B C; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V; Papantonopoulos, E; Ellis, John

    1998-01-01

    We show that an exact solution of two-dimensional dilaton gravity with matter discovered previously exhibits an irreversible temporal flow towards flat space with a vanishing cosmological constant. This time flow is induced by the back reaction of matter on the space-time geometry. We demonstrate that the system is not in equilibrium if the cosmological constant is non-zero, whereas the solution with zero cosmological constant is stable. The flow of the system towards this stable end-point is derived from the renormalization-group flow of the Zamolodchikov function. This behaviour is interpreted in terms of non-critical Liouville string, with the Liouville field identified as the target time.

  8. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    changes results in a much simplified system of differential equations for the streamlines (a normal form) encapsulating all the features of the original system. From this, we obtain a complete description of bifurcations up to codimension three close to a simple linear degeneracy. As a special case we......Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...... develop the theory for flows with reflectional symmetry. We show that all the patterns obtained can be realized in steady Navier–Stokes or Stokes flow, but an unresolved difficulty arises in the symmetric case for Navier–Stokes flow. The theory is applied to the patterns and bifurcations found numerically...

  9. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    changes results in a much simplified system of differential equations for the streamlines (a normal form) encapsulating all the features of the original system. From this, we obtain a complete description of bifurcations up to codimension three close to a simple linear degeneracy. As a special case we......Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...... develop the theory for flows with reflectional symmetry. We show that all the patterns obtained can be realized in steady Navier-Stokes or Stokes flow, but an unresolved difficulty arises in the symmetric case for Navier-Stokes flow. The theory is applied to the patterns and bifurcations found numerically...

  10. Theory of viscous transonic flow over airfoils at high Reynolds number

    Science.gov (United States)

    Melnik, R. E.; Chow, R.; Mead, H. R.

    1977-01-01

    This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.

  11. Reduction of vertical transport in two-dimensional stably stratified forced shear flows

    Science.gov (United States)

    Toqué, Nathalie; Lignières, François; Vincent, Alain

    2006-04-01

    The effect of stable stratification on the vertical transport of passive contaminants in forced, stationary, two-dimensional (2D) and inhomogeneous shear turbulence is investigated numerically. The mean flow consists of several superimposed parallel sheared layers in a stably stratified medium. We find that, as stratification increases, the vertical transport decreases much faster than predicted by mixing length estimates. For the highest stratification, particles vertical dispersion nearly vanishes. The proposed interpretation emphasizes the role of weakly sheared layers where the relative increase of the mean horizontal velocity with respect to the root-mean-square (rms) vertical velocity causes the decrease of the Lagrangian correlation timescale.

  12. Wake structure and thrust generation of a flapping foil in two-dimensional flow

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2017-01-01

    We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare...... measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency...

  13. Flow instability originating from particle configurations using the two-dimensional optimal velocity model

    Science.gov (United States)

    Ishiwata, Ryosuke; Sugiyama, Yuki

    2015-12-01

    The two-dimensional optimal velocity model has potential applications to pedestrian dynamics and the collective motion of animals. In this paper, we extend the linear stability analysis presented in a previous paper [A Nakayama et al., Phys. Rev. E. 77, 016105 (2008), 10.1103/PhysRevE.77.016105] and investigate the effects of particle configuration on the stability of several wave modes of collective oscillations of moving particles. We find that, when a particle moves without interacting with particles that are positioned in a diagonally forward or backward direction, the stable region of the particle flow is completely removed by the elliptically polarized mode.

  14. Flow of a two-dimensional liquid metal jet in a strong magnetic field

    International Nuclear Information System (INIS)

    Reed, C.B.; Molokov, S.

    2002-01-01

    Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, while gravity is shown to be not important. The main aim of the study is to evaluate the importance of the inertial effects. It has been shown that for gradually varying fields characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, where N is the interaction parameter. Thus the inertialess flow model is expected to give good results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet thickness and velocity have been derived. The results show that the jet becomes thicker if the field increases along the flow and thinner if it decreases

  15. Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2008-01-01

    Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.

  16. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  17. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    International Nuclear Information System (INIS)

    McBride, J.F.; Graham, D.N.

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs

  18. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  19. A numerical study of the motion of a neutrally buoyant cylinder in two dimensional shear flow

    Science.gov (United States)

    Pan, Tsorng-Whay; Huang, Shih-Lin; Chen, Shih-Di; Chu, Chin-Chou; Chang, Chien-Cheng

    2012-11-01

    We have investigated the motion of a neutrally buoyant cylinder of circular or elliptic shape in two dimensional shear flow of a Newtonian fluid by direct numerical simulation. The numerical results are validated by comparisons with existing theoretical, experimental and numerical results, including a power law of the normalized angular speed versus the particle Reynolds number. The centerline between two walls is an expected equilibrium position of the cylinder mass center in shear flow. When placing the particle away from the centerline initially, it migrates toward another equilibrium position for higher Reynolds numbers due to the interplay between the slip velocity, the Magnus force, and the wall repulsion force. T-W Pan acknowledges the support by the US NSF and S-L Huang, S-D Chen, C-C Chu, C-C Chang acknowledge the support by the National Science Council of Taiwan, ROC.

  20. Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo.

    Science.gov (United States)

    Janda, A; Harich, R; Zuriguel, I; Maza, D; Cixous, P; Garcimartín, A

    2009-03-01

    We present experimental results obtained with a two-dimensional silo discharging under gravity through an orifice at the flat bottom. High-speed measurements provide enough time resolution to detect every single bead that goes out and this allows the measurement of the flow rate in short-time windows. Two different regimes are clearly distinguished: one for large orifices, which can be described by Gaussian fluctuations, and another for small orifices, in which extreme events appear. The frontier between those two regimes coincides with the outlet size below which jamming events are frequent. Moreover, it is shown that the power spectrum of the flow-rate oscillations is not dominated by any particular frequency.

  1. Simulation and Experimental Studies of Jamming for Model Two-Dimensional Particles Under Flow

    Science.gov (United States)

    Guariguata, A.; Wu, D. T.; Koh, C. A.; Sum, A. K.; Sloan, E. D.

    2009-06-01

    Jamming and plugging of flowlines with gas hydrates is the most critical issue in the flow assurance of oil and gas production lines. Because solid hydrate particles are often suspended in a fluid, the pipeline jamming and flow constriction formed by hydrates depend not only on particle/wall properties, such as friction, binding forces and mechanical characteristics, but also on the concentration of particles upstream of the restriction, flow velocity, fluid viscosity, and forces between the particles. Therefore, to gain insight into the jamming phenomena, both experiments and computer simulations on two-dimensional model systems have been carried out to characterize the flow of particles in a channel, with the eventual goal of applying that knowledge to gas hydrates jamming. Using the simulation software PFC2d®, we studied the effect of restriction geometry and flow velocity on the jamming process of particles. Results from the simulations were compared to experimental measurements on polyethylene discs floating on water flowing in an open channel.

  2. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  3. Material Flow Analysis in Indentation by Two-Dimensional Digital Image Correlation and Finite Elements Method.

    Science.gov (United States)

    Bermudo, Carolina; Sevilla, Lorenzo; Castillo López, Germán

    2017-06-21

    The present work shows the material flow analysis in indentation by the numerical two dimensional Finite Elements (FEM) method and the experimental two-dimensional Digital Image Correlation (DIC) method. To achieve deep indentation without cracking, a ductile material, 99% tin, is used. The results obtained from the DIC technique depend predominantly on the pattern conferred to the samples. Due to the absence of a natural pattern, black and white spray painting is used for greater contrast. The stress-strain curve of the material has been obtained and introduced in the Finite Element simulation code used, DEFORM™, allowing for accurate simulations. Two different 2D models have been used: a plain strain model to obtain the load curve and a plain stress model to evaluate the strain maps on the workpiece surface. The indentation displacement load curve has been compared between the FEM and the experimental results, showing a good correlation. Additionally, the strain maps obtained from the material surface with FEM and DIC are compared in order to validate the numerical model. The Von Mises strain results between both of them present a 10-20% difference. The results show that FEM is a good tool for simulating indentation processes, allowing for the evaluation of the maximum forces and deformations involved in the forming process. Additionally, the non-contact DIC technique shows its potential by measuring the superficial strain maps, validating the FEM results.

  4. Viscous flow in a soft valve

    DEFF Research Database (Denmark)

    Park, Keunhwan; Tixier, A.; Christensen, A.H.

    2018-01-01

    experiments and theory on viscous flow in a simple bioinspired soft valve which illustrate essential features of interactions between hydrodynamic and elastic forces at low Reynolds numbers. The set-up comprises a sphere connected to a spring located inside a tapering cylindrical channel. The spring...... is aligned with the central axis of the channel and a pressure drop is applied across the sphere, thus forcing the liquid through the narrow gap between the sphere and the channel walls. The sphere's equilibrium position is determined by a balance between spring and hydrodynamic forces. Since the gap...... thickness h0, and viscosity η as Q ∼η-1 a1/2h05/2 (1 - Δp/Δpc)5/2Δp, where the critical pressure Δpc scales with spring constant k as Δpc ∼ kh0a-2. These predictions compared favourably to the results of our experiments with no free parameters....

  5. Flow of a two-dimensional aqueous foam in two parallel channels

    Science.gov (United States)

    Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.

    2012-04-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.

  6. Influence of viscous dissipation and radiation on MHD Couette flow ...

    African Journals Online (AJOL)

    The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...

  7. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  8. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  9. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  10. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  11. Self-oscillations of a two-dimensional shear flow with forcing and dissipation

    Science.gov (United States)

    López Zazueta, A.; Zavala Sansón, L.

    2018-04-01

    Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.

  12. Experimental investigation of flow over two-dimensional multiple hill models.

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The flow of a foam in a two-dimensional porous medium

    Science.gov (United States)

    Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves

    2016-02-01

    Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.

  14. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method

    International Nuclear Information System (INIS)

    Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.

    2003-01-01

    In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers

  15. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    International Nuclear Information System (INIS)

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  16. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  17. Linear stability analysis of parallel shear flows for an inviscid generalized two-dimensional fluid system

    International Nuclear Information System (INIS)

    Iwayama, T; Sueyoshi, M; Watanabe, T

    2013-01-01

    The linear stability of parallel shear flows for an inviscid generalized two-dimensional (2D) fluid system, the so-called α turbulence system, is studied. This system is characterized by the relation q = −( − Δ) α/2 ψ between the advected scalar q and the stream function ψ. Here, α is a real number not exceeding 3 and q is referred to as the generalized vorticity. In this study, a sufficient condition for linear stability of parallel shear flows is derived using the conservation of wave activity. A stability analysis is then performed for a sheet vortex that violates the stability condition. The instability of a sheet vortex in the 2D Euler system (α = 2) is referred to as a Kelvin–Helmholtz (KH) instability; such an instability for the generalized 2D fluid system is investigated for 0 3−α for 1 < α < 3, where k is the wavenumber of the perturbation. In contrast, for 0 < α ⩽ 1, the growth rate is infinite. In other words, a transition of the growth rate of the perturbation occurs at α = 1. A physical model for KH instability in the generalized 2D fluid system, which can explain the transition of the growth rate of the perturbation at α = 1, is proposed. (paper)

  18. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    Science.gov (United States)

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  19. Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Sun, Haijun; Zikanov, Oleg; Ziegler, Donald P.

    2004-10-01

    We derive a new two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and non-linear coupling between the flows and interfacial waves. The model is applied to investigate the impact of background melt flows and magnetic field perturbations on the instability.

  20. Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches

    International Nuclear Information System (INIS)

    Peterson, D.L.; Bowers, R.L.; McLenithan, K.D.; Deeney, C.; Chandler, G.A.; Spielman, R.B.; Matzen, M.K.; Roderick, N.F.

    1998-01-01

    A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the total radiated energy and overpredict power) are due to the radially extended nature of the plasma shell, an effect which arises from the presence of magnetically driven Rayleigh endash Taylor instabilities. The magnetic Rayleigh endash Taylor instabilities differ substantially from hydrodynamically driven instabilities and typical measures of instability development such as e-folding times and mixing layer thickness are inapplicable or of limited value. A new measure of global instability development is introduced, tied to the imploding plasma mass, termed open-quotes fractional involved mass.close quotes Examples of this quantity are shown for the three experiments along with a discussion of the applicability of this measure. copyright 1998 American Institute of Physics

  1. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  2. Existence of a secondary flow for a temperature dependent viscous ...

    African Journals Online (AJOL)

    We model a viscous fluid flowing between parallel plates. The viscosity depends on temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions. The existence of two velocity solutions is new. This means that there exist secondary flows. Journal of the ...

  3. Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model

    NARCIS (Netherlands)

    Ritsema, C.J.; Oostindie, K.; Stolte, J.

    1996-01-01

    On four hill-slopes in the loess region of the Netherlands pressure heads were monitored during rain events with time intervals of five minutes. Water flow through these hill-slopes during erosive rain events in summer and winter was simulated two-dimensionally. These simulations showed that

  4. Two-dimensional heat flow analysis applied to heat sterilization of ponderosa pine and Douglas-fir square timbers

    Science.gov (United States)

    William T. Simpson

    2004-01-01

    Equations for a two-dimensional finite difference heat flow analysis were developed and applied to ponderosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating air, and thus surface temperatures failed to attain...

  5. Preferential flow systems amended with biogeochemical components: imaging of a two-dimensional study

    Science.gov (United States)

    Pales, Ashley R.; Li, Biting; Clifford, Heather M.; Kupis, Shyla; Edayilam, Nimisha; Montgomery, Dawn; Liang, Wei-zhen; Dogan, Mine; Tharayil, Nishanth; Martinez, Nicole; Moysey, Stephen; Powell, Brian; Darnault, Christophe J. G.

    2018-04-01

    The vadose zone is a highly interactive heterogeneous system through which water enters the subsurface system by infiltration. This paper details the effects of simulated plant exudate and soil component solutions upon unstable flow patterns in a porous medium (ASTM silica sand; US Silica, Ottawa, IL, USA) through the use of two-dimensional tank light transmission method (LTM). The contact angle (θ) and surface tension (γ) of two simulated plant exudate solutions (i.e., oxalate and citrate) and two soil component solutions (i.e., tannic acid and Suwannee River natural organic matter, SRNOM) were analyzed to determine the liquid-gas and liquid-solid interface characteristics of each. To determine if the unstable flow formations were dependent on the type and concentration of the simulated plant exudates and soil components, the analysis of the effects of the simulated plant exudate and soil component solutions were compared to a control solution (Hoagland nutrient solution with 0.01 M NaCl). Fingering flow patterns, vertical and horizontal water saturation profiles, water saturation at the fingertips, finger dimensions and velocity, and number of fingers were obtained using the light transmission method. Significant differences in the interface properties indicated a decrease between the control and the plant exudate and soil component solutions tested; specifically, the control (θ = 64.5° and γ = 75.75 mN m-1) samples exhibited a higher contact angle and surface tension than the low concentration of citrate (θ = 52.6° and γ = 70.8 mN m-1). Wetting front instability and fingering flow phenomena were reported in all infiltration experiments. The results showed that the plant exudates and soil components influenced the soil infiltration as differences in finger geometries, velocities, and water saturation profiles were detected when compared to the control. Among the tested solutions and concentrations of soil components, the largest finger width (10.19 cm

  6. A two-dimensional numerical model of two-phase heat transfer and fluid flow in a kettle reboiler

    International Nuclear Information System (INIS)

    Edwards, D.P.; Jensen, M.K.

    1991-01-01

    This paper reports on a numerical model that has been developed to predict the two-dimensional, two-phase flow in a kettle reboiler using a finite difference computer code. The effects of bundle-averaged heat flux, heat transfer mode, weir height, and reboiler size were examined. The recirculation flow rate in the kettle reboiler was found to be strongly dependent upon the bundle-averaged heat flux; the recirculating flow increased with increasing heat flux, reached a plateau, and then decreased with further increases in the heat flux. Differences between the constant wall heat flux and constant wall temperature modes of heat transfer were minimal. The model is an improvement over previous one- and two-dimensional models because; the location of the recirculation center could be predicted, the model included the horizontal flow components within the tube bundle, and the model employed a two-fluid rather than a homogeneous fluid model

  7. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  8. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  9. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    Science.gov (United States)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  10. Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries

    International Nuclear Information System (INIS)

    Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun

    2015-01-01

    The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied

  11. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  12. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  13. Unsteady flow around a two-dimensional section of a vertical axis turbine for tidal stream energy conversion

    Directory of Open Access Journals (Sweden)

    Hyun Ju Jung

    2009-12-01

    Full Text Available The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 airfoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.

  14. Capillary and viscous perturbations to Helmholtz flows

    KAUST Repository

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  15. Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration

    KAUST Repository

    Vignal, Philippe

    2015-06-01

    In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.

  16. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  17. Modeling of brittle-viscous flow using discrete particles

    Science.gov (United States)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the

  18. Kinetic theory model for the flow of a simple gas from a two-dimensional nozzle

    Science.gov (United States)

    Riley, B. R.; Scheller, K. W.

    1989-01-01

    A system of nonlinear integral equations equivalent to the Krook kinetic equation for the steady state is the mathematical basis used to develop a computer code to model the flowfields for low-thrust two-dimensional nozzles. The method of characteristics was used to solve numerically by an iteration process the approximated Boltzmann equation for the number density, temperature, and velocity profiles of a simple gas as it exhausts into a vacuum. Results predict backscatter and show the effect of the inside wall boundary layer on the flowfields external to the nozzle.

  19. The far field migration of radionuclides in two dimensional groundwater flows though geologic media

    International Nuclear Information System (INIS)

    Ting, D.K.S.; Chambre, P.

    1985-01-01

    An analytical method to model the radionuclides migration in a two dimensional groundwater flor through geologic media has been developed and implemented into the computer code UCBNE21. Using this method, the potential hazard to the biosphere posed by the accidental release of radionuclides from a candidate repository site (WIPP) is determined. I-129 and Ra-226 are potentially the most hazardous nuclides in these sites but their discharge into the biosphere will not result in concentrations larger than their maximum permissible concentrations. (Author) [pt

  20. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1965-12-01

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given

  1. Simulation of Free Airfoil Vibrations in Incompressible Viscous Flow — Comparison of FEM and FVM

    Directory of Open Access Journals (Sweden)

    Petr Sváček

    2012-01-01

    Full Text Available This paper deals with a numerical solution of the interaction of two-dimensional (2-D incompressible viscous flow and a vibrating profile NACA 0012 with large amplitudes. The laminar flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form. The profile with two degrees of freedom (2-DOF can rotate around its elastic axis and oscillate in the vertical direction. Its motion is described by a nonlinear system of two ordinary differential equations. Deformations of the computational domain due to the profile motion are treated by the arbitrary Lagrangian-Eulerianmethod. The finite volume method and the finite element method are applied, and the numerical results are compared.

  2. Mean flow characteristics of two-dimensional wings in ground effect

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-06-01

    Full Text Available The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-ε model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length (0.1≤h/C ≤ 1.25 for the angles of attack (0° ≤ α ≤ 10° in the pre-stall regime at a Reynolds number (Re of 2×106 based on free stream velocity U∞ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at α = 4° and h/C = 0.1. Under the conditions of α = 4° and h/C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of 2× 10 5 ≤ Re ≤ 2× 109. As Re increases, Cl and Cd augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

  3. Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man

    1996-01-01

    Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one

  4. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  5. Passive tracer in a flow corresponding to two-dimensional stochastic Navier–Stokes equations

    International Nuclear Information System (INIS)

    Komorowski, Tomasz; Peszat, Szymon; Szarek, Tomasz

    2013-01-01

    In this paper we prove the law of large numbers and central limit theorem for trajectories of a particle carried by a two-dimensional Eulerian velocity field. The field is given by a solution of a stochastic Navier–Stokes system with non-degenerate noise. The spectral gap property, with respect to the Wasserstein metric, for such a system was shown in Hairer and Mattingly (2008 Ann. Probab. 36 2050–91). In this paper we show that a similar property holds for the environment process corresponding to the Lagrangian observations of the velocity. Consequently we conclude the law of large numbers and the central limit theorem for the tracer. The proof of the central limit theorem relies on the martingale approximation of the trajectory process. (paper)

  6. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  7. Viscous anisotropic hydrodynamics for the Gubser flow

    Science.gov (United States)

    Martinez, M.; McNelis, M.; Heinz, U.

    2017-11-01

    In this work we describe the dynamics of a highly anisotropic system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion (Gubser flow) for arbitrary shear viscosity to entropy density ratio. We derive the equations of motion of dissipative anisotropic hydrodynamics by applying to this situation the moments method recently derived by Molnár et al. (MNR) [E. Molnar, H. Niemi, and D. H. Rischke, "Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation," Phys. Rev. D93 no. 11, (2016) 114025, arxiv:arXiv:1602.00573 [nucl-th], E. Molnar, H. Niemi, and D. H. Rischke, "Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation," Phys. Rev. D94 no. 12, (2016) 125003, arxiv:arXiv:1606.09019 [nucl-th

  8. Numerical solution of inviscid and viscous flow around the profile

    Science.gov (United States)

    Slouka, Martin; Kozel, Karel; Prihoda, Jaromir

    2015-05-01

    This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox's k-ω model. Calculations are done in GAMM channel computational domain with 10% DCA profile and in turbine cascade computational domain with 8% DCA profile. Numerical methods are based on a finite volume solution and compared with experimental measurements for 8% DCA profile.

  9. Numerical solution of inviscid and viscous flow around the profile

    Directory of Open Access Journals (Sweden)

    Slouka Martin

    2015-01-01

    Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox’s k-ω model. Calculations are done in GAMM channel computational domain with 10% DCA profile and in turbine cascade computational domain with 8% DCA profile. Numerical methods are based on a finite volume solution and compared with experimental measurements for 8% DCA profile.

  10. A semi-elliptic analysis of internal viscous flows

    International Nuclear Information System (INIS)

    Ghia, U.; Ramamurti, R.; Ghia, K.N.

    1986-01-01

    The increased demands placed presently on the performance of compressors and turbines of gas-turbine engines have, for some time, pointed the need for accurate analysis of viscous flows in turbomachinery. With the recent developments of advanced computational facilities, much effort has been made to respond to this need. Various mathematical formulations, grid systems and numerical techniques have been developed for the numerical solution of the viscous flow equations (Refs. 1-4). The full Navier-Stokes equations as well as their corresponding thin-layer approximate form have been employed in H- as well as C-grids, using explicit or implicit methods, including convergence enhancement techniques based on multi-grid methodology. Nevertheless, obtaining converged solutions for general geometries on acceptably refined grids remains a computationally demanding task. The present paper discusses a reduced form on the governing equations which can capture much of the physics, while requiring less computer resources than the full Navier-Stokes equations

  11. Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate

    International Nuclear Information System (INIS)

    Tajvidi, T.; Razzaghi, M.; Dehghan, M.

    2008-01-01

    A numerical method for solving the classical Blasius' equation is proposed. The Blasius' equation is a third order nonlinear ordinary differential equation , which arises in the problem of the two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. The operational matrices for the derivative and product of the modified rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of Blasius' equation to the solution of a system of algebraic equations. A numerical evaluation is included to demonstrate the validity and applicability of the method and a comparison is made with existing results

  12. Investigation of the use of Prandtl/Navier--Stokes equation procedures for two-dimensional incompressible flows

    International Nuclear Information System (INIS)

    Anderson, C.R.; Reider, M.B.

