Gartrell, L. R.; Rhodes, D. B.
1980-01-01
A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.
Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.
Kiełbasa, Jan
2007-08-01
The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-Dimensional Distributed Velocity Collision Avoidance
2014-02-11
trigonometry . For convex polygon agents, the tangents are found by iterating over each point, calculating the z-component of the cross product between a...the modifications to the basic VO to favor the source bot’s current velocity (i.e., encourage the bot to change course as little as possible). To...the source agent on a collision course . However, if ignore factors are used, then A2 is more important (i.e., has a lower ignore factor), and so the
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
Energy Technology Data Exchange (ETDEWEB)
Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.
Two dimensional velocity distribution in open channels using Renyi entropy
Kumbhakar, Manotosh; Ghoshal, Koeli
2016-05-01
In this study, the entropy concept is employed for describing the two-dimensional velocity distribution in an open channel. Using the principle of maximum entropy, the velocity distribution is derived by maximizing the Renyi entropy by assuming dimensionless velocity as a random variable. The derived velocity equation is capable of describing the variation of velocity along both the vertical and transverse directions with maximum velocity occurring on or below the water surface. The developed model of velocity distribution is tested with field and laboratory observations and is also compared with existing entropy-based velocity distributions. The present model has shown good agreement with the observed data and its prediction accuracy is comparable with the other existing models.
Velocity Statistics in the Two-Dimensional Granular Turbulence
Isobe, Masaharu
2003-01-01
We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...
Intermittency measurement in two dimensional bacterial turbulence
Qiu, Xiang; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan
2016-01-01
In this paper, an experimental velocity database of a bacterial collective motion , e.g., \\textit{B. subtilis}, in turbulent phase with volume filling fraction $84\\%$ provided by Professor Goldstein at the Cambridge University UK, was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the $\\beta-$limitation. A dual-power-law behavior separated by the viscosity scale $\\ell_{\
Velocity statistics in two-dimensional granular turbulence
Isobe, Masaharu
2003-10-01
We studied the macroscopic statistical properties on the freely evolving quasielastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found it to be remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering, and final state. In the shearing stage, the self-organized macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson law.
Resolving Two Dimensional Angular Velocity within a Rotary Tumbler
Helminiak, Nathaniel; Helminiak, David; Cariapa, Vikram; Borg, John
2015-11-01
In this study, a horizontally oriented cylindrical tumbler, filled at variable depth with cylindrical media, was rotated at various constant speeds. A monoplane layer of media was photographed with a high-speed camera and images were post processed with Particle Tracking Velocimetry (PTV) algorithms in order to resolve both the translational and rotational flow fields. Although the translational velocity fields have been well characterized, contemporary resources enabled the ability to expand upon and refine data regarding rotational characteristics of particles within a rotary tumbler. The results indicate that particles rotate according to intermittent no-slip interactions between the particles and solid body rotation. Particles within the bed, not confined to solid body rotation, exhibited behavior indicative of gearing between particles; each reacting to the tangential component of contact forming rotation chains. Furthermore, it was observed that solid body interactions corresponded to areas of confined motion, as areas of high interaction dissuaded no-slip rotation, while areas of developing flow tended towards no-slip rotation. Special thanks to: NASA Wisconsin Space Grant Consortium Program as well as Marquette University OPUS College of Engineering.
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Intermittency measurement in two-dimensional bacterial turbulence
Qiu, Xiang; Ding, Long; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan
2016-06-01
In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in turbulent phase with volume filling fraction 84 % provided by Professor Goldstein at Cambridge University (UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β -limitation. A dual-power-law behavior separated by the viscosity scale ℓν was observed for the q th -order Hilbert moment Lq(k ) . This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale R , e.g., the bacterial body length. The measured scaling exponents ζ (q ) of both the small-scale (k >kν ) and large-scale (k
Two-dimensional acoustic particle velocity sensors based on a crossing wires topology
Pjetri, O.
2016-01-01
This thesis describes the design and realization of two-dimensional acoustic particle velocity sensors based on thermal convection. The sensors are of the order of 1 mm×1 mm and consist of two crossing wires with each wire sensing the acoustic particle velocity in the direction parallel to it. Their
Nayfeh, A. H.; Sun, J.
1974-01-01
An investigation is described of the effect of transverse mean-velocity and temperature gradients on sound attenuation in acoustically treated two-dimensional ducts. The results show that cooling the duct walls leads to channeling the sound toward the walls for both downstream and upstream propagation. The effect of mean-temperature gradients on the attenuation rates of the lowest three modes can be as important as the effect of mean-velocity gradients.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry
Energy Technology Data Exchange (ETDEWEB)
Erskine, David J., E-mail: erskine1@llnl.gov; Smith, R. F.; Celliers, P. M.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bolme, C. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ali, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)
2014-06-15
Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown.
Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.
Tatom, J. W.; Cooper, M. A.; Hayden, T. K.
1972-01-01
Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.
Two-dimensional airflow modeling underpredicts the wind velocity over dunes.
Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten
2015-11-17
We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.
Two-dimensional airflow modeling underpredicts the wind velocity over dunes
Britt Michelsen; Severin Strobl; Parteli, Eric J. R.; Thorsten Pöschel
2015-01-01
We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barc...
CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids
Glotov, V. Yu.; Goloviznin, V. M.
2013-06-01
The CABARET method was generalized to two-dimensional incompressible fluids in terms of velocity and pressure. The resulting algorithm was verified by computing the transport and interaction of various vortex structures: a stationary and a moving solitary vortex, Taylor-Green vortices, and vortices formed by the instability of double shear layers. Much attention was also given to the modeling of homogeneous isotropic turbulence and to the analysis of its spectral properties. It was shown that, regardless of the mesh size, the slope of the energy spectra up to the highest-frequency harmonics is equal -3, which agrees with Batchelor's enstrophy cascade theory.
Velocity selection at large undercooling in a two-dimensional nonlocal model of solidification
Barbieri, Angelo
1987-01-01
The formation of needle-crystal dendrites from an undercooled melt is investigated analytically, applying the method of Caroli et al. (1986) to Langer's (1980) symmetric two-dimensional nonlocal model of solidification with finite anisotropy in the limit of large undercooling. A solution based on the WKB approximation is obtained, and a saddle-point evaluation is performed. It is shown that needle-crystal solutions exist only if the capillary anisotropy is nonzero, in which case a particular value of the growth velocity can be selected. This finding and the expression for the dependence of the selected velocity on the singular perturbation parameter and the strength of the anisotropy are found to be in complete agreement with the results of a boundary-layer model (Langer and Hong, 1986).
Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics
Cable, William; Romanovsky, Vladimir; Busey, Robert
2016-04-01
necessarily found in areas of higher MAGT. Active layer thickness does not appear to be correlated to mean annual air temperature but rather is a function of summer air temperature or thawing degree-days. While the refreezing of the active layer initiated at nearly the same time for all locations and polygons, we find differences in the proportion of top-down versus bottom-up freezing and the length of time required to complete the refreezing process. Examination of the daily temperature dynamics using interpolated two-dimensional temperature fields reveal that during the summer, the predominate temperature gradient is vertical while the isotherms tend to follow the topography. However, as the active layer begins to refreeze and snow accumulates, the thermal regime diverges. The fall shows an increased temperature gradient horizontally with landscape positions containing higher soil moisture and/or snow depth (low centers and troughs) cooling more slowly than the adjacent ground (rims and high centers). This two-dimensional effect is greatest as the active layer refreezes and persists until mid-winter, by which time the temperature gradients are again mostly vertical and the isotherms follow the topography. Our findings demonstrate the complexity and two-dimensionality of the temperature dynamics in these landscapes.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The dynamic effects in measurements of unsteady flow when using a probe with quasi-steady calibration curves has been investigated in this paper by numerical simulation of the compressible flow around a fixed two-dimensional 3-hole probe. The unsteady velocity and pressure distributions, as well as the hole-pressures, are calculated for high frequency flow variations. The measurement errors caused by the dynamic effects indicate that considerable measurement errors may occur for high frequency flow fluctuation, e.g., 2000Hz, especially, when the flow around the probe head approaches separation. This work shows how numerical simulation can be used to investigate and correct for the dynamic effects.
Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps
Barnes, E I; Sellwood, J A; Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.
2007-01-01
Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits as well. We also find that Milgrom models give mass-to-light ratios that roughly correlate with galaxy color, as predicted by stellar population models. A subsample of galaxies in the Hydra cluster follow a tight relation between mass-to-light and color, but one that is significantly different from relations found in previous studies. Ruling out the Milgrom relation with rotational kinematics is difficult due to systematic uncertainties in the observations as well as underlying model assumptions. We discuss in detail two...
Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao
2016-06-01
A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Sonnerup, Bengt U. Ö.; Denton, Richard E.; Hasegawa, Hiroshi; Swisdak, M.
2013-05-01
We re-examine the basic premises of a single-spacecraft data analysis method, developed by Sonnerup and Hasegawa (2005), for determining the axis orientation and proper frame velocity of quasi two-dimensional, quasi-steady structures of magnetic field and plasma. The method, which is based on Faraday's law, makes use of magnetic and electric field data measured by a single spacecraft traversing the structure, although in many circumstances the convection electric field, - v × B, can serve as a proxy for E. It has been used with success for flux ropes observed at the magnetopause but has usually failed to provide acceptable results when applied to real space data from reconnection events as well as to virtual data from numerical MHD simulations of such events. In the present paper, the reasons for these shortcomings are identified, analyzed, and discussed in detail. Certain basic properties of the method are presented in the form of five theorems, the last of which makes use of singular value decomposition to treat the special case where the magnetic variance matrix is non-invertible. These theorems are illustrated using data from analytical models of flux ropes and also from MHD simulations as well as a 2-D kinetic simulation of reconnection. The results make clear that the method requires the presence of a significant, non-removable electric field distribution in the plane transverse to the invariant direction and that it is sensitive to deviations from strict two-dimensionality and strict time stationarity.
TWO-DIMENSIONAL PARTICLE IMAGE VELOCIMETRY(PIV) MEASUREMENTS IN A TRANSPARENT CENTRIFUGAL PUMP
Institute of Scientific and Technical Information of China (English)
Yang Hua; Gu Chuangang; Wang Tong
2005-01-01
A special transparent centrifugal pump is designed. Detailed optical measurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pump impeller have been performed by using two-dimensional particle image velocimetry (PIV). The flow is surveyed at three load conditions qv/qνd = 0.4, qν/qνd = 1.0, qν/qνd = 1.5, respectively. As a result, phase averaged PIV velocity vector maps on three planes between hub and shroud of the impeller are presented. At design load, the mean field of relative velocity is predominantly vane congruent, showing well-behaved flow without separation. The distributions of the relative velocity on different plane along the pump shaft are very different and there is always a low velocity zone near the pressure-side of the blade at both low and design flow rate, but the low-velocity-zone at the low flow rate is much larger than that at the design one. The study demonstrates that the PIV technique is efficient in providing reliable and detailed velocity data over a full impeller passage.
Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection
Zhang, Yang; Huang, Yong-Xiang; Jiang, Nan; Liu, Yu-Lu; Lu, Zhi-Ming; Qiu, Xiang; Zhou, Quan
2017-08-01
We investigate fluctuations of the velocity and temperature fields in two-dimensional (2D) Rayleigh-Bénard (RB) convection by means of direct numerical simulations (DNS) over the Rayleigh number range 106≤Ra≤1010 and for a fixed Prandtl number Pr=5.3 and aspect ratio Γ =1 . Our results show that there exists a counter-gradient turbulent transport of energy from fluctuations to the mean flow both locally and globally, implying that the Reynolds stress is one of the driving mechanisms of the large-scale circulation in 2D turbulent RB convection besides the buoyancy of thermal plumes. We also find that the viscous boundary layer (BL) thicknesses near the horizontal conducting plates and near the vertical sidewalls, δu and δv, are almost the same for a given Ra, and they scale with the Rayleigh and Reynolds numbers as ˜Ra-0.26±0.03 and ˜Re-0.43±0.04 . Furthermore, the thermal BL thickness δθ defined based on the root-mean-square (rms) temperature profiles is found to agree with Prandtl-Blasius predictions from the scaling point of view. In addition, the probability density functions of turbulent energy ɛu' and thermal ɛθ' dissipation rates, calculated, respectively, within the viscous and thermal BLs, are found to be always non-log-normal and obey approximately a Bramwell-Holdsworth-Pinton distribution first introduced to characterize rare fluctuations in a confined turbulent flow and critical phenomena.
Energy Technology Data Exchange (ETDEWEB)
Fedorczak, N. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Manz, P. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); Max-Planck-Institut feur Plasmaphysik, Association Euratom-IPP, 85748Garching (Germany); Thakur, S. C.; Xu, M.; Tynan, G. R. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); Xu, G. S.; Liu, S. C. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2012-12-15
Time delay estimation (TDE) techniques are frequently used to estimate the flow velocity from fluctuating measurements. Tilted structures carried by the flow lead to misinterpretation of the time delays in terms of velocity direction and amplitude. It affects TDE measurements from probes, and is also intrinsically important for beam emission spectroscopy and gas puff imaging measurements. Local eddy shapes estimated from 2D fluctuating field are necessary to gain a more accurate flow estimate from TDE, as illustrated by Langmuir probe array measurements. A least square regression approach is proposed to estimate both flow field and shaping parameters. The technique is applied to a test case built from numerical simulation of interchange fluctuations. The local eddy shape does not only provide corrections for the velocity field but also quantitative information about the statistical interaction mechanisms between local eddies and E Multiplication-Sign B flow shear. The technique is then tested on gaz puff imaging data collected at the edge of EAST tokamak plasmas. It is shown that poloidal asymmetries of the fluctuation fields-velocity and eddy shape-are consistent at least qualitatively with a ballooning type of turbulence immersed in a radially sheared equilibrium flow.
Kyoden, Tomoaki; Yasue, Youichi; Ishida, Hiroki; Akiguchi, Shunsuke; Andoh, Tsugunobu; Takada, Yogo; Teranishi, Tsunenobu; Hachiga, Tadashi
2015-01-01
A laser Doppler velocimeter (LDV) has been developed that is capable of performing two-dimensional (2D) cross-sectional measurements. It employs two horizontal laser light sheets that intersect at an angle of 13.3°. Since the intersection region is thin, it can be used to approximately determine the 2D flow field. An 8 × 8 array of optical fibers is used to simultaneously measure Doppler frequencies at 64 points. Experiments were conducted to assess the performance of the LDV, and it was found to be capable of obtaining spatial and temporal velocity information at multiple points in a flow field. The technique is fast, noninvasive, and accurate over long sampling periods. Furthermore, its applicability to an actual flow field was confirmed by measuring the temporal velocity distribution of a pulsatile flow in a rectangular flow channel with an obstruction. The proposed device is thus a useful, compact optical instrument for conducting simultaneous 2D cross-sectional multipoint measurements.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2008-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Phillips, Mark C.; Brumfield, Brian E.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor
2017-05-30
We present the first two-dimensional fluorescence spectroscopy measurements of uranium isotopes in femtosecond laser ablation plasmas. A new method of signal normalization is presented to reduce noise in absorption-based measurements of laser ablation.
Measurements on Two-Dimensional Arrays of Mesoscopic Josephson Junctions
1993-02-01
are reasonably well- understood, with the possible exceptions of ballistic motion of vortices [van der Zant, et al. (1992b)] and the Aharonov - Casher (AC... effect , the magnetic analog of the Aharonov - Bohm effect (with the AC effect , it is theoretically predicted that one can measure the interference... Aharonov and Bohm (1959), and Aharonov and Casher (1984). 148 REFERENCES Aharonov , Y., and D. Bohm, Phys. Rev. B 3, 485 (1959). Aharonoy, Y., and A
PIV measurements of the asymmetric wake of a two dimensional heaving hydrofoil
Energy Technology Data Exchange (ETDEWEB)
Ellenrieder, K.D. von [Florida Atlantic University, Department of Ocean Engineering, Dania Beach, FL (United States); Pothos, S. [TSI Inc, Fluid Mechanics Research Instruments, Shoreview, MN (United States)
2008-05-15
Particle image velocimetry is used to examine the flow behind a two-dimensional heaving hydrofoil of NACA 0012 cross section, operating with heave amplitude to chord ratio of 0.215 at Strouhal numbers between 0.174 and 0.781 and a Reynolds number of 2,700. The measurements show that for Strouhal numbers larger than 0.434, the wake becomes deflected such that the average velocity profile is asymmetric about the mean heave position of the hydrofoil. The deflection angle of the wake, which is related to the average lift and drag on the hydrofoil, is found to lie between 13 and 18 . An examination of the swirl strength of the vortices generated by the hydrofoil motion reveal that the strongest vortices, which are created at the higher Strouhal numbers, dissipate most rapidly. (orig.)
Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event
Directory of Open Access Journals (Sweden)
K. A. McWilliams
Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.
Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions
Two-Dimensional Far Field Source Locating Method with Nonprior Velocity
Directory of Open Access Journals (Sweden)
Qing Chen
2016-01-01
Full Text Available Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating accuracy of far field sources by isometric placed sensors in a straight line, a new locating method with nonprior velocity is proposed. After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and better stability.
Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet
Directory of Open Access Journals (Sweden)
FEROZ AHMED SOOMRO
2016-10-01
Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.
Directory of Open Access Journals (Sweden)
Fujita Shigetaka
2016-01-01
Full Text Available The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194 operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Fujita, Shigetaka; Harima, Takashi
2016-03-01
The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Podgórski, Michał; Grzelak, Piotr; Kaczmarska, Magdalena; Polguj, Michał; Łukaszewski, Maciej; Stefańczyk, Ludomir
2017-01-01
Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.
Energy Technology Data Exchange (ETDEWEB)
Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.
Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L
2013-03-10
An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (<50 m/s) Doppler wind fields in the lab. Procedures and techniques have been developed that allow Doppler wind and irradiance measurements to be determined on a bin by bin basis with an accuracy of less than 2.5 m/s from CCD images over the observed field of view. The interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.
Suppression of two-dimensional vortex-induced vibration with active velocity feedback controller
Ma, B.; Srinil, N.
2016-09-01
Vortex-induced vibrations (VIV) establish key design parameters for offshore and subsea structures subject to current flows. Understanding and predicting VIV phenomena have been improved in recent years. Further, there is a need to determine how to effectively and economically mitigate VIV effects. In this study, linear and nonlinear velocity feedback controllers are applied to actively suppress the combined cross-flow and in-line VIV of an elastically-mounted rigid circular cylinder. The strongly coupled fluid-structure interactions are numerically modelled and investigated using a calibrated reduced-order wake oscillator derived from the vortex strength concept. The importance of structural geometrical nonlinearities is studied which highlights the model ability in matching experimental results. The effectiveness of linear vs nonlinear controllers are analysed with regard to the control direction, gain and power. Parametric studies are carried out which allow us to choose the linear vs nonlinear control, depending on the target controlled amplitudes and associated power requirements.
Dual-RiverSonde measurements of two-dimensional river flow patterns
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.
2008-01-01
Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.
Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas
DEFF Research Database (Denmark)
Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.;
2013-01-01
We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there. ...
Scale Adjustments to Facilitate Two-Dimensional Measurements in OCT Images.
Directory of Open Access Journals (Sweden)
Marina Garcia Garrido
Full Text Available To address the problem of unequal scales for the measurement of two-dimensional structures in OCT images, and demonstrate the use of intra¬ocular objects of known dimensions in the murine eye for the equal calibration of axes.The first part of this work describes the mathematical foundation of major distortion effects introduced by X-Y scaling differences. Illustrations were generated with CorelGraph X3 software. The second part bases on image data obtained with a HRA2 Spectralis (Heidelberg Engineering in SV129 wild-type mice. Subretinally and intravitreally implanted microbeads, alginate capsules with a diameter of 154±5 μm containing GFP-marked mesenchymal stem cells (CellBeads, were used as intraocular objects for calibration.The problems encountered with two-dimensional measurements in cases of unequal scales are demonstrated and an estimation of the resulting errors is provided. Commonly, the Y axis is reliably calibrated using outside standards like histology or manufacturer data. We show here that intraocular objects like dimensionally stable spherical alginate capsules allow for a two-dimensional calibration of the acquired OCT raw images by establishing a relation between X and Y axis data. For our setup, a correction factor of about 3.3 was determined using both epiretinally and subretinally positioned beads (3.350 ± 0.104 and 3.324 ± 0.083, respectively.In this work, we highlight the distortion-related problems in OCT image analysis induced by unequal X and Y scales. As an exemplary case, we provide data for a two-dimensional in vivo OCT image calibration in mice using intraocular alginate capsules. Our results demonstrate the need for a proper two-dimensional calibration of OCT data, and we believe that equal scaling will certainly improve the efficiency of OCT image analysis.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Changyuan Zhai; Chunjiang Zhao; Xiu Wang; Ning Wang; Wei Zou; Wei Li
2015-01-01
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultras...
One and two dimensional analysis of 3$\\pi$ correlations measured in Pb+Pb interactions
Bearden, I G; Boissevain, J G; Christiansen, P; Conin, L; Dodd, J; Erazmus, B; Esumi, S C; Fabjan, Christian Wolfgang; Ferenc, D; Fields, D E; Franz, A; Gaardhøje, J J; Hansen, A G; Hansen, O; Hardtke, D; van Hecke, H; Holzer, E B; Humanic, T J; Hummel, P; Jacak, B V; Jayanti, R; Kaimi, K; Kaneta, M; Kohama, T; Kopytine, M L; Leltchouk, M; Ljubicic, A; Lörstad, B; Maeda, N; Martin, L; Medvedev, A; Murray, M; Ohnishi, H; Paic, G; Pandey, S U; Piuz, François; Pluta, J; Polychronakos, V; Potekhin, M V; Poulard, G; Reichhold, D M; Sakaguchi, A; Schmidt-Sørensen, J; Simon-Gillo, J; Sondheim, W E; Sugitate, T; Sullivan, J P; Sumi, Y; Willis, W J; Wolf, K L; Xu, N; Zachary, D S
2001-01-01
$\\pi^{-}\\pi^{-}\\pi^{-}$ correlations from Pb+Pb collisions at 158 GeV/c per nucleon are presented as measured by the focusing spectrometer of the NA44 experiment at CERN. The three-body effect is found to be stronger for PbPb than for SPb. The two-dimensional three-particle correlation function is also measured and the longitudinal extension of the source is larger than the transverse extension.
Thermodynamic magnetization of two-dimensional electron gas measured over wide range of densities
Reznikov, M.; Kuntsevich, A. Yu.; Teneh, N.; Pudalov, V. M.
2011-01-01
We report measurements of dm/dn in Si MOSFET, where m is the magnetization of the two-dimensional electron gas and n is its density. We extended the density range of measurements from well in the metallic to deep in the insulating region. The paper discusses in detail the conditions under which this extension is justified, as well as the corrections one should make to extract dm/dn properly. At low temperatures, dm/dn was found to be strongly nonlinear already in weak magnetic fields, on a sc...
