WorldWideScience

Sample records for two-dimensional velocity field

  1. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  2. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    International Nuclear Information System (INIS)

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  3. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    Science.gov (United States)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  4. Three-dimensional groundwater velocity field in an unconfined aquifer under irrigation

    International Nuclear Information System (INIS)

    Zlotnik, V.

    1990-01-01

    A method for three-dimensional flow velocity calculation has been developed to evaluate unconfined aquifer sensitivity to areal agricultural contamination of groundwater. The methodology of Polubarinova-Kochina is applied to an unconfined homogeneous compressible or incompressible anisotropic aquifer. It is based on a three-dimensional groundwater flow model with a boundary condition on the moving surface. Analytical solutions are obtained for a hydraulic head under the influence of areal sources of circular and rectangular shape using integral transforms. Two-dimensional Hantush formulas result from the vertical averaging of the three-dimensional solutions, and the asymptotic behavior of solutions is analyzed. Analytical expressions for flow velocity components are obtained from the gradient of the hydraulic head field. Areal and temporal variability of specific yield in groundwater recharge areas is also taken into account. As a consequence of linearization of the boundary condition, the operation of any irrigation system with respect to groundwater is represented by superposition of the operating wells and circular and rectangular source influences. Combining the obtained solutions with Dagan or Neuman well functions, one can develop computer codes for the analytical computation of the three-dimensional groundwater hydraulic head and velocity component distributions. Methods for practical implementation are discussed. (Author) (20 refs., 4 figs.)

  5. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  6. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  7. Velocity and Dispersion for a Two-Dimensional Random Walk

    International Nuclear Information System (INIS)

    Li Jinghui

    2009-01-01

    In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)

  8. Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry

    International Nuclear Information System (INIS)

    Erskine, David J.; Smith, R. F.; Celliers, P. M.; Collins, G. W.; Bolme, C. A.; Ali, S. J.

    2014-01-01

    Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown

  9. Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, David J., E-mail: erskine1@llnl.gov; Smith, R. F.; Celliers, P. M.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bolme, C. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ali, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2014-06-15

    Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown.

  10. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  11. Three-Dimensional Velocity Field De-Noising using Modal Projection

    Science.gov (United States)

    Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn

    2017-11-01

    PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.

  12. Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases

    NARCIS (Netherlands)

    van Zon, J.S.; Kreft, J.; Goldman, D.L.; Miracle, D.; Swift, J. B.; Swinney, H. L.

    2004-01-01

    The significance of sidewalls which yield velocity distributions with non-Gaussian tails and a peak near zero velocity in quasi-two-dimensional granular gases, was investigated. It was observed that the particles gained energy only through collisions with the bottom of the container, which was not

  13. Comparison of swirling strengths derived from two- and three-dimensional velocity fields in channel flow

    Science.gov (United States)

    Chen, Huai; Li, Danxun; Bai, Ruonan; Wang, Xingkui

    2018-05-01

    Swirling strength is an effective vortex indicator in wall turbulence, and it can be determined based on either two-dimensional (2D) or three-dimensional (3D) velocity fields, written as λci2D and λci3D, respectively. A comparison between λci2D and λci3D has been made in this paper in sliced XY, YZ, and XZ planes by using 3D DNS data of channel flow. The magnitude of λci2D in three orthogonal planes differs in the inner region, but the difference tends to diminish in the outer flow. The magnitude of λci3D exceeds each λci2D, and the square of λci3D is greater than the summation of squares of three λci2D. Extraction with λci2D in XY, YZ, and XZ planes yields different population densities and vortex sizes, i.e., in XZ plane, the vortices display the largest population density and the smallest size, and in XY and YZ planes the vortices are similar in size but fewer vortices are extracted in the XY plane in the inner layer. Vortex size increases inversely with the threshold used for growing the vortex region from background turbulence. When identical thresholds are used, the λci3D approach leads to a slightly smaller population density and a greater vortex radius than the λci2D approach. A threshold of 0.8 for the λci3D approach is approximately equivalent to a threshold of 1.5 for the λci2D approach.

  14. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  15. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  16. Combined effects of external electric and magnetic fields on electromagnetically induced transparency of a two-dimensional quantum dot

    International Nuclear Information System (INIS)

    Rezaei, Gh.; Shojaeian Kish, S.; Avazpour, A.