    1994-01-01

    The technique of combining solutions of the Prandtl equations with solutions of the Navier--Stokes equations to compute incompressible flow around two-dimensional bodies is investigated herein. Computational evidence is presented which shows that if the ''obvious'' coupling is used to combine the solutions, then the resulting solution is not accurate. An alternate coupling procedure is described which greatly improves the accuracy of the solutions obtained with the combined equation approach. An alternate coupling that can be used to create a more accurate vortex sheet/vortex blob method is then shown

  13. THE EFFECT OF MAGNETIC FIELD ON MEAN FLOW GENERATION BY ROTATING TWO-DIMENSIONAL CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Laura K., E-mail: lcurrie@astro.ex.ac.uk [Department of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter (United Kingdom)

    2016-11-20

    Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them, leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.

  14. Numerical experiments in the stability of leading edge boundary layer flow. A two-dimensional study

    NARCIS (Netherlands)

    Theofilis, Vassilios; Theofilis, V.

    1993-01-01

    A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full

  15. Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures

    Science.gov (United States)

    Shatalov, Alexander V.

    The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.

  16. Flow optimization in one-dimensional and comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Blumberg, Leonid M

    2018-02-09

    Theoretical considerations of optimal flow in a GC column under different conditions are outlined from a single perspective, and numerical recommendations are provided. The optimal flow rate in a temperature programmed column is about 30% lower than its isothermal counterpart in the same column with the same carrier gas. A simplified calculation of recommended optimal or near optimal flow rate in a single column under different conditions is summarized in a single equation. In GC × GC, the primary column operates under temperature-programmed conditions while each secondary run is essentially isothermal. As a result, their flow optimization requirements are different. The complementary IDs (internal diameters) corresponding to equal optimal flow rates in both GC × GC columns should relate as 2 d = 0.7  ·1 d. Typical complementary ID pairs are tabulated. If choosing the complementary IDs is not an option, several ways to reconcile the difference in their optimal flow rates are considered. The most typical cases of the column mismatch are identified and their boundary conditions are formulated. The effect of the flow reconciliation in these column pairs on the performance of GC × GC analysis is evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  18. Numerical modeling of the motion of deformable ellipsoidal objects in slow viscous flows

    Science.gov (United States)

    Jiang, Dazhi

    2007-03-01

    An algorithm for modeling the strain and rotation of deformable ellipsoidal objects in viscous flows based on Eshelby's (1957. Proceedings of the Royal Society of London A241, 376-396) theory is presented and is implemented in a fully graphic mathematics application (Mathcad ®, http://www.mathsoft.com). The algorithm resolves all singular cases encountered in modeling large finite deformations. The orientation of ellipsoidal objects is specified in terms of polar coordinate angles which are easily converted to the trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, one can model the strain and rotation paths of individual deformable objects and the development of preferred orientation and shape fabrics for a population of deformable objects in any homogeneous viscous flow. The shape and preferred orientation fabrics for a population of deformable objects can be presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions. The full graphic interface of Mathcad ® makes using the worksheets as easy as using a spreadsheet. The modeler can interact fully with the computation and customize the type and format of the output data to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations.

  19. Numerical simulation in a two dimensional turbulent flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A. da; Grand, D.

    1991-01-01

    Numerical simulations of turbulent flows in complex geometries are generally restricted to the prediction of the mean flow and use semi-empirical turbulence models. The present study is devoted to the simulation of the coherence structures which develop in a flow submitted to a velocity change, downstream of a backward facing step. Two aspect ratios (height of the step over height of the channel) have been explored and the values of the Reynolds number vary from (6000 to 90000). In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. The numerical simulations provides results in fairly good agreement with available experimental results. In a second step a thermal stratification is imposed on this flow for one value of Richardson number (0.5) the coherent structures disappear downstream for increasing values of Richardson number. (author)

  20. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  1. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model

    Science.gov (United States)

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  2. Determination of two-dimensional correlation lengths in an anisotropic two-component flow

    International Nuclear Information System (INIS)

    Thomson, O.

    1994-05-01

    Former studies have shown that correlation methods can be used for determination of various two-component flow parameters, among these the correlation length. In cases where the flow can be described as a mixture, in which the minority component forms spatially limited perturbations within the majority component, this parameter gives a good indication of the maximum extension of these perturbations. In the former studies, spherical symmetry of the perturbations has been assumed, and the correlation length has been measured in the direction of the flow (axially) only. However, if the flow structure is anisotropic, the correlation length will be different in different directions. In the present study, the method has been developed further, allowing also measurements perpendicular to the flow direction (radially). The measurements were carried out using laser beams and the two-component flows consisted of either glass beads and air or air and water. In order to make local measurements of both the axial and radial correlation length simultaneously, it is necessary to use 3 laser beams and to form the triple cross-covariance. This lead to some unforeseen complications, due to the character of this function. The experimental results are generally positive and size determinations with an accuracy of better than 10% have been achieved in most cases. Less accurate results appeared only for difficult conditions (symmetrical signals), when 3 beams were used. 5 refs, 13 figs, 3 tabs

  3. A two-dimensional analytical model for groundwater flow in a leaky aquifer extending finite distance under the estuary

    Science.gov (United States)

    Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen

    2017-04-01

    In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.

  4. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  5. Visualization of bacterial flagella dynamics in a viscous shear flow

    Science.gov (United States)

    Ali, Jamel; Kim, Minjun

    2016-11-01

    We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  6. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    Science.gov (United States)

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  7. Passive Control of Flow behind a Two-dimensional Model Vehicle for Drag Reduction Using Wake Disrupter

    Science.gov (United States)

    Choi, Haecheon; Park, Hyungmin; Choi, Jin; Jeon, Woo-Pyung

    2004-11-01

    A wind-tunnel experiment is performed to control flow behind a two-dimensional model vehicle, which has a fixed separation point, with a newly proposed passive device, wake disrupter. The wake disrupter is a small-size rectangular body attached to the upper and lower trailing edges, designed to perturb an essentially two-dimensional nature of wake. The effect of the wake disrupter on the base pressure of the model vehicle is tested for various configurations by varying its size and spanwise spacing. The experiments are conducted at the Reynolds numbers of 20000, 40000 and 80000 based on the free stream velocity and model height. The optimal configuration of wake disrupter produces 33% increase in the base pressure, whose amount is much larger than that by single optimal pair(22%). A hot-wire measurement is also carried out to examine the characteristics of turbulent flow disturbed by the wake disrupter. It shows that the wake disrupter significantly increases the length and width of vortex formation along the entire spanwise direction, which is closely related to the pressure recovery at the base surface.

  8. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  9. A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium

    Science.gov (United States)

    Eberhardt, S.; Palmer, G.

    1986-01-01

    A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.

  10. Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma

    DEFF Research Database (Denmark)

    Ratynskaia, S.; Rypdal, K.; Knapek, C.

    2006-01-01

    Viscoelastic vortical fluid motion in a strongly coupled particle system has been observed experimentally. Optical tracking of particle motion in a complex plasma monolayer reveals high grain mobility and large scale vortex flows coexistent with partial preservation of the global hexagonal lattice...

  11. Parallel discrete vortex methods for viscous flow simulation

    Science.gov (United States)

    Takeda, Kenji

    In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.

  12. Thermal stability for a reactive viscous flow in a slab

    CERN Document Server

    Okoya, S S

    2002-01-01

    The paper deals with the effect of dimensionless non - Newtonian coefficient on the thermal stability of a reactive viscous liquid in steady flow between parallel heated plates. It is assumed that the liquid is symmetrically heated and the flow fully developed. Approximate analytical solution is obtained for the velocity of the flow and the criterion for which this solution is valid is determined. After the velocity distribution is known, the temperature distribution may be calculated. Criticality and disappearance of criticality (transition values) are obtained in the following cases: (i) Bimolecular (ii) Arrhenius and (iii) Sensitized temperature dependence. We have observed that nonlinear effect from velocity and temperature fields introduced decaying for the transitional values of the dimensionless central temperature. Other effects of this nonlinearity are reported. We also give results for the plane - Couette flow problem. The results help to enhance understanding of the interplay between Newtonian and ...

  13. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  14. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.

    Science.gov (United States)

    Smith, Sahid; Austin, Shawn; Wesson, G Dale; Moore, Carl A

    2006-01-01

    The onset of coronary heart disease may be governed by distribution and magnitude of hemodynamic shear stress in the coronary arteries. This study numerically examines pulsatile blood flow through the left coronary artery system. A triphasic waveform is employed to simulate pulsating flow. Five non-Newtonian models, as well as the usual Newtonian model, are used to describe the viscous shear-thinning behavior of blood. It is concluded that when using computational fluid dynamics (CFD) to numerically investigate blood velocity profiles within small arteries, such the coronary artery system examined in this work, great care should be taken in choosing a blood viscosity model. It is suggested that the generalized power law model be the viscous shear thinning model of choice. When using CFD to investigate only patterns of wall shear stresses, the model selection is not as crucial and the simple Newtonian model will suffice but when the magnitude of WSS is of great importance, as in the case of the determining the development of coronary artery disease, the model selection is key.

  15. Decaying Two-Dimensional Turbulence in a Circular Container

    OpenAIRE

    Schneider, Kai; Farge, Marie

    2005-01-01

    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...

  16. Stability theory for a two-dimensional channel

    Science.gov (United States)

    Troshkin, O. V.

    2017-08-01

    A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds-Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer-Meshkov fluid vortices (long wavelength stability) is presented.

  17. Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings

    Science.gov (United States)

    2016-09-02

    understanding the dynamics of these unsteady flows, and uses state-of-the- art techniques, both for measuring these phenomena in experiments (using an... art techniques, both for measuring these phenomena in experiments (using an unsteady wind tunnel at IIT), and for analyzing the data and developing...domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197:2131–2146, 2008. [35] Laurent Cordier, El Majd, B

  18. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2017-04-01

    The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.

  19. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  20. Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies

    Science.gov (United States)

    Fuller, Franklyn B.

    1961-01-01

    The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.

  1. Development of a new dynamic turbulent model, applications to two-dimensional and plane parallel flows

    International Nuclear Information System (INIS)

    Laval, Jean Philippe

    1999-01-01

    We developed a turbulent model based on asymptotic development of the Navier-Stokes equations within the hypothesis of non-local interactions at small scales. This model provides expressions of the turbulent Reynolds sub-grid stresses via estimates of the sub-grid velocities rather than velocities correlations as is usually done. The model involves the coupling of two dynamical equations: one for the resolved scales of motions, which depends upon the Reynolds stresses generated by the sub-grid motions, and one for the sub-grid scales of motions, which can be used to compute the sub-grid Reynolds stresses. The non-locality of interaction at sub-grid scales allows to model their evolution with a linear inhomogeneous equation where the forcing occurs via the energy cascade from resolved to sub-grid scales. This model was solved using a decomposition of sub-grid scales on Gabor's modes and implemented numerically in 2D with periodic boundary conditions. A particles method (PIC) was used to compute the sub-grid scales. The results were compared with results of direct simulations for several typical flows. The model was also applied to plane parallel flows. An analytical study of the equations allows a description of mean velocity profiles in agreement with experimental results and theoretical results based on the symmetries of the Navier-Stokes equation. Possible applications and improvements of the model are discussed in the conclusion. (author) [fr

  2. A two-dimensional numerical study of peristaltic contractions in obstructed ureter flows.

    Science.gov (United States)

    Najafi, Z; Schwartz, B F; Chandy, A J; Mahajan, A M

    2018-01-01

    The flow of urine from the kidneys to the bladder is accomplished via peristaltic contractions in the ureters. The peristalsis of urine through the ureter can sometimes be accompanied, more specifically, obstructed to a certain degree, by entities such as kidney stones. In this paper, 2D axisymmetric computational fluid dynamics simulations are carried out using the commercial code ANSYS FLUENT[Formula: see text], to model the peristaltic movement of the ureter with and without stone. The peristaltic movement was assumed to be a sinusoidal wave on the boundary of the ureter with a specific physiological velocity. While the first part of the study considers flow in the ureter with prescribed peristaltic contractions in absence of any obstruction, the second part compares the effect of varying obstructions (0, 5, 15, and 35%) in terms of spherical stones of different sizes. Pressure contours, velocity vectors, and profiles of pressure gradient magnitudes and wall shear stresses are presented along one bolus of the ureter, during contraction and expansion of the ureteral wall, in order to understand backflow, trapping and reflux phenomena, as well as monitor the health of the ureteral wall in the presence of any obstruction. The 35% ureteral obstruction case resulted in a significant backflow at the inlet in comparison to the other cases, and also a wall shear stress that was up to 20x larger than the case without any obstruction.

  3. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  4. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    Science.gov (United States)

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  5. Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows

    International Nuclear Information System (INIS)

    De Marchis, M.; Napoli, E.

    2012-01-01

    Highlights: ► 3D irregular rough surfaces produce higher effects than those observed over 2D. ► Effective slope is a geometrical parameter representative of the roughness effects. ► 3D rough surfaces enhance the turbulence isotropization. ► 2D and 3D irregular roughness partially support the wall similarity. ► Irregular rough surfaces shear some features with regular rough walls. - Abstract: Wall-resolved Large Eddy Simulation of fully developed turbulent channel flows over two different rough surfaces is performed to investigate on the effects of irregular 2D and 3D roughness on the turbulence. The two geometries are obtained through the superimposition of sinusoidal functions having random amplitudes and different wave lengths. In the 2D configuration the irregular shape in the longitudinal direction is replicated in the transverse one, while in the 3D case the sinusoidal functions are generated both in streamwise and spanwise directions. Both channel walls are roughened in such a way as to obtain surfaces with statistically equivalent roughness height, but different shapes. In order to compare the turbulence properties over the two rough walls and to analyse the differences with a smooth wall, the simulations are performed at the same Reynolds number Re τ = 395. The same mean roughness height h = 0.05δ (δ the half channel height) is used for the rough walls. The roughness function obtained with the 3D roughness is larger than in the 2D case, although the two walls share the same mean height. Thus, the considered irregular 3D roughness is more effective in reducing the flow velocity with respect to the 2D roughness, coherently with the literature results that identified a clear dependence of the roughness function on the effective slope (see ), higher in the generated 3D rough wall. The analysis of higher-order statistics shows that the effects of the roughness, independently on its two- or three-dimensional shape, are mainly confined in the inner

  6. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  7. Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block

    International Nuclear Information System (INIS)

    Cheng, Wai-Chi; Porté-Agel, Fernando

    2013-01-01

    Highlights: • Large-eddy simulations of flow past a 2D block were performed. • Four subgrid-scale models were evaluated against wind tunnel experimental data. • The recently-developed modulated gradient model (MGM) shows the best overall results. • This study is the first time to validate the MGM in recirculating flows. • Analysis of TKE budget in the flow shows strong TKE production above the block. -- Abstract: Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (N x × N y × N z =) 160 × 40 × 160 (n x × n z = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the

  8. Proteomic Analysis of Colorectal Cancer: Prefractionation Strategies Using two-Dimensional Free-Flow Electrophoresis

    Directory of Open Access Journals (Sweden)

    Richard J. Simpson

    2006-04-01

    Full Text Available This review deals with the application of a new prefractionation tool, free-flow electrophoresis (FFE, for proteomic analysis of colorectal cancer (CRC. CRC is a leading cause of cancer death in the Western world. Early detection is the single most important factor influencing outcome of CRC patients. If identified while the disease is still localized, CRC is treatable. To improve outcomes for CRC patients there is a pressing need to identify biomarkers for early detection (diagnostic markers, prognosis (prognostic indicators, tumour responses (predictive markers and disease recurrence (monitoring markers. Despite recent advances in the use of genomic analysis for risk assessment, in the area of biomarker identification genomic methods alone have yet to produce reliable candidate markers for CRC. For this reason, attention is being directed towards proteomics as a complementary analytical tool for biomarker identification. Here we describe a proteomics separation tool, which uses a combination of continuous FFE, a liquid-based isoelectric focusing technique, in the first dimension, followed by rapid reversed-phase HPLC (1–6 min/analysis in the second dimension. We have optimized imaging software to present the FFE/RP-HPLC data in a virtual 2D gel-like format. The advantage of this liquid based fractionation system over traditional gel-based fractionation systems is the ability to fractionate large quantity protein samples. Unlike 2D gels, the method is applicable to both high-Mr proteins and small peptides, which are difficult to separate, and in the case of peptides, are not retained in standard 2D gels.

  9. Rheology of granular flows immersed in a viscous fluid

    International Nuclear Information System (INIS)

    Amarsid, Lhassan

    2015-01-01

    We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)

  10. Dynamics of flexible fibers transported in confined viscous flows

    Science.gov (United States)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  11. Passive Control of Viscous Flow via Elastic Snap-Through

    Science.gov (United States)

    Gomez, Michael; Moulton, Derek E.; Vella, Dominic

    2017-10-01

    We demonstrate the passive control of viscous flow in a channel by using an elastic arch embedded in the flow. Depending on the fluid flux, the arch may "snap" between two states—constricting and unconstricting—that differ in hydraulic conductivity by up to an order of magnitude. We use a combination of experiments at a macroscopic scale and theory to study the constricting and unconstricting states, and determine the critical flux required to transition between them. We show that such a device may be precisely tuned for use in a range of applications, and, in particular, has potential as a passive microfluidic fuse to prevent excessive fluxes in rigid-walled channels.

  12. Study of Estimation Method for Unsteady Inflow Velocity in Two-Dimensional Ultrasonic-Measurement-Integrated Blood Flow Simulation.

    Science.gov (United States)

    Kadowaki, Hiroko; Hayase, Toshiyuki; Funamoto, Kenichi; Taniguchi, Nobuyuki

    2016-02-01

    Information on hemodynamics is essential for elucidation of mechanisms and development of novel diagnostic methods for circulatory diseases. Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation can correctly reproduce an intravascular blood flow field and hemodynamics by feeding back an ultrasonic measurement to the numerical blood flow simulation. In this method, it is critically important to give the correct cross-sectional average inflow velocity (inflow velocity) as the boundary condition. However, systematic study has not been done on the relative validity and effectiveness of existing inflow velocity estimation methods for various target flow fields. The aim of this study was to examine the existing methods systematically and to establish a method to accurately estimate inflow velocities for various vessel geometries and flow conditions in 2D-UMI simulations. A numerical experiment was performed for 2D-UMI simulation of blood flow models in a straight vessel with inflow velocity profiles symmetric and asymmetric to the vessel axis using existing evaluation functions based on Doppler velocity error for the inflow velocity estimation. As a result, it was clarified that a significantly large estimation error occurs in the asymmetric flow due to a nonfeedback domain near the downstream end of the calculation domain. Hence, a new inflow velocity estimation method of 2D-UMI simulation is proposed in which the feedback and evaluation domains are extended to the downstream end. Further numerical experiments of 2D-UMI simulation for two realistic vessel geometries of a healthy blood vessel and a stenosed one confirmed the effectiveness of the proposed method.

  13. Instability of a cantilevered flexible plate in viscous channel flow

    Science.gov (United States)

    Balint, T. S.; Lucey, A. D.

    2005-10-01

    The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.

  14. An idealised study of the effects of small scales on chemistry in a two-dimensional turbulent flow.

    Science.gov (United States)

    Chaalal, F. Ait; Bartello, P.; Bourqui, M.

    2009-04-01

    The non-linear nature of stratospheric chemical reactions makes them sensitive to mixing and diffusion. Most stratospheric Climate-Chemistry Models neglect the effects of sub-grid flow structures on chemistry. Several previous studies have pointed out that such unresolved small scales could significantly affect the chemistry. However this problem has not been thoroughly studied from a theoretical point of view. To fulfill this gap, we investigate the interactions between advection, diffusion and chemistry for a simple bimolecular reaction between two initially unmixed reactants, within the framework of two-dimensional isotropic and homogenous turbulence. This is a highly simplified representation of quasi-isentropic mixing in the stratosphere. Our goal here is to describe and understand how the production rate of the product species is affected by the size of the smallest scales of the tracer field, as determined by the tracer diffusion coefficient ΰ. The spatial average of the prognostic equation for the product's concentration involves the covariance of the reactants. The time evolution of this covariance depends in turn on a dissipative term, and on second and third order chemical terms. The set of equations is not closed and any finite resolution model would need a parameterization of the dissipation and a closure hypothesis on the chemical terms. To study these terms, we perform ensembles of direct numerical simulations using a pseudo-spectral two-dimensional periodic model. The ensembles span different initial conditions of the flow and different tracer diffusion coefficients ΰ. Our results show a strong dependence of the total production on the diffusion coefficient. This production scales like ΰp(t) , where p(t) is a positive decreasing function of time. This scaling is very similar to the one found by Tan et al. (1998) for atmospheric flows on the deactivation of chlorine by nitrogen oxide at the southern edge of the winter time polar vortex

  15. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy

    Directory of Open Access Journals (Sweden)

    P. Martini

    2004-01-01

    Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  16. The effect of small-scale forcing on large-scale structures in two-dimensional flows

    Science.gov (United States)

    Chekhlov, Alexei; Orszag, Steven A.; Sukoriansky, Semion; Galperin, Boris; Staroselsky, Ilya

    The effect of small-scale forcing on large-scale structures in β-plane two-dimensional (2D) turbulence is studied using long-term direct numerical simulations (DNS). We find that nonlinear effects remain strong at all times and for all scales and establish an inverse energy cascade that extends to the largest scales available in the system. The large-scale flow develops strong spectral anisotropy: k - {5}/{3} Kolmogorov scaling holds for almost all φ, φ = arctan( {k y}/{k x}) except in the small vicinity of kx = 0, where Rhines's k-5 scaling prevails. Due to the k-5 scaling, the spectral evolution of β-plane turbulence becomes extremely slow which, perhaps, explains why this scaling law has never before been observed in DNS. Simulations with different values of β indicate that the β-effect diminishes at small scales where the flow is nearly isotropic. Thus, for simulations of β-plane turbulence forced at small scales sufficiently removed from the scales where β-effect is strong, large eddy simulation (LES) can be used. A subgrid scale (SGS) parameterization for such LES must account for the small-scale forcing that is not explicitly resolved and correctly accommodate two inviscid conservation laws, viz. energy and enstrophy. This requirement gives rise to a new anisotropic stabilized negative viscosity (SNV) SGS representation which is discussed in the context of LES of isotropic 2D turbulence.

  17. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  18. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    Science.gov (United States)

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  19. Bounds on fluid permeability for viscous flow through porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    General properties of variational bounds on Darcy's constant for slow viscous flow through porous media are studied. The bounds are also evaluated numerically for the penetrable sphere model. The bound of Doi depending on two-point correlations and the analytical bound of Weissberg and Prager give comparable results in the low density limit but the analytical bound is superior for higher densities. Prager's bound depending on three-point correlation functions is worse than the analytical bound at low densities but better (although comparable to it) at high densities. A procedure for methodically improving Prager's three point bound is presented. By introducing a Gaussian trial function, the three-point bound is improved by an order of magnitude for moderate values of porosity. The new bounds are comparable in magnitude to the Kozeny--Carman empirical relation for porous materials

  20. Viscous flow in the near-Venusian plasma wake

    International Nuclear Information System (INIS)

    Perez-de-Tejada, H.; Dryer, M.; Vaisberg, O.L.