Measurement of Turbulence Energy Balance in a Two-Dimensional Wall Jet along a Plane Surface
藤沢, 延行; 白井, 紘行
1987-01-01
The sructure of turbulence in a wall jet along a plane surface is investigated by measuring the balance of turbulence energy. With the aid of a hot-wire anemometer system, convection velocities of small-scale turbulent motion are measured as well as other time-averaged flow properties and turbulence characteristics. It is found that the convection velocity of small-scale turbulence deviates significantly from the mean flow velocity, that is, Taylor's hypothesis is not valid for the present wa...
Directory of Open Access Journals (Sweden)
T. H. Raupach
2015-01-01
Full Text Available The raindrop size distribution (DSD quantifies the microstructure of rainfall and is critical to studying precipitation processes. We present a method to improve the accuracy of DSD measurements from Parsivel (particle size and velocity disdrometers, using a two-dimensional video disdrometer (2DVD as a reference instrument. Parsivel disdrometers bin raindrops into velocity and equivolume diameter classes, but may misestimate the number of drops per class. In our correction method, drop velocities are corrected with reference to theoretical models of terminal drop velocity. We define a filter for raw disdrometer measurements to remove particles that are unlikely to be plausible raindrops. Drop concentrations are corrected such that on average the Parsivel concentrations match those recorded by a 2DVD. The correction can be trained on and applied to data from both generations of OTT Parsivel disdrometers, and indeed any disdrometer in general. The method was applied to data collected during field campaigns in Mediterranean France for a network of first- and second-generation Parsivel disdrometers, and on a first-generation Parsivel in Payerne, Switzerland. We compared the moments of the resulting DSDs to those of a collocated 2DVD, and the resulting DSD-derived rain rates to collocated rain gauges. The correction improved the accuracy of the moments of the Parsivel DSDs, and in the majority of cases the rain rate match with collocated rain gauges was improved. In addition, the correction was shown to be similar for two different climatologies, suggesting its general applicability.
Directory of Open Access Journals (Sweden)
Khoo Sze-Wei
2016-09-01
Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.
Measurement of Low Level Explosives Reaction in the Two-Dimensional Steven Impact Test
Energy Technology Data Exchange (ETDEWEB)
Forbes, J.W.; Tarver, C.M.; Chidester, S.K.; Garcia, F.; Greenwood, D.W.; Garza, R.
2000-10-10
The two-dimensional Steven impact test has been developed to be reproducible and amenable to computer modeling. This test has a hemispherical projectile traveling at tens of m/s impacting a metal cased explosive target. To assist in the understanding of this safety test, two-dimensional shock wave gauge techniques were used to measure the pressures of a few kilobars and times of reactions less than a millisecond. This work is in accord with a long-term goal to develop two-dimensional shock diagnostic techniques that are more than just time of arrival indicators. Experiments were performed where explosives were impacted at levels below shock initiation levels but caused low level reactions. Carbon foil and carbon resistor pressure gauges were used to measure pressures and time of events. The carbon resistor gauges indicate a late time low level reaction at 350 {micro}s after impact of the hemispherical projectile creating 0.5-6 kb peak shocks at the center of PBX 9501 (HMX/Estane/BDNPA-F; 95/2.5/2.5 wt %) explosive discs. The Steven test calculations are based on an ignition and growth criteria and found that the low level reaction occurs at 335 {micro}s, which is in good agreement with the experimental data. Some additional experiments simulating the Steven impact test were done on a gas gun with carbon foil and constantan strain gauges in a PMMA target. Hydrodynamic calculations can be used to evaluate the gauge performance in these experiments and check the lateral strain measurements.
Entropy of Bit-Stuffing-Induced Measures for Two-Dimensional Checkerboard Constraints
DEFF Research Database (Denmark)
Forchhammer, Søren; Vaarby, Torben Strange
2007-01-01
A modified bit-stuffing scheme for two-dimensional (2-D) checkerboard constraints is introduced. The entropy of the scheme is determined based on a probability measure defined by the modified bit-stuffing. Entropy results of the scheme are given for 2-D constraints on a binary alphabet....... The constraints considered are 2-D RLL (d, infinity) for d = 2, 3 and 4 as well as for the constraint with a minimum 1-norm distance of 3 between Is. For these results the entropy is within 1-2% of an upper bound on the capacity for the constraint. As a variation of the scheme, periodic merging arrays are also...
Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems.
Hansen, Torben Mikael; Stokbro, Kurt; Hansen, Ole; Hassenkam, T.; Shiraki, I.; Hasegawa, S.; Bøggild, Peter
2003-01-01
A method to improve the resolution of four-point-probe measurements of two-dimensional (2D) and quasi-2D systems is presented. By mapping the conductance on a dense grid around a target area and postprocessing the data, the resolution can be improved by a factor of approximately 50 to better than 1/15 of the four-point-probe electrode spacing. The real conductance sheet is simulated by a grid of discrete resistances, which is optimized by means of a standard optimization algorithm, until the ...
Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)
2010-10-15
Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.
Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems
DEFF Research Database (Denmark)
Hansen, Torben Mikael; Stokbro, Kurt; Hansen, Ole;
2003-01-01
A method to improve the resolution of four-point-probe measurements of two-dimensional (2D) and quasi-2D systems is presented. By mapping the conductance on a dense grid around a target area and postprocessing the data, the resolution can be improved by a factor of approximately 50 to better than 1....../15 of the four-point-probe electrode spacing. The real conductance sheet is simulated by a grid of discrete resistances, which is optimized by means of a standard optimization algorithm, until the simulated voltage-to-current ratios converges with the measurement. The method has been tested against simulated...... data as well as real measurements and is found to successfully deconvolute the four-point-probe measurements. In conjunction with a newly developed scanning four-point probe with electrode spacing of 1.1 µm, the method can resolve the conductivity with submicron resolution. ©2003 American Institute...
Fiber-optic interferometric two-dimensional scattering-measurement system.
Zhu, Yizheng; Giacomelli, Michael G; Wax, Adam
2010-05-15
We present a fiber-optic interferometric system for measuring depth-resolved scattering in two angular dimensions using Fourier-domain low-coherence interferometry. The system is a unique hybrid of the Michelson and Sagnac interferometer topologies. The collection arm of the interferometer is scanned in two dimensions to detect angular scattering from the sample, which can then be analyzed to determine the structure of the scatterers. A key feature of the system is the full control of polarization of both the illumination and the collection fields, allowing for polarization-sensitive detection, which is essential for two-dimensional angular measurements. System performance is demonstrated using a double-layer microsphere phantom. Experimental data from samples with different sizes and acquired with different polarizations show excellent agreement with Mie theory, producing structural measurements with subwavelength accuracy.
Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots
Stumpf, Wolfgang C; Kojima, Takanori; Fujita, Masayuki; Tanaka, Yoshinori; Noda, Susumu
2010-01-01
The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1360 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition...
Energy Technology Data Exchange (ETDEWEB)
Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)
2012-04-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Measurement of the quantum capacitance of two-dimensional vanadium dioxide films
Wu, Zhe; Knighton, Talbot; Tarquini, Vinicio; Huang, Jian; Sepúlveda, Nelson; Department of Physics; Astronomy, Wayne State University Collaboration; Department of Electrical; Computer Engineering, Michigan State University Collaboration
2015-03-01
With a homebuilt ac bridge, we have performed capacitance measurement of quasi two-dimensional vanadium dioxide films grown on silicon-dioxide/p-doped silicon substrate. The out-phase-signal, which corresponds to the resistivity variation, is superior to the four-terminal measurement result of the temperature dependence of the resistivity which varies by four orders of magnitude from 360K to 310K. The hysteretic behavior shows an overlap of two distinctive features that indicate a shifted structural transition relative to the Mott transition. In addition, the quantum capacitance is obtained through the in-phase signals so that d μ/dn, the inverse of the density of states, is determined as a function of temperature. This has resulted in a diverging compressibility below the critical temperature by four orders of magnitude, consistent with a Mott transition influenced by Peierls transition.
Two-dimensional fibre grating packaging design for simultaneous strain and temperature measurement
Mokhtar, M. R.; Sun, T.; Grattan, K. T. V.
2010-09-01
This paper demonstrates a novel two-dimensional sensor packaging design to facilitate the use of fibre grating-based sensors for simultaneous strain and temperature measurement. The width and height of a sensor package were optimized to induce dissimilar responses from two co-located fibre gratings within the sensor head. Through an appropriate calibration of both the strain and temperature coefficients of the individual fibre gratings used, both strain and temperature can be accurately determined and their individual components separated by measuring the shift in their respective Bragg wavelengths. This approach can not only ensure the robustness of the sensor head, but also offer the necessary level of control over the differences between the coefficients, which allows for maximizing the accuracy of the strain and temperature values determined from the sensor itself.
Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio
2012-01-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Directory of Open Access Journals (Sweden)
Abdallah M. Khalil
2011-09-01
Full Text Available This work describes a simple approach to measure the displacement of a moving object in two directions simultaneously. The proposed approach is based on static close range photogrammetry with a single camera and the well-known collinearity equations. The proposed approach requires neither multi-camera synchronization nor mutual camera calibration. It requires no prior knowledge of the kinematic and kinetic data of the moving object. The proposed approach was used to evaluate predefined two-dimensional displacements of a moving object. The root mean square values of the differences between the predefined and evaluated displacements in the two directions are 0.11 and 0.02 mm.
A digital sampling moiré method for two-dimensional displacement measurement
Chen, Xinxing; Chang, Chih-Chen
2015-04-01
Measuring static and dynamic displacements for in-service structures is an important issue for the purpose of design validation, performance monitoring and safety assessment of structures. Currently available techniques can be classified into indirect measurement and direct measurement. These methods however have their own problems and limitations Digital sampling moiré method is a newly developed vision-based technique for direct displacement measurement. It uses one camera to capture digital images containing a grating pattern. The images are subsampled and interpolated to generate moiré patterns whose phase information can then be used to calculate displacements of the grating pattern. As the moiré patterns can magnify the pattern's movement, this technique is expected to provide more accurate displacement measurement than the other vision based approaches. In this study, a digital sampling moiré technique is proposed for measuring two-dimensional structural displacements using a designed grating pattern. The pattern contains two orthogonally inclined gratings and does not have to be perfectly aligned with the image plane. A series of simulation and laboratory tests are conducted to validate the accuracy of the proposed technique. Results show that the technique can achieve accuracy in the order of 10 micrometers in the laboratory. Also, the technique does not seem to suffer from the issue of misalignment between the camera and the pattern and exhibits a potential for accurate measurement of displacement for civil engineering structures.
Arikan, Orhan
1994-05-01
Well bore measurements of conductivity, gravity, and surface measurements of magnetotelluric fields can be modeled as a two-dimensional integral equation with additive measurement noise. The governing integral equation has the form of convolution in the first dimension and projection in the second dimension. However, these two operations are not in separable form. In these applications, given a set of measurements, efficient and robust estimation of the underlying physical property is required. For this purpose, a regularized inversion algorithm for the governing integral equation is presented in this paper. Singular value decomposition of the measurement kernels is used to exploit convolution-projection structure of the integral equation, leading to a form where measurements are related to the physical property by a two-stage operation: projection followed by convolution. On the other hand, estimation of the physical property can be carried out by a two-stage inversion algorithm: deconvolution followed by back projection. A regularization method for the required multichannel deconvolution is given. Some important details of the algorithm are addressed in an application to wellbore induction measurements of conductivity.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Directory of Open Access Journals (Sweden)
Changyuan Zhai
2015-10-01
Full Text Available Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Two-dimensional automatic measurement for nozzle flow distribution using improved ultrasonic sensor.
Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei
2015-10-16
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Huang, Yunji
1995-01-01
A Scanning Capacitance Microscope (SCM) has been built to measure two-dimensional (2D) dopant density profiles on semiconductor materials. A quasi-one-dimensional(1D) analytical model has been constructed for inverting the measured SCM data to dopant profile. Local Capacitance -Voltage (C-V) measurements have been performed on n ^+/n and p^+/n ion implanted silicon wafers and systematic results have been obtained. Dopant profile measurements by SCM have been performed on both top surfaces and cross-sectional surfaces of ion implanted silicon wafers. After inversion, a good agreement has been found between the SCM profile and the profiles obtained by other independent methods such as Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP), and process simulation (SUPREM IV). The dissertation presented here consists of four chapters. The first chapter introduces the dopant profile measurement and gives a review of existing doping profiling methods. The advantages of SCM for dopant profile measurement are discussed in this chapter. The second chapter concentrates on the instrumentation of SCM, SCM tip preparation, and silicon sample preparation for dopant profile measurement by SCM. The third chapter describes the tip/sample modeling by which the measured capacitance signal is inverted to dopant profile. The calculation of the electrostatic force between a tip and semiconductor sample as a function of dopant density is also presented in this chapter. Finally, in the fourth chapter, the SCM measurement results are presented and the inverted 2D profiles are compared with the results obtained by other independent methods. A discussion about measurement sensitivity, spatial resolution, modeling errors, and future works is presented.
Aortic arch mechanics measured with two-dimensional speckle tracking echocardiography.
Teixeira, Rogério; Monteiro, Ricardo; Baptista, Rui; Pereira, Telmo; Ribeiro, Miguel A; Gonçalves, Alexandra; Cardim, Nuno; Gonçalves, Lino
2017-07-01
To study the feasibility of vascular mechanics at the aortic arch with two-dimensional speckle tracking echocardiography, as well as to define normal values and to compare results between hypertensive patients and healthy patients. We included 107 patients (61 healthy patients and 46 hypertensive patients) who underwent a complete echocardiographic exam, including a short-axis view of the aortic arch. The speckle tracking methodology was used to calculate aortic arch mechanics offline (EchoPAC; GE Healthcare). The analysis was performed for circumferential aortic strain and for the early circumferential aortic strain rate, and we used an average result of the six equidistant segments of the arterial wall. We also assessed the aortic pulse wave velocity with the Complior method. The 61 healthy patients had a mean age of 33 ± 9 years, and 59% were women. Of the total 366 aortic arch wall segments, 344 (94%) had adequate waveforms for the speckle tracking analysis. The hypertensive patients had a mean age of 45 ± 12 years, and 54% were women. Of the total 276 aortic wall segments, 261 (95%) had adequate waveforms for analysis. Aortic arch strain and strain rate were lower in the hypertensive patients group than in the healthy patients group (6.3 ± 2.0 vs. 11.2 ± 3.2% and 1.0 ± 0.3 vs. 1.5 ± 0.4 s, respectively, both P Speckle tracking analysis of aortic arch images is feasible and might serve as a new approach to evaluate arterial function.
Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki
2016-09-01
The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.
Froessling, Nils
1958-01-01
The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.
A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements
Hindley, Neil P.; Smith, Nathan D.; Wright, Corwin J.; Rees, D. Andrew S.; Mitchell, Nicholas J.
2016-06-01
Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.
Nondestructive measurement of two-dimensional refractive index profiles by deflectometry
Lin, Di; Leger, James R.
2015-06-01
We present a method for calculating a two-dimensional refractive index field from measured boundary values of beam position and slope. By initially ignoring the dependence of beam trajectories on the index field and using cubic polynomials to approximate these trajectories, we show that the inverse problem can be reduced to set of linear algebraic equations and solved using a numerical algorithm suited for inverting sparse, ill-conditioned linear systems. The beam trajectories are subsequently corrected using an iterative ray trace procedure so that they are consistent with the ray equation inside the calculated index field. We demonstrate the efficacy of our method through computer simulation, where a hypothetical test index field is reconstructed on a 15 × 15 discrete grid using 800 interrogating rays and refractive index errors (RMS) less than 0.5% of the total index range (nmax-nmin) are achieved. In the subsequent error analysis, we identify three primary sources of error contributing to the reconstruction of the index field and assess the importance of data redundancy. The principles developed in our approach are fully extendable to three-dimensional index fields as well as more complex geometries.
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
Measurement of the Equation of State of the Two-Dimensional Hubbard Model
Miller, Luke; Cocchi, Eugenio; Drewes, Jan; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael
2016-05-01
The subtle interplay between kinetic energy, interactions and dimensionality challenges our comprehension of strongly-correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions, 0 constitute benchmarks for state-of-the-art theoretical approaches.
Energy Technology Data Exchange (ETDEWEB)
Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)
2015-01-07
A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.
DEFF Research Database (Denmark)
Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per
2014-01-01
position; all points in space within a cone with a full opening angle of 1208 can be reached from about 8mout to some hundred meters depending on the range resolution required. The first two-dimensional mean wind fields measured in a horizontal plane and in a vertical plane below a hovering search...
Mohammadipour, Omid Reza; Niazmand, Hamid; Succi, Sauro
2017-03-01
In this paper, an alternative approach to implement initial and boundary conditions in the lattice Boltzmann method is presented. The main idea is to approximate the nonequilibrium component of distribution functions as a third-order power series in the lattice velocities and formulate a procedure to determine boundary node distributions by using fluid variables, consistent with such an expansion. The velocity shift associated with the body force effects is included in this scheme, along with an approximation to determine the mass density in complex geometries. Different strategies based on the present scheme are developed to implement velocity and pressure conditions for arbitrarily shaped boundaries, using the D2Q9, D3Q15, D3Q19 and D3Q27 lattices, in two and three space dimensions, respectively. The proposed treatment is tested against several well-established problems, showing second-order spatial accuracy and often improved behavior as compared to various existing methods, with no appreciable computational overhead.
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Measuring and modeling two-dimensional irrigation infiltration under film-mulched furrows
Institute of Scientific and Technical Information of China (English)
YongYong Zhang; PuTe Wu; XiNing Zhao; WenZhi Zhao
2016-01-01
Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and math-ematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14%less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.
Aguirre, Evan; Scime, Earl; Good, Timothy
2016-10-01
We report 2-dimensional, spatially resolved observations of ion beam formation in an expanding helicon plasma. Previous studies found that a current free double layer (CFDL) spontaneously arises at low pressure, below 1 mT. We use Laser Induced Fluorescence (LIF), a non-perturbative diagnostic to measure the ion velocity distribution functions (IVDFs) of argon ions both parallel and perpendicular to the background magnetic field. We report ion beam formation as a function of the expansion chamber magnetic field (0-108 G). The ion beam appears peaked in the center of the expansion chamber and decays over a few centimeters radially. We also report the potential structure of the plasma obtained with a planar Langmuir probe. To obtain meaningful Langmuir probe measurements, averages of tens of current-voltage are needed to reduce the effects of large electrostatic fluctuations that arise in plasmas that generate ion beams. We report the dependence of density, electron temperature, and floating potential on radial and axial position in the expansion plume. NSF Award PHYS-1360278.
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Control and measuring system of a two-dimensional scanning nanopositioning stage based on LabVIEW
Zhang, Rui-Jun; Gao, Si-Tian; Li, Wei; Chen, Ben-Yong; Shi, Yu-Shu; Li, Qi
2015-11-01
A control and measuring system of two-dimensional nanopositioning stage is designed for the multiple selection and combinations control based on LabVIEW. The signal generator of the system can not only generate the commonly used control signals such as sine, square, triangle and sawtooth waves, but also generate special signals such as trapezoidal wave and step wave with DAQ data acquisition card. The step wave can be triggered by the other signals for the strict timing corresponding relation between X-Y control signals. Finally, the performance of the control system of two-dimensional nanopositioning stage is conducted by the heterodyne interferometer. The results show that the operation of the system is stable and reliable and the noise peak - valley value is superior to 2nm while the stage moving with 6nm step. The system can apply to the field requiring the precise control to the positioning stage in nano-measurement and metrology.
Time-Domain Measurement of Optical True-Time Delay in Two-Dimensional Photonic Crystal Waveguides
Institute of Scientific and Technical Information of China (English)
ZHANG Geng-Yan; ZHOU Qiang; CUI Kai-Yu; ZHANG Wei; HUANG Yi-Dong
2010-01-01
@@ We report on the realization of optical true-time delay(TTD)by a two-dimensional photonic crystal waveguide(PCWG).Design and fabrication of the PCWG are investigated.The spectral dependence of the group delay is measured by detecting the phase shifts of a 10 GHz modulating signal,and a maximum delay of 25 ± 2.5 ps is obtained.
Myocardial Strain Imaging Based on Two-Dimensional Displacement Vector Measurement
Nitta, Naotaka; Shiina, Tsuyoshi
2004-05-01
The abnormalities of myocardial wall motion caused by changes in wall stiffness often appear in the early stage of ischemic heart disease. Since the myocardium exhibits complex and large motion, a two-dimensional (2D) or three-dimensional (3D) assessment of stiffness distribution is required for accurate diagnosis. Although a 3D assessment is ultimately required, as a stepped approach for practical use, we propose novel methods for tracking the 2D motion using a one-dimensional (1D) phased array and for assessing myocardial malfunction by visualizing the invariant of a strain tensor. The feasibilities of the proposed methods were evaluated by numerically simulating the short-axis imaging of a 3D myocardial model. This model includes a hard infarction located between 1 and 3 o’clock, which is difficult to detect by conventional tissue Doppler and strain rate imaging, and the motions of the model were assigned by referring to actual myocardial motion. These results revealed that the proposed imaging methods clearly depicted the hard infarction area which conventional imaging could not detect.
Ying, Michael; Yung, Dennis M C; Ho, Karen K L
2008-01-01
This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p thyroid volume estimation error when thyroid glands with nodules were examined (p thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.
van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef
2015-01-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...
Directory of Open Access Journals (Sweden)
Thomas Butz, Corinna N. Lang, Marc van Bracht, Magnus W. Prull, Hakan Yeni, Petra Maagh, Gunnar Plehn, Axel Meissner, Hans-Joachim Trappe
2011-01-01
Full Text Available Aims: Strain rate imaging techniques have been proposed for the detection of ischemic or viable myocardium in coronary artery disease, which is still a challenge in clinical cardiology. This retrospective comparative study analyzed regional left ventricular function and scaring with two-dimensional strain (2DS in the first 4 to 10 days after acute anterior myocardial infarction (AMI.Methods and results: The study population consisted of 32 AMI patients with an LAD occlusion and successful reperfusion. The assessment of peak systolic 2DS and peak systolic strain rate (SR was performed segment-oriented with the angle-independent speckle tracking algorithm Velocity Vector Imaging (VVI. The infarcted, adjacent and non-infarcted segments were revealed by late enhancement MRI (LE-MRI, which was used as reference for the comparison with 2DS. The infarcted segments showed a significant decrease of tissue velocities, 2DS and SR in comparison to the non-affected segments.Conclusion: 2DS and SR as assessed by VVI seem to be a suitable approach for echocardiographic quantification of global and regional myocardial function as well as a promising tool for multimodal risk stratification after anterior AMI.
Stuckey, Daniel J; Carr, Carolyn A; Tyler, Damian J; Clarke, Kieran
2008-08-01
Two-dimensional echocardiography is the most commonly used non-invasive method for measuring in vivo cardiac function in experimental animals. In humans, measurements of cardiac function made using cine-MRI compare favourably with those made using echocardiography. However, no rigorous comparison has been made in small animals. Here, standard short-axis two-dimensional (2D) echocardiography (2D-echo) and cine-MRI measurements were made in the same rats, both control and after chronic myocardial infarction. Correlations between the two techniques were found for end diastolic area, stroke area and ejection fraction, but cine-MRI measurements of ejection fraction were 12+/-6% higher than those made using 2D-echo, because of the 1.8-fold higher temporal resolution of the MRI technique (4.6 ms vs 8.3 ms). Repeated measurements on the same group of rats over several days showed that the cine-MRI technique was more reproducible than 2D-echo, in that 2D-echo would require five times more animals to find a statistically significant difference. In summary, caution should be exercised when comparing functional results acquired using short-axis 2D-echo vs cine-MRI. The accuracy of cine-MRI allows identification of alterations in heart function that may be missed when using 2D-echo.
Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Koyama, Motomichi; Tsuzaki, Kaneaki
2017-06-12
Aimed at the low accuracy problem of shear strain measurement in Moiré methods, a two-dimensional (2D) Moiré phase analysis method is proposed for full-field deformation measurement with high accuracy. A grid image is first processed by the spatial phase-shifting sampling Moiré technique to get the Moiré phases in two directions, which are then conjointly analyzed for measuring 2D displacement and strain distributions. The strain especially the shear strain measurement accuracy is remarkably improved, and dynamic deformation is measurable from automatic batch processing of single-shot grid images. As an application, the 2D microscale strain distributions of a titanium alloy were measured, and the crack occurrence location was successfully predicted from strain concentration.
Energy Technology Data Exchange (ETDEWEB)
Yamada, H.; Miyata, T. [Yokohama National Univ. (Japan). Faculty of Engineering; Nakajima, S. [Yokohama National Univ., Yokohama (Japan). Graduate School
1996-04-21
In wind resistance design of long span bridge, as the vibration found in long span bridges is very complicated, the estimation with high precision of the unsteady aerodynamic force acting on structures in complicated motion becomes more and more important. In this paper, as a problem to directly identify the parameter by using the observation hysteresis response obtained from wind tunnel test, the problems existing in combining the system identification into unsteady aerodynamic force estimation were indicated. Then, newly developed flexible method in extension relating to two dimensional aerodynamic force measurement concerning composite flutter was proposed. Using the wind tunnel test response observation data obtained from two dimensional rigid model, and from the estimated results of unsteady aerodynamic force, it is possible to obtain stable results in the relationship among the plural eigenvalues displaying identified vibration frequency and attenuation rate with the reduced wind velocity. As a new unsteady aerodynamic force measuring method, the method proposed by this study is considered to be very useful. 6 refs., 5 figs., 1 tab.
Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar
Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas; Foroughi Abari, Farzad; Mikkelsen, Torben; Harris, Michael; Slinger, Chris; Kapp, Stefan
2013-01-01
IntroductionWind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has attracted an increasing interest during the last couple of years. So far, the reported inflow measurements have been along a few measurement directions or at most on a circle in front of the turbine, whi...
Ishigaki, H.; Itoh, M.; Hida, A.; Endo, H.; Oya, T.
1991-03-01
As a basic study for magnetic bearings using high-Tc superconductors, evaluations of the materials were conducted. These evaluations included measurements of the repulsive force and lateral restoring force of various kinds of YBCO pellets. Pure air, which was supplied in the process of fabrication, and the presence of Ag in YBCO showed evidence of the effects of increasing the repulsive force. The lateral restoring force which was observed in the lateral displacement of a levitated permanent magnet over YBCO pellets was also affected by pure air and the presence of Ag. A new measuring instrument for magnetic fields was developed by using a highly sensitive force sensor. Because this instrument has the capability of measuring the repulsive force due to the Meissner effect, it was used for evaluating the two-dimensional distribution of superconducting properties. Results show that the pellets had nonuniform superconducting properties. The two-dimensional distribution of residual flux density on the pellets which had been cooled in a magnetic field (field cooling) was also observed by means of the instrument. The mechanism for generating lateral force is discussed in relation to the distribution.
Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning
DEFF Research Database (Denmark)
Trujillo, Juan-José; Bingöl, Ferhat; Larsen, Gunner Chr.;
2011-01-01
A nacelle-mounted lidar system pointing downstream has been used to measure wind turbine wake dynamics. The new measurement and data analysis techniques allow estimation of quasi-instantaneous wind fields in planes perpendicular to the rotor axis. A newly developed wake tracking procedure delivers...
Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.
Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.
Errors in using two dimensional methods to measure motion about an offset revolute
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States). Medical Center
1996-03-01
2D measurement of human joint motion involves analysis of 3D displacements in an observer selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. Alignment of the two planes is essential for accurate recording and understanding of the joint mechanism and the movement about it. In nature, joint axes can exist at any orientation and location relative to a global reference frame. An aritrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors resulting from measuring joint motion about an arbitrary axis using 2D methods.
Kiock, R.
1978-01-01
Turbulence intensity (Tu) measurements were made in two-dimensional and rotating cascades of blades in a low-speed cascade wind tunnel using hot-wire probes as sensors. The local Tu at Re = 1.6x100000 was determined in the wake zone behind a two-dimensional cascade. Then the values were recomputed for a rotating cascade, giving a mean turbulence intensity of 6.5% at 1/10 chord downstream and 2.9% at one chord. Fans were used for measurements on the rotating cascade. Re was equal to 7x100000. Frequency analysis was employed to separate the actual Tu of the entry flow from the effects caused by interaction with the rotor blades, showing that the true Tu increased from a few tenths of a percent to 6.6% in the 1st rotor, and from 7.2 to 9.3% in the 2d rotor. The Tu behind the 3d rotor was equal to 8.9%.
Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar
DEFF Research Database (Denmark)
Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas
2013-01-01
Introduction Wind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has at...
Two-dimensional (2-D) deformation measurements with ASAR and PHARUS
Groot, J.S.; Halsema, D. van; Maarseveen, R.A. van; Blommaart, P.J.L.; Kruse, G.A.M.; Loon, D. van; Hanssen, R.F.; Samson, J.; Striegel, A.J.; Visser, J.M.P.C.M.
2001-01-01
Deformation measurements are important in the field of ground engineering. Deformation can have a non-natural cause (e.g., surface deformation due to tunnel construction) or a natural one (e.g., dike deformation due to a high water level). Radar interferometry can in principle provide deformations w
Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement
DEFF Research Database (Denmark)
Rose, Bjarke; Imam, H.; Hanson, Steen Grüner
1998-01-01
A novel method for measurement of angular displacement in one or two dimensions for arbitrarily shaped objects is presented. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the tar...... interest. Furthermore, it is shown that robust, non-contact optical systems for industrial applications can be produced....
Symmetrical Two-Dimensional PCA with Image Measures in Face Recognition
Directory of Open Access Journals (Sweden)
Jicheng Meng
2012-12-01
Full Text Available In this paper, weextensively investigate symmetrical two‐dimensional principal component analysis (S2DPCA and introduce two image measures for S2DPCA‐based face recognition, volume measure (VM and subspace distance measure (SM. Although symmetrical features are an obviously but not absolutely facial characteristic, they have been successfully applied to PCA and 2DPCA. The paper gives detailed evidence that even and odd subspaces in S2DPCA are mutually orthogonal, and particularly that S2DPCA can be constructed using a quarter of the conventional S2DPCA even/odd covariance matrix. Based on these theories, we investigate the time and memory complexities of S2PDCA further, and find that S2DPCA can in fact be computed using a quarter of the time and memory compared to conventional S2DPCA. Finally, VM and SM are introduced to S2DPCA for final classification. Our experiments compare S2DPCA with 2DPCA on YALE, AR and FERET face databases, and the results indicate that S2DPCA+VM generally outperforms other algorithms.
Makankin, A M; Peshekhonov, V D; Ritt, S; Vasilyev, S E
2013-01-01
This article presents the results of a study of the longitudinal spatial resolution of 2 m long straw tubes by means of the direct timing method (DTM). The feasibility of achieving a coordinate resolution (r.m.s.) better than 2 cm over full length of the straw is demonstrated. The spatial resolution insignificantly changes when measured by detecting gammas from a Fe-55 gamma ray source or minimum ionizing particles from a Ru-106 source. The use of the same type of FEE for data taking both for measuring the drift time of ionization electrons and propagation of a signal along the anode wire allows one to construct a two-dimensional detector for precision coordinate measurements.
Energy Technology Data Exchange (ETDEWEB)
Makankin, A.M.; Myalkovskiy, V.V. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Peshekhonov, V.D., E-mail: Vladimir.Peshekhonov@sunse.jinr.ru [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Ritt, S. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Vasilyev, S.E. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)
2014-01-21
This article presents the results of a study of the longitudinal spatial resolution by means of the direct timing method (DTM) using 2 m long and 9.53 mm diameter straw tubes. The feasibility of achieving the spatial resolution (r.m.s.) better than 2 cm over full length of the straw is demonstrated. The spatial resolution changes little when measured by detecting gammas from a Fe-55 gamma ray source or minimum ionizing electrons from a Ru-106 source. The use of the same type of front end electronics (FEE) both for measuring the drift time of ionization electrons and propagation time of a signal along the anode wire allows one to construct a detector capable for measuring the two dimensional coordinates of charged particles.
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun
2016-10-01
A high-speed camera-based two-dimensional optical coherence vibration tomography (2DOCVT) system with a subnanometre displacement resolution was developed and employed for low-frequency vibration measurement and modal analysis. Experimental results demonstrated the ability of low-frequency absolute displacement measurement of structural line vibrations without scanning. Three-dimensional (3D) surface displacement of a vibrating structure could also be obtained using the developed 2DOCVT by scanning the structure. The scanning 2DOCVT system acted like a 3D optical coherence vibration tomography system. The developed 2DOCVT system could capture structural modal parameters without vibration excitation input information, and therefore, it is a response-only method. The 2DOCVT could be recommended in the application of low-frequency vibration measurement and modal analysis of beam and plate structures, especially when the vibration amplitude is at nanometre or micrometre scale.
Drótos, G; Jung, C; Tél, T
2012-11-01
We demonstrate how the area of the enveloping surface of the scattering singularities in a three-degrees-of-freedom (3-dof) system depends on a perturbation parameter controlling the distance from a reducible case. This dependence is monotonic and approximately linear. Therefore it serves as a measure for this distance, which can be extracted from an investigation of the fractal structure. These features are a consequence of the dynamics being governed by normally hyperbolic invariant manifolds. We conclude that typical n-dof chaotic scattering exhibits either structures developing out of a stack of chaotic structures of 2-dof type or hardly any chaotic effects.
Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements
Kausik, Ravinath; Hürlimann, Martin D.
2016-09-01
The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.
Institute of Scientific and Technical Information of China (English)
CHEN Huawei; ZHAO Junwei
2004-01-01
A method of two-dimensional direction of arrival (DOA) estimation for low altitude target, which is based on intensity measurement using a three-dimensional differential pressure acoustic vector-sensor, is presented. With the perfect characteristics of acoustic vector sensor in the low frequency band, accurate DOA estimation is achieved under small array size. The validity of the proposed method was assessed by experiments on the noise signals radiated by a helicopter. The influence of acoustic sensor size, integral time and signal to noise ratio to the accuracy of DOA estimation were investigated, respectively. The performance comparisons demonstrated that it outperformed the traditional time-delay measurement based method for a small acoustic array.
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encodingwas set to 80 cm/s. Results of the measurements showed that the error rate was 7.0 ± 6.0%in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateralcommon carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. Inaddition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore,after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accuratein the determination of BFV in the carotid arteries.
Kishimoto, Jessica; de Ribaupierre, Sandrine; Salehi, Fateme; Romano, Walter; Lee, David S C; Fenster, Aaron
2016-10-01
The aim of this study is to compare longitudinal two-dimensional (2-D) and three-dimensional (3-D) ultrasound (US) estimates of ventricle size in preterm neonates with posthemorrhagic ventricular dilatation (PHVD) using quantitative measurements of the lateral ventricles. Cranial 2-D US and 3-D US images were acquired from neonatal patients with diagnosed PHVD within 10 min of each other one to two times per week and analyzed offline. Ventricle index, anterior horn width, third ventricle width, and thalamo-occipital distance were measured on the 2-D images and ventricle volume (VV) was measured from 3-D US images. Changes in the measurements between successive image sets were also recorded. No strong correlations were found between VV and 2-D US measurements ([Formula: see text] between 0.69 and 0.36). Additionally, weak correlations were found between changes in 2-D US measurements and 3-D US VV ([Formula: see text] between 0.13 and 0.02). A trend was found between increasing 2-D US measurements and 3-D US-based VV, but this was not the case when comparing changes between 3-D US VV and 2-D US measurements. If 3-D US-based VV provides a more accurate estimate of ventricle size than 2-D US measurements, moderate-weak correlations with 3-D US suggest that monitoring preterm patients with PHVD using 2-D US measurements alone might not accurately represent whether the ventricles are progressively dilating. A volumetric measure (3-D US or MRI) could be used instead to more accurately represent changes.
Directory of Open Access Journals (Sweden)
S. Van Niekerk
2008-02-01
Full Text Available Measuring upper quadrant posture and movement is a challenge to researchers and clinicians. A range of postural measurement tools is commonly used in the clinical setting and in research projects to evaluate postural align-ment, but information about the validity and reliability of these tools and thus as election of the optimal tool for a specific project is often uncertain. This reviewaims to make recommendations to clinicians and researchers regarding practical,valid and reliable tools to assess upper quadrant posture and range of motion.Electronic databases and key journals were searched. An adapted appraisal toolwas utilised to assess the methodology for each of the nine selected articles. Nine eligible articles reporting on thegoniometer, flexicurve and inclinometer were included. This review highlights the fact that a range of two-dimensional(2D posture measurement tools are being used in clinical practice and research. Although the findings for the reliability and validity of the tools included in this review appear to be promising, strong recommendations are limited by the imprecision of the results. Thus, the primary issue hampering the recommendation for the most reliable and valid tool to use in the clinical or research setting is due to the limitations pertaining the analysis of the data, and the interpretation thereof.
Jiang, Quan; Zhou, Xiao Yang; Chin, Jessie Yao; Cui, Tie Jun
2011-07-01
The two-dimensional (2D) spatial electric-field mapping apparatus [Opt. Express 14, 8694 (2006)] plays an important role in experiments involving metamaterials, such as the verification of free-space and ground-plane invisibility cloaks. However, such an apparatus is valid only for the transverse-electric (TE) mode and is invalid for the transverse-magnetic (TM) mode, as it requires perfectly magnetic conducting (PMC) planes, which do not exist in nature. In this paper, we propose a 2D spatial magnetic-field mapping apparatus based on artificial magnetic conductor (AMC) plates. The AMC structure is designed using periodically perfectly electrical conducting patches with a sub-wavelength size on a dielectric substrate backed with the ground plane, which can simulate a PMC plane. Using two parallel PMC plates to form a TM-wave planar waveguide, we realize the 2D spatial magnetic-field mapping apparatus in order to measure the external and internal magnetic fields of metamaterials. Two types of excitations, a plane-wave source and a magnetic dipole, are used to feed the system. In order to validate the performance of the magnetic-field mapper, two gradient-index metamaterial lenses are measured, and the experimental results are in good agreement with the full-wave simulations.
Institute of Scientific and Technical Information of China (English)
刘伯潭; 申言同; 张会书; 刘春江; 唐忠利; 袁希钢
2016-01-01
A method of using laser induced fluorescence(LIF)technique was applied to two-dimensional meas-urement of the liquid concentration distribution in the 250Y structured packing sheet. The experimental structured packing sheet was made of perspex so that the laser could pass through it. The visualization of the distribution of the liquid concentration in the structured packing sheet was realized. The calibration of the thickness and liquid concentration was carried out firstly and the regression formulaI=kcd was acquired, in which concentrationc and the liquid film thicknessd were both considered. Then the liquid feed of uniform tracer(rhodamine)concentration entered the perspex structured packing from the top under different spraying densities. The corresponding thickness of liquid film on the packing was calculated. Finally, tracer(rhodamine)with a high concentration was injected only at one fixed point of the structured packing under different spraying densities of the liquid. With the known liquid film thickness, the concentration distribution of the tracer can be calculated inside the structured packing sheet.
Directory of Open Access Journals (Sweden)
Jae Seong Lee
2013-09-01
Full Text Available We measured two-dimensional (2-D oxygen distribution in the surface sediment layer of intertidal sediment using a simple and inexpensive planar oxygen optode, which is based on a color ratiometric image approach. The recorded emission intensity of red color luminophore light significantly changed with oxygen concentration by O2 quenching of platinum(IIoctaethylporphyrin (PtOEP. The ratios between the intensity of red and green emissions with oxygen concentration variation demonstrated the Stern-Volmer relationship. The 2-D oxygen distribution image showed microtopographic structure, diffusivity boundary layer and burrow in surface sediment layer. The oxygen penetration depth (OPD was about 2 mm and the one-dimensional vertical diffusive oxygen uptake (DOU was 12.6 mmol m−2 d−1 in the undisturbed surface sediment layer. However, those were enhanced near burrow by benthic fauna, and the OPD was two times deeper and DOU was increased by 34%. The simple and inexpensive oxygen planar optode has great application potential in the study of oxygen dynamics with high spatiotemporal resolution, in benthic boundary layers.
Hall, Damien
2008-06-01
Methodological advances in light microscopy have made it possible to record the motions of individual lipid and protein molecules resident in the membrane of living cells down to the nanometer level of precision in the x, y plane. Such measurement of a single molecule's trajectory for a sufficiently long period of time or the measurement of multiple molecules' trajectories for a shorter period of time can in principle provide the necessary information to derive the particle's macroscopic two-dimensional-diffusion coefficient-a quantity of vital biological interest. However, one drawback of the light microscopy procedures used in such experiments is their relatively poor discriminatory capability for determining spatial differences along the z axis in comparison to those in the x, y plane. In this study we used computer simulation to examine the likely effect of local surface roughness over the nanometer to micrometer scale on the determination of diffusion constants in the membrane bilayer by the use of such optical-microscope-based single-particle tracking (SPT) procedures. We specifically examined motion of a single molecule along (i) a locally planar and (ii) a locally rough surface. Our results indicate a need for caution in applying overly simplistic analytical strategies to the analysis of data from SPT measurements and provide upper and lower bounds for the likely degree of error introduced on the basis of surface roughness effects alone. Additionally we present an empirical method based on an autocorrelation function approach that may prove useful in identifying the existence of surface roughness and give some idea of its extent.
Yang, Henglong; Cheng, Yu-Hen; Chen, Ming-Hong; Lin, Yu-Hsuan
2016-09-01
The feasibility of applying a five-inch diagonal white organic light-emitting diode (WOLED) as a desk lamp was experimentally investigated by quantitatively comparing its two-dimensional (2D) optical intensity profile to that of a traditional 3M desk lamp equipped with optical diffuser. The 2D optical distribution patterns as the function of vertical distances to a surface of a five-inch diagonal WOLED were obtained by using rapid rotating measurement technique consisted of a sample holder on a rotational stage and a fixed photo detector with optical power meter. The 2D optical intensity profile on a surface can be rapidly established in a relatively small space by recording the reading from the fixed photo detector as rotating the sample holder. This rapid measurement technique is suitable for practical application in quality engineering without larger space. A WOLED is a compact and thin lighting source with planar device structure without additional optical components. Its optical intensity profile on a plane is expected to be different from traditional lighting sources. The optical distribution pattern of a desk lamp requires a relatively large area on a surface with relatively uniformed intensity distribution. The quantitative analysis of the similarity between WOLED and 3M desk lamp was conducted by comparing the optimal zones defined as the area within 75% of the maximum intensity in 2D optical distribution pattern. Our preliminary result showed that the optimal zone of a five-inch diagonal WOLED at 45cm vertical distance is highly similar to that of the 3M desk lamp with optical diffuser.
Directory of Open Access Journals (Sweden)
Banović Marko
2013-01-01
Full Text Available Background/Aim. Early detection of left ventricle (LV systolic dysfunction could be a clue for surgical treatment in patients with significant aortic stenosis (AS. Therefore, we evaluated LV peak of global longitudinal strain (PGLS using speckle tracking imaging at rest and during low-dose dobutamine infusion in asymptomatic patients with moderate and severe AS and preserved LV ejection fraction (EF. Methods. All the patients underwent coronary angiography and had no obstructive coronary disease (defined as having no stenosis greater than 50% in diameter. The patients were divided into two groups: above and below median of 0.785 cm2 aortic valve area (AVA. PGLS was measured from acquired apical 4-chamber and 2-chamber cine loops using a EchoPac PC-workstation at rest and during 5 μg/kg/min, 10 μg/kg/min, and 20 μg/kg/min dobutamine infusion, respectively. The global strain was the average of segment strains from the apical views. Results: A total of 62 patients with moderate and severe AS (AVA median reached the statistical significance (- 8.71 ± 2.68% vs -11.93 ± 3.74%, p = 0.002. In addition, PGLS increase was also significant in 4-chamber view in the patients with AVA above median, but only when comparing baseline to peak 20 μg/kg/min (-10.72 ± 3.07% vs -13.14 ± 4.79%; p = 0.034. Conversely, in both groups the increase of PGLS in 2-chamber view did not reach significance. Conclusion. Two-dimensional strain speckle tracking analysis of myocardial deformation with measurement of peak systolic strain during dobutamine infusion is a feasible and accurate method to determine myocardial longitudinal systolic function and contractile reserve and may contribute to clinical decision making in patients with significant AS.
Viazzi, S.; Bahr, C.; Hertem, van T.; Schlageter-Tello, A.; Romanini, C.E.B.; Halachmi, I.; Lokhorst, C.; Berckmans, D.
2014-01-01
In this study, two different computer vision techniques to automatically measure the back posture in dairy cows were tested and evaluated. A two-dimensional and a three-dimensional camera system were used to extract the back posture from walking cows, which is one measurement used by experts to
Velocity Correction and Measurement Uncertainty Analysis of Light Screen Velocity Measuring Method
Institute of Scientific and Technical Information of China (English)
ZHENG Bin; ZUO Zhao-lu; HOU Wen
2012-01-01
Light screen velocity measuring method with unique advantages has been widely used in the velocity measurement of various moving bodies.For large air resistance and friction force which the big moving bodies are subjected to during the light screen velocity measuring,the principle of velocity correction was proposed and a velocity correction equation was derived.A light screen velocity measuring method was used to measure the velocity of big moving bodies which have complex velocity attenuation,and the better results were gained in practical tests.The measuring uncertainty after the velocity correction was calculated.
Shibata, Y; Manabe, T; Kajita, S; Ohno, N; Takagi, M; Tsuchiya, H; Morisaki, T
2014-09-01
A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ~4 × 10(19) m(-2) s(-1) when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.
Velocity Measurement Based on Laser Doppler Effect
Institute of Scientific and Technical Information of China (English)
ZHANG Yan-Yan; HUO Yu-Jing; HE Shu-Fang; GONG Ke
2010-01-01
@@ A novel method for velocity measurement is presented.In this scheme,a parallel-linear-polarization dualfrequency laser is incident on the target and senses the target velocity with both the frequencies,which can increase the maximum measurable velocity significantly.The theoretical analysis and verification experiment of the novel method are presented,which show that high-velocity measurement can be achieved with high precision using this method.
Tseng, M. Z.; Jiang, W. N.; Hu, E. L.