    2012-01-01

    In this article effects of external electric and magnetic fields on the electromagnetically induced transparency of a hydrogenic impurity confined in a two-dimensional quantum dot are investigated. To do this the probe absorption, group velocity and refractive index of the medium in the presence of external electric and magnetic fields are discussed. It is found that, electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields. In comparison with atomic system, one may control the electromagnetically induced transparency and the group velocity of light in nano structures with the dot size and confinement potential.

  17. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  18. A two pressure-velocity approach for immersed boundary methods in three dimensional incompressible flows

    International Nuclear Information System (INIS)

    Sabir, O; Ahmad, Norhafizan; Nukman, Y; Tuan Ya, T M Y S

    2013-01-01

    This paper describes an innovative method for computing fluid solid interaction using Immersed boundary methods with two stage pressure-velocity corrections. The algorithm calculates the interactions between incompressible viscous flows and a solid shape in three-dimensional domain. The fractional step method is used to solve the Navier-Stokes equations in finite difference schemes. Most of IBMs are concern about exchange of the momentum between the Eulerian variables (fluid) and the Lagrangian nodes (solid). To address that concern, a new algorithm to correct the pressure and the velocity using Simplified Marker and Cell method is added. This scheme is applied on staggered grid to simulate the flow past a circular cylinder and study the effect of the new stage on calculations cost. To evaluate the accuracy of the computations the results are compared with the previous software results. The paper confirms the capacity of new algorithm for accurate and robust simulation of Fluid Solid Interaction with respect to pressure field

  19. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  20. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 μm2 cross-section. The flow field is seeded with polystyrene microspheres of size dp = 2.1 μm. The volumetric flow rate is set equal to 20 μl/min.

  1. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  2. Milgrom Relation Models for Spiral Galaxies from Two-Dimensional Velocity Maps

    OpenAIRE

    Barnes, Eric I.; Kosowsky, Arthur; Sellwood, Jerry A.

    2007-01-01

    Using two-dimensional velocity maps and I-band photometry, we have created mass models of 40 spiral galaxies using the Milgrom relation (the basis of modified Newtonian dynamics, or MOND) to complement previous work. A Bayesian technique is employed to compare several different dark matter halo models to Milgrom and Newtonian models. Pseudo-isothermal dark matter halos provide the best statistical fits to the data in a majority of cases, while the Milgrom relation generally provides good fits...

  3. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-12-01

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  4. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  5. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.

    Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  6. Temperature and velocity measurement fields of fluids using a schlieren system.

    Science.gov (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David

    2012-06-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  7. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Schmidl, W.; Hassan, Y.A.; Ortiz-Villafuerte, J.

    1996-01-01

    Particle image velocimetry (PIV) is a nonintrusive measurement technique that can be used to study the structure of various fluid flows. PIV is used to measure the time-varying, full-field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. The quantitative spatial velocity information can be further processed into information of flow parameters such as vorticity and turbulence over extended areas. The objective of this study was to apply recent advances and improvements in the PIV flow measurement technique to the full-field, nonintrusive analysis of a three-dimensional, two-phase fluid flow system in such a manner that both components of the two-phase system could be experimentally quantified

  8. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    Science.gov (United States)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  9. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  10. Two-dimensional calculation by finite element method of velocity field and temperature field development in fast reactor fuel assembly. II

    International Nuclear Information System (INIS)

    Schmid, J.

    1985-11-01

    A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)

  11. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    -orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.

  12. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  13. Gibbs perturbations of a two-dimensional gauge field

    International Nuclear Information System (INIS)

    Petrova, E.N.

    1981-01-01

    Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)

  14. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  15. K-FIX: a computer program for transient, two-dimensional, two-fluid flow

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1976-11-01

    The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds using the K-FIX program. Each phase is described in terms of its own density, velocity, and temperature. The six field equations for the two phases couple through mass, momentum, and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively without linearizing the equations, thus eliminating the need for numerous derivative terms. K-FIX is written in a highly modular form to be easily adaptable to a variety of problems. It is applied to growth of an isolated steam bubble in a superheated water pool

  16. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  17. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  18. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  19. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape

  20. Design of two-dimensional channels with prescribed velocity distributions along the channel walls

    Science.gov (United States)

    Stanitz, John D

    1953-01-01

    A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.