    1977-01-01

    The acquisiton of the Venera 9 and 10 plasma probe data has provided further support for the notion that the shocked solar wind in the flank regions of the Venusian ionosheath interacts viscously with the local ionospheric plasma and that the resulting mixing region is rapidly forced into the planetary umbra. The measured velocities and flow directions suggest that the deflection of the mixing layer downstream of the terminator proceeds at a fast pace, as was predicted from the analysis of a suitable MHD analog proposed by Perez-de-Tejada and Dryer (1976). By measuring the apparent displacement of the mixing region within the planetary umbra with respect to the position of the undeviated ionopause (calculated from the inviscid flow model of Spreiter et al, (1970) it is possible to obtain an order-of-magnitude estimate of the equivalent kinematic viscosity coefficient of the flow in the region. Some speculative comments are also given in regard to the behavior of the flow in the Venusian plasma wake, in particular, to the implications that the penetration of the mixing layer into the umbra may have for the formation of the nighttime Venusian ionosphere

  1. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  2. Computation of hypersonic laminar viscous flow past spinning sharp and blunt cones at high angle of attack

    Science.gov (United States)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results, obtained with a parabolic Navier-Stokes marching code, are presented for hypersonic viscous flow past spinning sharp and blunt cones at angle of attack. The code takes into account the asymmetries in the flow field resulting from spinning motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other theoretical analyses based on boundary-layer and boundary-region equations, and an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results. In addition, a new criterion for defining crossflow separation behind spinning bodies is introduced which generalizes the Moore-Rott-Sears criterion for two-dimensional unsteady separation. A condition which characterizes the onset of separation in the flow field is defined.

  3. Effects of uncertain topographic input data on two-dimensional modeling of flow hydraulics, habitat suitability, and bed mobility

    Science.gov (United States)

    Legleiter, C. J.; McDonald, R.; Kyriakidis, P. C.; Nelson, J. M.

    2009-12-01

    Numerical models of flow and sediment transport increasingly are used to inform studies of aquatic habitat and river morphodynamics. Accurate topographic information is required to parameterize such models, but this fundamental input is typically subject to considerable uncertainty, which can propagate through a model to produce uncertain predictions of flow hydraulics. In this study, we examined the effects of uncertain topographic input on the output from FaSTMECH, a two-dimensional, finite difference flow model implemented on a regular, channel-centered grid; the model was applied to a simple, restored gravel-bed river. We adopted a spatially explicit stochastic simulation approach because elevation differences (i.e., perturbations) at one node of the computational grid influenced model predictions at nearby nodes, due to the strong coupling between proximal locations dictated by the governing equations of fluid flow. Geostatistical techniques provided an appropriate framework for examining the impacts of topographic uncertainty by generating many, equally likely realizations, each consistent with a statistical model summarizing the variability and spatial structure of channel morphology. By applying the model to each realization in turn, a distribution of model outputs was generated for each grid node. One set of realizations, conditioned to the available survey data and progressively thinned versions thereof, was used to quantify the effects of sampling strategy on topographic uncertainty and hence the uncertainty of model predictions. This analysis indicated that as the spacing between surveyed cross-sections increased, the reach-averaged ensemble standard deviation of water surface elevation, depth, velocity, and boundary shear stress increased as well, for both baseflow conditions and for a discharge of ~75% bankfull. A second set of realizations was generated by retaining randomly selected subsets of the original survey data and used to investigate the

  4. A two-dimensional analytical well model with applications to groundwater flow and convective transport modelling in the geosphere

    International Nuclear Information System (INIS)

    Chan, T.; Nakka, B.W.

    1994-12-01

    A two-dimensional analytical well model has been developed to describe steady groundwater flow in an idealized, confined aquifer intersected by a withdrawal well. The aquifer comprises a low-dipping fracture zone. The model is useful for making simple quantitative estimates of the transport of contaminants along groundwater pathways in the fracture zone to the well from an underground source that intercepts the fracture zone. This report documents the mathematical development of the analytical well model. It outlines the assumptions and method used to derive an exact analytical solution, which is verified by two other methods. It presents expressions for calculating quantities such as streamlines (groundwater flow paths), fractional volumetric flow rates, contaminant concentration in well water and minimum convective travel time to the well. In addition, this report presents the results of applying the analytical model to a site-specific conceptual model of the Whiteshell Research Area in southeastern Manitoba, Canada. This hydrogeological model includes the presence of a 20-m-thick, low-dipping (18 deg) fracture zone (LD1) that intercepts the horizon of a hypothetical disposal vault located at a depth of 500 m. A withdrawal well intercepts LD1 between the vault level and the ground surface. Predictions based on parameters and boundary conditions specific to LD1 are presented graphically. The analytical model has specific applications in the SYVAC geosphere model (GEONET) to calculate the fraction of a plume of contaminants moving up the fracture zone that is captured by the well, and to describe the drawdown in the hydraulic head in the fracture zone caused by the withdrawal well. (author). 16 refs., 6 tabs., 35 figs

  5. VISCOT: a two-dimensional and axisymmetric nonlinear transient thermoviscoelastic and thermoviscoplastic finite-element code for modeling time-dependent viscous mechanical behavior of a rock mass

    International Nuclear Information System (INIS)

    1983-04-01

    VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  6. On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity

    Science.gov (United States)

    Khan, Masood; Sardar, Humara

    2018-03-01

    This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of various physical parameters on the velocity and temperature distributions are displayed graphically and discussed qualitatively. A comparison with the earlier reported results has been made with an excellent agreement. It is important to note that the increasing values of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temperature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  7. Goal-oriented model adaptivity for viscous incompressible flows

    KAUST Repository

    van Opstal, T. M.

    2015-04-04

    © 2015, Springer-Verlag Berlin Heidelberg. In van Opstal et al. (Comput Mech 50:779–788, 2012) airbag inflation simulations were performed where the flow was approximated by Stokes flow. Inside the intricately folded initial geometry the Stokes assumption is argued to hold. This linearity assumption leads to a boundary-integral representation, the key to bypassing mesh generation and remeshing. It therefore enables very large displacements with near-contact. However, such a coarse assumption cannot hold throughout the domain, where it breaks down one needs to revert to the original model. The present work formalizes this idea. A model adaptive approach is proposed, in which the coarse model (a Stokes boundary-integral equation) is locally replaced by the original high-fidelity model (Navier–Stokes) based on a-posteriori estimates of the error in a quantity of interest. This adaptive modeling framework aims at taking away the burden and heuristics of manually partitioning the domain while providing new insight into the physics. We elucidate how challenges pertaining to model disparity can be addressed. Essentially, the solution in the interior of the coarse model domain is reconstructed as a post-processing step. We furthermore present a two-dimensional numerical experiments to show that the error estimator is reliable.

  8. Simulation of forced deformable bodies interacting with two-dimensional incompressible flows: Application to fish-like swimming

    International Nuclear Information System (INIS)

    Ghaffari, Seyed Amin; Viazzo, Stéphane; Schneider, Kai; Bontoux, Patrick

    2015-01-01

    Highlights: • An algorithm for numerical simulation of fish-like swimming is proposed. • A new 4th order direct solver for the solution of the Poisson equation is presented. • The penalization method proved to be efficient in dealing with fluid–structure interactions. • Double exponential denoising of the hydrodynamic coefficients is crucial in the algorithm. • An efficient law for rotation control of an anguilliform swimmer is proposed. - Abstract: We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible fluid flows. The temporal and spatial discretizations of the Navier-Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge-Kutta scheme and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems

  9. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  10. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    International Nuclear Information System (INIS)

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  11. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  12. Viscous Dissipation and Thermal Radiation effects in MHD flow of Jeffrey Nanofluid through Impermeable Surface with Heat Generation/Absorption

    Science.gov (United States)

    Sharma, Kalpna; Gupta, Sumit

    2017-06-01

    This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.

  13. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    Science.gov (United States)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  14. Comprehensive two-dimensional gas chromatography using partial modulation via a pulsed flow valve with a short modulation period.

    Science.gov (United States)

    Freye, Chris E; Bahaghighat, H Daniel; Synovec, Robert E

    2018-01-15

    Partial modulation via a pulsed flow valve for comprehensive two-dimensional (2D) gas chromatography (GC × GC) is demonstrated, producing narrow peak widths, 2 W b , on the secondary separation dimension, 2 D, coupled with short modulation periods, P M , thus producing a high peak capacity on the 2 D dimension, 2 n c . The GC × GC modulator is a pulse flow valve that injects a pulse of carrier gas at the specified P M , at the connection between the primary, 1 D, column and the 2 D column. Using a commercially available pulse flow valve, this injection technique performs a combination of vacancy chromatography and frontal analysis, whereby each pulse disturbance in the analyte concentration profile as it exits the 1 D column results in data that is readily converted into a 2 D separation. A three-step process converts the raw data into a format analogous to a GC × GC separation, incorporating signal differentiation, baseline correction and conversion to a GC × GC chromatogram representation. A 115-component test mixture with a wide range of boiling points (36-372°C) of nine compound classes is demonstrated using modulation periods of P M = 50, 100, 250, and 500ms, respectively. For the test mixture with a P M of 250ms, peak shapes on 2 D are symmetric with apparent 2 W b ranging from 12 to 45ms producing a 2 n c of ~ 10. Based on the average peak width of 0.93s on the 1 D separation for a time window of 400s, the 1 D peak capacity is 1 n c ∼ 430. Thus, the ideal 2D peak capacity n c,2D is 4300 or a peak capacity production of 650 peaks/min using the P M of 250ms. Additionally, for a P M of 50, 100 and 500ms, the 2 n c are 4, 7, and 12, respectively. Retention times on 2 D, 2 t R , are reproducible having standard deviations less than 1ms. Finally, the processed data is shown to be quantitative, with an average RSD of 4.7% for test analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    Science.gov (United States)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  16. Numerical modeling of the motion of rigid ellipsoidal objects in slow viscous flows: A new approach

    Science.gov (United States)

    Jiang, Dazhi

    2007-02-01

    A simple algorithm for modeling the rotation of rigid ellipsoidal objects in viscous flows based on Jeffery's (1922, Proceedings of the Royal Society of London A102, 161-179) theory is presented and is implemented in a fully graphic mathematics application Mathcad ® ( http://www.mathsoft.com). The orientation of ellipsoidal objects is specified in terms of polar coordinate angles that can be easily converted to the trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, modeling the rotation paths of individual rigid objects, the development of inclusion trail geometry within syn-kinematic porphyroblasts, and the development of preferred orientation and shape fabrics for a population of rigid objects becomes as easy a task as using a spreadsheet. The shape and preferred orientation fabrics for a population of rigid objects can be presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions. The modeler can customize the type and format of the output to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations. Application examples are presented for various types of modeling involving rigid objects.

  17. A ‘win win’ mechanism for low-drag transients in controlled two-dimensional channel flow and its implications for sustained drag reduction

    Science.gov (United States)

    Bewley, Thomas R.; Morten Aamo, Ole

    2004-01-01

    A simple pressure-based feedback control strategy for wall-transpiration control of incompressible unsteady two-dimensional channel flow was recently investigated by Aamo, Krstic & Bewley (2003). Nonlinear two-dimensional channel flow simulations which implemented this control strategy resulted in flow transients with instantaneous drag far lower than that of the corresponding laminar flow. The present article examines the physical mechanism by which this very low level of instantaneous drag was attained. It then explores the possibility of achieving sustained drag reductions to below the laminar level by initiating such low-drag transients on a periodic basis. All attempts at sustaining the mean flow drag below the laminar level fail, perhaps providing indirect evidence in favour of the conjecture that the laminar state might provide a fundamental ‘performance limitation’ in such flows. Mathematical analysis of two-dimensional and three-dimensional channel-flow systems establishes a direct link between the average drag increase due to flow-field unsteadiness and a weighted space/time average of the Reynolds stress. Phenomenological justification of the conjecture is provided by a Reynolds analogy between convective momentum transport and convective heat transport. Proof of the conjecture remains an open problem.

  18. Dual Solutions of Non-Newtonian Casson Fluid Flow and Heat Transfer over an Exponentially Permeable Shrinking Sheet with Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Aurang Zaib

    2016-01-01

    Full Text Available The two-dimensional boundary layer flow of a non-Newtonian Casson fluid and heat transfer due to an exponentially permeable shrinking sheet with viscous dissipation is investigated. Using similarity transformations, the governing momentum and energy equations are transformed to self-similar nonlinear ODEs and then those are solved numerically by very efficient shooting method. The analysis explores many important aspects of flow and heat transfer of the aforesaid non-Newtonian fluid flow dynamics. For the steady flow of non-Newtonian Casson fluid, more amount of wall mass suction through the porous sheet is required in comparison to that of Newtonian fluid flow. Dual similarity solutions are obtained for velocity and temperature. The viscous dissipation effect has major impact on the heat transfer characteristic. In fact, heat absorption at the surface occurs and it increases due to viscous dissipation. For higher Prandtl number, the temperature inside the boundary layer reduces, but with larger Eckert number (viscous dissipation it is enhanced.

  19. Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows

    Directory of Open Access Journals (Sweden)

    A. Costa

    2003-01-01

    Full Text Available Viscous heating plays an important role in the dynamics of fluids with strongly temperature-dependent viscosity because of the coupling between the energy and momentum equations. The heat generated by viscous friction produces a local temperature increase near the tube walls with a consequent decrease of the viscosity which may dramatically change the temperature and velocity profiles. These processes are mainly controlled by the Peclét number, the Nahme number, the flow rate and the thermal boundary conditions. The problem of viscous heating in fluids was investigated in the past for its practical interest in the polymer industry, and was invoked to explain some rheological behaviours of silicate melts, but was not completely applied to study magma flows. In this paper we focus on the thermal and mechanical effects caused by viscous heating in tubes of finite lengths. We find that in magma flows at high Nahme number and typical flow rates, viscous heating is responsible for the evolution from Poiseuille flow, with a uniform temperature distribution at the inlet, to a plug flow with a hotter layer near the walls. When the temperature gradients  induced by viscous heating are very pronounced, local instabilities may occur and the triggering of secondary flows is possible. For completeness, this paper also describes magma flow in infinitely long tubes both at steady state and in transient phase.

  20. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  1. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  2. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    International Nuclear Information System (INIS)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs

  3. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    Science.gov (United States)

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Numerical simulation of energy equation with viscous dissipation for compressible flow over cones

    International Nuclear Information System (INIS)

    Asif, M.; Chughtai, I.R.

    1998-01-01

    A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)

  5. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  6. A Flow System for Generation of Concentration Perturbation in Two-Dimensional Correlation Near-Infrared Spectroscopy: Application to Variable Selection in Multivariate Calibration

    OpenAIRE

    Pereira, CF; Pasquini, C

    2010-01-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection...

  7. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic solutions for the steady velocity, temperature and concentration. The parameters ...

  8. Role of viscous dissipation in the dynamics of lava flows with power-law rheology

    Science.gov (United States)

    Piombo, A.; Dragoni, M.

    2011-09-01

    We model a lava flow as a one-dimensional flow of a pseudoplastic fluid with viscous dissipation. The flow is horizontally unbounded and is driven downslope by the gravity force. We consider a power-law constitutive equation and we take into account the temperature dependence of the rheological parameters. Given an effusion rate and an initial temperature at the eruption vent, the flow is assumed to cool down by heat radiation. We calculate the heat produced by viscous dissipation as a function of lava temperature and effusion rate. The cooling rate is calculated as a function of the surface temperature and flow rate. Viscous dissipation reduces the cooling rate by an amount which is independent of flow rate. We evaluate the effect of viscous dissipation on the flow thickness and velocity. The effect of dissipation is to decrease the flow thickness and to increase the flow velocity. The effect on flow thickness is greater for smaller flow rates, while the effect on velocity is greater for larger effusion rates. In principle, the model provides a method for estimating the flow rate from in-field measurements of distances and temperatures.

  9. Flow dynamical behavior and performance of a micro viscous pump with unequal inlet and outlet areas

    Directory of Open Access Journals (Sweden)

    Chenhui Hu

    2016-01-01

    Full Text Available The micro viscous pump is an important type of fluidic device. Optimizing the working performance of the pump is crucial for its wider application. A micro viscous pump design with unequal inlet and outlet areas is proposed in this paper. The flow field of the viscous pump is investigated using 2D laminar simulations. The mass flow rate and driving power are studied with different opening angles. The effects of the Reynolds number and the pressure load on the working performance are discussed in detail. Flow structures and vortex evolution are analyzed. With larger inlet and outlet areas, a higher mass flow rate is obtained and less driving power is achieved. A high pressure load results in a reduction in mass flow rate and an increase in driving power. Pumps with large opening angles are more susceptive to the Reynolds number and the pressure load. The adverse impact of the pressure load can be reduced by increasing the rotor speed. The vortex structure is affected by the geometric and operating parameters in the flow field. The flow dynamical behavior of the viscous pump exerts significant influence on its pumping ability. The present work gives rise to performance improvements for the micro viscous pump.

  10. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  11. Synthetic jet flow control of two-dimensional NACA 65(1)-412 airfoil flow with finite-time lyapunov exponent analysis of Lagrangian coherent structures

    Science.gov (United States)

    Jeong, Peter Inuk

    Synthetic jet (SJ) control of a low-Reynolds number, unsteady, compressible, viscous flow over a NACA 65-(1)412 airfoil, typical for unmanned air vehicles and gas turbines, has been investigated computationally. A particular focus was placed in the development and control of Lagrangian Coherent Structures (LCS) and the associated Finite-Time Lyapunov Exponent (FTLE) fields. The FTLE fields quantitatively measure of the repulsion rate in forward-time and the attraction rate in backward-time, and provide a unique perspective on effective flow control. A Discontinuous-Galerkin (DG) methods, high-fidelity Navier-Stokes solver performs direct numerical simulation (DNS) of the airfoil flow. Three SJ control strategies have been investigated: immediately downstream of flow separation, normal to the separated shear layer; near the leading edge, normal to the airfoil suction side; near the trailing edge, normal to the airfoil pressure side. A finite difference algorithm computes the FTLE from DNS velocity data. A baseline flow without SJ control is compared to SJ actuated flows. The baseline flow forms a regular, time-periodic, asymmetric von Karman vortex street in the wake. The SJ downstream of flow separation increases recirculation region vorticity and reduces the effective angle of attack. This decreases the time-averaged lift by 2:98% and increases the time-averaged drag by 5:21%. The leading edge SJ produces small vortices that deflect the shear layer downwards, and decreases the effective angle of attack. This reduces the time-averaged lift by 1:80%, and the time-averaged drag by 1:84%. The trailing edge SJ produces perturbations that add to pressure side vortices without affecting global flow characteristics. The time-averaged lift decreases by 0:47%, and the time-averaged drag increases by 0:20%. For all SJ cases, the aerodynamic performance is much more dependent on changes to the pressure distribution than changes to the skin friction distribution. No proposed

  12. Numerical Investigation into Effects of Viscous Flux Vectors on Hydrofoil Cavitation Flow and Its Radiated Flow Noise

    Directory of Open Access Journals (Sweden)

    Sanghyeon Kim

    2018-02-01

    Full Text Available In this study, cavitation flow around a hydrofoil and its radiated hydro-acoustic fields were numerically investigated, with an emphasis on the effects of viscous flux vectors. The full three-dimensional unsteady compressible Reynolds-averaged Navier–Stokes equations were numerically solved. The mass transfer model was adopted to model phase changes between liquid water and vapor. To resolve the numerical instability problem arising from the rapid changes in local density and speed of sound of the mixture, the preconditioning and dual-time stepping methods were employed. The filter-based turbulent model was applied to resolve the unstable cavitation flow field more accurately. In splitting the viscous terms, three approaches for dealing with viscous flux vectors were considered: the so-called viscous lagging, full viscous, and thin-layer models. Radiated hydro-acoustic waves were predicted by applying the Ffowcs Williams and Hawkings equations. The effects of the viscous flux vectors on the predicted flow fields and its radiated noise were then examined by comparing the hydro-dynamic forces, velocity distribution, volume fraction, far-field sound directivities, and sound spectrum of the three approaches. The results revealed that the thin-layer model can provide predictions as accurate as the full viscous model, but required less computational time.

  13. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.

    Science.gov (United States)

    McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew

    2007-03-23

    A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.

  14. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  15. Analysis of Steady, Two-Dimensional Chemically Reacting Nonequilibrium Flow by an Unsteady, Asymptotically Consistent Technique. Volume I. Theoretical Development.

    Science.gov (United States)

    1982-09-01

    values calculated by the first step. Similarly, appli- cation of MacCormack’s method to equation (7) for planar flow yields N N N N _N+l =N AtuN M(PLMPL...California, Los Alamos, New Mexico . 5. Bray, K. N. C., "Chemical and Vibrational Nonequilibrium in Nozzle Flows," Nonequilibrium Flows, Vol. I, Part II, ed

  16. Viscous flow behavior and workability of Mg-Cu-(Ag)-Gd bulk metallic glasses

    International Nuclear Information System (INIS)

    Chang, Y.C.; Huang, J.C.; Tang, C.W.; Chang, C.I.; Jang, J.S.C.

    2008-01-01

    The thermomechanical properties and viscous flow behaviors of the Mg 65 Cu 25-x Ag x Gd 10 (x=0, 3, 10at%, namely, Mg 65 Cu 25 Gd 10 , Mg 65 Cu 22 Ag 3 Gd 10 , and Mg 65 Cu 15 Ag 10 Gd 10 ) bulk metallic glasses in the supercooled viscous region under the loading condition were investigated using the thermomechanical analyzer. In this study, the supercooled viscous temperature windows, the minimum viscosity, the fragility parameter, and the deformability parameter would all be degraded with increasing Ag addition, leading to the negative factors for the micro-forming and nano-imprinting practices. The base Mg 65 Cu 25 Gd 10 alloy appears to be more promising than the Ag containing alloys when the viscous forming is under consideration. (author)

  17. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Directory of Open Access Journals (Sweden)

    Slouka Martin

    2016-01-01

    Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  18. Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil

    Science.gov (United States)

    Slouka, Martin; Kozel, Karel

    2016-03-01

    This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.

  19. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Science.gov (United States)

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  20. Numerical Simulation of 3D Viscous MHD Flows

    National Research Council Canada - National Science Library

    Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M

    2003-01-01

    .... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...

  1. Viscous flow solutions for slender bodies of revolution at incidence

    Science.gov (United States)

    Vatsa, Veer N.

    1991-01-01

    Flow over slender prolate spheroids at incidence is examined. The incidence angle is chosen high enough to cause streamwise separation of the flow in addition to crossflow separation generally observed at lower incidence angles. The freestream Mach number for the cases investigated here is subsonic, thus precluding the use of parabolized procedures. Laminar, transitional and turbulent flow cases are investigated.

  2. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

    Directory of Open Access Journals (Sweden)

    S. Srinivas

    2016-01-01

    Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

  3. Deformation and transport of micro-fibers and helices in viscous flows

    Science.gov (United States)

    Lindner, Anke

    Fluid-structure interactions between flexible objects and viscous flows are, to a large extent, governed by the shape of the flexible object. Using microfabrication methods, we obtain complex ``particles'' in fiber and helix form with perfect control not only over the material properties, but also the particle geometry. We then perform an experimental study on the deformation and transport of these particles in microfluidic flows. Fibers are shown to drift laterally in confined flows due to the transport anisotropy of the elongated object. When these fibers interact with lateral walls, complex dynamics are observed, such as fiber oscillation. Fiber flexibility modifies these dynamics. Flexible microhelices are easily stretched by a viscous flow and we characterize the overall shape as a function of the frictional properties. The deformation of these helices is well-described by non-linear finite extensibility. Due to the non-uniform distribution of the pitch of a helix subject to viscous drag, linear and nonlinear behavior is identified along the contour length of a single helix. When a polymer solution is used for the viscous flow, an interesting multiscale problem arises and the typical polymer size needs to be compared not only to the global size of the helix, but also to the dimensions of the ribbon.