1994-09-01
A direct integration of YBa2Cu3O(7 - x) and a two dimensional electron gas Hall probe was made possible through the use of a MgO buffer layer. We demonstrate the use of this structure for the measurements of the magnetization hysteresis of a superconducting YBa2Cu3O(7 - x) thin film, and we make an estimate of the sensitivity and resolution that can be achieved with this probe structure. The close proximity of the YBa2Cu3O(7 - x) to the two dimensional electron gas (approximately 1700 A) allows sensitive measurements of interactions between the two; more importantly, closer superconductor-semiconductor spacing can be achieved without severe compromise of the component material quality.
Inexpensive Time-of-Flight Velocity Measurements.
Everett, Glen E.; Wild, R. L.
1979-01-01
Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)
Energy Technology Data Exchange (ETDEWEB)
Eyben, Pierre; Hantschel, Thomas; Lorenz, Anne; Gestel, Dries van; John, Joachim [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Seidel, Felix [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien, Gustav-Zeuner-Str. 3, 09599 Freiberg (Germany); Schulze, Andreas; Vandervorst, Wilfried [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika, K.U. Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Castro, Angel Uruena de [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Oude Markt, 13, Bus 5005, 3000 Leuven (Belgium); Horzel, Joerg [SCHOTT Solar AG, Carl-Zeiss-Strasse 4, 63755 Alzenau (Germany)
2011-03-15
Within this work, we have explored the use of scanning spreading resistance microscopy (SSRM) on advanced solar cell structures. Three main topics, corresponding to three important needs, were targeted. First, we have analyzed the highly doped regions at the frontside of solar cells. The influence of the surface roughness, hindering the use of other techniques (e.g., secondary ion mass spectrometry, SIMS), and the phosphorus diffusion along grains for multicrystalline silicon (mc-Si) have been studied quantitatively as they may affect substantially the electrical properties of solar cells. Secondly, we have explored local backside contacts manufactured using new techniques like laser ablation followed by dopant diffusion. Having a better knowledge of the two-dimensional (2D)-dopant distribution is a subject of growing interest. Finally, we have studied electrical properties of grain-boundary and intragrain defects in polycrystalline silicon (pc-Si) layers as they may play a major role in the electrical performances of the solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Woochul Nam
Full Text Available Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the surface of microtubules. To determine the direction of the next step of a kinesin molecule, this model considers the extension in the neck linkers of kinesin and the dynamic behavior of the coiled-coil structure of the kinesin neck. Also, the mechanical interference between kinesins and obstacles anchored on the microtubules is characterized. The model predicts that both the kinesin velocity and run length (i.e., the walking distance before detaching from the microtubule are reduced by static obstacles. The run length is decreased more significantly by static obstacles than the velocity. Moreover, our model is able to predict the motion of kinesin when other (several motors also move along the same microtubule. Furthermore, it suggests that the effect of mechanical interaction/interference between motors is much weaker than the effect of static obstacles. Our newly developed model can be used to address unanswered questions regarding degraded transport caused by the presence of excessive tau proteins on microtubules.
Chappard, D; Legrand, E; Haettich, B; Chalès, G; Auvinet, B; Eschard, J P; Hamelin, J P; Baslé, M F; Audran, M
2001-11-01
Trabecular bone has been reported as having two-dimensional (2-D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski-Bouligand, and mass-radius fractal dimensions. The relationships with histomorphometric descriptors of the 2-D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter-connectivity index, and Euler-Poincaré number were computed. The box-counting method was used to obtain the Kolmogorov dimension (D(k)), the dilatation method for the Minkowski-Bouligand dimension (D(MB)), and the sandbox for the mass-radius dimension (D(MR)) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with D(MR) and the lowest with D(MB). Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2-D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods.
Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong
2013-03-07
We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.
De Bock, M.; Jakubowska, K.; Hellermann, M. von; Jaspers, R.; Donné, A. J. H.; Shmaenok, L.
2004-10-01
Two techniques are presented that allow us to measure impurity density profiles in the TEXTOR tokamak plasma. The one-dimensional profiles are gathered by charge exchange recombination spectroscopy (CXRS) in combination with beam emission spectroscopy (BES). Combining CXRS and BES eliminate the need for absolute calibration. For two-dimensional profiles an ultrasoft x-ray tomography system has been developed. The system is spectrally resolved and produces local emissivity profiles of several ionization stages of impurities. Both systems are presently being commissioned. They are complementary and give an insight into the impurity distribution and transport in plasmas.
Energy Technology Data Exchange (ETDEWEB)
Dorozhkin, S. I., E-mail: dorozh@issp.ac.ru; Sychev, D. V.; Kapustin, A. A. [Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow district (Russian Federation)
2014-11-28
We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.
Energy Technology Data Exchange (ETDEWEB)
Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Cunningham, John E., E-mail: j.e.cunningham@leeds.ac.uk [School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Sydoruk, Oleksiy [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)
2016-02-29
We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.
Li, Hanshan; Lei, Zhiyong
2013-01-01
To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.
Low-Velocity Measurement in Water
Ellis, Christopher; Stefan, Heinz G.
1986-09-01
Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Zhang, Shengzhao; Zhang, Linna; Li, Zhe; Li, Gang; Lin, Ling
2016-10-01
Dynamic spectrum (DS) method is one of the noninvasive approaches to measure the concentration of components in human blood based on the application of photoplethysmogram (PPG). One of the targets of the DS method is to predict the hemoglobin concentration in human blood noninvasively. In previous works, the usually used wavelength in the spectrum is 600-1100 nm which is regarded as the analysis "window" in human tissues. Optimum wavelengths for measurements of hemoglobin concentration have not been investigated yet. In order to improve the precision and reliability of hemoglobin measurements, a method for wavelength selection based on two-dimension (2D) correlation spectroscopy has been studied in this paper. By analyzing the 2D correlation spectroscopy which is generated by the DS data from subject with different blood hemoglobin concentrations, the wavelength bands which are sensible to hemoglobin concentrations in DS can be found. We developed calibration models between the DS data and hemoglobin concentration based on data from 57 subjects. The correlation coefficient is 0.68 in the test set of the model using the whole wavelength band (600-1100nm), while in the test set of the model using the selected wavelength band (850- 950nm) the correlation coefficient is 0.87. Results show the feasibility of wavelength selection utilizing 2Dcorrelation spectroscopy.
Position and velocity estimation through acceleration measurements
Estrada, Antonio; Efimov, Denis; Perruquetti, Wilfrid
2014-01-01
International audience; This paper proposes a solution to the problem of velocity and position estimation for a class of oscillating systems whose position, velocity and acceleration are zero mean signals. The proposed scheme considers that the dynamic model of the system is unknown and only noisy acceleration measurements are available.
Hugo, Ronald J.; McMackin, Lenore J.
1996-10-01
The time-evolution of optical degradation in the near nozzle region of a heated axisymmetric jet is measured using conditional sampling techniques. A novel linearized stability experiment is performed in order to identify the flowfield states most applicable for conditional sampling techniques. The results of the conditional sampling experiment exhibit a condition where two distinct flowfield states are evident. Potential explanations for the observance of these two distinct states are proposed, with the most probable explanation being due to pi-jumps that can arise between the phase of the excitation signal and the phase of the flowfield events.
Energy Technology Data Exchange (ETDEWEB)
Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.
2011-07-01
Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher P.
2005-12-15
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.
Belfort, Benjamin; Weill, Sylvain; Lehmann, François
2017-07-01
A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.
Measuring Bullet Velocity with a PC Soundcard
Courtney, M; Courtney, Michael; Edwards, Brian
2006-01-01
This article describes a simple method for using a PC soundcard to accurately measure bullet velocity. The method involves placing the microphone within a foot of the muzzle and firing at a steel target between 50 and 100 yards away. The time of flight for the bullet is simply the recorded time between muzzle blast and sound of the bullet hitting the target minus the time it takes the sound to return from the target to the microphone. The average bullet velocity is simply the distance from the muzzle to the target divided by the time of flight of the bullet. This method can also be applied to measurement of paintball velocities.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Directory of Open Access Journals (Sweden)
Sung-Hye You
2017-01-01
Full Text Available Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL, for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D and three-dimensional (3D methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
2017-01-01
Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism. PMID:27457337
Energy Technology Data Exchange (ETDEWEB)
You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Suh, Sangil; Ryoo, In Seon; Seol, Hae Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)
2017-01-15
The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
Acoustic measurement of potato cannon velocity
Courtney, M; Courtney, Amy; Courtney, Michael
2006-01-01
This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.
Direct multi-scale reconstruction of velocity fields from measurements of particle tracks
Kelley, Douglas H
2010-01-01
We present a method for reconstructing two-dimensional velocity fields at specified length scales using observational data from tracer particles in a flow, without the need for interpolation or smoothing. The algorithm, adapted from techniques proposed for oceanography, involves a least-squares projection of the measurements onto a set of two-dimensional, incompressible basis modes with known length scales. Those modes are constructed from components of the velocity potential function, which accounts for inflow and outflow at the open boundaries of the measurement region; and components of the streamfunction, which accounts for the remainder of the flow. All calculations are evaluated at particle locations, without interpolation onto an arbitrary grid. Since the modes have a well-defined length scales, scale-local flow properties are available directly. The technique eliminates outlier particles automatically and reduces the apparent compressibility of the data. Moreover the technique can be used to produce s...
Santiago, Juan Agustin Calama; Utrilla, Miguel Angel Infante; Rodriguez, Maria Elisa Lavado
2015-01-01
This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose–volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose–distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data. PMID:26150681
Directory of Open Access Journals (Sweden)
Juan Agustin Calama Santiago
2015-01-01
Full Text Available This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC positions and used as input to the treatment planning system (TPS to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D phantom gamma test (3% local dose - 3 mm for all of the treatment verifications, but in some dose-volume histogram (DVH comparisons, we note sensitive differences for the planning target volume (PTV coverage and for the maximum doses in at-risk organs (up to 3.5%. In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.
Planar measurements of velocity and concentration of turbulent mixing in a T-junction
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.
Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...... using the stereoscopic PIV setup. The concentration measurement method is developed in the present study and the accuracy of the technique is investigated. The resulting data are two dimensional concentration fields taken at 4Hz. The combination of velocity, turbulence and concentration fields give...
Antarctica: measuring glacier velocity from satellite images.
Lucchitta, B K; Ferguson, H M
1986-11-28
Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.
Energy Technology Data Exchange (ETDEWEB)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
Device for measuring mechanical drilling velocity
Energy Technology Data Exchange (ETDEWEB)
Turchaninov, Y.N.; Ippolitova, L.G.; Khizgilov, A.I.; Rolik, V.A.
1980-12-17
A device is proposed for measuring the mechanical drilling velocity which includes a primary drilling tool supply transformer, control block, trigger, range switch; control block, block for determining motion direction, time counter and measurement instrument. In order to guarantee continuous measurement of the mechanical velocity and to improve the accuracy of measuring the average mechanical velocity during drilling at sea, it is equipped with a block for multiplying the number of pulses, four I circuits, supply counter, supply recorder, primary neutral transformer, two controllable frequency dividers, first frequency divider, generator of prime pulses consisting of a generatror of reference frequencies and second frequency divider, time recorder, counter and velocity recorder, time recorder and digital-analog transformer. In this case the outlet of the primary transformer for drilling tool supply is connected through a in-series connected block for determining the movement direction, block for multiplying the number of pulses, first circuit I and supply counter to one of the inlets of the supply counter. Its second inlet is connected through a block of control to the primary neutral transformer and one of the inlets of the time recorder. Its second inlet is connected through a in-series connected time counter, fourth I circuit, second frequency divider, generator of reference frequency, first frequency divider, third circuit I, second controllable frequency divider, counter and velocity recorder and digital-analog transformer of the measurement instrument. The outlet of the supply recorder is connected to one of the inlets of the first controllable divider. Its second inlet is connected to the second I circuit to the outlet of the first frequency divider, and the outlet is connected to one of the trigger inlets.
Energy Technology Data Exchange (ETDEWEB)
Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi [Tokyo Univ. of Science, Faculty of Science, Tokyo (Japan); Terada, Yasuko [Japan Synchrotron Radiation Research Inst., Mikazuki, Hyogo (Japan); Yoshinaga, Tatsuki; Tukamoto, Katsumi [Tokyo Univ., Ocean Research Inst., Tokyo (Japan); Hagiwara, Atsushi [Nagasaki Univ., Graduate School of Science and Technology, Bunkyou, Nagasaki (Japan)
2002-10-01
Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, M; SHIN, D; Park, J; Lim, Y; Lee, S; Kim, J [National Cancer Center, Goyang, Gyeonggi-do (Korea, Republic of); Son, J [National Cancer Center, Goyang, Gyeonggi-do, Korea University, Seoul, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul (Korea, Republic of)
2014-06-15
Purpose: Proton therapy aims to deliver a high dose in a well-defined target volume while sparing the healthy surrounding tissues thanks to their inherent depth dose characteristic (Bragg peak). In proton therapy, several techniques can be used to deliver the dose into the target volume. The one that allows the best conformity with the tumor, is called PBS (Pencil Beam Scanning). The measurement of the proton pencil beam spot profile (spot size) and position is very important for the accurate delivery of dose to the target volume with a good conformity. Methods: We have developed a fine segmented detector array to monitor the PBS. A prototype beam monitor using Cherenkov radiation in clear plastic optical fibers (cPOF) has been developed for continuous display of the pencil beam status during the therapeutic proton Pencil Beam Scanning mode operation. The benefit of using Cherenkov radiation is that the optical output is linear to the dose. Pedestal substraction and the gain adjustment between channels are performed. Spot profiles of various pencil beam energies(100 MeV to 226 MeV) are measured. Two dimensional gaussian fit is used to analyze the beam width and the spot center. The results are compared with that of Lynx(Scintillator-based sensor with CCD camera) and EBT3 Film. Results: The measured gaussian widths using fiber array system changes from 13 to 5 mm for the beam energies from 100 to 226 MeV. The results agree well with Lynx and Film within the systematic error. Conclusion: The results demonstrate good monitoring capability of the system. Not only measuing the spot profile but also monitoring dose map by accumulating each spot measurement is available. The x-y monitoing system with 128 channel readout will be mounted to the snout for the in-situ real time monitoring.
Directory of Open Access Journals (Sweden)
XiaoWan GUO
2014-04-01
Full Text Available Background and objective Software oriented three-dimensional (3D volumetric measurement of pulmonary nodules has been feasible in the follow-up of indeterminate pulmonary nodules, however, its value need a further validation. The purpose of this study is to retrospectively analyze the chest CT data of patients with pulmonary nodules to compare the intra-observer variability of 3D and two-dimensional (2D volumetric measurement. Methods Eighty-six pulmonary nodules in chest CT scans of 79 subjects were retrospectively analyzed. One radiologist measured the nodules twice with a 7 days interval using 2D and 3D methods respectively. The maximal diameter (X, the perpendicular diameter (Y on maximal cross sectional area of the nodule and the caudo-cranial diameter (Z were measured and the volume was calculated by two models: spherical and elliptical model. The 3D measurements were acquired with semi-automated software with manual adjustment on unsatisfied nodule segmentation. Logistic regression analysis was performed to evaluate the effect of nodule location and morphology on 3D nodule segmentation. ANOVA and correlation test were used to evaluate the difference among three methods. Bland-Altman method was applied to quantify the intra-observer variability. Results Software achieved satisfied segmentation for 86.4% nodules. The irregular and juxtavacular nodules have significantly high odds rations (OR of unsatisfied segmentation as 4.0, 4.5, respectively. The volume measured by three method was significantly different (F=6.5, P=0.012, while the repeated measurements did not led to significant difference (F=1.813, P=0.182. The Spearman correlation efficient between 3D volume and 2D volume with sphere and ellipsoid model was 0.97, 0.88. The 95% limits of agreement of RD between two repeated measurements were -14%-11.6%, -37.7%-39.9% and -39.8%-45.8% for 3D, 2D with elliptical model and spherical model, respectively. Conclusion The 3D volume measurement
Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Vaughan, M.; Winker, D. M.; Welton, E. J.; Prospero, J. M.; Shimizu, A.; Sugimoto, N.
2011-12-01
Launched in 2006, the Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP) flown aboard the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite has collected the first high-resolution global, inter-seasonal and multi-year measurements of aerosol structure. Profiles for aerosol particle extinction coefficient and column-integrated optical depth (AOD) are unique and highly synergistic satellite measurements, given the limitations of passive aerosol remote sensors from resolving information vertically. However, accurate value-added (Level 2.0) CALIOP aerosol products require comprehensive validation of retrieval techniques and calibration stability. Daytime Level 2.0 CALIOP AOD retrievals have been evaluated versus co-located NASA Moderate Resolution Imaging Spectroradiometer (MODIS-AQUA) data. To date, no corresponding investigation of nighttime retrieval performance has been conducted from a lack of requisite global nighttime validation datasets. In this paper, Version 3.01 CALIOP 5-km retrievals of nighttime 0.532 μm AOD from 2007 are evaluated versus corresponding 0.550 μm AOD analyses derived with the global 1° x 1° U. S. Navy Aerosol Analysis and Prediction System (NAAPS). Mean regional profiles of CALIOP nighttime 0.532 μm extinction coefficient are assessed versus NASA Micropulse Lidar Network and NIES Skynet Lidar Network measurements. NAAPS features a two-dimensional variational assimilation procedure for quality-assured MODIS and NASA Multi-angle Imaging Spectroradiometer (MISR) AOD products. Whereas NAAPS nighttime AOD datasets represent a nominal 12-hr forecast field, from lack of MODIS/MISR retrievals for assimilation in the dark sector of the model, evaluation of NAAPS 00-hr analysis and 24-hr forecast skill versus MODIS and NASA Aerosol Robotic Network (AERONET) indicates adequate stability for conducting this study. Corresponding daytime comparisons of CALIOP retrievals with NAAPS
Bennett, William W; Teasdale, Peter R; Welsh, David T; Panther, Jared G; Jolley, Dianne F
2012-01-15
The recently developed colorimetric diffusive equilibration in thin films (DET) technique for the in situ, high-resolution measurement of iron(II) in marine sediments is optimized to allow measurement of the higher iron concentrations typical of freshwater sediment porewaters. Computer imaging densitometry (CID) is used to analyze the retrieved samplers following exposure to ferrozine, a colorimetric reagent selective for iron(II). The effect of ferrozine concentration, image processing parameters and ionic strength are investigated to improve the applicability of this technique to a wider range of aquatic systems than reported in the first publications of this approach. The technique was optimized to allow detection of up to 2,000 μmol L(-1) iron(II), a four-fold increase on the previous upper detection limit of 500 μ mol L(-1). The CID processing of the scanned color image was also optimized to adjust the sensitivity of the assay as required; by processing the image with different color channel filters, the sensitivity of the assay can be optimized for lower concentrations (up to 100 μmol L(-1)) or higher concentrations (up to 2,000 μmol L(-1)) of iron(II), depending on the specific site characteristics. This process does not require separate sampling probes or even separate scans of the DET gels as the color filter and grayscale conversion is done post-image capture. The optimized technique is very simple to use and provides highly representative, high-resolution (1mm) two-dimensional distributions of iron(II) in sediment porewaters. The detection limit of the optimized technique was 4.1±0.3 μmol L(-1) iron(II) and relative standard deviations were less than 6%. Copyright © 2011 Elsevier B.V. All rights reserved.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Energy Technology Data Exchange (ETDEWEB)
Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S [McLaren Cancer Institute, Flint, MI (United States); Gao, M; Pankuch, M [ProCure Treatment Centers, Warrenville, IL (United States); Boyer, S; Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pillainayagam, M [Wayne State University, Detroit, Michigan (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)
2014-06-15
Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.
Measurement of the velocity of a quantum object: A role of phase and group velocities
Lapinski, Mikaila; Rostovtsev, Yuri V.
2017-08-01
We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.
Tomographic Particle Localization and Velocity Measurement
Kirner, S.; Forster, G.; Schein, J.
2015-01-01
Wire arc spraying is one of the most common and elementary thermal spray processes. Due to its easy handling, high deposition rate, and relative low process costs, it is a frequently used coating technology for the production of wear and corrosion resistant coatings. In order to produce reliable and reproducible coatings, it is necessary to be able to control the coating process. This can be achieved by analyzing the parameters of the particles deposited. Essential for the coating quality are, for example, the velocity, the size, and the temperature of the particles. In this work, an innovative diagnostic for particle velocity and location determination is presented. By the use of several synchronized CMOS-Cameras positioned around the particle jet, a series of images from different directions is simultaneously taken. The images contain the information that is necessary to calculate the 3D-location-vector of the particles and finally with the help of the exposure time the trajectory can be determined. In this work, the experimental setup of the tomographic diagnostic is presented, the mathematical method of the reconstruction is explained, and first measured velocity distributions are shown.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
DEFF Research Database (Denmark)
de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter;
2014-01-01
AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility......, and M-mode determined in the septal and lateral walls in the apical four-chamber view were assessed in 50 control subjects and in 168 patients with various cardiac anomalies known to affect longitudinal displacement such as heart failure, mitral regurgitation, LV hypertrophy, and LV dilation. Intra...
Selective measurement of digital nerve conduction velocity.
Terai, Y; Senda, M; Hashizume, H; Nagashima, H; Inoue, H
2001-01-01
We developed a new method to measure the nerve conduction velocity of a single digital nerve. In 27 volunteers (27 hands), we separately stimulated each digital nerve on the radial and ulnar sides of the middle and ring fingers. A double-peaked potential was recorded above the median nerve at the wrist joint when either the radial-side nerve or the ulnar-side nerve of the middle finger was stimulated. The first peak of this potential had disappeared after the digital nerve was blocked under the stimulating electrodes, and the peak appeared again coinciding with the decrease of anesthesia. Shifting the stimulating electrodes on the digital nerve resulted in no significant difference in the peak conduction velocity. It is possible that each peak of the potential was attributable to conduction of an action potential along one of the two digital nerves. This new method allows the assessment of a single digital nerve, and may be clinically useful for assessing the rupture of a digital nerve and the sensory nerve action potentials in carpal tunnel syndrome.
Velocity Gradient Maps Directly Measured by PLF
Quintella, Cristina M.; Gonçalves, Cristiane C.; Lima, Angelo Mv; Pepe, Iuri M.
2000-11-01
Flows are macroscopically classified as laminar or turbulent due to their velocity distributions, nevertheless most chemical and biological phenomena are yield or enhanced by intermolecular orientation and microscopic turbulence. Here was studied a 100micra liquid sheet produced by a slit nozzle, both flowing freely into air and over a borosilicate surface (roughness bellow 5nm), ranging from 17 to 36Re (143 to 297cm/s, similar to muscles and brain blood flow). Mono ethylene glycol was used either pure, or with sodium alkyl benzene sulfated (ABS) surfactant (24.5mol/L, submicellar), or with poly(ethylene oxide) (PEO) (1409ppm, 4millions aw). Velocity gradients were directly measured by 514nm polarized laser induced fluorescence (PLF) with R6G as probe. Intermolecular alignment (IA) maps were obtained all over the flow (about 1,950 points, 0.02mm2 precision). The free jet average IA has increased 57% when flowing over borosilicate. With ABS, the IA increased, suggesting wall drag reduction. With PEO the IA decreases due to solvent intermolecular forces attenuation, generating wider turbulent areas. PLF proved to be an excellent method to evaluate IA within liquid thin flows. Chosen solute additions permits IA control over wide regions.