  1. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Sugiyama, K.; Stevens, Richard Johannes Antonius Maria; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2011-01-01

    We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-Bénard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra = 108 and the Prandtl

  2. Multi-dimensional modeling of two-phase flow in rod bundles and interpretation of velocities measured in BWRs by the cross-correlation technique

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1984-04-01

    The authors present an as precise as possible interpretation of velocity measurements in BWRs by the cross-correlation technique, which is based on the radially non-uniform quality and velocity distribution in BWR type bundles, as well as on our knowledge about the spatial 'field of view' of the in-core neutron detectors. After formulating the three-dimensional two-fluid model volume/time averaged equations and pointing out some problems associated with averaging, they expound a little on the turbulence mixing and void drift effects, as well as on the way they are modelled in advanced subchannel analysis codes like THERMIT or COBRA-TF. Subsequently, some comparisons are made between axial velocities measured in a commercial BWR by neutron noise analysis, and the steam velocities of the four subchannels nearest to the instrument tube of one of the four bundles as predicted by COBRA-III and by THERMIT. Although as expected, for well-known reasons, COBRA-III predicts subchannel steam velocities which are close to each other, THERMIT correctly predicts in the upper half of the core three largely different steam velocities in the three different types of BW0 subchannels (corner, edge and interior). (Auth.)

  3. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan

    2017-01-01

    We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volum...

  4. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  5. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    Science.gov (United States)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  6. Topological field theories and two-dimensional instantons

    International Nuclear Information System (INIS)

    Schaposnik, F.A.

    1990-01-01

    In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model

  7. Introduction to two dimensional conformal and superconformal field theory

    International Nuclear Information System (INIS)

    Shenker, S.H.

    1986-01-01

    Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed

  8. Mixed finite element simulations in two-dimensional groundwater flow problems

    International Nuclear Information System (INIS)

    Kimura, Hideo

    1989-01-01

    A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)

  9. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  10. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    be underrepresented (in the observed sample) by a factor ~2.3 owing to selection effects in pulsar surveys. The estimates of scale height and velocity parameters are insensitive to the explicit relation of chronological and spindown ages. A further analysis starting from our inferred velocity distribution allows us to test spindown laws and age estimates. There exist comparably good descriptions of the data involving different combinations of braking index and torque decay timescale. We find that a braking index of 2.5 is favored if torque decay occurs on a timescale of ~3 Myr, while braking indices ~4.5 +/- 0.5 are preferred if there is no torque decay. For the sample as a whole, the most probable chronological ages are typically smaller than conventional spindown ages by factors as large as 2. We have also searched for correlations between three-dimensional speeds of individual pulsars and combinations of spin period and period derivative. None appears to be significant. We argue that correlations identified previously between velocity and (apparent) magnetic moment reflect the different evolutionary paths taken by young, isolated (nonbinary), high-field pulsars and older, low-field pulsars that have undergone accretion-driven spinup. We conclude that any such correlation measures differences in spin and velocity selection in the evolution of the two populations and is not a measure of processes taking place in the core collapse that produces neutron stars in the first place. We assess mechanisms for producing high-velocity neutron stars, including disruption of binary systems by symmetric supernovae and neutrino, baryonic, or electromagnetic rocket effects during or shortly after the supernova. The largest velocities seen (~1600 km s-1), along with the paucity of low-velocity pulsars, suggest that disruption of binaries by symmetric explosions is insufficient. Rocket effects appear to be a necessary and general phenomenon. The required kick amplitudes and the

  11. Two dimensional topological insulator in quantizing magnetic fields

    Science.gov (United States)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  12. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  13. The impact of groundwater velocity fields on streamlines in an aquifer system with a discontinuous aquitard (Inner Mongolia, China)

    Science.gov (United States)

    Wu, Qiang; Zhao, Yingwang; Xu, Hua

    2018-04-01

    Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented.

  14. Analysis of the two dimensional Datta-Das Spin Field Effect Transistor

    OpenAIRE

    Bandyopadhyay, S.

    2010-01-01

    An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  15. Analysis of the two-dimensional Datta-Das spin field effect transistor

    Science.gov (United States)

    Agnihotri, P.; Bandyopadhyay, S.

    2010-03-01

    An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  16. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  17. Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra

    Science.gov (United States)

    Mcleod, M. G.

    1983-01-01

    Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.