  4. Film Flow Dominated Simultaneous Flow of Two Viscous Incompressible Fluids Through a Porous Medium

    Directory of Open Access Journals (Sweden)

    Olav eAursjø

    2014-11-01

    Full Text Available We present an experimental study of two-phase flow in a quasi-two-dimensional porous medium. The two phases, a water-glycerol solution and a commercial food grade rapeseed/canola oil, having an oil to water-glycerol viscosity ratio of 1.3, are injected simultaneously into a Hele-Shaw cell with a mono-layer of randomly distributed glass beads. The two liquids are injected into the model from alternating point inlets. Initially, the porous model is filled with the water-glycerol solution. We observe that after an initial transient state, an overall static cluster configuration is obtained. While the oil is found to create a connected system spanning cluster, a large part of the water-glycerol clusters left behind the initial invasion front is observed to remain immobile throughout the rest of the experiment. This could suggest that the water-glycerol flow-dynamics is largely dominated by film flow. The flow pathways are thus given through the dynamics of the initial invasion. This behavior is quite different from that observed in systems with large viscosity differences between the two fluids, and where compressibility plays an important part of the process.

  5. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  6. Investigation and prediction of slug flow characteristics in highly viscous liquid and gas flows in horizontal pipes

    OpenAIRE

    Zhao, Y.; Lao, Liyun; Yeung, H.

    2015-01-01

    Slug flow characteristics in highly viscous liquid and gas flow are studied experimentally in a horizontal pipe with 0.074 m ID and 17 m length. Results of flow regime map, liquid holdup and pressure gradient are discussed and liquid viscosity effects are investigated. Applicable correlations which are developed to predict liquid holdup in slug body for low viscosity flow are assessed with high viscosity liquids. Furthermore, a mechanistic model is developed for predicting the characteristics...

  7. Interaction of high-speed compressible viscous flow and structure by adaptive finite element method

    International Nuclear Information System (INIS)

    Limtrakarn, Wiroj; Dechaumphai, Pramote

    2004-01-01

    Interaction behaviors of high-speed compressible viscous flow and thermal-structural response of structure are presented. The compressible viscous laminar flow behavior based on the Navier-Stokes equations is predicted by using an adaptive cell-centered finite-element method. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite-element method. The finite-element formulation and computational procedure are described. The performance of the combined method is evaluated by solving Mach 4 flow past a flat plate and comparing with the solution from the finite different method. To demonstrate their interaction, the high-speed flow, structural heat transfer, and deformation phenomena are studied by applying the present method to Mach 10 flow past a flat plate

  8. Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    The component of the Coriolis force due to the locally horizontal component of the Earth's rotation vector is commonly neglected, under the so-called traditional approximation. We investigate the role of this "non-traditional" component of the Coriolis force in cross-equatorial flow of abyssal ocean currents. We focus on the Antarctic Bottom Water (AABW), which crosses from the southern to the northern hemisphere through the Ceara abyssal plain in the western Atlantic ocean. The bathymetry in this region resembles a northwestward channel, connecting the Brazil Basin in the south to the Guyana Basin in the north. South of the equator, the AABW leans against the western continental rise, consistent with a northward flow in approximate geostrophic balance. The AABW then crosses to the other side of the abyssal channel as it crosses the equator, and flows into the northern hemisphere leaning towards the east against the Mid-Atlantic Ridge. The non-traditional component of the Coriolis force is strongest close to the equator. The traditional component vanishes at the equator, being proportional to the locally vertical component of the Earth's rotation vector. The weak stratification of the abyssal ocean, and subsequent small internal deformation radius, defines a relatively short characteristic horizontal lengthscale that tends to make non-traditional effects more prominent. Additionally, the steep gradients of the channel bathymetry induce large vertical velocities, which are linked to zonal accelerations by the non-traditional components of the Coriolis force. We therefore expect non-traditional effects to play a substantial role in cross-equatorial transport of the AABW. We present asymptotic steady solutions for non-traditional shallow water flow through an idealised abyssal channel, oriented at an oblique angle to the equator. The current enters from the south, leaning up against the western side of the channel in approximate geostrophic balance, and crosses the

  9. Experimental studies of flow separation and stalling on two-dimensional airfoils at low speeds. Phase 2: Studies with Fowler flap extended

    Science.gov (United States)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1975-01-01

    Results were given on experimental studies of flow separation and stalling on a two-dimensional GA(W)-1 17 percent thick airfoil with an extended Fowler flap. Experimental velocity profiles obtained from a five tube probe survey with optimum flap gap and overlap setting (flap at 40 deg) are shown at various stations above, below, and behind the airfoil/flap combination for various angles of attack. The typical zones of steady flow, intermittent turbulence, and large scale turbulence were obtained from a hot wire anemometer survey and are depicted graphically for an angle of attack of 12.5 deg. Local skin friction distributions were obtained and are given for various angles of attack. Computer plots of the boundary layer profiles are shown for the case of the flap at 40 deg. Static pressure contours are also given. A GA(W)-2 section model was fabricated with 30 percent Fowler flaps and with pressure tabs.

  10. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  11. Stokes flow of micropolar fluid past a viscous fluid spheroid with non ...

    Indian Academy of Sciences (India)

    The Stokes axisymmetric flow of an incompressible micropolar fluid past a viscous fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and ...

  12. MHD flow and heat transfer of a viscous reacting fluid over a ...

    African Journals Online (AJOL)

    This paper presents a boundary layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian ...

  13. A total linearization method for solving viscous free boundary flow problems by the finite element method

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Cuvelier, C.; Segal, A.; van der Zanden, J.

    1988-01-01

    In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of

  14. MHD flow and heat transfer of a viscous reacting fluid over a ...

    African Journals Online (AJOL)

    ... layer flow analysis for a viscous, incompressible, electrically conducting reacting fluid over a stretching sheet in the presence of a magnetic field. It is shown that the Hartmann, Prandtl and the Eckert numbers have effect on the velocity and temperature fields. Journal of the Nigerian Association of Mathematical Physics, ...

  15. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    Science.gov (United States)

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  16. Decay estimates for linearized unsteady incompressible viscous flows around rotating and translating bodies

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, Stanislav; Nečasová, Šárka; Wittwer, P.

    2015-01-01

    Roč. 1, č. 2 (2015), s. 325-333 ISSN 2296-9020 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : whole space * viscous incompressible flow * rotating body Subject RIV: BA - General Mathematics http://www.orthogonal-editions.com/V1p231-418.pdf

  17. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Directory of Open Access Journals (Sweden)

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  18. Practical application of viscous-flow calculations for the simulation of manoeuvring ships

    NARCIS (Netherlands)

    Toxopeus, S.L.

    2011-01-01

    The present work was initiated in order to improve traditional manoeuvring simulations based on empirical equations to model the forces and moments on the ship. With the evolution of the capability of viscous-flow solvers to predict forces and moments on ships, it was decided to develop a practical

  19. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    Science.gov (United States)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  20. Two-dimensional real-time blood flow and temperature of soft tissue around maxillary anterior implants.

    Science.gov (United States)

    Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji

    2012-12-01

    The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.

  1. Mixed convective flow of immiscible viscous fluids confined between ...

    African Journals Online (AJOL)

    The effect of these parameters on the physical characteristics such as Nusselt number and skin friction at the walls is studied. It is found that Grashof number, viscosity ratio and width ratio enhance the flow whereas, conductivity ratio reduces the flow. Rate of heat transfer and skin friction for varying parameters is also shown ...

  2. Viscous dissipation effect on the flow through a horizontal porous ...

    African Journals Online (AJOL)

    It is observed that high Darcy number leads to a higher velocity and that velocity is parabolic while reversal flow takes place at low Darcy number, while at very low Darcy number, oscillation and instabilities of flow is observed. It is also observed that as the brinkman number increases the temperature profile increases.

  3. Stokes’ and Lamb's viscous drag laws

    Science.gov (United States)

    Eames, I.; Klettner, C. A.

    2017-03-01

    Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.

  4. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  5. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    Science.gov (United States)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  6. Integral transformation of the Navier-Stokes equations for laminar flow in channels of arbitrary two-dimensional geometry

    International Nuclear Information System (INIS)

    Perez Guerrero, Jesus Salvador

    1995-01-01

    Laminar developing flow in channels of arbitrary geometry was studied by solving the Navier-Stokes equations in the stream function-only formulation through the Generalized Integral Transform Technique (GITT). The stream function is expanded in an infinite system based on eigenfunctions obtained by considering solely the diffusive terms of the original formulation. The Navier-Stokes equations are transformed into an infinite system of ordinary differential equations, by using the transformation and inversion formulae. For computational purposes, the infinite series is truncated, according to an automatic error control procedure. The ordinary differential is solved through well-established scientific subroutines from widely available mathematical libraries. The classical problem of developing flow between parallel-plates is analysed first, as for both uniform and irrotational inlet conditions. The effect of truncating the duct length in the accuracy of the obtained solution is studied. A convergence analysis of the results obtained by the GITT is performed and compared with results obtained by finite difference and finite element methods, for different values of Reynolds number. The problem of flow over a backward-facing step then follows. Comparisons with experimental results in the literature indicate an excellent agreement. The numerical co-validation was established for a test case, and perfect agreement is reached against results considered as benchmarks in the recent literature. The results were shown to be physically more reasonable than others obtained by purely numerical methods, in particular for situations where three-dimensional effects are identified. Finally, a test problem for an irregular by shoped duct was studied and compared against results found in the literature, with good agreement and excellent convergence rates for the stream function field along the whole channel, for different values of Reynolds number. (author)

  7. Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2014-01-01

    for agile beam steering, a wind scanner—WindScanner—has been developed at the Department ofWind Energy at the Technical University of Denmark (DTU) Risø campus. The WindScanner measures the line-of-sight component of the airflow remotely and by rapid steering, the line-of-sight direction and the focus...... and rescue helicopter are presented. Since the line-of-sight directions of the two synchronized WindScanners were scanned within the plane of interest, the influence of the wind component perpendicular to the plane was avoided. The results also demonstrate the possibilities within less demanding flows...

  8. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  9. Periodically fully developed laminar flow and heat transfer in a two-dimensional horizontal channel with staggered fins

    Directory of Open Access Journals (Sweden)

    Turgut Oğuz

    2017-01-01

    Full Text Available The 2-D periodically fully developed laminar forced convection fluid flow and heat transfer characteristics in a horizontal channel with staggered fins are investigated numerically under constant wall heat flux boundary condition. Study is performed using ANSYS Fluent 6.3.26 which uses finite volume method. Air (Pr @ 0.7 and Freon-12 (Pr @ 3.5 are used as working fluids. Effects of Reynolds number, Prandtl number, fin height, and distances between two fins on heat transfer and friction factor are examined. Results are given in the form of non-dimensional average Nusselt number and average Darcy friction factor as a function of Reynolds number for different fin distances and Prandtl numbers. The velocity and temperature profiles are also obtained. It is seen that as the fin distance increases, behavior approaches the finless channel, as expected. Also, thermal enhancement factors are given graphically for working fluids. It is seen that heat transfer dominates the friction as both the distance between two fins and Prandtl number increase. It is also seen that fins having blockage ratio of 0.10 in 2-D periodically fully developed laminar flow is not advantageous in comparison to smooth channel without fins.

  10. Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device

    Science.gov (United States)

    Park, Hyungmin; Lee, Dongkon; Jeon, Woo-Pyung; Hahn, Seonghyeon; Kim, Jeonglae; Kim, Jungwoo; Choi, Jin; Choi, Haecheon

    2006-09-01

    In this paper, we present a new passive control device for form-drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge. The device consists of small tabs attached to the upper and lower trailing edges of a bluff body to effectively perturb a two-dimensional wake. Both a wind-tunnel experiment and large-eddy simulation are carried out to examine its drag-reduction performance. Extensive parametric studies are performed experimentally by varying the height and width of the tab and the spanwise spacing between the adjacent tabs at three Reynolds numbers of Re {=} u_infty h/nu {=} 20 000, 40 000 and 80 000, where u_infty is the free-stream velocity and h is the body height. For a wide parameter range, the base pressure increases (i.e. drag reduces) at all three Reynolds numbers. Furthermore, a significant increase in the base pressure by more than 30% is obtained for the optimum tab configuration. Numerical simulations are performed at much lower Reynolds numbers of Re {=} 320 and 4200 to investigate the mechanism responsible for the base-pressure increase by the tab. Results from the velocity measurement and numerical simulations show that the tab introduces the spanwise mismatch in the vortex-shedding process, resulting in a substantial reduction of the vortical strength in the wake and significant increases in the vortex formation length and wake width.

  11. Supersonic Laminar Viscous Flow Past a Cone at Angle of Attack in Spinning and Coning Motion

    Science.gov (United States)

    Agarwal, Ramesh; Rakich, John V.

    1982-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flowfield resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due lo coning motion are much larger than all other viscous forces due lo spin and coning, making viscous forces negligible in the combined motion.

  12. Bistability of heat transfer of a viscous liquid under conditions of flow channel

    International Nuclear Information System (INIS)

    Melkikh, A.V.; Seleznev, V.D.

    2001-01-01

    The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru

  13. Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    Science.gov (United States)

    Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.

    1988-01-01

    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.

  14. Collective dynamics of particles from viscous to turbulent flows

    CERN Document Server

    2017-01-01

    The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such met...

  15. Improvements of Critical Heat Flux Models Based on the Viscous Potential Flow Theory

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Lee, Jong Hyuk; Kim, Kyung Doo

    2014-01-01

    The absence of fluid viscosities in most existing models may be attributed to the fact that inviscid flow analyses are performed for the model development. For example, the hydrodynamic theory and macrolayer dryout models rely on the Rayleigh-Taylor, Kelvin-Helmholtz, and capillary instabilities for inviscid fluids. However, as the viscosities of two fluids become closer, none of them cannot be neglected. Moreover, the gas viscosity effect cannot be neglected on the condition that the gas layer is thin. Nevertheless, the previous studies neglected the viscous effect. Recently, Kim et al. showed that for the model development of critical heat flux and minimum film boiling, the Rayleigh-Taylor instability should be analyzed with a thin layer of viscous gas instead of a thick layer of inviscid gas. The decrease of the most unstable wavelength was shown to improve the prediction accuracy of critical heat flux models for various fluids, particularly at elevated pressures. In addition, the most dangerous wavelength and the most rapid growth rate for viscous thin films are shown to be applicable to the minimum heat flux condition. Kim et al. touch only the most unstable wavelength for developing critical heat flux models. The critical heat flux is inversely proportional to the square root of the most unstable wavelength (Zuber, Guan et al). Here, we notice that the existing critical heat flux models make use of the Kelvin-Helmholtz instability of inviscid flows. The Kelvin-Helmholtz instability determines the maximum vapor escape velocity (Zuber) and the initial liquid macrolayer thickness (Haramura and Katto). Therefore, there is a room for improving the prediction accuracy by the help of the Kelvin-Helmholtz instability of viscous fluids. The Kelvin-Helmholtz instability arises when the different fluid layers are in relative motion. Usually, a uniform flow is considered in each fluid layer, allowing a velocity discontinuity at the interface. Therefore, in general, the

  16. Improved numerical methods for turbulent viscous recirculating flows

    Science.gov (United States)

    Turan, A.; Vandoormaal, J. P.

    1988-01-01

    The performance of discrete methods for the prediction of fluid flows can be enhanced by improving the convergence rate of solvers and by increasing the accuracy of the discrete representation of the equations of motion. This report evaluates the gains in solver performance that are available when various acceleration methods are applied. Various discretizations are also examined and two are recommended because of their accuracy and robustness. Insertion of the improved discretization and solver accelerator into a TEACH mode, that has been widely applied to combustor flows, illustrates the substantial gains to be achieved.

  17. Viscous flow over spinning cones at angle of attack.

    Science.gov (United States)

    Lin, T. C.; Rubin, S. G.

    1973-01-01

    A numerical finite-difference method is developed for evaluating the Magnus coefficients on spinning cones in laminar flow. The merged layer, the strong interaction region, and the downstream boundary layer are all considered. The numerical method is a predictor-corrector scheme developed for three-dimensional flows with or without crossflow diffusion. This method is particularly useful in problems in which a symmetry plane does not exist. Several contributions to the Magnus force and moments are considered. These include asymmetries in displacement thickness, centrifugal force and crossflow shear, and the effects of crossflow separation and vortex formation. Comparisons are made with experimental data and other analyses.

  18. Numerical modelling of compressible viscous flow in turbine cascades

    Science.gov (United States)

    Louda, P.; Kozel, K.; Příhoda, J.

    2014-03-01

    The work deals with mathematical models of turbulent flow through turbine cascade in 2D and 3D. It is based on the Favre-averaged Navier-Stokes equations with SST or EARSM turbulence models. A two-equation model of transition to turbulence is considered too. The solution is obtained by implicit AUSM finite volume method. The 2D and 3D results are shown flow through the SE1050 cascade including simulation of a range of off-design angles of attack.

  19. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.

    1988-08-01

    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  20. Mixed convective flow of immiscible viscous fluids confined between ...

    African Journals Online (AJOL)

    user

    wavy channel was first treated analytically by Burns and Parks (1967), who expressed the stream function as a Fourier series under the assumption of Stokes flow. Following this, Goldstein and Sparrow (1977) were the first to use the naphthalene technique to measure local and average heat transfer coefficients in a ...

  1. Numerical Simulation of 3D Viscous MHD Flows

    National Research Council Canada - National Science Library

    Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M

    2003-01-01

    .... In such a case, 3D effects may be significant in the flow structure. The objective of the present paper is to investigate numerically the phenomena of shock wave interaction with boundary layer under the influence of the localised MHD effects.

  2. Implicit time-accurate simulation of viscous flow

    NARCIS (Netherlands)

    van Buuren, R.; Kuerten, Johannes G.M.; Geurts, Bernardus J.

    2001-01-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is

  3. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration.

    Science.gov (United States)

    Pereira, Claudete Fernandes; Pasquini, Celio

    2010-05-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection of relevant variables for multivariate calibration models for the determination of quality parameters of gasoline, including ethanol content, MON (motor octane number), and RON (research octane number). The main advantage of this variable selection approach is the direct association between spectral features and chemical composition, allowing easy interpretation of the regression models.

  4. Design of measuring instrument with whole direct method for bed shear stress under two-dimensional water-flow co-action

    Science.gov (United States)

    Huang, Hai-long; Zuo, Qi-hua; Zhou, Yi-ren; Shen, Yu-sheng; Li, Lan-xi

    2016-12-01

    The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.

  5. The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam

    Science.gov (United States)

    Török, János; Kertész, János

    1996-02-01

    We carried out computer simulations to study the green wave model (GWM), the parallel updating version of the two-dimensional traffic model of Biham et al. The better convergence properties of the GWM together with a multi-spin coding technique enabled us to extrapolate to the infinite system size which indicates a nonzero density transition from the free flow to the congested state (jamming transition). In spite of the sudden change in the symmetry of the correlation function at the transition point, finite size scaling and temporal scaling seems to hold, at least above the threshold density. There is a second transition point at a density deep in the congested phase where the geometry of the cluster of jammed cars changes from linear to branched: Just at this transition point this cluster has fractal geometry with dimension 1.58. The jamming transition is also described within the mean field approach.

  6. Viscous dissipation effect on the flow of a thermodependent Herschel-Bulkley fluid

    Directory of Open Access Journals (Sweden)

    Labsi Nabila

    2015-01-01

    Full Text Available The present study concerns the numerical analysis of both hydrodynamic and thermal properties of a Herschel-Bulkley fluid flow in a pipe. The flow, which involves forced heat transfer convection, is steady and takes place within a pipe of circular cross section with uniform wall temperature. The Herschel-Bulkley model with the Papanastasiou regularization is used and flow index values of 1 and 1.5 are considered. The study focuses on the effect of neglecting both viscous dissipation and temperature dependence of the fluid consistency on its hydrodynamic and thermal properties. For that purpose, we investigate both wall heating (Br0 as well as the exponential temperature dependence of the consistency. The results show that neglecting both of these parameters results in more than a 50% underestimation of the heat transfer due to the viscous nature of this kind of fluid.

  7. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  8. Two-Dimensional Cutting (TDC Vitrectome: In Vitro Flow Assessment and Prospective Clinical Study Evaluating Core Vitrectomy Efficiency versus Standard Vitrectome

    Directory of Open Access Journals (Sweden)

    Mitrofanis Pavlidis

    2016-01-01

    Full Text Available Purpose. To evaluate comparative aspiration flow performance and also vitrectomy operating time efficiency using a double-cutting open port vitreous cutting system incorporated in a two-dimensional cutting (TDC, DORC International vitrectome design versus standard vitreous cutter. Methods. In vitro investigations compared aspiration flow rates in artificial vitreous humor at varying cutter speeds and vacuum levels using a TDC vitrectome and a standard vitrectome across different aspiration pump systems. A prospective single-centre clinical study evaluated duration of core vitrectomy in 80 patients with macular pucker undergoing 25-gauge or 27-gauge vitrectomy using either a TDC vitrectome at 16,000 cuts per minute (cpm or standard single-cut vitrectome, combined with a Valve Timing intelligence (VTi pump system (EVA, DORC International. Results. Aspiration flow rates remained constant independent of TDC vitrectome cut rate, while flow rates decreased linearly at higher cutter speeds using a classic single-blade vitrectome. Mean duration of core vitrectomy surgeries using a TDC vitreous cutter system was significantly (p<0.001 shorter than the mean duration of core vitrectomy procedures using a single-cut vitrectome of the same diameter (reduction range, 34%–50%. Conclusion. Vitrectomy surgery performed using a TDC vitrectome was faster than core vitrectomy utilizing a standard single-action vitrectome at similar cut speeds.

  9. Implementation of a Forth-Order Aeroelastic Coupling into a Viscous-Inviscid Flow Solver with Experimental Validation (for One Degree of Freedom)

    Science.gov (United States)

    Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team

    2014-11-01

    The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.