Britton, Paul; Loughran, Jeff
This paper outlines a computational procedure that has been implemented for the direct measurement of finite material strains from digital images taken of a material surface during plane-strain process experiments. The selection of both hardware and software components of the image processing system is presented, and the numerical procedures developed for measuring the 2D material deformations are described. The algorithms are presented with respect to two-roll milling of sugar cane bagasse, a complex fibro-porous material that undergoes large strains during processing to extract the sucrose-rich liquid. Elaborations are made in regard to numerical developments for other forms of experimentation, algorithm calibrations and measurement improvements. Finite 2D strain results are shown for both confined uniaxial compression and two-roll milling experiments.
Molecular rattling in two-dimensional fluids: Simulations and theory
Variyar, Jayasankar E.; Kivelson, Daniel; Tarjus, Gilles; Talbot, Julian
1992-01-01
We have carried out molecular dynamic simulations over a range of densities for two-dimensional fluids consisting of hard, soft, and Lennard-Jones disks. For comparison we have also carried out simulations for the corresponding systems in which all but one particle are frozen in position. We have studied the velocity autocorrelation functions and the closely related velocity-sign autocorrelation functions, and have examined the probabilities per unit time that a particle will undergo a first velocity sign reversal after an elapsed time t measured alternately from the last velocity reversal or from a given arbitrary time. At all densities studied, the first of these probabilities per unit time is zero at t=0 and rises to a maximum at a later time, but as the hardness of the disks is increased, the maximum moves in toward t→0. This maximum can be correlated with the ``negative'' dip observed in the velocity correlation functions when plotted versus time. Our conclusion is that all these phenomena can be explained qualitatively on the basis of a model where memory does not extend back beyond the last velocity reversal. However, at high density, the velocity-sign-autocorrelation function not only shows a negative dip (which is explained by the model) but also a second ``oscillation'' which is not described, even qualitatively, by the model. We conclude that the first dip in the velocity and velocity-sign correlation functions can occur even if there are no correlated or coherent librations, but the existence of a ``second'' oscillation is a better indication of such correlations.
Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F
2013-10-01
This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Yudin, Dmitry; Shelykh, Ivan A.
2016-10-01
A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.
Kato, Ryohei; Kusunoki, Kenichi; Sato, Eiichi; Mashiko, Wataru; Inoue, Hanako Y.; Fujiwara, Chusei; Arai, Ken-ichiro; Nishihashi, Masahide; Saito, Sadao; Hayashi, Syugo; Suzuki, Hiroto
2015-06-01
The horizontal two-dimensional near-surface structure of a tornadic vortex within a winter storm was analyzed. The tornadic vortex was observed on 10 December 2012 by the high-resolution in situ observational linear array of wind and pressure sensors (LAWPS) system in conjunction with a high-resolution Doppler radar. The 0.1 s maximum wind speed and pressure deficit near the ground were recorded as 35.3 m s-1 and -3.8 hPa, respectively. The horizontal two-dimensional distributions of the tornadic vortex wind and pressure were retrieved by the LAWPS data, which provided unprecedented observational detail on the following important features of the near-surface structure of the tornadic vortex. Asymmetric convergent inflow toward the vortex center existed. Total wind speed was strong to the right and rear side of the translational direction of the vortex and weak in the forward part of the vortex possibly because of the strong convergent inflow in that region. The tangential wind speed profile of the vortex was better approximated using a modified Rankine vortex rather than the Rankine vortex both at 5 m above ground level (agl) and 100 m agl, and other vortex models (Burgers-Rott vortex and Wood-White vortex) were also compared. The cyclostrophic wind balance was violated in the core radius R0 and outside the core radius in the forward sector; however, it was held with a relatively high accuracy of approximately 14% outside the core of the vortex in the rearward sector (from 2 R0 to 5 R0) near the ground.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Plasma flow velocity measurements using a modulated Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Howard, J. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab.; Meijer, F.G. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Association Euratom-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)]|[Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)
1997-03-01
This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.) 1 refs.
Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael
2013-11-01
Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.
Two dimensional hydrodynamic modeling of a high latitude braided river
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Measuring Global Monopole Velocities, one by one
Lopez-Eiguren, Asier; Achúcarro, Ana
2016-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics...
Measuring global monopole velocities, one by one
Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana
2017-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
A New Filtering Algorithm Utilizing Radial Velocity Measurement
Institute of Scientific and Technical Information of China (English)
LIU Yan-feng; DU Zi-cheng; PAN Quan
2005-01-01
Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.
Swimming of Vorticella in two-dimensional confinements
Sotelo, Luz; Park, Young-Gil; Jung, Sunghwan; Ryu, Sangjin
2015-03-01
Vorticellais a ciliate observed in the stalked sessile form (trophont), which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Having circular cilia bands around the oral part, the stalkless zooid of Vorticella can serve as a model system for microorganism swimming. Here we present how the stalkess trophont zooid of Vorticella swims in two-dimensional confined geometries which are similar to the Hele-Shaw cell. Having harvested stalkless Vorticella zooids, we observed their swimming in water between two glass surfaces using video microscopy. Based on measured swimming trajectories and distributions of zooid orientation and swimming velocity, we analyzed how Vorticella's swimming mobility was influenced by the geometry constraints. Supported by First Award grant from Nebraska EPSCoR.
Accurate Sound Velocity Measurement in Ocean Near-Surface Layer
Lizarralde, D.; Xu, B. L.
2015-12-01
Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.
Multi Point Velocity, Density and Temperature Measurements using LITA Project
National Aeronautics and Space Administration — Laser induced thermal acoustics (LITA) is a nonintrusive, transient-grating optical technique that provides simultaneous high-accuracy measurements of velocity,...
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1995-08-01
The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa
Institute of Scientific and Technical Information of China (English)
孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦
2003-01-01
Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.
Accurate measurement of ultrasonic velocity by eliminating the diffraction effect
Institute of Scientific and Technical Information of China (English)
WEI Tingcun
2003-01-01
The accurate measurement method of ultrasonic velocity by the pulse interferencemethod with eliminating the diffraction effect has been investigated in VHF range experimen-tally. Two silicate glasses were taken as the specimens, their frequency dependences of longitu-dinal velocities were measured in the frequency range 50-350 MHz, and the phase advances ofultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoreticalexpression. For the frequency dependences of longitudinal velocities, the measurement resultswere in good agreement with the simulation ones in which the phase advances were included.It has been shown that the velocity error due to diffraction effect can be corrected very well bythis method.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Landel, Julien R.; Daglis, Ana; McEvoy, Harry; Dalziel, Stuart B.
2014-11-01
We present a new experimental technique to measure the surface velocity of a thin falling film. Thin falling films are important in various processes such as cooling in heat exchangers or cleaning processes. For instance, in a household dishwasher cleaning depends on the ability of a thin draining film to remove material from a substrate. We are interested in the impact of obstacles attached to a substrate on the velocity field of a thin film flowing over them. Measuring the velocity field of thin falling films is a challenging experimental problem due to the small depth of the flow and the large velocity gradient across its depth. We propose a new technique based on PIV to measure the plane components of the velocity at the surface of the film over an arbitrarily large area and an arbitrarily large resolution, depending mostly on the image acquisition technique. We perform experiments with thin films of water flowing on a flat inclined surface, made of glass or stainless steel. The typical Reynolds number of the film is of the order of 100 to 1000, computed using the surface velocity, the film thickness and the kinematic viscosity of the film. We measure the modification to the flow field, from a viscous-gravity regime, caused by small solid obstacles, such as three-dimensional hemispherical obstacles and two-dimensional steps. We compare our results with past theoretical and numerical studies. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.
Fat mass measured by DXA varies with scan velocity
DEFF Research Database (Denmark)
Black, Eva; Petersen, Liselotte; Kreutzer, Martin
2002-01-01
To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....
Velocity-space sensitivity of neutron spectrometry measurements
DEFF Research Database (Denmark)
Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.;
2015-01-01
Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
EXPERIMENTAL INVESTIGATION ON TWO-DIMENSIONAL UNSTEADY COLD FLOW IN MPC EXHAUST MANIFOLD
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The gas flow in exhaust manifolds has much effect on scavenge, pumping loss and exhaust energy utilization of turbocharged diesel engines. This paper presented experimental investigation on two-dimensional unsteady flow in MPC(modular pulse converter) exhaust manifold model. The pressure and velocity distributions in six sections of the manifold model were measured when the diesel engine was motored. The probe with slitted sleeve was used to determine flow direction. The experimental results show that velocity distributions vary with place and time; the pressure traces at different points of the same section are not different obviously.
Inertial Measurements Based Velocity-free Attitude Stabilization
Tayebi, A; Benallegue, A
2012-01-01
The existing attitude controllers (without angular velocity measurements) involve explicitly the orientation (\\textit{e.g.,} the unit-quaternion) in the feedback. Unfortunately, there does not exist any sensor that directly measures the orientation of a rigid body, and hence, the attitude must be reconstructed using a set of inertial vector measurements as well as the angular velocity (which is assumed to be unavailable in velocity-free control schemes). To overcome this \\textit{circular reasoning}-like problem, we propose a velocity-free attitude stabilization control scheme relying solely on inertial vector measurements. The originality of this control strategy stems from the fact that the reconstruction of the attitude as well as the angular velocity measurements are not required at all. Moreover, as a byproduct of our design approach, the proposed controller does not lead to the unwinding phenomenon encountered in unit-quaternion based attitude controllers.
A comparison of measured and modeled velocity fields for a laminar flow in a porous medium
Wood, B. D.; Apte, S. V.; Liburdy, J. A.; Ziazi, R. M.; He, X.; Finn, J. R.; Patil, V. A.
2015-11-01
Obtaining highly-resolved velocity data from experimental measurements in porous media is a significant challenge. The goal of this work is to compare the velocity fields measured in a randomly-packed porous medium obtained from particle image velocimetry (PIV) with corresponding fields predicted from direct numerical simulation (DNS). Experimentally, the porous medium was comprised of 15 mm diameter spherical beads made of optical glass placed in a glass flow cell to create the packed bed. A solution of ammonium thiocyanate was refractive-index matched to the glass creating a medium that could be illuminated with a laser sheet without distortion. The bead center locations were quantified using the imaging system so that the geometry of the porous medium was known very accurately. Two-dimensional PIV data were collected and processed to provide high-resolution velocity fields at a single plane within the porous medium. A Cartesian-grid-based fictitious domain approach was adopted for the direct numerical simulation of flow through the same geometry as the experimental measurements and without any adjustable parameters. The uncertainties associated with characterization of the pore geometry, PIV measurements, and DNS predictions were all systematically quantified. Although uncertainties in bead position measurements led to minor discrepancies in the comparison of the velocity fields, the axial and normal velocity deviations exhibited normalized root mean squared deviations (NRMSD) of only 11.32% and 4.74%, respectively. The high fidelity of both the experimental and numerical methods have significant implications for understanding and even for engineering the micro-macro relationship in porous materials. The ability to measure and model sub-pore-scale flow features also has relevance to the development of upscaled models for flow in porous media, where physically reasonable closure models must be developed at the sub-pore scale. These results provide valuable data
Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging
Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.
2011-10-01
In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.
Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements
Yoo, Jaiyul; Seljak, Uros
2011-01-01
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...
Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence
Directory of Open Access Journals (Sweden)
Ashton S. Bradley
2012-10-01
Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.
A new method of measuring the peculiar velocity power spectrum
Zhang, P; Juszkiewicz, R; Feldman, H A; Zhang, Pengjie; Stebbins, Albert; Juszkiewicz, Roman; Feldman, Hume
2004-01-01
We show that by directly correlating the cluster kinetic Sunyaev Zeldovich (KSZ) flux, the cluster peculiar velocity power spectrum can be measured to $\\sim 10%$ accuracy by future large sky coverage KSZ surveys. This method is almost free of systemics entangled in the usual velocity inversion method. The direct correlation brings extra information of density and velocity clustering. We utilize these information to construct two indicators of the Hubble constant and comoving angular distance and propose a novel method to constrain cosmology.
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.
2015-02-01
In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.
Interferometric measurement of the angular velocity of moving humans
Nanzer, Jeffrey A.
2012-06-01
This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.
Influence of speckle effect on doppler velocity measurement
Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang
2016-06-01
In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F
2015-01-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Measurement of gas flow velocities by laser-induced gratings
Energy Technology Data Exchange (ETDEWEB)
Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)
1999-08-01
Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.
Plasma flow velocity measurements using a modulated Michelson interferometer
Howard, J.; Meijer, F. G.
1997-01-01
This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.
Electron drift velocity measurements in liquid krypton-methane mixtures
Folegani, M; Magri, M; Piemontese, L
1999-01-01
Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.
Measuring Oscillatory Velocity Fields Due to Swimming Algae
Guasto, Jeffrey S; Gollub, J P
2010-01-01
In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.
Laser Doppler anemometer measurements using nonorthogonal velocity components: error estimates.
Orloff, K L; Snyder, P K
1982-01-15
Laser Doppler anemometers (LDAs) that are arranged to measure nonorthogonal velocity components (from which orthogonal components are computed through transformation equations) are more susceptible to calibration and sampling errors than are systems with uncoupled channels. In this paper uncertainty methods and estimation theory are used to evaluate, respectively, the systematic and statistical errors that are present when such devices are applied to the measurement of mean velocities in turbulent flows. Statistical errors are estimated for two-channel LDA data that are either correlated or uncorrelated. For uncorrelated data the directional uncertainty of the measured velocity vector is considered for applications where mean streamline patterns are desired.
Energy Technology Data Exchange (ETDEWEB)
Reinwald, Elisabeth
2009-06-25
In this thesis a two dimensional electron gas (2DEG) on a (110) cleavage plane of a GaAs/AlGaAs(001) heterostructure was produced by means of cleaved edge overgrowth (CEO) and modulated in two dimensions. The 2DEG was modulated in one direction by a superlattice of the subjacent GaAs/AlGaAs(001) heterostructure. A second modulation, perpendicular to the first was realized by local anodic oxidation (LAO) with an atomic force microscope (AFM). For the process of LAO an electric voltage is applied between the tip of the AFM and the surface of the GaAs. The natural water film on the surface acts as electrolyte so that the GaAs surface is locally oxidized underneath the AFM tip. This oxide leads to a band bending so that the 2DEG underneath the oxide is locally depleted. On these systems magnetotransport measurements revealed that it is actually possible to modulate 2DEGs on a sufficient large area by local anodic oxidation. On the cleaved surfaces the influence of the two dimensional modulation on the electron gas has been demonstrated. (orig.)
Dynamic Properties of Two-Dimensional Polydisperse Granular Gases
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a two-dimensional model of polydisperse granular mixtures with a power-law size distribution in the presence of stochastic driving. A fractal dimension D is introduced as a measurement of the inhomogeneity of the size distribution of particles. We define the global and partial granular temperatures of the multi-component mixture. By direct simulation Monte Carlo, we investigate how the inhomogeneity of the size distribution influences the dynamic properties of the mixture, focusing on the granular temperature, dissipated energy, velocity distribution, spatial clusterization, and collision time. We get the following results: a single granular temperature does not characterize a multi-component mixture and each species attains its own "granular temperature"; The velocity deviation from Gaussian distribution becomes more and more pronounced and the partial density of the assembly is more inhomogeneous with the increasing value of the fractal dimension D; The global granular temperature decreases and average dissipated energy per particle increases as the value of D augments.
Yamada, Akira; Oba, Kensyo; Shimizu, Masato
2017-01-01
A method is proposed for the remote measurement of the outdoor ground-surface two-dimensional (2D) vector wind velocity field averaged over a region of 10-50 m size. To this end, four-channel (4ch) sound wave transmitters and receivers were placed at the corners of a rectangular monitoring site. From the four-path travel time data, the wind velocity and direction averaged over the region were estimated under the uniform-wind-field assumption. By this method, misestimation due to the local turbulence wind field, which is encountered in conventional in situ-type anemometers, can be avoided. To achieve a satisfying speed data collection that keeps up with the rapid changes in real wind field, coded modulation signals were transmitted and received simultaneously between all the 4ch speaker/microphone pairs. Test experiments demonstrated that time variations of vector wind velocities spatially averaged over the area were successively measured with satisfying speed and accuracy.
Unsteady Pressure and Velocity Measurements in Pumps
2006-11-01
to reproduce the data with controlled experiments . For example, the rotor exit flow measured by means of a stationary high response probe will be...Turbomachinery by Means of High-Frequency Pressure Transducers. ASME, J. of Turbomachinery, Vol. 114, pp. 100-107. [3] Castorph, D. (1975): Messung ...Dreiß, A.; Kosyna, G. (1997): Experimental Investigations of Cavitation-States in a Radial Pump Impeller. JSME CENTENNIAL GRAND CONGRESS Proceedings of
Three Component Velocity and Acceleration Measurement Using FLEET
Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.
2014-01-01
The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.
BUBBLE CHARACTERISTICS IN A TWO-DIMENSIONAL VERTICALLY VIBRO-FLUIDIZED BED
Institute of Scientific and Technical Information of China (English)
Tao Zhou; Hiroyuki Kage; Hongzhong Li
2005-01-01
Measurement of bubble size and local average bubble rise velocity was carried out in a vertically sinusoidal vibro-fluidized bed. Glass beads of Geldart group B particles were fluidized at different gas velocities, while the bed was vibrated at different frequencies and amplitudes to study their effects on the bubble behavior. This is compared with the case of no vibration in a two-dimensional bed and it is concluded that with vibration the local average bubble size,dbav, decreases significantly, especially at minimum bubbling velocity. The average bubble size increases slightly with increasing vibration frequency and amplitude. The local average bubble rise velocity is higher than that with no vibration,though with increasing vibration frequency and amplitude, it does not change significantly.
Ito, Miho; Uehara, Tomotaka; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Watanabe, Isao
2015-05-01
The zero-field magnetism of a two-dimensional noncollinear antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, has been investigated by magnetization and zero-field muon spin rotation (μSR) measurements. Low-field magnetization measurements enabled us to determine the magnetic transition temperature TN as 22.80 ± 0.02 K. Distinct muon spin precession signals appeared below 21.4 K. μSR spectra below 21.4 K were well described by two types of precession components and a relaxation one. The temperature dependence of internal field converted by μSR data was in good agreement with that of macroscopic residual magnetism. These results suggest that the tiny interlayer interaction, which has been suggested to be almost 106 times less than the intralayer exchange interaction, spontaneously causes the three-dimensional long-range order.
Near-wall velocity profile measurement for nanofluids
Kanjirakat, Anoop; Sadr, Reza
2016-01-01
We perform near-wall velocity measurements of a SiO2-water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.
Near-wall velocity profile measurement for nanofluids
Directory of Open Access Journals (Sweden)
Anoop Kanjirakat
2016-01-01
Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Measuring surface flow velocity with smartphones: potential for citizen observatories
Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik
2014-05-01
Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Measurement of Poloidal Velocity on the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Ronald E. Bell and Russell Feder
2010-06-04
A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.
Nagai, Moeto; Oishi, Masamichi; Oshima, Marie; Asai, Hiroshi; Fujita, Hiroyuki
2009-03-26
Understanding the biological feeding strategy and characteristics of a microorganism as an actuator requires the detailed and quantitative measurement of flow velocity and flow rate induced by the microorganism. Although some velocimetry methods have been applied to examine the flow, the measured dimensions were limited to at most two-dimensional two-component measurements. Here we have developed a method to measure three-dimensional two-component flow velocity fields generated by the microorganism Vorticella picta using a piezoscanner and a confocal microscope. We obtained the two-component velocities of the flow field in a two-dimensional plane denoted as the XY plane, with an observation area of 455x341 mum(2) and the resolution of 9.09 mum per each velocity vector by a confocal microparticle image velocimetry technique. The measurement of the flow field at each height took 37.5 ms, and it was repeated in 16 planes with a 2.50 mum separation in the Z direction. We reconstructed the three-dimensional two-component flow velocity field. From the reconstructed data, the flow velocity field [u((x,y,z)),v((x,y,z))] in an arbitrary plane can be visualized. The flow rates through YZ and ZX planes were also calculated. During feeding, we examined a suction flow to the mouth of the Vorticella picta and measured it to be to 300 pls.
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.
Velocity measurement by coherent x-ray heterodyning
Energy Technology Data Exchange (ETDEWEB)
Lhermitte, Julien R. M.; Rogers, Michael C.; Manet, Sabine; Sutton, Mark
2017-01-01
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Velocity measurement by coherent x-ray heterodyning.
Lhermitte, Julien R M; Rogers, Michael C; Manet, Sabine; Sutton, Mark
2017-01-01
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method
Energy Technology Data Exchange (ETDEWEB)
Landmann, S. [Universität Leipzig, Institut für Theoretische Physik, Brüderstr. 16, 04103 Leipzig (Germany); Kählert, H.; Thomsen, H.; Bonitz, M. [Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel (Germany)
2015-09-15
We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.
Self-diffusion in a stochastically heated two-dimensional dusty plasma
Sheridan, T. E.
2016-09-01
Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.
Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant
Sato, Toshiki
2016-01-01
We present the first direct ejecta velocity measurements of Tycho's supernova remnant (SNR). Chandra's high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We identified an annular region (~3.3'-3.5'), where the surface brightness in the Si, S, and Fe K lines reaches a peak while the line width reaches a minimum value. These minimum line widths correspond to ion temperatures of ~1 MeV for each of the three species, in excellent ...
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Near-wall velocity measurements by Particle-Shadow-Tracking
Lancien, Pierre; Métivier, François; 10.1007/s00348-007-0260-z
2009-01-01
We report a new method to measure the velocity of a fluid in the vicinity of a wall. The method, that we call Particle-Shadow Tracking (PST), simply consists in seeding the fluid with a small number of fine tracer particles of density close to that of the fluid. The position of each particle and of its shadow on the wall are then tracked simultaneously, allowing one to accurately determine the distance separating tracers from the wall and therefore to extract the velocity field. We present an application of the method to the determination of the velocity profile inside a laminar density current flowing along an inclined plane.
Measurement of velocity field in parametrically excited solitary waves
Gordillo, Leonardo
2014-01-01
Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.
Near-wall velocity profile measurement for nanofluids
Anoop Kanjirakat; Reza Sadr
2016-01-01
We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase ...
Digital technique for the simultaneous measurement of velocity and temperature.
Keffer, J F; Budny, R S; Kawall, J G
1978-09-01
A computer-oriented, hot-wire anemometer technique for the simultaneous measurement of velocity and temperature in heated turbulent flows is described. This technique involves conversion of analogue anemometer voltage signals into digital forms and processing of these latter on a digital computer, in accordance with the anemometer response equations, to obtain instantaneous temperature and velocity. The technique was tested with a heated plane jet and found to be satisfactory.
Measurements of electron drift velocity in pure isobutane
Energy Technology Data Exchange (ETDEWEB)
Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas
2009-07-01
In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)
Two-dimensional model for circulating fluidized-bed reactors
Energy Technology Data Exchange (ETDEWEB)
Schoenfelder, H.; Kruse, M.; Werther, J. [Technical Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Chemical Engineering
1996-07-01
Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.