  18. Comparison of velocity and temperature fields for two types of spacers in an annular channel

    Directory of Open Access Journals (Sweden)

    Lávička David

    2012-04-01

    Full Text Available The paper deals with measurement of flow field using a modern laser method (PIV in an annular channel of very small dimension - a fuel cell model. The velocity field was measured in several positions and plains around the spacer. The measurement was extended also to record temperatures by thermocouples soldered into stainless-steel tube wall. The measurement was focused on cooling process of the preheated fuel cell tube model, where the tube was very slowly flooded with water. Main result of the paper is comparison of two spacer's designs with respect to measured velocity and temperature fields.

  19. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  20. Infinite additional symmetries in two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1986-01-01

    This paper investigates additional symmetries in two-dimensional conformal field theory generated by spin s = 1/2, 1,...,3 currents. For spins s = 5/2 and s = 3, the generators of the symmetry form associative algebras with quadratic determining relations. ''Minimal models'' of conforma field theory with such additional symmetries are considered. The space of local fields occurring in a conformal field theory with additional symmetry corresponds to a certain (in general, reducible) representation of the corresponding algebra of the symmetry

  1. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  2. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  3. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Schindler, K.

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  4. Slip-line field analysis of metal flow during two dimensional forging

    International Nuclear Information System (INIS)

    Fenton, R.G.; Khataan, H.A.

    1981-01-01

    A method of computation and a computer software package were developed for solving problems of two dimensional plastic flow between symmetrical dies of any specified shape. The load required to initiate plastic flow, the stress and velocity distributions in the plastic region of the metal, and the pressure distribution acting on the die are determined. The method can be used to solve any symmetrical plane strain flow problem regardless of the complexity of the die. The accurate solution obtained by this efficient method can provide valuable help to forging die designers. (Author) [pt

  5. Field in field technique in two-dimensional planning for whole brain irradiation; Tecnica field in field em planejamentos bidimensionais para irradiacao de cerebro total

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2016-11-01

    Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)

  6. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  7. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  8. Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data

    Directory of Open Access Journals (Sweden)

    J. Dedkova

    2012-09-01

    Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.

  9. Zakharov-Shabat-Mikhailov scheme of construction of two-dimensional completely integrable field theories

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Columbia Univ., New York; Chudnovsky, G.V.; Columbia Univ., New York

    1980-01-01

    General algebraic and analytic formalism for derivation and solution of general two dimensional field theory equations of Zakharov-Shabat-Mikhailov type is presented. The examples presented show that this class of equations covers most of the known two-dimensional completely integrable equations. Possible generalizations for four dimensional systems require detailed analysis of Baecklund transformation of these equations. Baecklund transformation is presented in the form of Riemann problem and one special case of dual symmetry is worked out. (orig.)

  10. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  11. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  12. Diffusion with intrinsic trapping in 2-d incompressible stochastic velocity fields

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Vlad, M.; Spineanu, F.; Balescu, R.

    1998-10-01

    A new statistical approach that applies to the high Kubo number regimes for particle diffusion in stochastic velocity fields is presented. This 2-dimensional model describes the partial trapping of the particles in the stochastic field. the results are close to the numerical simulations and also to the estimations based on percolation theory. (authors)

  13. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  14. Pairing in a two-dimensional two-band very anisotropic model in the mean field approximation

    International Nuclear Information System (INIS)

    Fazakas, A.B.; Pitis, R.

    1993-09-01

    A two-dimensional model is proposed: there are two kinds of sites, with one electronic state per site; tunneling takes place only in one direction; the interaction involves only electrons on different sites. The existence of a phase transition involving interband pairing of electrons is discussed in the mean field approximation. (author)

  15. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate c...

  16. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate ch...

  17. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  18. Quantum theory of longitudinal dielectric response properties of a two-dimensional plasma in a magnetic field

    International Nuclear Information System (INIS)

    Horing, N.J.M.; Yildiz, M.M.