  10. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  11. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  12. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures

    Science.gov (United States)

    Agnaou, Mehrez; Lasseux, Didier; Ahmadi, Azita

    2017-10-01

    Inertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a deviation from Darcy's law that leads to a nonlinear relationship between the pressure drop and the filtration velocity. In this work, this deviation, also known as the nonlinear, inertial, correction to Darcy's law, which is subject to controversy upon its origin and dependence on the filtration velocity, is studied through numerical simulations. First, the microscopic flow problem was solved computationally for a wide range of Reynolds numbers up to the limit of steady flow within ordered and disordered porous structures. In a second step, the macroscopic characteristics of the porous medium and flow (permeability and inertial correction tensors) that appear in the macroscale model were computed. From these results, different flow regimes were identified: (1) the weak inertia regime where the inertial correction has a cubic dependence on the filtration velocity and (2) the strong inertia (Forchheimer) regime where the inertial correction depends on the square of the filtration velocity. However, the existence and origin of those regimes, which depend also on the microstructure and flow orientation, are still not well understood in terms of their physical interpretations, as many causes have been conjectured in the literature. In the present study, we provide an in-depth analysis of the flow structure to identify the origin of the deviation from Darcy's law. For accuracy and clarity purposes, this is carried out on two-dimensional structures. Unlike the previous studies reported in the literature, where the origin of inertial effects is often identified on a heuristic basis, a theoretical justification is presented in this work. Indeed, a decomposition of the convective inertial term into two components is carried out formally allowing the

  13. The adsorption of CO(2)/H(2)O/N(2) on 5A zeolite and silica gel in a packed column in one and two-dimensional flows

    Science.gov (United States)

    Mohamadinejad, Habib

    The purpose of this work is to develop a computer model that simulates the dynamic behavior of a Four-Bed Molecular Sieves (4-BMS) system. The system will be installed on the International Space Station for removal of CO 2/H2O/N2 on four beds that consist of 5A zeolite, 13X zeolite, and Silica gel. Due to the complexity of the actual 4-BMS, separately packed columns of 5A and Silica gel were built and tested using the model results to obtain the mass and heat transfer coefficients necessary for the development of the 4-BMS. This work begins by introducing the adsorption/desorption process in a packed column. The formulation of the simplest model of adsorption in a packed bed is developed assuming that Darcy's law. In this model, the mass and heat transport gradients are assumed to vary only in the axial direction, i.e., one-dimensional flow. The results of temperature and mass transfer breakthrough of one-dimensional flow are compared with the test results for adsorption of CO2/N2 and CO2/H2O/N2 on 5A zeolite. In the packed column near the wall boundary, the velocity decreases due to the viscous forces and the porosity increases exponentially. This near-wall region of higher porosity results in the channeling of fluid close to the wall surface. This channeling causes an early solute breakthrough relative to the center of the column. In order to accommodate the effect of porosity variation on the breakthrough, a two-dimensional model of the packed column is developed. The results of two-dimensional flow are compared with the test results for adsorption of CO2/N2 and CO2/H 2O/N2 on 5A zeolite. This work also investigates the dynamics of H2O adsorption on Silica gel material. A one-dimensional flow of a packed column bed is developed with the assumption that Darcy's law governs the momentum transport. The results of both models are compared with the test results for adsorption of H 2O/N2 on Silica gel. Finally, a computer model based on the obtained parameters of

  14. Development of a Semi-Automatic Technique for Flow Estimation using Optical Flow Registration and k-means Clustering on Two Dimensional Cardiovascular Magnetic Resonance Flow Images

    DEFF Research Database (Denmark)

    Brix, Lau; Christoffersen, Christian P. V.; Kristiansen, Martin Søndergaard

    was then categorized into groups by the k-means clustering method. Finally, the cluster containing the vessel under investigation was selected manually by a single mouse click. All calculations were performed on a Nvidia 8800 GTX graphics card using the Compute Unified Device Architecture (CUDA) extension to the C...... promising because it saves time for post-processing. However, the k-means cluster approach is not comprehensive for quantitative flow estimations as it is but seems feasible for a subsequent segmentation algorithm like deformable contours (i.e. snakes). Future work may overcome this manual part and make...... programming language. Results: Seven clusters were created and identification of the one including the aorta was hereafter trivial. However, a part of the rim of the aortic vessel was excluded from the main aortic cluster. Conclusion: The registration and clustering approach for analyzing CMR flow data seems...

  15. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  16. Fully developed viscous and viscoelastic flows in curved pipes

    Science.gov (United States)

    Fan, Yurun; Tanner, Roger I.; Phan-Thien, Nhan

    2001-08-01

    Some h-p finite element computations have been carried out to obtain solutions for fully developed laminar flows in curved pipes with curvature ratios from 0.001 to 0.5. An Oldroyd-3-constant model is used to represent the viscoelastic fluid, which includes the upper-convected Maxwell (UCM) model and the Oldroyd-B model as special cases. With this model we can examine separately the effects of the fluid inertia, and the first and second normal-stress differences. From analysis of the global torque and force balances, three criteria are proposed for this problem to estimate the errors in the computations. Moreover, the finite element solutions are accurately confirmed by the perturbation solutions of Robertson & Muller (1996) in the cases of small Reynolds/Deborah numbers.

  17. Gisplana two dimensional flow model

    International Nuclear Information System (INIS)

    Payeras Socias, J.; Montero Ramos, M.; Pablo Sanmartin, M.A. de; Diaz Teijeiro, M.

    1996-01-01

    The Environmental Radiological Monitoring Network (R.V.R.A.) includes a set of 90 sampling points chosen from the major spanish river basins. The R.V.R.A.'s database is an structured system providing quantitative radiological information of radioactivity levels in spanish continental waters. (Author)

  18. Hypersonic Laminar Viscous Flow Past Spinning Cones at Angle of Attack

    Science.gov (United States)

    Agarwal, Ramesh; Rakich, John V.

    1982-01-01

    Computational results are presented for hypersonic viscous flow past spinning sharp and blunt cones of angle of attack, obtained with a parabolic Navier-Stokes marching code. The code takes into account the asymmetries in the flowfield resulting from spinning motion and computes the asymmetric shock shape, cross-flow and streamwise shear, heat transfer, cross-flow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other theoretical analyses based on boundary-layer and boundary-region equations, and an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results.

  19. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures.

    Science.gov (United States)

    Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi

    2017-05-12

    The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Viscous flow computations with the lattice-Boltzmann equation method

    Science.gov (United States)

    Yu, Dazhi

    2002-09-01

    The lattice Boltzmann equation (LBE) method is a kinetics-based approach for fluid flow computations, and it is amenable to parallel computing. Compared to the well-established Navier-Stokes (NS) approaches, critical issues remain with the LBE method, noticeably flexible spatial resolution, boundary treatments, and dispersion and relaxation time mode. Those issues are addressed in this dissertation with improved practice presented. At the formulation level, both the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) models are analyzed. The SRT model involves no artificial parameters, with a constant relaxation time regulating the physical value of fluid viscosity. The MRT model allows different relaxation time scales for different variables. Computational assessment shows that the MRT model has advantages over the SRT model in maintaining stability, reducing the oscillation, and improving the convergence rate in the computation. A multi-block method is developed for both the SRT and MRT model to facilitate flexible spatial resolutions according to the flow structures. The formulae for information exchange at the interface between coarse and fine grids are derived to ensure the mass and momentum conservation while maintaining the second-order accuracy. A customized time matching between coarse and fine grids is also presented to ensure smooth exchange information. Results show that the multi-block method can greatly increase the computational efficiency of the LBE method without losing the accuracy. Two methods of force evaluation in LBE are examined: one based on stress integration on the solid boundary and the other momentum exchange between fluid and solid. The momentum exchange method is found to be simpler to implement while the integration of stress requires evaluation of the detailed surface geometry and extrapolation of stress-related variables to the same surface. The momentum exchange method performs better overall. Improved treatments for

  1. An Assessment of Pulsed Flows on Foothill Yellow-legged Frog Habitat Hydraulics in a Regulated River using Two-Dimensional Hydrodynamic Modeling

    Science.gov (United States)

    Yarnell, S.; Lind, A.; Kupferberg, S.

    2007-12-01

    We used a freely available two-dimensional model, River2D, to evaluate changes in habitat suitability and availability for Foothill yellow-legged frog egg masses and tadpoles during pulsed flow events. Two study sites in Northern California, one on the unregulated South Fork Eel River and the other on the regulated North Fork Feather River, were selected for modeling. Simulated depths and velocities agreed well with measured field values. When coupled with a definition of breeding habitat suitability that encompassed the variability of field- measured values and the range of error within the model output, the model accurately predicted suitable breeding locations throughout the survey reach. Using data on percentages of egg mass and tadpole loss associated with increased velocities, we assessed several scenarios of how pulsed flows affected habitat availability and suitability. In a seasonal (spring) pulse scenario, lower discharges provided the greatest weighted usable area for breeding, but higher initial discharges provided the greatest buffering capacity against lethal increases in velocity. In an aseasonal (summer) pulse scenario, only 20-30% of the suitable tadpole habitat in the unregulated site and regulated site remained suitable during the pulse regardless of initial flow level. In both scenarios, the unregulated study site provided 2-3 times the buffering capacity of the regulated site. This was likely due to differences in channel morphology; the regulated site had an entrenched channel with steep banks, while the unregulated site had an asymmetric cross-sectional shape where shallow overbank areas provided refuge from high velocities as flows fluctuated. This type of model-based methodology that can evaluate effects from flow fluctuation on individuals and local habitat conditions for multiple life stages would be useful for managing Foothill yellow-legged frog or similar aquatic species in regulated river systems.

  2. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  3. On the research of flow around obstacle using the viscous Cartesian grid technique

    Directory of Open Access Journals (Sweden)

    Liu Yan-Hua

    2012-01-01

    Full Text Available A new 2-D viscous Cartesian grid is proposed in current research. It is a combination of the existent body-fitted grid and Cartesian grid technology. On the interface of the two different type of grid, a fined triangular mesh is used to connect the two grids. Tests with flow around the cylinder and aerofoil NACA0012 show that the proposed scheme is easy for implement with high accuracy.

  4. Topological Fluid Dynamics For Free and Viscous Surfaces

    DEFF Research Database (Denmark)

    Balci, Adnan

    In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given...

  5. Application of Light Reflection Visualization for Measuring Organic-Liquid Saturation for Two-Phase Systems in Two-Dimensional Flow Cells.

    Science.gov (United States)

    DiFilippo, Erica L; Brusseau, Mark L

    2011-11-01

    A simple, noninvasive imaging technique was used to obtain in situ measurements of organic-liquid saturation in a two-phase system under dynamic conditions. Efficacy of the light reflection visualization (LRV) imaging method was tested through comparison of measured and known volumes of organic liquid for experiments conducted with a two-dimensional flow cell. Two sets of experiments were conducted, with source-zone configurations representing two archetypical residual-and-pool architectures. LRV measurements were collected during the injection of organic liquid and during a dissolution phase induced by water flushing. There was a strong correlation between measured and known organic-liquid volumes, with the LRV-measured values generally somewhat lower than the known volumes. Errors were greater for the system wherein organic liquid was present in multiple zones comprised of porous media of different permeabilities, and for conditions of multiphase flow. This method proved effective at determining organic-liquid distribution in a two-phase system using minimal specialized equipment.

  6. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    Science.gov (United States)

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  7. Advanced fingerprinting of high-quality cocoa: Challenges in transferring methods from thermal to differential-flow modulated comprehensive two dimensional gas chromatography.

    Science.gov (United States)

    Magagna, Federico; Liberto, Erica; Reichenbach, Stephen E; Tao, Qingping; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo; Cordero, Chiara

    2018-02-09

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms opens interesting perspectives for routine analysis of complex samples. Flow modulated platforms avoid the use of cryogenics, thereby simplifying laboratory operations and analyst supervision during intensive analytical sessions. This study evaluates the feasibility of transferring a fingerprinting method capable of classifying and discriminating cocoa samples based on the volatiles fraction composition according to their origin and processing steps. Previously developed principles of GC×GC method translation are applied to an original fingerprinting method, developed for a loop-type thermal modulated GC×GC-MS system, to engineer a method for a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. Effective method translation preserves analytes elution order, 1 D resolution, and 2D pattern coherence. The experimental results confirm the feasibility of translating fingerprinting method conditions while preserving the informative power of 2D peak patterns for sample classification and discrimination. Correct translation enables effective transfer of metadata (e.g., compound names and MS fragmentation patterns) by automatic template transformation and matching from the original/reference method to its translated counterpart. Although the adoption of a narrow bore (i.e. 0.1mm d c ) column in the first-dimension enabled operation under close-to-optimal conditions with the differential-flow modulation platform, due to the dual-parallel columns in the second-dimension, it resulted in lower overall method sensitivity. Nevertheless, fingerprinting accuracy was preserved and most of the key-aroma compounds and technological markers were effectively mapped, thus limiting the loss of fingerprinting information. Copyright © 2017 Elsevier B.V. All rights

  8. Comparing two methods of simulating mirco-scale viscous flows in a porous channel

    Science.gov (United States)

    Gao, Hui; Han, Jie; Jin, Yan; Wang, Lian-Ping

    2007-11-01

    Water flows in natural soil porous media are important to colloid-facilitated transport of contaminants and other phenomena with groundwater as the carrier. The 3D micro-scale flow is complicated due to the complex geometry. The transport and deposition of colloids in such flows are affected by several physical and chemical forces involved. In this talk, we first compare two methods of simulating viscous flows in both 2D and 3D channels filled with glass-bead particles. The first method is Physalis developed by Prosperetti's group, at Johns Hopkins, based on solving the Navier-Stokes equation using a combination of numerical solution and local analytical Stokes flow representation. The second method is a meso-scale approach by solving a lattice Boltzmann equation. Specific implementation issues will be discussed. The two methods yield almost identical flows. Preliminary simulation results as well as parallel experimental results on colloid deposition in the porous channel will also be presented.

  9. Aerothermal modeling program. Phase 2, element A: Improved numerical methods for turbulent viscous recirculating flows

    Science.gov (United States)

    Karki, K. C.; Mongia, H. C.; Patankar, Suhas V.; Runchal, A. K.

    1987-01-01

    The objective of this effort is to develop improved numerical schemes for predicting combustor flow fields. Various candidate numerical schemes were evaluated, and promising schemes were selected for detailed assessment. The criteria for evaluation included accuracy, computational efficiency, stability, and ease of extension to multidimensions. The candidate schemes were assessed against a variety of simple one- and two-dimensional problems. These results led to the selection of the following schemes for further evaluation: flux spline schemes (linear and cubic) and controlled numerical diffusion with internal feedback (CONDIF). The incorporation of the flux spline scheme and direct solution strategy in a computer program for three-dimensional flows is in progress.

  10. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  11. Flow harmonics from self-consistent particlization of a viscous fluid

    Science.gov (United States)

    Wolff, Zack; Molnar, Denes

    2017-10-01

    The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.

  12. Computational modelling of the flow of viscous fluids in carbon nanotubes

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2007-01-01

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases

  13. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  14. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  15. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  16. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  17. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    Science.gov (United States)

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Space-resolved visible spectroscopy for two-dimensional measurement of hydrogen and impurity emission spectra and of plasma flow in the edge stochastic layer of LHD.

    Science.gov (United States)

    Kobayashi, M; Morita, S; Goto, M

    2017-03-01

    A space-resolved visible spectrometer system has been developed for two-dimensional (2D) distribution measurements of hydrogen and impurity emission spectra and of plasma flow in the edge stochastic layer of Large Helical Device (LHD). Astigmatism of the spectrometer has been suppressed by introducing additional toroidal and spherical mirrors. A good focal image at the exit slit is realized in a wide wavelength range (75 nm) as well as in a wide slit height direction (26 mm) with a 300 grooves/mm grating. The capability of the spectrometer optical system for the 2D measurement and further possible improvements are discussed in detail. An optical fiber array of 130 channels with a lens unit is used to spatially resolve the edge plasma into different magnetic field structure components: divertor strike points, divertor legs, X-point of the legs, the stochastic layer, and the last closed flux surface. With a 300 grooves/mm grating, the 2D distributions of several hydrogen and impurity line emissions are simultaneously obtained with absolute intensities. A clear correlation is obtained between the magnetic field structure and the emission intensity. With a 2400 grooves/mm grating with a good spectral resolution (0.03 nm/pixel), the 2D distributions of impurity flow velocity are obtained from the Doppler shift measurement. The wavelength position is accurately calibrated by investigating the wavelength dispersion as well as by correcting a mechanical error of the optical setting in the spectrometer. The uncertainty in the velocity is reduced to less than 10% of a typical impurity velocity ∼10 4 m/s. A temporal change in the flow directions is observed at different spatial locations in divertor detachment plasma.

  19. Viscous potential flow analysis of magnetohydrodynamic capillary instability with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    D.K. Tiwari

    2015-09-01

    Full Text Available A linear analysis of capillary instability of a cylindrical interface in the presence of axial magnetic field has been carried out when there is heat and mass transfer across the interface. Both fluids are taken as incompressible, viscous and magnetic with different kinematic viscosities and different magnetic permeabilities. Viscous potential flow theory is used for the investigation and a dispersion relation that accounts for the growth of axisymmetric waves is derived. Stability criterion is given by critical value of applied magnetic field as well as critical wave number and stability is discussed theoretically as well as numerically. Various graphs are drawn showing the effect of various physical parameters such as magnetic field strength, heat transfer capillary number, and permeability ratio, on the stability of the system. It has been observed that the axial magnetic field and heat and mass transfer both have stabilizing effect on the stability of the system.

  20. FMG, RENUM, LINEL, ELLFMG, ELLP, and DIMES: Chain of programs for calculating and analyzing fluid flow through two-dimensional fracture networks -- theory and design

    International Nuclear Information System (INIS)

    Billaux, D.; Bodea, S.; Long, J.

    1988-02-01

    This report describes some of the programs developed at Lawrence Berkeley Laboratory for network modelling. By themselves, these programs form a complete chain for the study of the equivalent permeability of two-dimensional fracture networks. FMG generates the fractures considered as line discontinuities, with any desired distribution of aperture, length, and orientation. The locations of these fractures on a plane can be either specified or generated randomly. The intersections of these fractures with each other, and with the boundaries of a specified flow region, are determined, and a finite element line network is output. RENUM is a line network optimizer. Nodes very close to each other are merged, dead-ends are removed, and the nodes are then renumbered in order to minimize the bandwidth of the corresponding linear system of equations. LINEL computes the steady state flux through a mesh of line elements previously processed by program RENUM. Equivalent directional permeabilities are output. ELLFMG determines the three components of the permeability tensor which best fits the directional permeabilities output by LINEL. A measure of the goodness fit is also computed. Two plotting programs, DIMES and ELLP, help visualize the outputs of these programs. DIMES plots the line network at various stages of the process. ELLP plots the equivalent permeability results. 14 refs., 25 figs

  1. Viscous froth lens

    Science.gov (United States)

    Green, T. E.; Bramley, A.; Lue, L.; Grassia, P.

    2006-11-01

    Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.” The lens consists of a channel partly filled by a bubble (known as the “lens bubble”) which contacts one channel wall. An additional film (known as the “spanning film”) connects to this bubble spanning the distance from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones, while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff, while that with the large lens bubble becomes much more compliant. However, with even further increases in the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability and unsteady

  2. Finite element analysis of transient viscous flow with free surface using filling pattern technique

    International Nuclear Information System (INIS)

    Kim, Ki Don; Yang, Dong Yol; Jeong, Jun Ho

    2001-01-01

    The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result

  3. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)

    1996-12-31

    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  4. Computation of supersonic viscous flows over ogive-cylinders at angle of attack

    Science.gov (United States)

    Rakich, J. V.; Vigneron, Y. C.; Agarwal, R.

    1979-01-01

    The parabolic Navier-Stokes (PNS) marching finite-difference method is applied to 3-D viscous flow over pointed ogive-cylinders, and to turbulent flow over a cone. Ogive computations were performed using the new technique recently reported by Vigneron, Rakich, and Tannehill. Comparison is made with experiment and inviscid computations. The present results show that this method, which neglects part of the pressure gradient in the x-momentum equation, is nevertheless valid for flows with a strong favorable pressure gradient. In addition, turbulent separated flow over a cone has been computed using the older PNS code due to Lubard and Helliwell. It is found that one must freeze the turbulent eddy-viscosity model upstream of 3-D separation to get agreement with experiment.

  5. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    Science.gov (United States)

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  6. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    Science.gov (United States)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the

  7. Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code

    Energy Technology Data Exchange (ETDEWEB)

    Trent, D.S.

    1973-06-01

    The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.

  8. FICTITIOUS DOMAIN METHOD FOR NUMERICAL SIMULATION OF INCOMPRESSIBLE VISCOUS FLOW AROUND RIGID BODIES

    Directory of Open Access Journals (Sweden)

    Matej Beno

    2017-09-01

    Full Text Available This article describes the method of efficient simulation of the flow around potentially many rigid obstacles. The finite element implementation is based on the incompressible Navier-Stokes equations using structured, regular, two dimensional triangular mesh. The fictitious domain method is introduced to account for the presence of rigid particles, representing obstacles to the flow. To enforce rigid body constraints in parts corresponding to rigid obstacles, Lagrange multipliers are used. For time discretization, an operator splitting technique is used. The model is validated using 2D channel flow simulations with circular obstacles. Different possibilities of enforcing rigid body constraints are compared to the fully resolved simulations and optimal strategy is recommended.

  9. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh

    Science.gov (United States)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  10. Numerical study of the viscous heat-conducting gas flow in a long shock tube

    Science.gov (United States)

    Kudryavtsev, Alexey; Khotyanovsky, Dmitry

    2017-10-01

    The results of numerical simulations of the propagation of the shock wave in a cylindrical shock tube of large length are presented. The results of the numerical computations agree well with the experimental data of Duff. The effects of viscous friction and heat conduction cause significant difference of the shock wave velocity from its inviscid theoretical value. The results of the computations at the considered flow parameters show that the shock wave and the contact surface, starting from a certain moment of time, propagate with equal speeds.

  11. Two experiments to approach the Boltzmann factor: chemical reaction and viscous flow

    International Nuclear Information System (INIS)

    Fazio, Claudio; Battaglia, Onofrio R; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms of macroscopic variables whose temperature dependence is proportional to the Boltzmann factor. A description of a workshop implementing the approach in the framework of an undergraduate course for engineering education and some preliminary results about its pedagogical relevance are then reported. (paper)

  12. Solving high Reynolds-number viscous flows by the general BEM and domain decomposition method

    Science.gov (United States)

    Wu, Yongyan; Liao, Shijun

    2005-01-01

    In this paper, the domain decomposition method (DDM) and the general boundary element method (GBEM) are applied to solve the laminar viscous flow in a driven square cavity, governed by the exact Navier-Stokes equations. The convergent numerical results at high Reynolds number Re = 7500 are obtained. We find that the DDM can considerably improve the efficiency of the GBEM, and that the combination of the domain decomposition techniques and the parallel computation can further greatly improve the efficiency of the GBEM. This verifies the great potential of the GBEM for strongly non-linear problems in science and engineering.

  13. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows

    International Nuclear Information System (INIS)

    Edwards, J.R.

    1996-01-01

    An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m 2 ) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations

  14. Viscous potential flow analysis of magnetohydrodynamic interfacial stability through porous media

    International Nuclear Information System (INIS)

    Obied Allah, M.H.

    2013-01-01

    In the view of viscous potential flow theory, the hydromagnetic stability of the interface between two infinitely conducting, incompressible plasmas, streaming parallel to the interface and subjected to a constant magnetic field parallel to the streaming direction will be considered. The plasmas are flowing through porous media between two rigid planes and surface tension is taken into account. A general dispersion relation is obtained analytically and solved numerically. For Kelvin-Helmholtz instability problem, the stability criterion is given by a critical value of the relative velocity. On the other hand, a comparison between inviscid and viscous potential flow solutions has been made and it has noticed that viscosity plays a dual role, destabilizing for Rayleigh-Taylor problem and stabilizing for Kelvin-Helmholtz. For Rayleigh-Taylor instability, a new dispersion relation has been obtained in terms of a critical wave number. It has been found that magnetic field, surface tension, and rigid planes have stabilizing effects, whereas critical wave number and porous media have destabilizing effects. (author)

  15. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    Science.gov (United States)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  16. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  17. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  18. On a two-dimensional mode-matching technique for sound generation and transmission in axial-flow outlet guide vanes

    Science.gov (United States)

    Bouley, Simon; François, Benjamin; Roger, Michel; Posson, Hélène; Moreau, Stéphane

    2017-09-01

    The present work deals with the analytical modeling of two aspects of outlet guide vane aeroacoustics in axial-flow fan and compressor rotor-stator stages. The first addressed mechanism is the downstream transmission of rotor noise through the outlet guide vanes, the second one is the sound generation by the impingement of the rotor wakes on the vanes. The elementary prescribed excitation of the stator is an acoustic wave in the first case and a hydrodynamic gust in the second case. The solution for the response of the stator is derived using the same unified approach in both cases, within the scope of a linearized and compressible inviscid theory. It is provided by a mode-matching technique: modal expressions are written in the various sub-domains upstream and downstream of the stator as well as inside the inter-vane channels, and matched according to the conservation laws of fluid dynamics. This quite simple approach is uniformly valid in the whole range of subsonic Mach numbers and frequencies. It is presented for a two-dimensional rectilinear-cascade of zero-staggered flat-plate vanes and completed by the implementation of a Kutta condition. It is then validated in sound generation and transmission test cases by comparing with a previously reported model based on the Wiener-Hopf technique and with reference numerical simulations. Finally it is used to analyze the tonal rotor-stator interaction noise in a typical low-speed fan architecture. The interest of the mode-matching technique is that it could be easily transposed to a three-dimensional annular cascade in cylindrical coordinates in a future work. This makes it an attractive alternative to the classical strip-theory approach.