Institute of Scientific and Technical Information of China (English)
王殊轶; 钱省三; 张敏燕; 周颖
2009-01-01
Complicated characteristic of facial modality acquisition and measurement is commonly needed in clinical environment.Two different methods were compared, one method was acquisition two-dimensional character based on the principle of machine vision with a charge-coupled device (CCD) capturing image, and another method was acquisition three-dimensional character based on the technology of Reverse Engineering with laser scanning capturing image. The principle, composition of the system, calibration and characteristics of different method are analyzed. Two-dimensional and three-dimensional facial data of thirty undergraduates was used to compare different methods. The application and restriction of different methods are concluded. The conclusion of this paper provided a reference for face plastic surgery, facial paralysis, facial surgical evaluation and rehabilitation design.%临床医学中常需要对复杂的面部形态进行特征提取与测量.文章比较了利用CCD进行面部软组织图像采集获得二维特征参量和利用逆向工程技术的激光面部软组织三维数据提取三维特征的两种方法,分析各自的原理、系统组成、标定方法与各自特点,利用这两种方法对30人进行了面部二维和三维特征数据提取比较,得出了两种方法的适用条件与限制.试验结果可为整形设计、面瘫、脸部外科手术评估、康复研究等临床应用提供参考.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder
Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong
2016-06-01
There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.
Using embedded fibers to measure explosive detonation velocities
Energy Technology Data Exchange (ETDEWEB)
Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.
2012-07-01
Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.
Measurement of Critical Impact Velocity of Copper in Tension
Institute of Scientific and Technical Information of China (English)
HU Jin-Wei; JIN Yang-Hui; CHEN Da-Nian; WU Shan-Xing; WANG Huan-Ran; MA Dong-Fang
2008-01-01
@@ Critical impact velocity (CIV) of oxygen-free high-conductivity (OFHC) copper is experimentally measured with a novel facility in a gas gun system.The results are compared with the theoretical predictions using the typical constitutive relations,and the measured CIV value is much lower than the predictions.
Estimating Radar Velocity using Direction of Arrival Measurements
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.
Kinetic analysis of two dimensional metallic grating Cerenkov maser
Energy Technology Data Exchange (ETDEWEB)
Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-08-15
The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Normalized velocity profiles of field-measured turbidity currents
Xu, Jingping
2010-01-01
Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.
Institute of Scientific and Technical Information of China (English)
解欣欣; 郑慧; 张婧姝; 靳鹏; 帅秀芳; 姚文; 张昊
2012-01-01
目的 应用二维斑点追踪成像(2D-STI)与定量组织速度成像(QTVI)技术评价心功能不全患者左室扭转运动特征,对比分析两种方法在评价心功能不全中的应用价值.方法 收集30例心功能不全患者(心功能不全组)和30例健康志愿者(正常对照组)的左室心底水平(MV)及心尖水平(AP)标准短轴图像.应用2D-STI测量各水平峰值旋转角度(Pr)、收缩末峰值旋转角度(AVC-r),计算左室扭转角度(LVtw)、收缩末左室扭转角度(AVC-LVtw).应用QTVI测量各水平侧壁及后间隔切线方向运动速度,并得出该水平收缩期侧壁间隔位移差(SDl-s),计算左室扭转运动指数(TMI).由同一观察者于不同时间反复测量上述参数,计算两种方法的观察者内变异系数.结果 ①正常对照组的收缩期旋转及扭转运动特征:从心尖向心底方向观察,MV顺时针旋转,AP逆时针旋转,左室逆时针扭转,LVtw为(14.57±3.06)°,TMI为11.80±1.16;② 心功能不全组MV旋转方向与正常对照组一致,部分病例AP旋转方向及左室扭转方向发生变化.心功能不全组Pr、LVtw、SDl-s及TMI均明显减低,差异有统计学意义(P＜0.05);③ 2D-STI技术在评价心功能不全方面较为稳定可靠,QTVI较为简捷直观.结论 2D-STI与QTVI技术均可用于评价心功能不全患者的左室旋转及扭转运动,2D-STI较为稳定可靠,QTVI较为简捷直观.%Objective To evaluate the characteristics of left ventricular twist in patients with cardiac insufficiency by using two-dimensional speckle tracking imaging and quantitative tissue velocity imaging, and to identify the application of the two methods. Methods We selected standard dynamic images of basal and apical-LV short-axis from thirty patients with cardiac insufficiency and thirty healthy volunteers. Basal and apical peak value of left ventricular rotation( Pr )and the value of left ventricular rotation at the end of systole( AVC-r )were measured by the
Laboratory Measurements of Velocity and Attenuation in Sediments
Energy Technology Data Exchange (ETDEWEB)
Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M
2004-06-08
Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile
Signal processing method for shear wave velocity measurement
Institute of Scientific and Technical Information of China (English)
Hou Xingmin; Qu Shuying; Shi Xiangdong
2007-01-01
Soil shear wave velocity (SWV) is an important parameter in geotechnical engineering. To measure the soil SWV, three methods are generally used in China, including the single-hole method, cross-hole method and the surface-wave technique. An optimized approach based on a correlation function for single-hole SWV measurement is presented in this paper. In this approach, inherent inconsistencies of the artificial methods such as negative velocities, and too-large and too-small velocities, are eliminated from the single-hole method, and the efficiency of data processing is improved. In addition, verification using the cross-hole method of upper measuring points shows that the proposed optimized approach yields high precision in signal processing.
Sound field separation with sound pressure and particle velocity measurements
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin
2012-01-01
separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance...... pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward. © 2012 Acoustical Society of America....
Velocity of detonation (VOD measurement techniques - practical approach
Directory of Open Access Journals (Sweden)
Aruna Dhanraj Tete
2013-06-01
Full Text Available Velocity of Detonation (VOD is an important measure characteristics parameter of explosive material. The performance of explosive invariably depends on the velocity of detonation. The power/ strength of explosive to cause fragmentation of the solid structure determine the efficiency of the Blast performed. It is an established fact that measuring velocity of detonation gives a good indication of the strength and hence the performance of the explosive. In this survey various VOD measurement techniques such as electric, nonelectric and fibre optic have been discussed. To aid the discussion some commercially available VOD meter comparison are also presented. After review of the existing units available commercially and study of their respective merits and demerits, feature of an ideal system is proposed.
Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.
2005-10-01
The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.
Sensors for Using Times of Flight to Measure Flow Velocities
Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James
2006-01-01
Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Detailed Measurement of Horizontal Groundwater Velocities Without a Borehole
Bakker, M.; Calje, R.; Van der Made, K. J.; Schaars, F.
2014-12-01
A new methodology has been developed to measure horizontal groundwater velocities in unconsolidated aquifers. Groundwater velocities are measured with a heat tracer experiment. Temperature is measured along fiber optic cables using a Distributed Temperature Sensing (DTS) system. Fiber optic cables and a separate heating cable are pushed into the ground to depths of tens of meters. The groundwater is heated with the heating cable and the response is measured along several nearby fiber optic cables. The measured temperature responses are used to estimate the distribution of the magnitude and direction of the horizontal groundwater velocity over the entire depth of the cables. The methodology has been applied in a phreatic aquifer in the dune area along the Dutch coast. Significant variations of groundwater velocities with depth were observed even though the dune sand is relatively homogeneous. Major advantages of the new methodology are that the fiber optic cables are in direct contact with the groundwater and that the cables and installation are relatively cheap. No expensive boreholes are needed and consequently measurements are not affected by movement and mixing of water inside a borehole.
Optic-microwave mixing velocimeter for superhigh velocity measurement
Energy Technology Data Exchange (ETDEWEB)
Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua [Laboratory for Shock Waves and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan 621900 (China)
2011-12-15
The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.
Measuring of the maximum measurable velocity for dual-frequency laser interferometer
Institute of Scientific and Technical Information of China (English)
Zhiping Zhang; Zhaogu Cheng; Zhaoyu Qin; Jianqiang Zhu
2007-01-01
There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration, and electronics bandwidth. An experimental setup based on free falling movement has been demonstrated to measure the maximum easurable velocity for interferometers. Measurement results show that the maximum measurable velocity is less than its theoretical value. Moreover, the effect of kinds of factors upon the measurement results is analyzed, and the results can offer a reference for industrial applications.
Velocity and rotation measurements in acoustically levitated droplets
Energy Technology Data Exchange (ETDEWEB)
Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)
2012-10-01
The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.
Ihara, I.; Yamada, H.; Takahashi, M.
2011-01-01
A non-contact method with a laser-ultrasonic technique for measuring two-dimensional temperature distribution on a material surface is presented. The method consists of a laser-ultrasonic measurement of a one-dimensional temperature distribution on a material surface and its two-dimensional area mapping. The surface temperature is basically determined from a temperature dependence of the velocity of the surface acoustic wave (SAW) propagating on a material surface. One-dimensional surface temperature distributions are determined by an inverse analysis consisting of a SAW measurement and a finite difference calculation. To obtain a two-dimensional distribution of surface temperature on a material surface, SAW measurements within the area of a square on the surface are performed by a pulsed laser scanning with a galvanometer system. The inverse analysis is then applied to each of the SAW data to determine the surface temperature distribution in a certain direction, and the obtained one-dimensional distributions are combined to construct a two-dimensional distribution of surface temperature. It has been demonstrated from the experiment with a heated aluminum plate that the temperature distributions of the area of a square on the aluminium surface determined by the ultrasonic method almost agree with those measured using an infrared camera.
Wind Velocity Decreasing Effects of Windbreak Fence for Snowfall Measurement
Directory of Open Access Journals (Sweden)
Ki-Pyo You
2014-01-01
Full Text Available Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. In order to measure the amount of snowfall, areas unaffected by wind should be found. This study tried to determine the internal wind flow inside a windbreak fence, identifying an area unaffected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis and wind tunnel test, conducted field measurements of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for decreasing wind velocity. The double fence (width 4 m, height 60 cm, and fixed on the bottom has the greatest wind velocity decrease rate at the central part of octagonal windbreak.
Intraglottal velocity and pressure measurements in a hemilarynx model.
Oren, Liran; Gutmark, Ephraim; Khosla, Sid
2015-02-01
Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model.
Institute of Scientific and Technical Information of China (English)
张秋佳; 赵玉华; 韩冬; 余平; 刘明珠
2011-01-01
Referring to the complicated operating and bad field measuring of existing surface roughness, an on-line measurement method is presented based on laser two-dimensional scattering principle. The method proposed can not only measure the surface roughness parameters, but also figure out the surface topography. In this measurement, by using non-diffraction laser beam as light source and high accuracy CCD camera as displacement sensor, and applying the method of signal processing of surface roughness by Matlab, real-time measurement of surface roughness can be realized.This method is realized with modularized design, and has the advantages of simple structure, powerful real-time processing capability, high-precision measurement, visual display, and easy operation, etc.%针对现有零件表面粗糙度测量仪器操作复杂,现场测量能力差的问题,提出一种基于激光二维散射的在线测量方法,该方法不仅可以测量表面粗糙度的统计参数,而且可以反映出表面纹理的形貌特征.在测量中,用无衍射激光光束作光源,用高精度的CCD摄像机作位移传感器,利用Matlab进行表面粗糙度测量数据采集与处理,使表面粗糙度在线检测成为可能.该方法运用模块化设计,具有结构简单、实时处理能力强、测试精度高、显示结果直观、不会划伤被测件等优点.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Precise Measurement of Drift Velocities in Active-Target Detectors
Jensen, Louis
2016-09-01
Nuclear experiments with radioactive beams are needed to improve our understanding of nuclei structure far from stability. Radioactive beams typically have low beam rates, but active-target detectors can compensate for these low beam rates. In active-target detectors that are also Time-Projection Chambers (TPC), ionized electrons drift through an electric fieldto a detection device to imagethe trajectory of charged-particle ionization tracks within the chamber's gas volume. The measurement of the ionized electrons' drift velocity is crucial for the accurate imaging of these tracks. In order to measure this drift velocity, we will use a UV laser and photo-sensitive foil in a the ND-Cubedetector we are developing, periodically releasingelectrons from the foil at a known timesand a known distance from the electron detector, thereby precisely measuring the drift velocity in situ. We have surveyed several materials to find a material that will work well with typical solid-state UV lasers on the market. We plan to determine the best material and thickness of the foil to maximize the number of photoelectrons. The precision that will be afforded by this measurement of the drift velocity will allow us to eliminate a source of systematic uncertainty.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Two-Dimensional turbulence in the inverse cascade range
Yakhot, V
1999-01-01
A theory of two-dimensional turbulence in the inverse energy cascade range is presented. Strong time-dependence of the large-scale features of the flow ($\\bar{u^{2}}\\propto t$) results in decoupling of the large-scale dynamics from statistically steady-state small-scale random processes. This time-dependence is also a reason for the localness of the pressure-gradient terms in the equations governing the small-scale velocity difference PDF's. The derived expressions for the pressure gradient contributions lead to a gaussian statistics of transverse velocity differences. The solution for the PDF of longitudinal velocity differences is based on a smallness of the energy flux in two-dimensional turbulence. The theory makes a few quantitative predictions which can be tested experimentally. One of the most surprising results, derived in this paper, is that the small-scale transverse velocity differences are governed by a linear Langevin-like equation, strirred by a non-local universal gaussian random force. This ex...
Improved Measurement of Ejection Velocities From Craters Formed in Sand
Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.
2014-01-01
A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.
An inexpensive instrument for measuring wave exposure and water velocity
Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.
2011-01-01
Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.
Mccolgan, C. J.; Larson, R. S.
1978-01-01
The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity.
Particle Velocity Measurement for Spherical Wave in Solid
Institute of Scientific and Technical Information of China (English)
ZHENG Xue-feng; WANG Zhan-jiang; LIN Jun-de; SHEN Jun-yi
2006-01-01
An experimental technique for research on spherical divergent wave propagation in a solid has been developed,in which the source of generating spherical wave is a center initiating explosive charge designed in a mini-spherical shape with yield equivalent to 0.125 g and 0. 486 g TNT and a set of circular electromagnetic particle velocity gages is used to record the particle velocity histories. By using the circular electromagnetic particle velocity gages, the signal outputs not only are unattenuated due to the geometrical divergence, but also represent the average of the measured dynamic states of the medium over a circle on the wavefront. The distinctive features of this technique are very useful for the study of spherical divergent wave propagation in a solid, especially in an inhomogeneous solid, and the corresponding material dynamics.Many experimental measurements were conducted in polymethylmethacrylate (PMMA) and granite by means of the technique, and the reproducibility of tests was shown to be good. The measurement technique of the circular electromagnetic particle velocity gages is also suitable to the case of cylindrical wave.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
High resolved velocity measurements using Laser Cantilever Anemometry
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2016-11-01
We have developed a new anemometer, namely the 2d-LCA (2d-Laser-Cantilever-Anemometer), that is capable of performing high resolved velocity measurements in fluids. The anemometer uses a micostructured cantilever made of silicon as a sensing element. The specific shape and the small dimensions (about 150µm) of the cantilever allow for precise measurements of two velocity component at a temporal resolution of about 150kHz. The angular acceptance range is 180° in total. The 2d-LCA is a simple to use alternative to x-wires and can be used in many areas of operation including measurements in liquids or in particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high-speed flows. In the recent past new cantilever designs were implemented with the goal to further improve the angular resolution and increase the stability. In addition, we have designed more robust cantilevers for measurements in rough environments such as offshore areas. Successful comparative measurements with hot-wires have been carried out in order to assess the performance of the 2d-LCA.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
Energy Technology Data Exchange (ETDEWEB)
Baker, Kevin
2015-12-08
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Dwarf Galaxies in the Coma Cluster: I. Velocity Dispersion Measurements
Kourkchi, E; Carter, D; Karick, A M; Mármol-Queraltó, E; Chiboucas, K; Tully, R B; Mobasher, B; Guzmán, R; Matković, A; Gruel, N
2011-01-01
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21
Research on the photoelectric measuring method of warhead fragment velocity
Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan
2016-09-01
The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.
Investigation of gravity waves using horizontally resolved radial velocity measurements
Directory of Open Access Journals (Sweden)
G. Stober
2013-06-01
Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of a pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g. horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.
Velocity measurements in jets with application to noise source modeling
Morris, Philip J.; Zaman, K. B. M. Q.
2010-02-01
This paper describes an experimental investigation of the statistical properties of turbulent velocity fluctuations in an axisymmetric jet. The focus is on those properties that are relevant to the prediction of noise. Measurements are performed using two single hot-wire anemometers as well as a two-component anemometer. Two-point cross correlations of the axial velocity fluctuations and of the fluctuations in the square of the axial velocity fluctuations are presented. Several reference locations in the jet are used including points on the jet lip and centerline. The scales of the turbulence and the convection velocity are determined, both in an overall sense as well as a function of frequency. The relationship between the second and fourth order correlations is developed and compared with the experimental data. The implications of the use of dimensional as well as non-dimensional correlations are considered. Finally, a comparison is made between the length scales deduced from the flow measurements and a RANS CFD calculation.
Investigation of gravity waves using horizontally resolved radial velocity measurements
Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.
2013-10-01
The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.
Investigation of gravity waves using horizontally resolved radial velocity measurements
Directory of Open Access Journals (Sweden)
G. Stober
2013-10-01
Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.
Flow velocity measurement with the nonlinear acoustic wave scattering
Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay
2015-10-01
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Flow velocity measurement with the nonlinear acoustic wave scattering
Energy Technology Data Exchange (ETDEWEB)
Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)
2015-10-28
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Random diffusion and cooperation in continuous two-dimensional space.
Antonioni, Alberto; Tomassini, Marco; Buesser, Pierre
2014-03-07
This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic interactions, and in the presence of agent random mobility. The goal is to investigate whether cooperation can evolve and be stable when agents can move randomly in continuous space. When the agents all have the same constant velocity cooperation may evolve if the agents update their strategies imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation does not improve with respect to the static random geometric graph case. When viscosity effects set-in and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's Dilemma. However, cooperation does not spread in the population as in the constant velocity case.
Measurement uncertainty budget of an interferometric flow velocity sensor
Bermuske, Mike; Büttner, Lars; Czarske, Jürgen
2017-06-01
Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Coseismic and postseismic velocity changes measured by repeating earthquakes
Schaff, David P.; Beroza, Gregory C.
2004-10-01
Repeating earthquakes that rupture approximately the same fault patch and have nearly identical waveforms are a useful tool for measuring temporal changes in wave propagation in the Earth's crust. Since source and path effects are common to all earthquakes in a repeating earthquake sequence (multiplet), differences in their waveforms can be attributed to changes in the characteristics of the medium. We have identified over 20 multiplets containing between 5 and 40 repeating events in the aftershock zones of the 1989 Loma Prieta and 1984 Morgan Hill, California, earthquakes. Postmain shock events reveal delays of phases in the early S wave coda of as much as 0.2 s relative to premain shock events. The delay amounts to a path-averaged coseismic velocity decrease of about 1.5% for P waves and 3.5% for S waves. Since most of the multiplets are aftershocks and follow Omori's law, we have excellent temporal sampling in the immediate postmain shock period. We find that the amplitude of the velocity decrease decays logarithmically in time following the main shock. In some cases it returns to the premain shock values, while in others it does not. Similar results are obtained for the Morgan Hill main shock. Because the fractional change in S wave velocity is greater than the fractional change in P wave velocity, it suggests that the opening or connection of fluid-filled fractures is the underlying cause. The magnitude of the velocity change implies that low effective pressures are present in the source region of the velocity change. Our results suggest that the changes are predominantly near the stations and shallow, but we cannot exclude the possibility that changes occur at greater depth as well. If the variations are shallow, we may be detecting the lingering effects of nonlinearity during main shock strong ground motion. If the variations are deep, it suggests that pore pressures at seismogenic depths are high, which would likely play a key role in the earthquake process.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
A potential issue for the OPERA neutrino velocity measurement
Palazzo, Antonio
2011-01-01
We discuss what we think may be a potential issue for the OPERA neutrino velocity measurement, in connection with the statistical procedure employed for the extraction of the neutrino time of flight. We show that such a potential problem may have eluded the Monte Carlo tests performed by the collaboration. Only the collaboration has the information necessary to clarify the issue, make quantitative estimates and trace definitive conclusions.
Instantaneous velocity profile measurements in a turbulent boundary layer
Robinson, S. K.
1986-01-01
Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat-plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained using a buried-wire, wall shear gage and a hot-wire rake positioned in the log region of the flow. Fluctuations of the instantaneous U(+) versus Y(+) profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high, and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events), and to estimate their mean frequency of occurrence. Events characterized by large aand sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.
Seeing-Induced Errors in Solar Doppler Velocity Measurements
Padinhatteeri, Sreejith; Sankarasubramanian, K; 10.1007/s11207-010-9597-1
2010-01-01
Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocitie...
Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.
Kim, Eun-jin
2006-03-03
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.
Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium
Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.
2014-10-01
Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.
Energy Technology Data Exchange (ETDEWEB)
Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Institute of Scientific and Technical Information of China (English)
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
Experimental Analysis of Two-Dimensional Pedestrian Flow in front of the Bottleneck
cek, Marek Buká\\v; Krbálek, Milan
2014-01-01
This contribution presents experimental study of two-dimensional pedestrian flow with the aim to capture the pedestrian behaviour within the cluster formed in front of the bottleneck. Two experiments of passing through a room with one entrance and one exit were arranged according to phase transition study in Ezaki et al. (2012), the inflow rate was regulated to obtain different walking modes. By means of automatic image processing, pedestrians' paths are extracted from camera records to get actual velocity and local density. Macroscopic information is extracted by means of virtual detector and leaving times of pedestrians. The pedestrian's behaviour is evaluated by means of density and velocity. Different approaches of measurement are compared using several fundamental diagrams. Two phases of crowd behaviour have been recognized and the phase transition was described.
Coherent Laser Instrument Would Measure Range and Velocity
Chang, Daniel; Cardell, Greg; San Martin, Alejandro; Spiers, Gary
2005-01-01
A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic
Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities
Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.
2002-12-01
The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface
Measurement of the velocity field behind the automotive vent
Directory of Open Access Journals (Sweden)
Jedelský Jan
2012-04-01
Full Text Available Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.
Measurement of the velocity field behind the automotive vent
Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav
2012-04-01
Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.
Measurement of Damage Velocities in Bullet Impacts of Transparent Armor
Anderson, Charles; Bigger, Rory; Weiss, Carl
2013-06-01
A series of impact experiments have been conducted to examine the response of transparent material to ballistic impact. The experiments consisted of impacting 15 mm of borosilicate glass back by 9.5 mm of Lexan. The projectile was a 0.30-cal hard steel bullet designed specifically for the experiments. Residual velocities and the residual length of the bullets (which were soft-recovered in a catch box) were measured as a function of impact velocity. High-speed imaging of the impact event and post-test analysis has permitted quantification of damage propagation and the rate of propagation. The results of several experiments are presented and compared to edge-on impact experiments that have been conducted by Strassburger et al..
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Two-dimensional cellular automaton model of traffic flow with open boundaries
Tadaki, S I
1996-01-01
A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.