  19. On the viscous dissipation modeling of thermal fluid flow in a porous medium

    KAUST Repository

    Salama, Amgad

    2011-02-24

    The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.

  20. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  1. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    Science.gov (United States)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  2. Stability of Stationary Viscous Incompressible Flow Around a Rigid Body Performing a Translation

    Science.gov (United States)

    Deuring, Paul

    2017-11-01

    Suppose a rigid body moves steadily and without rotation in a viscous incompressible fluid, and the flow around the body is steady, too. Such a flow is usually described by the stationary Navier-Stokes system with Oseen term, in an exterior domain. An Oseen term arises because the velocity field is scaled in such a way that it vanishes at infinity. In the work at hand, such a velocity field, denoted by U, is considered as given. We study a solution of the incompressible evolutionary Navier-Stokes system with the same right-hand side and the same Dirichlet boundary conditions as the stationary problem, and with U+u_0 as initial data, where u_0 is a H^1 -function. Under the assumption that the H^1 -norm of u_0 is small (u_0 a "perturbation of U") and that the eigenvalues of a certain linear operator have negative real part, we show that \\Vert \

  3. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  4. Hydrodynamics of Highly Viscous Flow past a Compound Particle: Analytical Solution

    Directory of Open Access Journals (Sweden)

    Longhua Zhao

    2016-11-01

    Full Text Available To investigate the translation of a compound particle in a highly viscous, incompressible fluid, we carry out an analytic study on flow past a fixed spherical compound particle. The spherical object is considered to have a rigid kernel covered with a fluid coating. The fluid within the coating has a different viscosity from that of the surrounding fluid and is immiscible with the surrounding fluid. The inertia effect is negligible for flows both inside the coating and outside the object. Thus, flows are in the Stokes regime. Taking advantage of the symmetry properties, we reduce the problem in two dimensions and derive the explicit formulae of the stream function in the polar coordinates. The no-slip boundary condition for the rigid kernel and the no interfacial mass transfer and force equilibrium conditions at fluid interfaces are considered. Two extreme cases: the uniform flow past a sphere and the uniform flow past a fluid drop, are reviewed. Then, for the fluid coating the spherical object, we derive the stream functions and investigate the flow field by the contour plots of stream functions. Contours of stream functions show circulation within the fluid coating. Additionally, we compare the drag and the terminal velocity of the object with a rigid sphere or a fluid droplet. Moreover, the extended results regarding the analytical solution for a compound particle with a rigid kernel and multiple layers of fluid coating are reported.

  5. Prenatal Diagnosis of Fetal Interrupted Aortic Arch Type A by Two-Dimensional Echocardiography and Four-Dimensional Echocardiography with B-Flow Imaging and Spatiotemporal Image Correlation.

    Science.gov (United States)

    Zhang, Dongyu; Zhang, Ying; Ren, Weidong; Sun, Feifei; Guo, Yajun; Sun, Wei; Wang, Yu; Huang, Liping; Cai, Ailu

    2016-01-01

    Fetal interrupted aortic arch (IAA) is a rare cardiac anomaly and its prenatal diagnosis is challenging. The purpose of our report is to evaluate the use of two-dimensional echocardiography (2DE) and 4D echocardiography with B-flow imaging and spatiotemporal image correlation (4D BF-STIC) in detecting IAA type A (IAA-A). Twenty-three cases of confirmed IAA-A identified by fetal echocardiography were involved in the study. The fetal echocardiography image data were reviewed to analyze the ratio of right ventricle to left ventricle (RV/LV) diameter, the ratio of main pulmonary artery to ascending aorta (MPA/AAO) diameter, and the correlation of RV/LV diameter ratio and size of ventricular septal defect (VSD). 4D BF-STIC was performed in 21 fetuses using the sagittal view (4D BF-STIC-sagittal) and the four-chamber view (4D BF-STIC-4CV) as initial planes of view. An additional 183 normal fetuses were also included in our study. RV/LV and MPA/AAO ratios were calculated and compared with that of IAA-A fetuses. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV were used to visualize the aortic arch and its associated neck vessels. Six subgroups were evaluated according to gestational age. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV made the correct prenatal diagnosis of IAA-A in 19/23 (82.6%), 14/21 (66.7%), and 19/21 (90.5%) of patients, respectively. A significantly enlarged MPA combined with symmetric ventricles was found in the IAA-A fetuses, while the size of the VSD was negatively correlated with RV/LV ratio. 4D BF-STIC-sagittal and 4D BF-STIC-4CV were better than traditional 2D ultrasound in detecting the aortic arch and neck vessels between 17 and 28 gestational weeks and 29 to 40 gestational weeks in normal fetuses. It is demonstrated that IAA-A could be diagnosed by traditional fetal echocardiography, while 4D technique could better display the anatomic structure and the spatial relationships of the great arteries. Use of volume reconstruction may

  6. Study of high viscous multiphase phase flow in a horizontal pipe

    Science.gov (United States)

    Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.

    2018-03-01

    Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.

  7. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.

    Science.gov (United States)

    Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar

    2018-01-01

    Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.

  8. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  9. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  10. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    Science.gov (United States)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  11. Numerical Investigation of Viscous Flow Velocity Field around a Marine Cavitating Propeller

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhu

    2014-11-01

    Full Text Available Velocity field around a ship cavitating propeller is investigated based on the viscous multiphase flow theory. Using a hybrid grid, the unsteady Navier-stokes (N-S and the bubble dynamics equations are solved in this paper to predict the velocity in a propeller wake and the vapor volume fraction on the back side of propeller blade for a uniform inflow. Compared with experimental results, the numerical predictions of cavitation and axial velocity coincide with the measured data. The evolution of tip vortex is shown, and the interaction between the tip vortex of the current blade and the wake of the next one occurs in the far propeller wake. The frequency of velocity signals changes from shaft rate to blade rate. The phenomena reflect the instability of propeller wake.

  12. Improved flux calculations for viscous incompressible flow by the variable penalty method

    International Nuclear Information System (INIS)

    Kheshgi, H.; Luskin, M.

    1985-01-01

    The Navier-Stokes system for viscous, incompressible flow is considered, taking into account a replacement of the continuity equation by the perturbed continuity equation. The introduction of the approximation allows the pressure variable to be eliminated to obtain the system of equations for the approximate velocity. The penalty approximation is often applied to numerical discretizations since it provides a reduction in the size and band-width of the system of equations. Attention is given to error estimates, and to two numerical experiments which illustrate the error estimates considered. It is found that the variable penalty method provides an accurate solution for a much wider range of epsilon than the classical penalty method. 8 references

  13. Forced convection boundary layer MHD flow of nanofluid over a permeable stretching plate with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Habibi Matin Meisam

    2014-01-01

    Full Text Available Forced convection boundary layer magneto-hydrodynamic (MHD flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissi1pation are taken into account. The nanofluid model includes Brownian motion and thermophoresis effects. The governing momentum, energy and nanofluid solid volume fraction equations are solved numerically using an implicit finite difference scheme known as Keller-box method and the results are compared with available numerical data. The results for the dimensionless velocity, dimensionless temperature, dimensionless nanofluid solid volume fraction, reduced Nusselt and reduced Sherwood numbers are presented illustrating the effects of magnetic parameter, suction-injection parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Eckert number and Lewis number.

  14. Toroidal Lagrangian Flow Structues in highly viscous fluids by moving bent rods

    Science.gov (United States)

    Chtcheprov, Pavel; Camassa, Roberto; Holz, David; Marron, David; Martindale, James; McLaughlin, Richard; Vicci, Leandra; Zhao, Longhua

    2010-11-01

    Motile cilia play a large role in fluid motion across the surface of ciliates. Flows caused by the cilia move debris and mucus through mass beat patterns controlled by the motor proteins while rotating about the basal body that attaches the cilium to the cell surface. This study approximates the cilium as a slender body rotating about a point of contact of one of its ends in a viscous fluid. The bent rod sweeps out a virtual cone with a chord connecting both ends. The bend of the rod, the cone angle, the angle between the central axis to the normal plane, and the angle of rotation of the bent rod about its chord affect the flow patterns in a Stokes fluid. The slender body theory allows for an asymptotic solution of the Lagrangian trajectories and flow patterns caused by the precessing rod, which can be directly compared to experimental data. Altering the above parameters produces different toroidal flow structures. Using 3D stereo calibration, accurate quantified comparisons of epicyclic particle trajectories in short and long time are made against the model predictions.

  15. Computation of supersonic laminar viscous flow past a pointed cone at angle of attack in spinning and coning motion

    Science.gov (United States)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.

  16. MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER

    Directory of Open Access Journals (Sweden)

    A. S. Sidorenko

    2015-01-01

    Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The

  17. Flow regime map for two dimensional spouted bed and comparison with simulation by discrete element method; Nijigen funryuso no ryudo jotaizu to risan yosoho ni yoru shumyureshon kekka tono hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, T.; Chiba, T.; Shibata, T.; Uemaki, O.; Ito, H. [Hokkaido University, Hokkaido (Japan)

    1999-11-10

    A flow regime map for a two-dimensional spouted bed is constructed from the experimental conditions that cause the fixed bed, spouted bed, bubbling fluidized bed and slugging bed. The map is compared to the one that is made from the simulations using P-TAK, a general-purpose simulation code of gas and particle flow by the discrete element method. Both maps coincide very well, indicating that the discrete element method has big potential for predicting critical flow conditions such as the minimum spouting velocity or the maximum spoutable bed height. (author)

  18. Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2016-11-01

    We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.

  19. Viscous flow in and around a cavity surrounded by a concentric permeable patch

    Science.gov (United States)

    Palaniappan, D.

    2017-11-01

    Steady viscous incompressible fluid flow in and around a spherical fluid cavity of radius a surrounded by a permeable patch with thickness b - a is investigated in the limit of low-Reynolds number. Our model uses the Stokes equations in the pure fluid regions and the Darcy law in the concentric permeable patch. Analytic solutions for the velocity and pressure fields are derived in singularity form involving the key parameters such as the Darcy permeability coefficient k and the thickness of the permeable layer. The Faxen law for the hydrodynamical drag acting on the concentric spherical geometry due to an arbitrary incident flow is extracted from our singularity solutions. It is found that the thickness of the permeable layer and the permeability play a crucial role in controlling the drag. An expression for the mass of the fluid that enters the outer sphere is calculated by integrating the exterior radial velocity field. The hydrodynamic force on the concentric spherical shell due to the flow induced by a Stokeslet is also derived from our general expressions. Several special cases of interest are deduced from our exact analysis. The results are of some interest in the prediction of forces exerted on the walls in certain biological models with permeable layers. I request you to place my presentation on the 19th (Sunday) as I have to give final exams on Monday. Thank you.

  20. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    Science.gov (United States)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  1. Two-Dimensional Air-Flow Tests of the Effect of ITA Flowliner Slot Modification by Grinding/Polishing on Edge Tone Generation Potential

    Science.gov (United States)

    Sutliff, Daniel L. (Technical Monitor); Walker, Bruce E.

    2004-01-01

    Hersh Walker Acoustics (HWA) has performed a series of wind tunnel tests to support crack-repair studies for ITA flowliner vent slots. The overall goal of these tests is to determine if slot shape details have a significant influence on the propensity of the flowliner to produce aero-acoustic oscillations that could increase unsteady stresses on the flowliner walls. The test series, conducted using a full-scale two-dimensional model of a six-slot segment of the 38 slot liner, was intended to investigate the effects of altering slot shape by grinding away cracked portions.

  2. Radiative heat transfer with hydromagnetic flow and viscous dissipation over a stretching surface in the presence of variable heat flux

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh

    2009-01-01

    Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.

  3. An efficient analytical approach for MHD viscous flow over a stretching sheet via homotopy perturbation sumudu transform method

    Directory of Open Access Journals (Sweden)

    Sushila

    2013-09-01

    Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.

  4. Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows

    Science.gov (United States)

    Chuang, Yao-Li; Chou, Tom; D'Orsogna, Maria R.

    2016-04-01

    We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion, and type of particle-particle interaction. In "clear fluids" swimmers have full knowledge of their surroundings and can adjust their velocities with respect to the lab frame, while in "opaque fluids" they control their velocities only in relation to the local fluid flow. We also show that "social" interactions that affect only a particle's propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the long-ranged flow fields generated by direct "physical" interactions. The latter can be short-ranged but lead to much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness, we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes, recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the center of mill-like structures. Our results reveal how the interplay among general physical elements influence fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms and suggest how they might be used to kinetically control their collective behavior.

  5. Generalized derivation of the added-mass and circulatory forces for viscous flows

    Science.gov (United States)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  6. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  7. Comparison of secondary flows predicted by a viscous code and an inviscid code with experimental data for a turning duct

    Science.gov (United States)

    Schwab, J. R.; Povinelli, L. A.

    1984-01-01

    A comparison of the secondary flows computed by the viscous Kreskovsky-Briley-McDonald code and the inviscid Denton code with benchmark experimental data for turning duct is presented. The viscous code is a fully parabolized space-marching Navier-Stokes solver while the inviscid code is a time-marching Euler solver. The experimental data were collected by Taylor, Whitelaw, and Yianneskis with a laser Doppler velocimeter system in a 90 deg turning duct of square cross-section. The agreement between the viscous and inviscid computations was generally very good for the streamwise primary velocity and the radial secondary velocity, except at the walls, where slip conditions were specified for the inviscid code. The agreement between both the computations and the experimental data was not as close, especially at the 60.0 deg and 77.5 deg angular positions within the duct. This disagreement was attributed to incomplete modelling of the vortex development near the suction surface.

  8. Large-scale computation of incompressible viscous flow by least-squares finite element method

    Science.gov (United States)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  9. A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Effective numerical treatment of multicomponent viscous flow problems involving the advection of sharp interfaces between materials of differing physical properties requires correction techniques to prevent spurious diffusion and dispersion. We develop a particular algorithm, based on modern shock-capture techniques, employing a two-step nonlinear method. The first step involves the global application of a high-order upwind scheme to a hyperbolic advection equation used to model the distribution of distinct material components in a flow field. The second step is corrective and involves the application of a global filter designed to remove dispersion errors that result from the advection of discontinuities (e.g., material interfaces) by high-order, minimally dissipative schemes. The filter introduces no additional diffusion error. Nonuniform viscosity across a material interface is allowed for by the implementation of a compositionally weighted-inverse interface viscosity scheme. The combined method approaches the optimal accuracy of modern shock-capture techniques with a minimal increase in computational time and memory. A key advantage of this method is its simplicity to incorporate into preexisting codes be they finite difference, element, or volume of two or three dimensions.

  10. Unsteady Flow of Reactive Viscous, Heat Generating/Absorbing Fluid with Soret and Variable Thermal Conductivity

    Directory of Open Access Journals (Sweden)

    I. J. Uwanta

    2014-01-01

    Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.

  11. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  12. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    Science.gov (United States)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  13. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Ha, Tam T [ORNL; Morrow, Michael [ORNL; Biewer, Theodore M [ORNL; Rasmussen, David A [ORNL; Hechler, Michael P [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  14. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  15. Temporal Entropy Generation in the Viscous Layers of Laterally-converging Duct Flows

    Energy Technology Data Exchange (ETDEWEB)

    Donald M. McEligot; Robert S. Brodkey; Helmut Eckelmann

    2008-12-01

    Since insight into entropy generation is a key to increasing efficiency and thereby reducing fuel consumption and/or waste and -- for wall-bounded flows -- most entropy is generated in the viscous layer, we examine the transient behavior of its dominant contributor there for a non-canonical flow. New measurements in oil flow are presented for the effects of favorable streamwise mean pressure gradients on temporal entropy generation rates and, in the process, on key Reynolds-stress-producing events such as sweep front passage and on the deceleration/outflow phase of the overall bursting process. Two extremes have been considered: (1) a high pressure gradient, nearing "laminarization," and (2), for comparison, a low pressure gradient corresponding to many earlier experiments. In both cases, the peak temporal entropy generation rate occurs shortly after passage of the ejection/sweep interface. Whether sweep and ejection rates appear to decrease or increase with the pressure gradient depends on the feature examined and the manner of sampling. When compared using wall coordinates for velocities, distances and time, the trends and magnitudes of the transient behaviors are mostly the same. The main effects of the higher pressure gradient are (1) changes in the time lag between detections -- representing modification of the shape of the sweep front and the sweep angle with the wall, (2) modification of the magnitude of an instantaneous Reynolds shear stress with wall distance and (3) enlarging the sweeps and ejections. Results new for both low and high pressure gradients are the temporal behaviors of the dominant contribution to entropy generation; it is found to be much more sensitive to distance from the wall than to streamwise pressure gradient.

  16. Air-driven viscous film flow coating the interior of a vertical tube

    Science.gov (United States)

    Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey

    2017-11-01

    We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.

  17. Stability of viscous film flow coating the interior of a vertical tube with a porous wall

    Science.gov (United States)

    Liu, Rong; Ding, Zijing

    2017-05-01

    The stability of the gravity-driven flow of a viscous film coating the inside of a tube with a porous wall is studied theoretically. We used Darcy's law to describe the motion of fluids in a porous medium. The Beaver-Joseph condition is used to describe the discontinuity of velocity at the porous-fluid interface. We derived an evolution equation for the film thickness using a long-wave approximation. The effect of velocity slip at the porous wall is identified by a parameter β . We examine the effect of β on the temporal stability, the absolute-convective instability (AI-CI), and the nonlinear evolution of the interface deformation. The results of the temporal stability reveal that the effect of velocity slip at the porous wall is destabilizing. The parameter β plays an important role in determining the AI-CI behavior and the nonlinear evolution of the interface. The presence of the porous wall promotes the absolute instability and the formation of the plug in the tube.

  18. Barrier hopping, viscous flow, and kinetic gelation in particle-polymer suspensions.

    Science.gov (United States)

    Chen, Y-L; Kobelev, V; Schweizer, K S

    2005-04-01

    The naive mode coupling-polymer reference interaction site model (MCT-PRISM) theory of gelation and elasticity of suspensions of hard sphere colloids or nanoparticles mixed with nonadsorbing polymers has been extended to treat the emergence of barriers, activated transport, and viscous flow. The barrier makes the dominant contribution to the single particle relaxation time and shear viscosity, and is a rich function of the depletion attraction strength via the polymer concentration, polymer-particle size asymmetry ratio, and particle volume fraction. The dependences of the barrier on these three system parameters can be accurately collapsed onto a single scaling variable, and the resultant master curve is well described by a power law. Nearly universal master curves are also constructed for the hopping or alpha relaxation time for system conditions not too close to the ideal MCT transition. Based on the calculated barrier hopping time, a theory for kinetic gel boundaries is proposed. The form and dependence on system parameters of the kinetic gel lines are qualitatively the same as obtained from prior ideal MCT-PRISM studies. The possible relevance of our results to the phenomenon of gravity-driven gel collapse is studied. The general approach can be extended to treat nonlinear viscoelasticity and rheology of polymer-colloid suspensions and gels.

  19. Characteristics of axisymmetric viscous incompressible flow passing a torus rotating about its centerline

    Directory of Open Access Journals (Sweden)

    Pairin Suwannasri

    2016-06-01

    Full Text Available The present numerically investigates the axisymmetric flow past a rotating torus in a viscous incompressible fluid. The surface of the torus rotates with constant velocity around its centerline. A numerical model has been developed for the governing equation in the toroidal coordinate system. The rotating boundary of a torus generates inertia in the surrounding fluid. There are two interesting regimes. In one of them, a rotation of torus surface generates a toroidal fluid region which envelopes the torus. In another one a rotation of torus surface generates the jet of fluid expelled from the hole downward. We focus on the hydrodynamics of a torus effected by a rotational rate ( and the aspect ratios (Ar. The numerical simulations are performed for three aspect ratios, Ar = 2, 3 and 5, where Ar is defined as ratio of torus radius (b to cross-section radius of torus (a and the range of rotational rate    4.0 2.0,  where  is defined as ratio of tangential tank-treading motion of torus surface to the uniform far-field velocity.

  20. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  1. Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows

    Energy Technology Data Exchange (ETDEWEB)

    Marc O Delchini; Jean E. Ragusa; Ray A. Berry

    2015-07-01

    We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.

  2. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  3. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.

    1977-03-01

    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  4. CHEMICAL REACTION AND THERMAL RADIATION EFFECTS ON UNSTEADY MHD FLOW OF AN INCOMPRESSIBLE VISCOUS FLUID PAST A MOVING VERTICAL CYLINDER

    OpenAIRE

    B R Sharma*, Nabajyoti Dutta

    2016-01-01

    In the present study, the effects of chemical reaction and thermal radiation on unsteady MHD flow of a viscous, electrically conducting and incompressible fluid mixture past a moving vertical cylinder is studied. The fluid is a gray, absorbing-emitting but non scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless coupled non-linear partial differential equations are solved numerically using finite di...

  5. Two-Dimensional Simulation of Flows in an Open Channel with Groin-Like Structures by iRIC Nays2DH

    OpenAIRE

    Md. Shahjahan Ali; Md. Milon Hasan; Masuma Haque

    2017-01-01

    This study presents the results obtained from the numerical simulation on turbulent flows around a single groin for different orientations. Here iRIC Nays2DH, which is based on 2D model, is used to simulate the flows in a straight open channel with groin of 45°, 90°, and 135° angled with the approaching flow. A depth-averaged k-ε model is used as turbulence closure model with finite differential advections as upwind scheme. The numerical results of velocity and bed shear stress profiles are c...

  6. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  7. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage

    Science.gov (United States)

    Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino

    2016-12-01

    Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.

  8. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  9. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  10. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows

    Science.gov (United States)

    Scheel, Janet D.; Schumacher, Jörg

    2017-12-01

    We discuss two aspects of turbulent Rayleigh-Bénard convection (RBC) on the basis of high-resolution direct numerical simulations in a unique setting: a closed cylindrical cell of aspect ratio of one. First, we present a comprehensive comparison of statistical quantities such as energy dissipation rates and boundary layer thickness scales. Data are used from three simulation run series at Prandtl numbers Pr that cover two orders of magnitude. In contrast to most previous studies in RBC the focus of the present work is on convective turbulence at very low Prandtl numbers including Pr=0.021 for liquid mercury or gallium and Pr=0.005 for liquid sodium. In this parameter range of RBC, inertial effects cause a dominating turbulent momentum transport that is in line with highly intermittent fluid turbulence both in the bulk and in the boundary layers and thus should be able to trigger a transition to the fully turbulent boundary layers of the ultimate regime of convection for higher Rayleigh number. Second, we predict the ranges of Rayleigh numbers for which the viscous boundary layer will transition to turbulence and the flow as a whole will cross over into the ultimate regime. These transition ranges are obtained by extrapolation from our simulation data. The extrapolation methods are based on the large-scale properties of the velocity profile. Two of the three methods predict similar ranges for the transition to ultimate convection when their uncertainties are taken into account. All three extrapolation methods indicate that the range of critical Rayleigh numbers Rac is shifted to smaller magnitudes as the Prandtl number becomes smaller.