Unsteady velocity measurements in a realistic intracranial aneurysm model
Ugron, Ádám; Farinas, Marie-Isabelle; Kiss, László; Paál, György
2012-01-01
The initiation, growth and rupture of intracranial aneurysms are intensively studied by computational fluid dynamics. To gain confidence in the results of numerical simulations, validation of the results is necessary. To this end the unsteady flow was measured in a silicone phantom of a realistic intracranial aneurysm. A flow circuit was built with a novel unsteady flow rate generating method, used to model the idealised shape of the heartbeat. This allowed the measurement of the complex three-dimensional velocity distribution by means of laser-optical methods such as laser doppler anemometry (LDA) and particle image velocimetry (PIV). The PIV measurements, available with high temporal and spatial distribution, were found to have good agreement with the control LDA measurements. Furthermore, excellent agreement was found with the numerical results.
Precision measurement of the carrier drift velocities in <100> silicon
Scharf, C
2015-01-01
Measurements of the drift velocities of electrons and holes as functions of electric field and temperature in high-purity n- and p-type silicon with crystal orientation are presented. The measurements cover electric field values between 2.4 and 50 kV/cm and temperatures between 233 and 333 K. Two methods have been used for extracting the drift velocities from current transient measurements: A time-of-flight (tof) method and fits of simulated transients to the measured transients, with the parameters describing the field and temperature dependence of the electron and hole mobilities as free parameters. A new mobility parametrization, which also provides a better description of existing data than previous ones, allowed an extension of the classical tof method to the situation of non-uniform fields. For the fit method, the use of the convolution theorem of Fourier transforms enabled us to precisely determine the electronics transfer function of the complete set-up, including the sensor properties. The agreement...
Results from laboratory tests of the two-dimensional Time-Encoded Imaging System.
Energy Technology Data Exchange (ETDEWEB)
Marleau, Peter; Brennan, James S.; Brubaker, Erik; Gerling, Mark D; Le Galloudec, Nathalie Joelle
2014-09-01
A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.
Mechanically driven growth of quasi-two dimensional microbial colonies
Farrell, F D C; Marenduzzo, D; Waclaw, B
2013-01-01
We study colonies of non-motile, rod-shaped bacteria growing on solid substrates. In our model, bacteria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient. We show that mechanical interactions control the velocity and shape of the advancing front, which leads to features that cannot be captured by established Fisher-Kolmogorov models. In particular, we find that the velocity depends on the elastic modulus of bacteria or their stickiness to the surface. Interestingly, we predict that the radius of an incompressible, strictly two-dimensional colony cannot grow linearly in time. Importantly, mechanical interactions can also account for the nonequilibrium transition between circular and branching colonies, often observed in the lab.
Diffusion in the two-dimensional nonoverlapping Lorentz gas
James, Corinne P.; Evans, Glenn T.
1987-10-01
The self-diffusion coefficient, velocity autocorrelation function, and distribution of collision times for a two-dimensional nonoverlapping Lorentz gas were calculated using molecular dynamics simulation. The systems studied covered a range of densities, from a packing fraction (πNr2/L2) of 0.01 to 0.8. Self-diffusion coefficients were found to agree to all densities with kinetic theory predictions [A. Weijland and J. M. J. van Leeuwen, Physica 38, 35 (1968)] if the radial distribution function (rdf) was taken into account. The density dependence of the decay of the velocity autocorrelation function was qualitatively different from that predicted by kinetic theory. The distribution of collision times was nearly exponential for all but the highest density studied.
Two-dimensional, single-photoelectron drift detector for Cherenkov ring imaging
Energy Technology Data Exchange (ETDEWEB)
Barrelet, E.; Seguinot, J.; Urban, M.; Ypsilantis, T. (Ecole Polytechnique, 91 - Palaiseau (France)); Ekeloef, T. (European Organization for Nuclear Research, Geneva (Switzerland)); Lund-Jensen, B. (Uppsala Univ. (Sweden)); Tocqueville, J. (College de France, 75 - Paris)
1982-09-15
A detector capable of imaging single photoelectrons has been constructed and tested. UV photons (>=5.4 eV) are converted to electrons with high quantum efficiency by photoionization of a small admixture (approx. equal to 1 Torr) of an organic vapour TMAE in a predominantly methane drift and amplifying gas at atmospheric pressure. The produced photoelectrons drift in a uniform applied electric field to a picket fence of proportional wires where each electron is amplified, counted and timed. The two-dimensional source point of each photoelectron is uniquely determined by the hit wire address and the arrival time. The detector has been tested by measuring ionization electrons produced in the drift gas be relativistic charged particles. The limiting precision to which the electron source point can be determined has been measured to be 300 ..mu..m (r.m.s.) in the drift direction and 370 ..mu..m in the wire plane direction. Additional independent error sources due to electron diffusion in the drift gas have been measured to be proportional to the square root of the drift distance with a proportionality constant of 235 ..mu..m/cmsup(1/2) in both directions. Drift velocities of electrons in various predominantly methane gas mixtures have been measured as a function of the applied electric field. The utilization of such a two-dimensional single electron drift detector for Cherenkov ring imaging is presented with a discussion of the advantages and limitations of the drift method for imaging.
Measurement of surface recombination velocity on heavily doped indium phosphide
Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila
1990-01-01
Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.
Measurements of parallel electron velocity distributions using whistler wave absorption.
Thuecks, D J; Skiff, F; Kletzing, C A
2012-08-01
We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.
Velocity-selective EIT measurement of potassium Rydberg states
Xu, Wenchao
2016-01-01
We demonstrate a velocity selection scheme that mitigates suppression of electromagnetically induced transparency (EIT) by Doppler shifts for low--high EIT probe--coupling wavelength ordering. An optical pumping beam counter-propagating with the EIT probe beam transfers atoms between hyperfine states in a velocity selective fashion. Measurement of the transmitted probe beam synchronous with chopping of the optical pumping beam enables a Doppler-free EIT signal to be detected. Transition frequencies between 5P$_{1/2}$ and $n$S$_{1/2}$ states for $n=$26, 27, and 28 in $^{39}$K are obtained via EIT spectroscopy in a heated vapor cell with a probe beam stabilized to the 4S$_{1/2}\\rightarrow$5P$_{1/2}$ transition. Using previous high-resolution measurements of the 4S$_{1/2}\\rightarrow$nS$_{1/2}$ transitions, we make a determination of the absolute frequency of the 4S$_{1/2}\\rightarrow$5P$_{1/2}$ transition. Our measurement is shifted by 560 MHz from the currently accepted value with a two-fold improvement in uncer...
Low-cost optoelectronic devices to measure velocity of detonation
Chan, Edwin M.; Lee, Vivian; Mickan, Samuel P.; Davies, Phil J.
2005-02-01
Velocity of Detonation (VoD) is an important measured characteristic parameter of explosive materials. When new explosives are developed, their VoD must be determined. Devices used to measure VoD are always destroyed in the process, however replacing these devices represents a considerable cost in the characterisation of new explosives. This paper reports the design and performance of three low-cost implementations of a point-to-point VoD measurement system, two using optical fibre and a third using piezoelectric polymers (PolyVinyliDine Flouride, PVDF). The devices were designed for short charges used under controlled laboratory conditions and were tested using the common explosive 'Composition B'. These new devices are a fraction of the cost of currently available VoD sensors and show promise in achieving comparable accuracy. Their future development will dramatically reduce the cost of testing and aid the characterisation of new explosives.
Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation
Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.
2012-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same
American Society for Testing and Materials. Philadelphia
2001-01-01
Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete
Kee, Seong-Hoon; Zhu, Jinying
2013-11-01
The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures.
Absolute velocity measurements in the solar transition region and corona
Hassler, D. M.; Rottman, G. J.; Orrall, F. Q.
An experimental technique is presented to measure absolute velocities of minor ions formed in the solar transition region and corona. A sounding rocket experiment July 27 1987 obtained high resolution EUV spectra along a solar diameter with spatial resolution of 20 x 20 arcsec. The wavelengths of the 1533 Si II, 1548 C IV, and 770 Ne VIII emission lines were directly compared with wavelengths of known platinum lines generated by an inflight calibration lamp. On the assumption that horisontal motions cancel statistically so that the line-of-sight velocity approaches zero at the limb, a net radial downflow of approximately 7.5 + or - 1.0 km/s was found for C IV and upper limits were found on the radial flow for Si II and Ne VIII. This assumption was tested by direct comparison to the on-board wavelength reference using recently published laboratory rest wavelengths of the solar emission lines. Agreement was found within the published uncertainties of the laboratory wavelengths + or - 2 km/s in the case of C IV. It is suggested that improved laboratory wavelength measurements (+ or - 1 km/s) in conjunction with inflight wavelength calibration would improve constraints on models of transition region and coronal dynamics.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Improved technique for blood flow velocity measurement using Doppler effect
Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.
2002-04-01
The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.
Institute of Scientific and Technical Information of China (English)
潘兵; 俞立平; 吴大方
2013-01-01
By comparing the two images recorded in different configurations on the same object surface, two-dimensional digital image correlation (2D-DIC) method produces full-field displacement with sub-pixel accuracy and full-field strains in the recorded images. In a practical measurement, however, various deteriorative factors, such as small out-of-plane motion of the test object surface, small out-of-plane motion of the sensor target and geometric distortion of the imaging lens may seriously impair the originally assumed linear correspondence between images displacement and object motions. In certain cases, these disadvantages may lead to significant errors in measuring displacements and strains. The measurement errors of 2D-DIC due to the above three unavoidable deteriorative factors are first described briefly. Then, the performances of three typical imaging lenses, including a standard lens, an object-side telecentric lens and a bilateral telecentric lens, against these three deteriorative factors are investigated experimentally using easy-to-implement static, out-of-plane and in-plane rigid body translation tests. A detailed examination reveals that a high-quality bilateral telecentric lens is not only insensitive to out-of-plane motions of the test object and the self-heating of a camera being used, but also demonstrates negligible lens distortion. So the bilateral lens is highly recommended for high accuracy 2D-DIC measurement.%通过比较变形前后同一平面物体表面的两幅数字图像,二维数字图像相关方法可获得亚像素精度的像面位移(以像素为单位)和应变.但在实际测量中,变形物体表面的离面位移、相机传感器平面位置的微小改变以及镜头的成像畸变,都会使原先假设的物、像面位移间的线性对应关系不再严格成立,在某些情况下会引起不能忽略的测量误差.详细分析了被测物体的离面位移、相机自热和镜头畸变对二维数字图像相关方法位
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
INCREASING MEASUREMENT ACCURACY IN ELECTRO-OPTICAL METHOD FOR MEASURING VELOCITY OF DETONATION
Directory of Open Access Journals (Sweden)
Mario Dobrilović
2014-12-01
Full Text Available In addition to other detonation parameters detonation velocity is a value that provides indirect information on the strength i.e. brisance of an explosive and explosive performance. In addition to that, detonation velocity is a value which can be measured in a relatively simpler and more precise manner, by developed and accessible methods when compared to other detonation parameters Due to its simple use, compact instruments and satisfactory accuracy, electro-optical method of detonation velocity measurement is widely used. The paper describes the electro-optical measurement method and points out the factors that affect its accuracy. The accuracy of measurement is increased and measurement uncertainty is reduced by the measurement result analysis with the application of different measurement setups.
Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System
Directory of Open Access Journals (Sweden)
Yidong Hou
2017-01-01
Full Text Available A pair of ultrahigh-frequency (UHF radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Velocity field measurements in the wake of a propeller model
Mukund, R.; Kumar, A. Chandan
2016-10-01
Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.
Force-velocity measurements of a few growing actin filaments.
Directory of Open Access Journals (Sweden)
Coraline Brangbour
2011-04-01
Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.
Force-Velocity Measurements of a Few Growing Actin Filaments
Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean
2011-01-01
The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364
Combining flow routing modelling and direct velocity measurement for optimal discharge estimation
Directory of Open Access Journals (Sweden)
G. Corato
2011-03-01
Full Text Available A new procedure is proposed for estimating river discharge hydrographs during flood events, using only water level data measured at a gauged site, as well as 1-D shallow water modelling and sporadic maximum surface flow velocity measurements. During flood, the piezometric level is surmised constant in the vertical plane of the river section, where the top of the banks is always above the river level, and is well represented by the recorded stage hydrograph. The river is modelled along the reach directly located downstream the upstream gauged section, where discharge hydrograph is sought after. For the stability with respect to the topographic error, as well as for the simplicity of the data required to satisfy the boundary conditions, a diffusive hydraulic model is adopted for flow routing. Assigned boundary conditions are: (1 the recorded stage hydrograph at the upstream river site and (2 the zero diffusion condition at the downstream end of the reach. The MAST algorithm is used for the numerical solution of the flow routing problem, which is embedded in the Brent algorithm used for the computation of the optimum Manning coefficient. Based on synthetic tests concerning a broad prismatic channel, the optimal reach length is chosen so that the approximated downstream boundary condition effects on discharge hydrograph assessment at upstream end are negligible. The roughness Manning coefficient is calibrated by using sporadic instantaneous surface velocity measurements during the rising limb of flood that are turned into instantaneous discharges through the solid of velocity estimated by a two-dimensional entropic model. Several historical events, occurring in three gauged sites along the upper Tiber River wherein a reliable rating curve is available, have been used for the validation. The analysis outcomes can be so summarized: (1 criteria adopted for selecting the optimal channel length and based on synthetic tests have been proved reliable by
Le Texier, H.; Solomon, S.; Thomas, R. J.; Garcia, R. R.
1989-01-01
Seasonal variations of the OH-asterisk (7-5) mesospheric hydroxyl emission at 1.89 microns observed by the SME near-IR spectrometer are compared with the theoretical predictions of a two-dimensional dynamical/chemical model. The good agreement found at low latitudes for both dayglow and nightglow provides support for the model assumption that breaking gravity waves induce seasonal and latitudinal variations in diffusion. The seasonal behavior of atomic hydrogen in the upper mesosphere (related to vertical transport) and/or uncertainties in the OH Meinel band parameters are proposed as possible explanations for the discrepancy noted between model and observational data for the middle latitudes.
Wind velocity measurements under turbulent conditions using a sphere anemometer
Energy Technology Data Exchange (ETDEWEB)
Heisselmann, Hendrik; Hoelling, Michael; Schulte, Bianca; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)
2008-07-01
A well known problem of cup anemometry is the so-called overspeeding due to its momentum of inertia. As in nature turbulent flow conditions are predominant, cup anemometry leads to a wrong estimation of wind speeds. While cup anemometers do not provide the necessary time resolution to measure high frequency wind fluctuations, hot-wire anemometers are easily damaged under rough weather conditions. Therefore a robust, fast responding sphere anemometer was developed. The anemometer uses the thrust generated by the drag force on a sphere mounted on a flexible rod to detect wind velocities in two dimensions. The deflection of the rod is proportional to the drag force and can be measured either by means of a light pointer or by use of strain gauges. The two different measurement techniques were compared. The dynamic behaviour of the thrust anemometer was studied under laboratory conditions using a wind gust generator. The characteristics of different sphere-types and different rod materials were evaluated in order to optimize the setup. Results of open air measurements with hot-wire anemometer, sonic anemometer and sphere anemometer were compared by statistical methods.
Monolithic interferometer for high precision radial velocity measurements
Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian
2009-08-01
In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Radio-controlled boat for measuring water velocities and bathymetry
Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej
2016-04-01
Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Comparing radial velocities of atmospheric lines with radiosonde measurements
Figueira, P; Chacon, A; Lovis, C; Santos, N C; Curto, G Lo; Sarazin, M; Pepe, F
2011-01-01
The precision of radial velocity (RV) measurements depends on the precision attained on the wavelength calibration. One of the available options is using atmospheric lines as a natural, freely available wavelength reference. Figueira et al. (2010) measured the RV of O2 lines using HARPS and showed that the scatter was only of ~10 m/s over a timescale of 6 yr. Using a simple but physically motivated empirical model, they demonstrated a precision of 2 m/s, roughly twice the average photon noise contribution. In this paper we take advantage of a unique opportunity to confirm the sensitivity of the telluric absorption lines RV to different atmospheric and observing conditions: by means of contemporaneous in-situ wind measurements by radiosondes. The RV model fitting yielded similar results to that of Figueira et al. (2010), with lower wind magnitude values and varied wind direction. The probes confirmed the average low wind magnitude and suggested that the average wind direction is a function of time as well. The...
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Epi-two-dimensional flow and generalized enstrophy
Yoshida, Zensho
2016-01-01
The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\
Two dimensional fractional projectile motion in a resisting medium
Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan
2014-07-01
In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.
Silverman, S; Sanchez-Migallon Guzman, D; Stern, J; Gustavsen, K A; Griffiths, L G
2016-06-01
To objectively and subjectively describe the normal spectrum of two-dimensional echocardiographic findings in the central bearded dragon (Pogona vitticeps). Sixteen central bearded dragons. Central bearded dragons were prospectively evaluated under manual restraint in right and left lateral recumbency to identify imaging planes for reproducible measurements of cardiac chambers, subjective two-dimensional analysis and color Doppler assessment. Echocardiography can be performed through windows in the left and right axillae. The window in the left axilla allows for a subjective and objective assessment of cardiac structure and function. The right axillary window allows for evaluation of pulmonary artery flow. Both views provide data for the presence of pericardial effusion or valvular insufficiency. With optimized imaging planes, cardiac chambers and fractional area change along with fractional shortening in the longitudinal and transverse planes can be calculated. Body weight and cardiac chamber dimensions of males were significantly larger than females. Ventricular fractional area change was the most consistent functional assessment. The majority of animals were found to have no evidence of valvular insufficiency, while approximately half had evidence of pericardial fluid. Pulmonary artery flow was assessed in all patients. Left and right aortic velocities cannot be reliably obtained. This study is the first to generate reference values for cardiac structure and function in clinically healthy central bearded dragons. Valvular insufficiency is not a normal finding in central bearded dragons, while mild pericardial effusion may be. Copyright © 2015 Elsevier B.V. All rights reserved.
Clustering behavior of solid particles in two-dimensional liquid-solid fluidized-beds
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, the clustering behavior of solid particles in a two-dimensional (2D) liquid-solid fluidized-bed was studied by using the charge coupled devices (CCD) imaging measuring and processing technique and was characterized by fractal analysis. CCD images show that the distribution of solid particles in the 2D liquid-solid fluidised-bed is not uniform and self-organization behavior of solid particles was observed under the present experimental conditions. The solid particles move up in the 2D fluidized-bed in groups or clusters whose configurations are often in the form of horizontal strands. The box fractal dimension of the cluster images in the 2D liquid-solid fluidized-bed increases with the rising of solid holdup and reduces with the increment of solid particle diameter and superficial liquid velocity. At given solid holdup and solid particle size,the lighter particles show smaller fractal dimensions.
Bubble dynamics in a two-dimensional gas-solid fluidized bed
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Related referential studies on gas-solid two-phase flows were briefly reviewed. Bubble ascending in a two-dimensional (2D) gas-solid fluidized bed was studied both experimentally and numerically. A modified continuum model expressed in the conservation form was used in numerical simulation. Solid-phase pressure was modeled via local sound speed; gas-phase turbulence was described by the K-ε two-equation model. The modified implicit multiphase formulation (IMF) scheme was used to solve the model equations in 2D Cartesian/cylindrical coordinates. The bubble ascending velocity and particle motion in the 2D fluidized bed were measured using the photochromic dye activation (PDA) technique, which was based on UV light activation of particles impregnated with the dye. Effects of bed height and superficial gas velocity on bubble formation and ascent were investigated numerically. The numerically obtained bubble ascending velocities were compared with experimental measurements. Gas bubble in jetting gas-solids fluidized bed was also simulated numerically.
Complete velocity distribution in river cross-sections measured by acoustic instruments
Cheng, R.T.; Gartner, J.W.; ,
2003-01-01
To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.
Photonic systems for high precision radial velocity measurements
Halverson, Samuel
2016-01-01
I will discuss new instrumentation and techniques designed to maximize the Doppler radial velocity (RV) measurement precision of next generation exoplanet discovery instruments. These systems include a novel wavelength calibration device based on an all-fiber fabry-perot interferometer, a compact and efficient optical fiber image scrambler based on a single high-index ball lens, and a unique optical fiber mode mixer. These systems have been developed specifically to overcome three technological hurdles that have classically hindered high precision RV measurements in both the optical and near-infrared (NIR), namely: lack of available wavelength calibration sources, inadequate decoupling of the spectrograph from variable telescope illumination, and speckle-induced noise due to mode interference in optical fibers. The instrumentation presented here will be applied to the Habitable-zone Planet Finder, a NIR RV instrument designed to detect rocky planets orbiting in the habitable zones of nearby M-dwarfs, and represents a critical technological step towards the detection of potentially habitable Earth-like planets. While primarily focused in the NIR, many of these systems will be adapted to future optical RV instruments as well, such as NASA's new Extreme Precision Doppler Spectrometer for the WIYN telescope.
Video Measurement of the Muzzle Velocity of a Potato Gun
Jasperson, Christopher; Pollman, Anthony
2011-01-01
Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…
Video Measurement of the Muzzle Velocity of a Potato Gun
Jasperson, Christopher; Pollman, Anthony
2011-01-01
Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Directory of Open Access Journals (Sweden)
O. J. Marsh
2013-09-01
Full Text Available Ocean tides close to the grounding line of outlet glaciers around Antarctica have been shown to directly influence ice velocity, both linearly and non-linearly. These fluctuations can be significant and have the potential to affect satellite measurements of ice discharge, which assume displacement between satellite passes to be consistent and representative of annual means. Satellite observations of horizontal velocity variation in the grounding zone are also contaminated by vertical tidal effects, the importance of which is highlighted here in speckle tracking measurements. Eight TerraSAR-X scenes from the grounding zone of the Beardmore Glacier are analysed in conjunction with GPS measurements to determine short-term and decadal trends in ice velocity. Diurnal tides produce horizontal velocity fluctuations of >50% on the ice shelf, recorded in the GPS data 4 km downstream of the grounding line. This variability decreases rapidly to <5% only 15 km upstream of the grounding line. Daily fluctuations are smoothed to <1% in the 11-day repeat pass TerraSAR-X imagery, but fortnightly variations over this period are still visible and show that satellite-velocity measurements can be affected by tides over longer periods. The measured tidal displacement observed in radar look direction over floating ice also allows the grounding line to be identified, using differential speckle tracking where phase information cannot be easily unwrapped.
Methods of Measurement of High Air Velocities by the Hot-wire Method
Weske, John R.
1943-01-01
Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Sæther, Mathias; Ersland, Geir
2016-01-01
Acoustic material parameters of gas hydrate bearing porous rocks are important for evaluation of methods to exploit the vast methane gas resources present in the earth's subsurface, potentially combined with CO2 injection. A solid buffer method for measuring changes of the compressional wave velocity in porous rocks with changing methane hydrate contents under high-pressure hydrate-forming conditions, is tested and evaluated with respect to effects influencing on the measurement accuracy. The limited space available in the pressure chamber represents a challenge for the measurement method. Several effects affect the measured compressional wave velocity, such as interference from sidewall reflections, diffraction effects, the amount of torque (force) used to achieve acoustic coupling, and water draining of the watersaturated rock specimen. Test measurements using the solid buffer method in the pressure chamber at atmospheric conditions are compared to independent measurements using a water-bath immersion measu...
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Shock wave velocity measuring system based on vernier VISAR-type interferometers
Gubskii, K. L.; Koshkin, D. S.; Antonov, A. S.; Mikhailuk, A. V.; Pirog, V. A.; Kuznetsov, A. P.
2015-11-01
The paper presents a multi-line diagnostic system for measuring the surface velocity in shock physics experiments. This system is designed for simultaneous measurement of surface velocity at multiple points. It is free from ambiguity caused by harmonic dependence of interference signals on the velocity and has a time resolution of 0.8 ns.
Velocity measurement of model vertical axis wind turbines
Energy Technology Data Exchange (ETDEWEB)
Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering
2006-07-01
An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.
Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity
1999-01-01
High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant pot...
Spherical-shell boundaries for two-dimensional compressible convection in a star
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for twodimensional flow of Chaplygin gases.
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1999-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1998-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...
Quantitative measurement of high flow velocities by a spin echo MR technique
Energy Technology Data Exchange (ETDEWEB)
Lin Yigun (First Military Medical Coll., Quangzhou, FJ (China)); Kojima, Akihiro; Shinzato, Jintetsu; Sakamoto, Yuji; Ueno, Sukeyoshi; Takahashi, Mutsumasa; Higashida, Yoshiharu
A new method of flow measurement using a spin echo (SE) technique has been developed on the basis of the flow effect that at high velocities signal intensity decreases linearly with increasing flow velocity. Flow velocity is calculated from the signal intensity ratio of the flowing material in two images with the same imaging parameters but different echo times. The linear relationship between the signal intensity and flow velocity was examined with a steady flow phantom. When assessed with steady flows in the phantom, flow velocities calculated by this method were in good agreement with velocities measured by a flow meter. This method was used with ECG gating to measure the blood flow of the right common carotid artery of a healthy volunteer. The measured peak flow velocity and the pattern of flow velocities during systole correlated well with the results obtained by Doppler ultrasound. (author).
Video measurements of fluid velocities and water levels in breaking waves
CSIR Research Space (South Africa)
Govender, K
2002-01-01
Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...
Two-dimensional fluorescence spectroscopy of laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
2016-08-01
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.
Berthon, P; Fellmann, N
2002-09-01
The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.
Calibration of Instruments for Measuring Wind Velocity and Direction
Vogler, Raymond D.; Pilny, Miroslav J.
1950-01-01
Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,
A study of the river velocity measurement techniques and analysis methods
Chung Yang, Han; Lun Chiang, Jie
2013-04-01
Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating
Analytical Studies of Two-Dimensional Channel Turbulent Flow Subjected to Coriolis Force
鬼頭, 修己; 中林, 功一; キトウ, オサミ; Kito, Osami
1992-01-01
Coriolis effects on fully developed turbulent flow in a two-dimensional channel rotating about an axis perpendicular to its axis are considered. The Coriolis force has stabilizing/destabilizing effects on turbulence, and the mean velocity distribution changes accordingly. Experimental and numerical studies on the velocity characteristics have already been conducted by other researchers for various conditions. However, we cannot assemble the overall picture of the Coriolis effect on the veloci...
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Slow Light by Two-Dimensional Photonic Crystal Waveguides
Institute of Scientific and Technical Information of China (English)
ZHANG Chao; HUANG Yan; MAO Xiao-Yu; CUI Kai-Yu; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De
2009-01-01
A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.
Measuring 3D Velocity Vectors using the Transverse Oscillation Method
DEFF Research Database (Denmark)
Pihl, Michael Johannes; Jensen, Jørgen Arendt
2012-01-01
Experimentally obtained estimates of threedimensional (3D) velocity vectors using the 3D Transverse Oscillation (TO) method are presented. The method employs a 2D transducer and synthesizes two double-oscillating fields in receive to obtain the axial, transverse, and elevation velocity components...... simultaneously. Experimental data are acquired using the ultrasound research scanner SARUS. The double-oscillating TO fields are investigated in an experimental scanning tank setup. The results demonstrate that the created fields only oscillate in the axial plus either the transverse or the elevation direction...
Velocity measurement technique for high-speed targets based on digital fine spectral line tracking
Institute of Scientific and Technical Information of China (English)
Wen Shuliang; Yuan Qi
2006-01-01
Target velocity and acceleration are two of the most important features for identification of warheads and decoys in ballistic missile defense phased array radar systems. Velocity compensation is also the necessary step for one-dimensional range profile imaging. According to the high-velocity characteristics of ballistic objects and the low data rate of phased array radars with multiple target tracking, a fine spectral line digital velocity tracking frame is presented and a new method is developed to extract velocity error and resolve the velocity ambiguity in the measurement loop. Simulation results demonstrate the effectiveness of the proposed technique.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
The flow of a foam in a two-dimensional porous medium
Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves
2016-02-01
Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.
Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity
Dravins, Dainis; Lindegren, Lennart; Madsen, Søren
1999-08-01
High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (accuracy limit is set by uncertainties in the cluster expansion rate. Based (in part) on observations by the ESA Hipparcos satellite
Astrometric radial velocities; 1, Non-spectroscopic methods for measuring stellar radial velocity
Dravins, D; Madsen, S; Dravins, Dainis; Lindegren, Lennart; Madsen, Soren
1999-01-01
High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (<1 km/s) already with present data, although for some clusters an accuracy limit is set by uncertainties in the cluster expansion rate.
Two-dimensional energy spectra in a high Reynolds number turbulent boundary layer
Chandran, Dileep; Baidya, Rio; Monty, Jason; Marusic, Ivan
2016-11-01
The current study measures the two-dimensional (2D) spectra of streamwise velocity component (u) in a high Reynolds number turbulent boundary layer for the first time. A 2D spectra shows the contribution of streamwise (λx) and spanwise (λy) length scales to the streamwise variance at a given wall height (z). 2D spectra could be a better tool to analyse spectral scaling laws as it is devoid of energy aliasing errors that could be present in one-dimensional spectra. A novel method is used to calculate the 2D spectra from the 2D correlation of u which is obtained by measuring velocity time series at various spanwise locations using hot-wire anemometry. At low Reynolds number, the shape of the 2D spectra at a constant energy level shows λy √{ zλx } behaviour at larger scales which is in agreement with the literature. However, at high Reynolds number, it is observed that the square-root relationship gradually transforms into a linear relationship (λy λx) which could be caused by the large packets of eddies whose length grows proportionately to the growth of its width. Additionally, we will show that this linear relationship observed at high Reynolds number is consistent with attached eddy predictions. The authors gratefully acknowledge the support from the Australian Research Council.
Aortic pulse wave velocity measurement in systemic sclerosis patients
Directory of Open Access Journals (Sweden)
M. Sebastiani
2012-12-01
Full Text Available Background. Systemic sclerosis (SSc is characterized by endothelial dysfunction and widespread microangiopathy. However, a macrovascular damage could be also associated. Aortic pulse wave velocity (aPWV is known to be a reliable indicator of arterial stiffness and a useful prognostic predictor of cardiovascular events. Moreover, aPWV may be easily measured by non-invasive, user-friendly tool. Aim of our study was to evaluate aPWV alterations in a series of SSc patients. Methods. The aPWV was evaluated in 35 consecutive female SSc patients and 26 sex- and age-matched healthy controls. aPWV alterations were correlated with cardiopulmonary involvement. Results. A significant increase of aPWV was observed in SSc patients compared to controls (9.4±3.2 m/s vs 7.3±1 m/s; P=0.002. In particular, 14/35 (40% SSc patients and only 1/26 (4% controls (P=0.0009 showed increased aPWV (>9 m/s cut-off value. Moreover, echocardiography evaluation showed an increased prevalence of right atrial and ventricular dilatation (atrial volume: 23.6±6.2 mL vs 20.3±4.3 mL, P=0.026; ventricular diameter 19.5±4.9 mm vs 15.9±1.6 mm; P=0.001 associated to higher values of pulmonary arterial systolic pressure (PAPs in SSc patients (31.5±10.4 mmHg vs 21.6±2.9 mmHg; P50 years old. Furthermore, altered aPWV was more frequently associated with limited cutaneous pattern, longer disease duration (≥5 years, and/or presence of anticentromere antibody (ACA. Conclusions. A significantly higher prevalence of abnormally increased aPWV was evidenced in SSc patients compared to healthy controls. The possibility of more pronounced and diffuse vascular damage in a particular SSc subset (ACA-positive subjects with limited cutaneous scleroderma and longer disease duration might be raised.
Measuring surface current velocities in the Agulhas region with ASAR
CSIR Research Space (South Africa)
Rouault, MJ
2010-01-01
Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...
Unpacking of a Crumpled Wire from Two-Dimensional Cavities.
Directory of Open Access Journals (Sweden)
Thiago A Sobral
Full Text Available The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.
Commensurability oscillations in a two-dimensional lateral superlattice
Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja
2000-03-01
We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.
Two-dimensional visualization of cluster beams by microchannel plates
Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander
2013-01-01
An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...
Unpacking of a Crumpled Wire from Two-Dimensional Cavities.
Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P
2015-01-01
The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.
Online comprehensive two-dimensional ion chromatography × capillary electrophoresis.
Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A
2015-09-01
A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).
Owen, Albert K.
1993-01-01
The mathematical relations between the measured velocity fields for the same compressor rotor flow field resolved by two fringe type laser anemometers at different observational locations are developed in this report. The relations allow the two sets of velocity measurements to be combined to produce a total velocity vector field for the compressor rotor. This report presents the derivation of the mathematical relations, beginning with the specification of the coordinate systems and the velocity projections in those coordinate systems. The vector projections are then transformed into a common coordinate system. The transformed vector coordinates are then combined to determine the total velocity vector. A numerical example showing the solution procedure is included.
Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry
DEFF Research Database (Denmark)
Iversen, Theis Faber Quist; Jakobsen, Michael Linde; Hanson, Steen Grüner
2011-01-01
We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle...... spatial filters designed to measure the three components of the object’s translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement....
Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.
2017-01-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.
Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.
2017-06-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.
Approaches to verification of two-dimensional water quality models
Energy Technology Data Exchange (ETDEWEB)
Butkus, S.R. (Tennessee Valley Authority, Chattanooga, TN (USA). Water Quality Dept.)
1990-11-01
The verification of a water quality model is the one procedure most needed by decision making evaluating a model predictions, but is often not adequate or done at all. The results of a properly conducted verification provide the decision makers with an estimate of the uncertainty associated with model predictions. Several statistical tests are available for quantifying of the performance of a model. Six methods of verification were evaluated using an application of the BETTER two-dimensional water quality model for Chickamauga reservoir. Model predictions for ten state variables were compared to observed conditions from 1989. Spatial distributions of the verification measures showed the model predictions were generally adequate, except at a few specific locations in the reservoir. The most useful statistics were the mean standard error of the residuals. Quantifiable measures of model performance should be calculated during calibration and verification of future applications of the BETTER model. 25 refs., 5 figs., 7 tabs.
Coherent two-dimensional spectroscopy of a Fano model
Poulsen, Felipe; Pullerits, Tõnu; Hansen, Thorsten
2016-01-01
The Fano lineshape arises from the interference of two excitation pathways to reach a continuum. Its generality has resulted in a tremendous success in explaining the lineshapes of many one-dimensional spectroscopies - absorption, emission, scattering, conductance, photofragmentation - applied to very varied systems - atoms, molecules, semiconductors and metals. Unravelling a spectroscopy into a second dimension reveals the relationship between states in addition to decongesting the spectra. Femtosecond-resolved two-dimensional electronic spectroscopy (2DES) is a four-wave mixing technique that measures the time-evolution of the populations, and coherences of excited states. It has been applied extensively to the dynamics of photosynthetic units, and more recently to materials with extended band-structures. In this letter, we solve the full time-dependent third-order response, measured in 2DES, of a Fano model and give the new system parameters that become accessible.
Two dimensional radiated power diagnostics on Alcator C-Moda)
Reinke, M. L.; Hutchinson, I. H.
2008-10-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.
Measuring In-Situ Mdf Velocity Of Detonation
Horine, Frank M.; James, Jr., Forrest B.
2005-10-25
A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.
Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering
Hoffman, D.; Münch, K.-U.; Leipertz, A.
1996-04-01
We present what to our knowledge are the first filtered Rayleigh scattering temperature measurements and use them in sooting flame. This new technique for two-dimensional thermography in gas combustion overcomes some of the major disadvantages of the standard Rayleigh technique. It suppresses scattered background light from walls or windows and permits detection of two-dimensional Rayleigh intensity distributions of the gas phase in the presence of small particles by spectral filtering of the scattered light.
E and S hysteresis model for two-dimensional magnetic properties
Soda, N
2000-01-01
We define an effective hysteresis model of two-dimensional magnetic properties for the magnetic field analysis. Our hysteresis model is applicable to both alternating and rotating flux conditions. Moreover, we compare the calculated results with the measured ones, and verify the accuracy of this model. We can calculate iron losses in the magnetic materials exactly. As a result, it is shown that the hysteresis model is generally applicable to two-dimensional magnetic properties of some kinds of magnetic materials.
DEFF Research Database (Denmark)
Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael
2015-01-01
PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... measurements may provide comprehensive information about retinal metabolism....
Enhanced Transport of Passive Tracers In A Time Periodic Two-dimensional Flow
Boffetta, G.; Cencini, M.; Espa, S.; Musacchio, S.
, investigating systems in which the second condition is violated is much more inter- esting. With this purpose, some experiments have shown how superdiffusion arises in a two-dimensional quasi-geostrophic (planetary-type) flow, where particles can jump for very long time in the same direction performing a Levy flight (Castiglione et al., 2001 ). Moreover, two recent papers (Vulpiani, 1998; Solomon, 2001) show how, also in very simple two-dimensional, time and space periodic cellular flows,anomalous diffusive behaviours can appear. In this paper we present an experimental study of transport in an electromagnetically forced time periodic two-dimensional flow. The flow is generated by applying an electromagnetic forcing on a thin layer of an elec- trolyte solution and reveals in a square grid of alternating vortices. Time dependence can be easily obtained by changing the time dependence of the electric fields. In par- ticular, considering certain values of the imposed oscillation frequencies, particles can display very long jump. Particle Tracking Velocimetry (PTV) is used to measure the flow field. This technique is the most suitable for studying dispersion phenomena in a Lagrangian framework allowing the direct evaluation of particle displacements and related quantities (Cenedese, Querzoli; 2000). Moreover, due to the characteristics of the analyzed flow and to the improvement of the tracking procedure, we have been able to track a great number of particles for time intervals greater than the charac- teristic time-scales of the flow. In order to characterize the time correlations we will evaluate the so-called jumps probabilities with memory which represent the probabil- ities to jump in a given direction conditioned to having experienced jumps in the same direction at previous times. Such statistics will revealed very useful and suitable for detecting the onset of the aforementioned correlations. 2
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
SCAPS, a two-dimensional ion detector for mass spectrometer
Yurimoto, Hisayoshi
2014-05-01
Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40
Energy Technology Data Exchange (ETDEWEB)
ASAY,JAMES R.; CHHABILDAS,LALIT C.; KNUDSON,MARCUS D.; TROTT,WAYNE M.
1999-09-01
Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.
Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter
Energy Technology Data Exchange (ETDEWEB)
Hare, D E; Holtkamp, D B; Strand, O T
2010-03-02
Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.
Kuiper, Logan K
2016-01-01
An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.
Interaction of two-dimensional impulsively started airfoils
Institute of Scientific and Technical Information of China (English)
WU Fu-bing; ZENG Nian-dong; ZHANG Liang; WU De-ming
2004-01-01
Continuous vorticity panels were used to model general unsteady inviscid, incompressible, two-dimensional flows. The geometry of thc airfoil was approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface was used to generate disturbance flow. The no-penetration condition was imposed at the midpoint of each segment and at discrete times. The wake was simulated by a system of point vortices, which moved at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution was attached to the trailing edge, and the condition of constant circulation around the airfoil and wake was imposed. A new expression for Kutta condition was developed to study the interference effect between two impulsively started NACA0012 airfoils. The tandem arrangement was found to be the most effective to enhance the lift of the rear airfoil. The interference effect between tidal turbine blades was shown clearly.
Development of two-dimensional hot pool model
Energy Technology Data Exchange (ETDEWEB)
Lee, Yong Bum; Hahn, H. D
2000-05-01
During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coast-down. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHX{sub s}, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHX{sub s} and its contribution to the net buoyancy head. Therefore, in this study two-dimensional hot pool model is developed instead of existing one-dimensional model to predict the hot pool coolant temperature and velocity distribution more accurately and is applied to the SSC-K code.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Measurement of velocity of air flow in the sinus maxillaris.
Müsebeck, K; Rosenberg, H
1979-03-01
Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.
Velocity distribution measurements in atomic beams generated using laser induced back-ablation
Denning, A; Lee, S; Ammonson, M; Bergeson, S D
2008-01-01
We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.
Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows
Li, Fei; Yu, XiLong; Cai, Weiwei; Ma, Lin
2012-01-01
This work investigates the error caused by nonuniformities along the line-of-sight in velocity measurement using tunable diode-laser absorption spectroscopy (TDLAS). Past work has demonstrated TDLAS as an attractive diagnostic technique for measuring velocity, which is inferred from the Doppler shift of two absorption features using two crossing laser beams. However, because TDLAS is line-of-sight in nature, the obtained velocity is a spatially averaged value along the probing laser beams. As...
Precision measurement of transverse velocity distribution of a strontium atomic beam
Gao, F.; H. Liu; Xu, P.; X. Tian; Y. Wang; Ren, J; Haibin Wu; Hong Chang
2014-01-01
We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90$\\mu K$ in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques use...
Scambos, Theodore A.; Dutkiewicz, Melanie J.; Wison, Jeremy C.; Bindschadler, Robert A.
1992-01-01
A high-resolution map of the velocity field of the central portion of Ice Stream E in West Antarctica, generated by the displacement-measuring technique, is presented. The use of cross-correlation software is found to be a significant improvement over previous manually based photogrammetric methods for velocity measurement, and is far more cost-effective than in situ methods in remote polar areas. A hue-intensity-saturation image of Ice Stream E and its velocity field is shown.
Velocity measurements of low Reynolds number tube flow using fiber-optic technology
Energy Technology Data Exchange (ETDEWEB)
Bianchi, J.C.
1993-03-01
In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.
Velocity measurements of low Reynolds number tube flow using fiber-optic technology
Energy Technology Data Exchange (ETDEWEB)
Bianchi, J. Christopher [Univ. of Vermont, Burlington, VT (United States)
1993-03-01
In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.
Jamming patterns in a two-dimensional hopper
Indian Academy of Sciences (India)
Kiwing To
2005-06-01
We report experimental studies of jamming phenomenon of monodisperse metal disks falling through a two-dimensional hopper when the hopper opening is larger than three times the size of the disks. For each jamming event, the configuration of the arch formed at the hopper opening is studied. The cumulative distribution functions () for hoppers of opening size d are measured. (Here is the horizontal component of the arch vector, which is defined as the displacement vector from the center of the first disk to the center of the last disk in the arch.) We found that the distribution of () can be collasped into a master curve () = ()() that decays exponentially for > 4. The scaling factor () is a decreasing function of d and is approximately proportional to the jamming probability.
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
a voltage is passed through the Josephson junction, we observe multiple Andreev reflections and preliminary results point to a highly transmissive interface between the 2D electron gas and the superconductor. In the theoretical section we demonstrate analytically and numerically, that in a 1D nanowire......This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show...... that a superconducting 1D nanowire can harbor Majorana bound states in the absence of spin–orbit coupling. We fabricate and measure micrometer–sized mesoscopic devices demonstrating the inheritance of superconducting properties in the 2D electron gas. By placing a quantum point contact proximal to the interface between...
Irreversibility of the two-dimensional enstrophy cascade
Piretto,; Boffetta, G
2016-01-01
We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking at the time derivative of the square vorticity along Lagrangian trajectories, a quantity which we call metenstrophy. By means of extensive numerical simulations we measure the time irreversibility from the asymmetry of the PDF of the metenstrophy and we find that it increases with the Reynolds number of the cascade, similarly to what found in three-dimensional turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a remarkable difference with respect to what observed for the direct cascade, in particular the role of the statistics of the forcing to determine the degree of irreversibility.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Development and validation of a two-dimensional fast-response flood estimation model
Energy Technology Data Exchange (ETDEWEB)
Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAK
2009-01-01
A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.
Near-field acoustic holography with sound pressure and particle velocity measurements
DEFF Research Database (Denmark)
Fernandez Grande, Efren
of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...
Two-dimensional visualization of cluster beams by microchannel plates
Energy Technology Data Exchange (ETDEWEB)
Khoukaz, A., E-mail: khoukaz@uni-muenster.de; Bonaventura, D.; Grieser, S.; Hergemöller, A.-K.; Köhler, E.; Täschner, A.
2014-01-21
An advanced technique for a two-dimensional real time visualization of cluster beams in a vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCPs) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This information can directly be used for the reconstruction of vertex positions as well as for an input for numerical simulations of the reaction zone. The spatial resolution of the images is dominated by the granularity of the complete MCP device and was found to be in the order of σ≈100μm. -- Highlights: • We present a MCP system for a 2D real time visualization of cluster target beams. • With this device the vertex region of storage ring experiments can be investigated. • Time resolved 2D information about the target thickness distribution is accessible. • A spatial resolution of the MCP device of 0.1 mm was achieved. • The presented MCP system also allows for measurements on cluster masses.
Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)
Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.
2016-03-01
Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.
Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA
Directory of Open Access Journals (Sweden)
Sayeed-Bin-Asad S.M.
2016-01-01
Full Text Available Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.
Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement
Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi
2016-11-01
We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.
DEFF Research Database (Denmark)
Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.
2008-01-01
of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4 ms while the spatial resolution is similar to 10 cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution...
A Raman anemometer for component-selective velocity measurements of particles in a flow
Florisson, O.; Mul, de F.F.M.; Winter, de H.G.
1981-01-01
An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to t
Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements
DEFF Research Database (Denmark)
Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor
2004-01-01
For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously dev...
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
Yang, Luyi
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed
LASER ULTRASONIC FOR MEASUREMENTS OF VELOCITY DISTRIBUTION IN PIPES
Directory of Open Access Journals (Sweden)
M. Navarrete
2004-12-01
Full Text Available The present work describes the development of a photoacoustic flowmeter with probe-beam deflection. A pulsedlaser beam produces an acoustic pulse, whose propagation is registered by its deflection effects on two cw probebeams. The acoustic pulse in a flowing fluid is produced by absorption of a laser pulse (30 ns, 1.1 mJ focused overa path flow line. The acoustic propagations, along and against the flow, are monitored by two cw probe beams. Inthe interaction, the probe beam undergoes a transient deflection that is detected by a fast response photodiode.The velocity distribution data profile of a square pipe is obtained by means of the acoustic pulse arrival timemeasured through its cross section applying the cylindrical shockwave model developed by Vlasses. The profilesdetermined with this experimental technique are compared with two turbulent pipe flow models.