  11. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model

    Science.gov (United States)

    Wang, Yuzhe; Zhang, Tong; Ren, Jiawen; Qin, Xiang; Liu, Yushuo; Sun, Weijun; Chen, Jizu; Ding, Minghu; Du, Wentao; Qin, Dahe

    2018-03-01

    By combining in situ measurements and a two-dimensional thermomechanically coupled ice flow model, we investigate the thermomechanical features of the largest valley glacier (Laohugou Glacier No. 12; LHG12) on Qilian Shan located in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer overlain by an upper layer of cold ice over a large region of the ablation area. Modelled ice surface velocities match well with the in situ observations in the east branch (main branch) but clearly underestimate those near the glacier terminus, possibly because the convergent flow is ignored and the basal sliding beneath the confluence area is underestimated. The modelled ice temperatures are in very good agreement with the in situ measurements from a deep borehole (110 m deep) in the upper ablation area. The model results are sensitive to surface thermal boundary conditions, for example surface air temperature and near-surface ice temperature. In this study, we use a Dirichlet surface thermal condition constrained by 20 m borehole temperatures and annual surface air temperatures. Like many other alpine glaciers, strain heating is important in controlling the englacial thermal structure of LHG12. Our transient simulations indicate that the accumulation zone becomes colder during the last two decades as a response to the elevated equilibrium line altitude and the rising summer air temperatures. We suggest that the extent of accumulation basin (the amount of refreezing latent heat from meltwater) of LHG12 has a considerable impact on the englacial thermal status.

  12. A low speed two-dimensional study of flow separation on the GA(W)-1 airfoil with 30-percent chord Fowler flap

    Science.gov (United States)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1977-01-01

    Measurements of flow fields with low speed turbulent boundary layers were made for the GA(W)-1 airfoil with a 0.30 c Fowler flap deflected 40 deg at angles of attack of 2.7 deg, 7.7 deg, and 12.8 deg, at a Reynolds number of 2.2 million, and a Mach number of 0.13. Details of velocity and pressure fields associated with the airfoil flap combination are presented for cases of narrow, optimum and wide slot gaps. Extensive flow field turbulence surveys were also conducted employing hot-film anemometry. For the optimum gap setting, the boundaries of the regions of flow reversal within the wake were determined by this technique for two angles of attack. Local skin friction distributions for the basic airfoil and the airfoil with flap (optimum gap) were obtained using the razor blade technique.

  13. Numerical method for calculation of 3D viscous turbomachine flow taking into account stator/rotor unsteady interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)

    1997-12-31

    The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.

  14. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  15. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  16. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  17. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  18. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  19. Effects of ohmic heating and viscous dissipation on steady MHD flow near a stagnation point on an isothermal stretching sheet

    Directory of Open Access Journals (Sweden)

    Sharma Pushkar Raj

    2009-01-01

    Full Text Available Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.

  20. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    Science.gov (United States)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  1. Two-Dimensional Simulation of Flows in an Open Channel with Groin-Like Structures by iRIC Nays2DH

    Directory of Open Access Journals (Sweden)

    Md. Shahjahan Ali

    2017-01-01

    Full Text Available This study presents the results obtained from the numerical simulation on turbulent flows around a single groin for different orientations. Here iRIC Nays2DH, which is based on 2D model, is used to simulate the flows in a straight open channel with groin of 45°, 90°, and 135° angled with the approaching flow. A depth-averaged k-ε model is used as turbulence closure model with finite differential advections as upwind scheme. The numerical results of velocity and bed shear stress profiles are compared with the available experimental data. Good agreements are found between experimental and calculated results. From the simulation, it is observed that the peak of velocity and bed shear stress is maximum at the position of head of groin when lateral distance y/l=1, where l is the groin length. The position of maximum velocity and bed shear stress is found to be shifted towards downstream with increasing y/l. The maximum velocity and bed shear stress for 135° groin are found lower than the other two cases for all the sections of y/l.

  2. Zakharov equations for viscous flow and their use in the blood clot formation

    Science.gov (United States)

    Zhou, Ai-Ping; Li, Xiao-Qing

    2017-12-01

    For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the imaginary part of one root of the perturbation frequency is greater than zero, and modulation instability occurs. This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health.

  3. The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems

    Science.gov (United States)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1995-01-01

    A nontraditional numerical method for solving conservation laws is being developed. The new method is designed from a physicist's perspective, i.e., its development is based more on physics than numerics. Even though it uses only the simplest approximation techniques, a 2D time-marching Euler solver developed recently using the new method is capable of generating nearly perfect solutions for a 2D shock reflection problem used by Helen Yee and others. Moreover, a recent application of this solver to computational aeroacoustics (CAA) problems reveals that: (1) accuracy of its results is comparable to that of a 6th order compact difference scheme even though nominally the current solver is only of 2nd-order accuracy; (2) generally, the non-reflecting boundary condition can be implemented in a simple way without involving characteristic variables; and (3) most importantly, the current solver is capable of handling both continuous and discontinuous flows very well and thus provides a unique numerical tool for solving those flow problems where the interactions between sound waves and shocks are important, such as the noise field around a supersonic over- or under-expansion jet.

  4. A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, S.; Nečasová, Šárka

    2010-01-01

    Roč. 3, č. 2 (2010), s. 237-254 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100190804 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible fluids * rotating body * fundamental solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5050

  5. Viscous dissipation effects on the flow of a radiating gas between ...

    African Journals Online (AJOL)

    Hence, fluid motion induced between two differentially heated concentric elliptic cylinders is investigated under transient condition and significant viscous dissipation. When the temperatures of the cylinder are large enough for radiative heat transfer to be significant. The solution approach is via an explicit finite difference ...

  6. Zakharov equations for viscous flow and their use in the blood clot ...

    Indian Academy of Sciences (India)

    For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the ...

  7. Zakharov equations for viscous flow and their use in the blood clot ...

    Indian Academy of Sciences (India)

    ... out that the imaginary part of one root of the perturbation frequency is greater than zero, and modulation instability occurs. This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health.

  8. Zakharov equations for viscous flow and their use in the blood clot ...

    Indian Academy of Sciences (India)

    Ai-Ping Zhou

    2017-11-14

    Nov 14, 2017 ... This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health. Keywords. Blood plasma; Zakharov equations; viscosity; modulation instability. PACS Nos 52.27.–h; 52.35.

  9. Effect of viscous dissipation on mixed convection flow in a vertical ...

    African Journals Online (AJOL)

    The reference temperature of the external fluid is considered to be equal and different. The perturbation method which is valid for small values of perturbation parameter is used to find the combined effects of buoyancy forces and viscous dissipation. The limitation imposed on the perturbation parameter is relaxed by solving ...

  10. Zakharov equations for viscous flow and their use in the blood clot ...

    Indian Academy of Sciences (India)

    Ai-Ping Zhou

    2017-11-14

    Nov 14, 2017 ... than 200 negative charges. Therefore, the blood plasma can be considered as a viscous, electrically conducting fluid containing protons and negative ions, and the rhe- ological properties of blood have been widely studied in the past few years [1–3]. So far, many studied blood coagulation using theoret-.

  11. Parallel comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A

    2017-11-17

    We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Entropy analysis in electrical magnetohydrodynamic (MHD flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2017-07-01

    Full Text Available The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations. The resultant system of equations is then solved numerically using implicit finite difference method. The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. Keywords: Entropy generation, MHD nanofluid, Thermal radiation, Bejan number, Chemical reaction, Viscous dissipation

  13. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils

    Science.gov (United States)

    Kelly; Humphrey

    1998-03-01

    Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.

  14. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  15. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  16. Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface

    DEFF Research Database (Denmark)

    Sheikholeslami, R; Ashorynejad, H.R; Barari, Amin

    2013-01-01

    Purpose – The purpose of this paper is to analyze hydromagnetic flow between two horizontal plates in a rotating system. The bottom plate is a stretching sheet and the top one is a solid porous plate. Heat transfer in an electrically conducting fluid bounded by two parallel plates is also studied...... in the presence of viscous dissipation. Design/methodology/approach – Differential Transformation Method (DTM) is used to obtain a complete analytic solution for the velocity and temperature fields and the effects of different governing parameters on these fields are discussed through the graphs. Findings...

  17. Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows.

    Science.gov (United States)

    Colagrossi, Andrea; Antuono, Matteo; Souto-Iglesias, Antonio; Le Touzé, David

    2011-08-01

    The theoretical formulation of the smoothed particle hydrodynamics (SPH) method deserves great care because of some inconsistencies occurring when considering free-surface inviscid flows. Actually, in SPH formulations one usually assumes that (i) surface integral terms on the boundary of the interpolation kernel support are neglected, (ii) free-surface conditions are implicitly verified. These assumptions are studied in detail in the present work for free-surface Newtonian viscous flow. The consistency of classical viscous weakly compressible SPH formulations is investigated. In particular, the principle of virtual work is used to study the verification of the free-surface boundary conditions in a weak sense. The latter can be related to the global energy dissipation induced by the viscous term formulations and their consistency. Numerical verification of this theoretical analysis is provided on three free-surface test cases including a standing wave, with the three viscous term formulations investigated.

  18. Trajectory control of PbSe–γ-Fe2O3 nanoplatforms under viscous flow and an external magnetic field

    Science.gov (United States)

    Etgar, Lioz; Nakhmani, Arie; Tannenbaum, Allen; Lifshitz, Efrat; Tannenbaum, Rina

    2010-01-01

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic γ -Fe2O3 nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the γ -Fe2O3 magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters’ flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (medicine. PMID:20368678

  19. Microfluidic System Simulation Including the Electro-Viscous Effect

    Science.gov (United States)

    Rojas, Eileen; Chen, C. P.; Majumdar, Alok

    2007-01-01

    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.

  20. Lidocaine Viscous

    Science.gov (United States)

    Lidocaine viscous, a local anesthetic, is used to treat the pain of a sore or irritated mouth ... associated with cancer chemotherapy and certain medical procedures. Lidocaine viscous is not normally used for sore throats ...

  1. Foam rheology: a model of viscous phenomena

    International Nuclear Information System (INIS)

    Kraynik, A.M.; Hansen, M.G.

    1987-01-01

    A theoretical model for foam rheology that includes viscous forces is developed by considering the deformation of two-dimensional, spatially periodic cells in simple shearing and planar extensional flow. The undeformed hexagonal cells are separated by thin liquid films. Plateau border curvature and liquid drainage between films is neglected. Interfacial tension and viscous tractions due to stretching lamellar liquid determine the individual film tensions. The network motion is described by a system of nonlinear ordinary differential equations for which numerical solutions are obtained. Coalescense and disproportionation of Plateau borders results in the relative separation of cells and provides a mechanism for yielding and flow. This process is assumed to occur when a film's length reduces to its thickness. The time and position dependence of the cell-scale dynamics are computed explicitly. The effective continuum stress of the foam is described by instantaneous and time-averaged quantities. The capillary number, a dimensionless deformation rate, represents the relative importance of viscous and surface tension effects. The small-capillary-number or quasistatic response determines a yield stress. The dependence of the shear and normal stress material functions upon deformation rate, foam structure and physical properties is determined. A plausible mechanism for shear-induced material failure, which would determine a shear strength, is revealed for large capillary numbers. The mechanism involves large cell distortion and film thinning, which provide favorable conditions for film rupture

  2. Growth of two-dimensional arrays of uncapped gold nanoparticles ...

    Indian Academy of Sciences (India)

    Wintec

    (centrifugal force) forces the fluid to flow uniformly outward. Typically, fluid flow considerations dominate the early part of spinning while solvent evaporation con- trols the behaviour at later stages. The thinning rate of solution which is attributed to viscous flow varies as the cube of solution thickness (and the square of spin ...

  3. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    Science.gov (United States)

    Russew, K.; Stojanova, L.; Yankova, S.; Fazakas, E.; Varga, L. K.

    2009-01-01

    Six Cu100-xZrx amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min-1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu64Zr36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  4. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    International Nuclear Information System (INIS)

    Russew, K; Stojanova, L; Yankova, S; Fazakas, E; Varga, L K

    2009-01-01

    Six Cu 100-x Zr x amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min -1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu 64 Zr 36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  5. Growth and Interaction of Sand Ripples Due to Steady Viscous Flow in an Annular Channel

    Science.gov (United States)

    Oshiro, Yuki; Sano, Osamu

    2007-12-01

    An experimental study is made on the pattern formation of a sand bed immersed in a viscous fluid between two concentric cylinders of finite depth; the channel width is sufficiently large as compared with the particle size. The upper boundary of the fluid is in contact with an annular ring made of transparent acrylic resin, which slides at a constant angular velocity, whereas other boundaries are at rest. New results on the onset and growth of sand ripples, the propagation and interaction of the ripples, and the long-term behavior for adjusting to a constant wavelength are presented.

  6. Heat transfer analysis for magnetohydrodynamics axisymmetric flow between stretching disks in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    N. Khan

    2015-05-01

    Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.

  7. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  8. A Numerical Study of Coupled Non-Linear Equations of Thermo-Viscous Fluid Flow in Cylindrical Geometry

    Directory of Open Access Journals (Sweden)

    Pothanna N.

    2017-12-01

    Full Text Available In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented in terms of velocity, temperature and pressure distribution for various values of the material parameters such as the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results and are found to be in excellent agreement. The results of the present study will hopefully enable a better understanding applications of the flow under consideration.

  9. A combined viscous-vortex, thermal-blob and Lagrangian method for non-isothermal, two-phase flow modelling

    International Nuclear Information System (INIS)

    Rybdylova, O.; Osiptsov, A.N.; Sazhin, S.S.; Begg, S.; Heikal, M.

    2016-01-01

    Highlights: • A meshless method for modelling two-phase flows with phase transition is developed. • Carrier phase parameters are calculated using the vortex and thermal blob methods. • Droplet parameters are calculated using the Lagrangian approach. • The method is verified against the analytical solution for the Lamb vortex. • The method is used to model an impulse two-phase cold jet injected into hot gas. - Abstract: A meshless method for modelling of 2D transient, non-isothermal, gas-droplet flows with phase transitions, based on a combination of the viscous-vortex and thermal-blob methods for the carrier phase with the Lagrangian approach for the dispersed phase, is developed. The one-way coupled, two-fluid approach is used in the analysis. The method makes it possible to avoid the ‘remeshing’ procedure (recalculation of flow parameters from Eulerian to Lagrangian grids) and reduces the problem to the solution of three systems of ordinary differential equations, describing the motion of viscous-vortex blobs, thermal blobs, and evaporating droplets. The gas velocity field is restored using the Biot–Savart integral. The numerical algorithm is verified against the analytical solution for a non-isothermal Lamb vortex and some asymptotic results known in the literature. The method is applied to modelling of an impulse two-phase cold jet injected into a quiescent hot gas, taking into account droplet evaporation. Various flow patterns are obtained in the calculations, depending on the initial droplet size: (i) low-inertia droplets, evaporating at a higher rate, form ring-like structures and are accumulated only behind the vortex pair; (ii) large droplets move closer to the jet axis, with their sizes remaining almost unchanged; and (iii) intermediate-size droplets are accumulated in a curved band whose ends trail in the periphery behind the head of the cloud, with larger droplets being collected at the front of the two-phase region.

  10. Two-dimensional Quantum Gravity

    Science.gov (United States)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  11. Dynamics of two-dimensional bubbles

    Science.gov (United States)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  12. Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents 1. Three-dimensional current flows associated with a substorm-intensified eastward electrojet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Untiedt, J.; Greenwald, R.A.

    1980-01-01

    Two-dimensional distributions of ground magnetic and ionospheric electric fields in the evening sector auroral oval have been simultaneously observed by the Scandinavian Magnetometer Array and the Scandinavian Twin Auroral Radar Experiment (Stare) radars, respectively, on February 15, 1977. They were associated with varying, substorm-intensified, eastward electrojet current systems of the western, middle, and eastern segment of the eastward electrojet. We conclude that the substorm-intensified eastward electroject was a nearly pure Hall current driven by northward electric fields. The observed eastward increase of the current in the western segment of the electrojet was due to a gradual enhancement of the Hall conductivity. Here, the electrojet was fed by a broad sheet of net downward field-aligned current. During one period, the eastern-terminating part of the eastward electrojet diverged up the field lines in a rather local area because of a strong longitudinal decrease in the northward-directed electric field. On another occasion, it diverged northward within the ionosphere and joined the westward-flowing current because of a rotation of the northward electric field with increasing latitude through west- to southward. These two observed mechanisms of current divergence in the region where eastward and westward electrojects coexist may shed some new light on the controversy over the existence of upward field-aligned current flow in the Harang discontinuity

  13. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    Science.gov (United States)

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use

  14. Elastic Deformation Analysis on MHD Viscous Dissipative Flow of Viscoelastic Fluid: An Exact Approach

    Science.gov (United States)

    Iqbal, Z.; Mehmood, Zaffar

    2017-05-01

    This communication is devoted to analyze elastic deformation on electrically conducted viscoelastic fluid in the presence of viscous dissipation effects. Non-linear analysis is computed through exact solutions for velocity, temperature and concentration profiles. Special emphasis is provided for elastic deformation in the presence of magnetohydrodynamics effects. Concentration profile is discussed significantly in the presence constructive and destructive chemical reaction. Results are displayed through graphs and discussed for physical parameters that are used in present analysis. Notable findings include that temperature and thermal boundary layer thickness is an increasing function of Prandtl number and a decreasing function of elastic deformation. In addition, heat transfer rate is enhanced by increasing the conjugate parameter (γ) which measures the strength of surface heating.

  15. A viscous/potential flow interaction analysis method for multi-element infinite swept wings, volume 1

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.

    1974-01-01

    An analysis method and computer program have been developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element infinite swept wings in incompressible flow. The wing configuration consisting at the most of a slat, a main element and double slotted flap is represented in the method by a large number of panels. The inviscid pressure distribution about a given configuration in the normal chord direction is determined using a two dimensional potential flow program employing a vortex lattice technique. The boundary layer development over each individual element of the high lift configuration is determined using either integral or finite difference boundary layer techniques. A source distribution is then determined as a function of the calculated boundary layer displacement thickness and pressure distributions. This source distribution is included in the second calculation of the potential flow about the configuration. Once the solution has converged (usually after 2-5 iterations between the potential flow and boundary layer calculations) lift, drag, and pitching moments can be determined as functions of Reynolds number.

  16. Influence of Magnetic Field on the Peristaltic Flow of a Viscous Fluid through a Finite-Length Cylindrical Tube

    Directory of Open Access Journals (Sweden)

    S. K. Pandey

    2010-01-01

    Full Text Available The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.

  17. Analysis of Heat Transfer in Berman Flow of Nanofluids with Navier Slip, Viscous Dissipation, and Convective Cooling

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available Heat transfer characteristics of a Berman flow of water based nanofluids containing copper (Cu and alumina (Al2O3 as nanoparticles in a porous channel with Navier slip, viscous dissipation, and convective cooling are investigated. It is assumed that the exchange of heat with the ambient surrounding takes place at the channel walls following Newton’s law of cooling. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using appropriate similarity transformations. These equations are solved analytically by regular perturbation methods with series improvement technique and numerically using an efficient Runge-Kutta Fehlberg integration technique coupled with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop, and Nusselt numbers are presented graphically and discussed quantitatively.

  18. Effect of chemical reaction and viscous dissipation on MHD nanofluid flow over a horizontal cylinder: Analytical solution

    Science.gov (United States)

    Shukla, Nisha; Rana, Puneet; Beg, O. A.; Singh, Bani

    2017-01-01

    An analytical study of the MHD boundary layer flow of electrically conducting nanofluid over a horizontal cylinder with the effects of chemical reaction and viscous dissipation is presented. Similarity transformations have been applied to transform the cylindrical form of the governing equations into the system of coupled ordinary differential equations and then homotopy analysis method has been implemented to solve the system. Homotopy analysis method (HAM) does not contain any small or large parameter like perturbation technique and also provides an easiest approach to ensure the convergence of the series of solution. The effects of chemical reaction parameter, magnetic parameter and other important governing parameters with no flux nanoparticles concentration is carried out to describe important physical quantities.

  19. Developments in the simulation of compressible inviscid and viscous flow on supercomputers

    International Nuclear Information System (INIS)

    Steger, J.L.; Buning, P.G.; Tel Aviv Univ., Israel)

    1985-01-01

    In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed. 46 references

  20. Assessment of NASA and RAE viscous-inviscid interaction methods for predicting transonic flow over nozzle afterbodies

    Science.gov (United States)

    Putnam, L. E.; Hodges, J.

    1983-01-01

    The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.

  1. Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution

    Science.gov (United States)

    McDonald, James G.; Groth, Clinton P. T.

    2013-09-01

    The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier-Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.

  2. Two-dimensional SCFTs from D3-branes

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); Bobev, Nikolay [Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Crichigno, P. Marcos [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,Leuvenlaan 4, 3854 CE Utrecht (Netherlands)

    2016-07-05

    We find a large class of two-dimensional N=(0,2) SCFTs obtained by compactifying four-dimensional N=1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS{sub 3} solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of four-dimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.

  3. Effect of viscous dissipation of a magneto hydrodynamic micropolar fluid with momentum and temperature dependent slip flow

    Science.gov (United States)

    Gangadhar, K.; Kumar, Sathies; Lakshmi Narayana, K.; Subhakar, M. J.; Rushi Kumar, B.

    2017-11-01

    In this paper, MHD flow and heat transfer of electrically conducting micro polar fluid over a permeable stretching surface with slip flow in the existence of viscous dissipation and temperature dependent slip flow are investigated. With the help of similarity transformations, the fundamental equations have been altered into a system of ordinary differential equations. It is difficult to solve these equations methodically. That’s why we used bvp4c MATLAB solver. We found the Numerical values for the wall couple stress, skin-friction coefficient, and the local Nusselt number in addition to the micro rotation, velocity, and temperature reports for diverse values of the principal parameters like thermal slip parameter, material parameter, magnetic parameter, heat generation/absorption parameter, velocity slip parameter and Eckert number It is observed that the values of suction/injection parameters rise corresponding to the lessening in the values of velocity, angular velocity, and temperature. Moreover, the change in the values of the Eckert number is opposite to the change in the values of the local Nusselt number.

  4. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight

    Science.gov (United States)

    Xu, Li; Weng, Peifen

    2014-02-01

    An improved fifth-order weighted essentially non-oscillatory (WENO-Z) scheme combined with the moving overset grid technique has been developed to compute unsteady compressible viscous flows on the helicopter rotor in forward flight. In order to enforce periodic rotation and pitching of the rotor and relative motion between rotor blades, the moving overset grid technique is extended, where a special judgement standard is presented near the odd surface of the blade grid during search donor cells by using the Inverse Map method. The WENO-Z scheme is adopted for reconstructing left and right state values with the Roe Riemann solver updating the inviscid fluxes and compared with the monotone upwind scheme for scalar conservation laws (MUSCL) and the classical WENO scheme. Since the WENO schemes require a six point stencil to build the fifth-order flux, the method of three layers of fringes for hole boundaries and artificial external boundaries is proposed to carry out flow information exchange between chimera grids. The time advance on the unsteady solution is performed by the full implicit dual time stepping method with Newton type LU-SGS subiteration, where the solutions of pseudo steady computation are as the initial fields of the unsteady flow computation. Numerical results on non-variable pitch rotor and periodic variable pitch rotor in forward flight reveal that the approach can effectively capture vortex wake with low dissipation and reach periodic solutions very soon.

  5. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics

    NARCIS (Netherlands)

    M. Cibiş (Merih); K. Jarvis (Kelly); M. Markl (Michael); M. Rose (Michael); C. Rigsby (Cynthia); A.J. Barker (Alex); J.J. Wentzel (Jolanda)

    2015-01-01

    textabstractViscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of

  6. Development of iterative techniques for the solution of unsteady compressible viscous flows

    Science.gov (United States)

    Sankar, Lakshmi; Hixon, Duane

    1993-01-01

    The work done under this project was documented in detail as the Ph. D. dissertation of Dr. Duane Hixon. The objectives of the research project were evaluation of the generalized minimum residual method (GMRES) as a tool for accelerating 2-D and 3-D unsteady flows and evaluation of the suitability of the GMRES algorithm for unsteady flows, computed on parallel computer architectures.

  7. Theoretical investigations of a viscous flow in rotational symmetry hollow jet nozzles with respect to a design of a flowing liquid metal target for a neutron spallation source

    International Nuclear Information System (INIS)

    Felsch, K.O.; Piesche, M.; Veith, W.

    1981-04-01

    The object of this theoretical study is the laminar and turbulent swirl free flow of a viscous incompressible medium in a rotation symmetric hollow jet nozzle whose geometrical configuration incorporates the technical conception of a molten metal target. Of interest is the construction of the nozzle in such a form that the wall boundaries reflect the natural frictional movement of the flow, i.e. the contours of the nozzle are trimmed by the interaction of the viscosity, momentum, gravity and surface tension forces. The mathematical treatment is based on an integral method. For laminar flow higher order polynomials were chosen and for turbulent flow the power of law of 1/7. As well as this the wall shear stresses in the turbulent flow region have to conform to the laws of pipe flow and in particular, to a modified form of Blasius' resistance law. The essential factors which are obtained from this study are the geometrical relationship between the average nozzle radius and the initial width of the fluid film, the exit angle and the Reynolds, Weber and Froude numbers as the characteristic geometric and physical flow parameters. (orig.) [de

  8. Simulation of three-dimensional viscous flow within a multistage turbine

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark

    1989-01-01

    This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.

  9. Simulation of 3-D viscous flow within a multi-stage turbine

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark

    1989-01-01

    This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.

  10. A three-dimensional viscous/potential flow interaction analysis method for multi-element wings

    Science.gov (United States)

    Dvorak, F. A.; Woodward, F. A.; Maskew, B.

    1977-01-01

    An analysis method and computer program were developed for the calculation of the viscosity dependent aerodynamic characteristics of multi-element, finite wings in incompressible flow. A fully-three dimensional potential flow program is used to determine the inviscid pressure distribution about the configuration. The potential flow program uses surface source and vortex singularities to represent the inviscid flow. The method is capable of analysing configurations having at most one slat, a main element, and two slotted flaps. Configurations are limited to full span slats or flaps. The configuration wake is allowed to relax as a force free wake, although roll up is not allowed at this time. Once the inviscid pressure distribution is calculated, a series of boundary layer computations are made along streamwise strips.

  11. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Olsen, Niels Boye; Christensen, Tage Emil

    1996-01-01

    A model for the viscosity of glass-forming molecular liquids is proposed in which a "flow event" requires a local volume increase. The activation energy for a flow event is identified with the work done in shoving aside the surrounding liquid; this work is proportional to the high-frequency shear...... modulus, which increases as the temperature decreases. The model is confirmed by experiments on a number of molecular liquids....

  12. The evolution of viscous flow structures in the esophagus during tracheoesophageal speech

    Science.gov (United States)

    Erath, Byron; Hemsing, Frank

    2015-11-01

    A laryngectomy is an invasive surgical procedure whereby the entire larynx is removed, usually as a result of cancer. Removal of the larynx renders conventional voiced speech impossible, with the most common remediation following surgery being tracheoeosphageal (TE) speech. TE speech is produced by inserting a one-way valve to connect the posterior wall of the trachea with the anterior wall of the esophagus. As air is forced up from the lungs it passes through the prosthesis and into the esophagus. The resulting esophageal pressure field incites self-sustained oscillations of the pharyngoesophageal segment (PES), which ultimately produces sound. Unfortunately, the physics of TE speech are not well understood, with up to 50% of individuals unable to produce intelligible sound. This failure can be related to a lack of understanding regarding the esophageal flow field, where all previous scientific investigations have assumed the flow is one-dimensional and steady. An experimental TE speech flow facility was constructed and particle image velocimetry measurements were acquired at the exit of the model prosthesis (entrance of the esophagus). The flow is observed to be highly unsteady, and the formation and propagation of vortical flow structures through the esophageal tract are identified. Observations regarding the influence of the flow dynamics on the esophageal pressure field and its relation to the successful production of TE speech are discussed.

  13. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  14. Unstructured Grid Viscous Flow Simulation Over High-Speed Research Technology Concept Airplane at High-Lift Conditions

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Numerical viscous solutions based on an unstructured grid methodology are presented for a candidate high-speed civil transport configuration, designated as the Technology Concept Airplane (TCA), within the High-Speed Research (HSR) program. The numerical results are obtained on a representative TCA high-lift configuration that consisted of the fuselage and the wing, with deflected full-span leading-edge and trailing-edge flaps. Typical on-and off-surface flow structures, computed at high-lift conditions appropriate for the takeoff and landing, indicated features that are generally plausible. Reasonable surface pressure correlations between the numerical results and the experimental data are obtained at free-stream Mach number M(sub infinity) = 0.25 and Reynolds number based on bar-c R(sub c) = 8 x 10(exp 6) for moderate angles of attack of 9.7 deg. and 13.5 deg. However, above and below this angle-of-attack range, the correlation between computed and measured pressure distributions starts to deteriorate over the examined angle-of-attack range. The predicted longitudinal aerodynamic characteristics are shown to correlate very well with existing experimental data across the examined angle-of-attack range. An excellent agreement is also obtained between the predicted lift-to-drag ratio and the experimental data over the examined range of flow conditions.

  15. Thoughts on the chimera method of simulation of three-dimensional viscous flow

    Science.gov (United States)

    Steger, Joseph L.

    1991-01-01

    The chimera overset grid is reviewed and discussed relative to other procedures for simulating flow about complex configurations. It is argued that while more refinement of the technique is needed, current schemes are competitive to unstructured grid schemes and should ultimately prove more useful.

  16. Dynamics of Viscous Back-Flow from a Network of Elastic Microfluidic Channels

    Science.gov (United States)

    Dana, Asaf; Zheng, Zhong; Peng, Gunnar G.; Stone, Howard A.; Huppert, Herbert E.; Ramon, Guy Z.

    2017-11-01

    We present a model for investigating the dynamics of back-flows caused by the elastic relaxation of a pre-strained medium. Namely, a model network with n bifurcated channel generations modeled as fluid confined between two rigid plates. The model uses a combination of lubrication theory for the flow and the equations of linear elasticity for the boundaries. The model assumes elastic deformation occurs only in channel aperture while the channel's length remains constant throughout the process. The asymptotic results show good agreement with numerical calculations in early and late times, when the aperture and back-flow rate tend to (-1/3) and (-4/3), respectively. This work presents a case where the pressure gradient along the network is steepest near the outlet while the bulk of the network serves as a `reservoir'. In addition, an asymptotic solution is derived for late times and large n. For a fixed total length, networks with larger n are less efficient at evicting fluids, manifested through a longer time required for evicting a given fractional reduction of the initial volume. The model can be used to investigate the back-flow dynamics of fractured rocks e.g., in hydraulic fracturing operations.

  17. Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow

    Science.gov (United States)

    2015-09-02

    fluorescent a = 0.25 µm polystyrene (PS) particles (Life Technologies F8812 with excitation and emission peaks at wavelengths λ = 580 nm and 605 nm...particle images separated by ∆t = 5 µs so that each laser illuminates exactly the same location in the flow;  Expand the laser beams to illuminate

  18. Analytical solution for viscous incompressible Stokes flow in a spherical shell

    NARCIS (Netherlands)

    Thieulot, Cedric

    2017-01-01

    I present a new family of analytical flow solutions to the incompressible Stokes equation in a spherical shell. The velocity is tangential to both inner and outer boundaries, the viscosity is radial and of the power-law type, and the solution has been designed so that the expressions for velocity,

  19. Simulation of free airfoil vibrations in incompressible viscous flow – comparison of FEM and FVM

    Czech Academy of Sciences Publication Activity Database

    Sváček, P.; Horáček, Jaromír; Honzátko, R.; Kozel, K.

    2012-01-01

    Roč. 52, č. 6 (2012), s. 104-114 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : laminar flow * finite volume method * finite element method * arbitrary Lagrangian-Eulerian method * nonlinear aeroelasticity Subject RIV: BI - Acoustics

  20. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  1. Magneto hall effect on unsteady elastico-viscous nanofluid slip flow in a channel in presence of thermal radiation and heat generation with Brownian motion

    Science.gov (United States)

    Karim, M. Enamul; Samad, M. Abdus; Ferdows, M.

    2017-06-01

    The present note investigates the magneto hall effect on unsteady flow of elastico-viscous nanofluid in a channel with slip boundary considering the presence of thermal radiation and heat generation with Brownian motion. Numerical results are achieved by solving the governing equations by the implicit Finite Difference Method (FDM) obtaining primary and secondary velocities, temperature, nanoparticles volume fraction and concentration distributions within the boundary layer entering into the problem. The influences of several interesting parameters such as elastico-viscous parameter, magnetic field, hall parameter, heat generation, thermal radiation and Brownian motion parameters on velocity, heat and mass transfer characteristics of the fluid flow are discussed with the help of graphs. Also the effects of the pertinent parameters, which are of physical and engineering interest, such as Skin friction parameter, Nusselt number and Sherwood number are sorted out. It is found that the flow field and other quantities of physical concern are significantly influenced by these parameters.

  2. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  3. Anchoring Distortions Coupled with Plane Couette & Poiseuille Flows of Nematic Polymers in Viscous Solvents: Morphology in Molecular Orientation, Stress & Flow

    National Research Council Canada - National Science Library

    Zhou, Hong; Forest, M. G

    2006-01-01

    .... The morphology has various physical realizations, all coupled through the model equations: the orientational distribution of the ensemble of rods, anisotropic viscoelastic stresses, and flow feedback...

  4. Analytical solution for viscous incompressible Stokes flow in a spherical shell

    Directory of Open Access Journals (Sweden)

    C. Thieulot

    2017-11-01

    Full Text Available I present a new family of analytical flow solutions to the incompressible Stokes equation in a spherical shell. The velocity is tangential to both inner and outer boundaries, the viscosity is radial and of the power-law type, and the solution has been designed so that the expressions for velocity, pressure, and body force are simple polynomials and therefore simple to implement in (geodynamics codes. Various flow average values, e.g., the root mean square velocity, are analytically computed. This forms the basis of a numerical benchmark for convection codes and I have implemented it in two finite-element codes: ASPECT and ELEFANT. I report error convergence rates for velocity and pressure.

  5. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  6. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques

    Directory of Open Access Journals (Sweden)

    K. Majidi

    2000-01-01

    Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.

  7. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    Science.gov (United States)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  8. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Directory of Open Access Journals (Sweden)

    V. R. Sanal Kumar

    2018-02-01

    Full Text Available A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  9. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    Science.gov (United States)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  10. Investigation of heat transfer and viscous dissipation effects on the Jeffery-Hamel flow of nanofluids

    Directory of Open Access Journals (Sweden)

    Moradi Amir

    2015-01-01

    Full Text Available This article considers the influence of heat transfer on the nonlinear Jeffery-Hamel flow problem in a nanofluid. Analysis is performed for three types of nanoparticles namely copper Cu, alumina Al2O3 and titania TiO2 by considering water as a base fluid. The resulting nonlinear mathematical problems are solved for both analytic and numerical solutions. Analytic solution is developed by using differential transformation method (DTM whereas the numerical solution is presented by Runge-Kutta scheme. A comparative study between the analytical and numerical solutions is made. Dimensionless velocity and temperature, skin friction coefficient and Nusselt number are addressed for the involved pertinent parameters. It is observed that the influence of solid volume fraction of nanoparticles on the heat transfer and fluid flow parameters is more pronounced when compared with the type of nanoparticles. It is also found that skin friction coefficient and Nusselt number for Al2O3 nanofluid is highest in comparison to the other two nanoparticles.

  11. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  12. Conoscopic holography: two-dimensional numerical reconstructions.

    Science.gov (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D

    1993-01-01

    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  13. Blockage effects on viscous fluid flow and heat transfer past a magnetic obstacle in a duct

    International Nuclear Information System (INIS)

    Zhang Xi-Dong; Huang Hu-Lin

    2013-01-01

    The effect of lateral walls on fluid flow and heat transfer is investigated when a fluid passes a magnetic obstacle. The blockage ratio β that represents the ratio between the width of external magnet M y and the spanwise width L y is employed to depict the effect. The finite volume method (FVM) based on the PISO algorithm is applied for the blockage ratios of 0.2, 0.3, and 0.4. The results show that the value of Strouhal number St increases as the blockage ratio β increases, and for small β, the variation of St is very small when the interaction parameter and Reynolds number are increasing. Moreover, the cross-stream mixing induced by the magnetic obstacle can enhance the wall-heat transfer and the maximum value of the overall heat transfer increment is about 50.5%

  14. New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet

    Directory of Open Access Journals (Sweden)

    Azhar Ali

    Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet

  15. Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws

    International Nuclear Information System (INIS)

    El Jarroudi, M.; Brillard, A.

    2008-01-01

    We consider a new way of establishing Navier wall laws. Considering a bounded domain Ω of R N , N=2,3, surrounded by a thin layer Σ ε , along a part Γ 2 of its boundary ∂Ω, we consider a Navier-Stokes flow in Ω union ∂Ω union Σ ε with Reynolds' number of order 1/ε in Σ ε . Using Γ-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface Γ 2 . We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context

  16. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    Science.gov (United States)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  17. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  18. A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2014-01-01

    Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable...... of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked...

  19. Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    Science.gov (United States)

    Dinarvand, Saeed

    2011-10-01

    In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary conditions are transformed into a highly non-linear ordinary differential equation. The series solution of the problem is obtained by utilising the homotopy perturbation method. Graphical results are presented to investigate the influence of the non-dimensional wall dilation rate and seepage Reynolds number (Re) on the velocity, normal pressure distribution and wall shear stress. Since the transport of biological fluids through contracting or expanding vessels is characterised by low seepage Res, the current study focuses on the viscous flow driven by small wall contractions and expansions of two weakly permeable walls.

  20. A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level.

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko

    2018-07-15

    This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Three-dimensional viscous fingering of miscible fluids in porous media

    Science.gov (United States)

    Suekane, Tetsuya; Ono, Jei; Hyodo, Akimitsu; Nagatsu, Yuichiro

    2017-10-01

    Viscous fingering is a flow instability that is induced at the displacement front when a less-viscous fluid (LVF) displaces a more-viscous fluid (MVF). Because of the opaque nature of porous media, most experimental investigations of the structure of viscous fingering and its development in time have been limited to two-dimensional porous media or Hele-Shaw cells. In this study, we investigate the three-dimensional characteristics of viscous fingering in porous media using a microfocused x-ray computer tomography (CT) scanner. Similar to two-dimensional experiments, characteristic events such as tip-splitting, shielding, and coalescence were observed in three-dimensional viscous fingering as well. With an increase in the Péclet number at a fixed viscosity ratio, M , the fingers appearing on the interface tend to be fine; however, the locations of the tips of the fingers remain the same for the same injected volume of the LVF. The finger extensions increase in proportion to ln M , and the number of fingers emerging at the initial interface increases with M . This fact agrees qualitatively with linear stability analyses. Within the fingers, the local concentration of NaI, which is needed for the x-ray CT scanner, linearly decreases, whereas it sharply decreases at the tips of the fingers. A locally high Péclet number as well as unsteady motions in lateral directions may enhance the dispersion at the tips of the fingers. As the viscosity ratio increases, the efficiency of each sweep monotonically decreases and reaches an asymptotic state; in addition, the degree of mixing increases with the viscosity ratio. For high flow rates, the asymptotic value of the sweep efficiency is low for high viscosity ratios, while there is no clear dependence of the asymptotic value on the Péclet number.

  2. Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L

    Science.gov (United States)

    Tribunskaia, K.; Kozhukhov, Y. V.

    2017-08-01

    The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.

  3. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    Science.gov (United States)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  4. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  5. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    Science.gov (United States)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  6. Viscous dissipation of a power law fluid in an oscillatory pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Velarde, J. R. [Instituto Tecnologico de Zacatepec, Zacatepec, Mor. (Mexico); Zenit, R; Mena, B. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-08-01

    The flow field in an oscillatory pipe is studied theoretically for a generalized Newtonian fluid model. The velocity and temperature fields are obtained for the case in which the mean velocity caused by the pressure gradient is of the same order as the oscillation velocity. The momentum and the energy conservation equations are solved and analytic expressions for the velocity and temperature fields are found. The nature of the velocity and temperature profiles is explored for a range of parameters. In general, it can be concluded that the temperature rise within the fluid increases with the speed of oscillation as the value of the power parameter increases. An effective heat transfer coefficient is calculated and plotted as a function of the normalized oscillation speed. The cases of a Newtonian, shear-thinning and shear-thickening fluid are analysed. [Spanish] Se presenta un estudio teorico de un flujo oscilatorio en una tuberia para un fluido tipo ley de potencia. Las ecuaciones de momentum y energia se resuelven y se encuentran soluciones analiticas para los campos de velocidad y temperatura. Se obtienen resultados pare el caso en que la velocidad media debido al gradiente de presion es de la misma magnitud que la velocidad de oscilacion. Se exploran la naturaleza de los campos de velocidad y temperatura como funcion de los parametros dominantes. En general, concluimos que el incremento de temperatura en el fluido aumenta como funcion de la rapidez de oscilacion y del parametro de potencia. Se calcula un coeficiente de transferencia efectivo y se grafica como funcion de la rapidez de oscilacion adimensional. Los liquidos newtoniano, pseudo plastico y dilatante son analizados.

  7. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence

    Science.gov (United States)

    Lucas, Andrew; Chesler, Paul M.

    2015-03-01

    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  8. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  9. Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force

    International Nuclear Information System (INIS)

    Zlotnik, A A; Ducomet, B

    2005-01-01

    We consider symmetric flows of a viscous compressible barotropic fluid with free boundary driven by a general mass force f S (depending on both the Eulerian and the Lagrangian coordinates) and an outer pressure p Γ,S , for a general monotone state function p. The case of self-gravitation arising in astrophysics is covered. Studied first are the existence, the uniqueness, and the static stability of positive stationary solutions; a variational study of these solutions and their static stability in terms of potential energy is presented. In the astrophysical context it is proved that the stationary solution is unique and statically stable, provided that the first adiabatic exponent is at least 4/3. Next, in the case when the ω-limit set for the non-stationary density and free boundary contains a statically stable positive stationary solution a uniform stabilization to this solution is deduced and, as the main result, stabilization-rate bounds of exponential type as t→∞ in L 2 and H 1 for the density and the velocity are established by constructing new non-trivial Lyapunov functionals for the problem. Moreover, it is proved that statically stable stationary solutions are exponentially asymptotically stable, and this non-linear dynamic stability is in addition stable with respect to small non-stationary perturbations of f S and p Γ,S . A variational condition for the stationary solution is also introduced, which ensures global (with respect to the data) dynamic stability. The study is accomplished in the Eulerian coordinates and in the Lagrangian mass coordinates alike.

  10. Vortex scaling ranges in two-dimensional turbulence

    Science.gov (United States)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  11. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  12. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  13. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  14. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  15. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  16. Numerical Investigation of unsteady inlet flow fields

    Science.gov (United States)

    Hsieh, T.; Wardlaw, A. B., Jr.; Collins, P.; Coakley, T.

    1984-01-01

    The flow field within an unsteady, two-dimensional inlet is studied numerically, using a two dimensional Navier Stokes and a one-dimensional inviscid model. Unsteadiness is introduced by varying the outflow pressure boundary condition. The cases considered include outflow pressure variations which were a single pressure pulse, a rapid increase and a sine function. The amplitude of the imposed exit plane pressure disturbance varied between 1 percent and 20 percent of the mean exit pressure. At the higher levels of pressure fluctuation, the viscous flow field results bore little resemblance to the inviscid ones. The viscous solution included such phenomena as shock trains and bifurcating separation pockets. The induced velocity at the outflow plane predicted by the viscous model differs significantly from accoustical theory or small perturbation results.

  17. Development of flow and heat transfer in the vicinity of a vertical plate embedded in a porous medium with viscous dissipation effects

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In this paper, the effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluidsaturated porous medium are investigated. The Darcy-Brinkman model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy-Brinkman model of porous media. The simultaneous development of the momentum and thermal boundary layers is obtained by using a finite-difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as the local friction factor and local Nusselt number are displayed graphically. It is found that as time approaches infinity, the values of the friction factor and heat transfer coefficient approach steady state. © 2012 by Begell House, Inc.

  18. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.

  19. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  20. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  1. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...

  3. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to

  4. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  5. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2003-01-01

    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  6. Duality-invariant class of two-dimensional field theories

    CERN Document Server

    Sfetsos, K

    1999-01-01

    We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.

  7. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  9. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  10. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  11. Plasmonics with two-dimensional conductors

    Science.gov (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  12. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  13. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  14. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: improved decay estimates of the velocity and its gradient

    Czech Academy of Sciences Publication Activity Database

    Deuring, P.; Kračmar, S.; Nečasová, Šárka

    2011-01-01

    Roč. 2011, - (2011), s. 351-361 ISSN 1078-0947. [8th AIMS International Conference. Dresden, 25.05.2010-28.05.2010] R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2011 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6978

  15. A numerical method for the solution of three-dimensional incompressible viscous flow using the boundary-fitted curvilinear coordinate transformation and domain decomposition technique

    International Nuclear Information System (INIS)

    Umegaki, Kikuo; Miki, Kazuyoshi

    1990-01-01

    A numerical method is developed to solve three-dimensional incompressible viscous flow in complicated geometry using curvilinear coordinate transformation and domain decomposition technique. In this approach, a complicated flow domain is decomposed into several subdomains, each of which has an overlapping region with neighboring subdomains. Curvilinear coordinates are numerically generated in each subdomain using the boundary-fitted coordinate transformation technique. The modified SMAC scheme is developed to solve Navier-Stokes equations in which the convective terms are discretized by the QUICK method. A fully vectorized computer program is developed on the basis of the proposed method. The program is applied to flow analysis in a semicircular curved, 90deg elbow and T-shape branched pipes. Computational time with the vector processor of the HITAC S-810/20 supercomputer system, is reduced to 1/10∼1/20 of that with a scalar processor. (author)

  16. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  17. Gyroscope with two-dimensional optomechanical mirror

    Science.gov (United States)

    Davuluri, Sankar; Li, Kai; Li, Yong

    2017-11-01

    We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.

  18. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...

  19. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  20. Two dimensional analysis of a high temperature gaseous radiation receiver

    Science.gov (United States)

    Mcfall, K. A.; Mattick, A. T.

    1992-01-01

    The characteristics of the Flowing Gas Radiation Receiver (FGRR), a device that absorbs solar radiation volumetrically in a gas to produce high temperatures for space propulsion and power applications, are analyzed using a two-dimensional axisymmetric numerical model of the flow and radiation fields within a diffusely reflecting channel. The results show that an FGRR system is capable of generating temperatures in excess of 3000 K with collection efficiencies of approximately 75 percent for a channel with a reflectivity of 0.9. For a collinear radiation source, outflow temperatures of 3193 and 3092 K were achieved for axial and radial flow inputs, respectively, with receiver efficiencies of 0.82 and 0.76.