    1976-01-01

    An analysis of dynamic and nonlocal longitudinal dielectric response properties of a two-dimensional Landau-quantized plasma is carried out, using a thermodynamic Green's function formulation of the RPA with a two-dimensional thermal Green's function for electron propagation in a magnetic field developed in closed form. The longitudinal-electrostatic plasmon dispersion relation is discussed in the low wave-number regime with nonlocal corrections, and Bernstein mode structure is studied for arbitrary wavenumber. All regimes of magnetic field strength and statistics are investigated. The class of integrals treated here should have broad applicability in other two-dimensional and finite slab plasma studies.The two-dimensional static shielding law in a magnetic field is analyzed for low wavenumber, and for large distances we find V (r) approx. = Q/k 2 2 r 3 . The inverse screening length k 0 =2πe 2 partial rho/ partialxi (rho= density, xi= chemical potential) is evaluated in all regimes of magnetic field strength and all statistical regimes. k 0 exhibits violent DHVA oscillatory behavior in the degenerate zero-temperature case at higher field strengths, and the shielding is complete when xi =r'hω/subc/ but there is no shielding when xi does not = r'hω/subc/. A careful analysis confirms that there is no shielding at large distances in the degenerate quantum strong field limit h3π/subc/>xi. Since shielding does persist in the nondegenerate quantum strong field limit hω/subc/>KT, there should be a pronounced change in physical properties that depend on shielding if the system is driven through a high field statistical transition. Finally, we find that the zero field two-dimensional Friedel--Kohn ''wiggle'' static shielding phenomenon is destroyed by the dispersal of the zero field continuum of electron states into the discrete set of Landau-quantized orbitals due to the imposition of the magnetic field

  19. Numerical simulation of transient, adiabatic, two-dimensional two-phase flow using the two-fluid model

    International Nuclear Information System (INIS)

    Neves Conti, T. das.

    1983-01-01

    A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt

  20. Vector velocity estimation using directional beam forming and cross-correlation

    DEFF Research Database (Denmark)

    2000-01-01

    The two-dimensional velocity vector using a pulsed ultrasound field can be determined with the invention. The method uses a focused ultrasound field along the velocity direction for probing the moving medium under investigation. Several pulses are emitted and the focused received fields along...

  1. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  2. Two-dimensional velocity models for paths from Pahute Mesa and Yucca Flat to Yucca Mountain

    International Nuclear Information System (INIS)

    Walck, M.C.; Phillips, J.S.

    1990-11-01

    Vertical acceleration recordings of 21 underground nuclear explosions recorded at stations at Yucca Mountain provide the data for development of three two-dimensional crystal velocity profiles for portions of the Nevada Test Site. Paths from Area 19, Area 20 (both Pahute Mesa), and Yucca Flat to Yucca Mountain have been modeled using asymptotic ray theory travel time and synthetic seismogram techniques. Significant travel time differences exist between the Yucca Flat and Pahute Mesa source areas; relative amplitude patterns at Yucca Mountain also shift with changing source azimuth. The three models, UNEPM1, UNEPM2, and UNEYF1, successfully predict the travel time and amplitude data for all three paths. 24 refs., 34 figs., 8 tabs

  3. A new estimator for vector velocity estimation [medical ultrasonics

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation...... be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained...

  4. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    Science.gov (United States)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  5. Topics in low-dimensional field theory

    International Nuclear Information System (INIS)

    Crescimanno, M.J.

    1991-01-01

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density

  6. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  7. Velocity map imaging of attosecond and femtosecond dynamics in atoms and small molecules in strong laser fields

    International Nuclear Information System (INIS)

    Kling, M.F.; Ni, Yongfeng; Lepine, F.; Khan, J.I.; Vrakking, M.J.J.; Johnsson, P.; Remetter, T.; Varju, K.; Gustafsson, E.; L'Huillier, A.; Lopez-Martens, R.; Boutu, W.

    2005-01-01

    Full text: In the past decade, the dynamics of atomic and small molecular systems in strong laser fields has received enormous attention, but was mainly studied with femtosecond laser fields. We report on first applications of attosecond extreme ultraviolet (XUV) pulse trains (APTs) from high-order harmonic generation (HHG) for the study of atomic and molecular electron and ion dynamics in strong laser fields utilizing the Velocity Map Imaging Technique. The APTs were generated in argon from harmonics 13 to 35 of a 35 fs Ti:sapphire laser, and spatially and temporally overlapped with an intense IR laser field (up to 5x10 13 W/cm 2 ) in the interaction region of a Velocity Map Imaging (VMI) machine. In the VMI setup, electrons and ions that were created at the crossing point of the laser fields and an atomic or molecular beam were accelerated in a dc-electric field towards a two-dimensional position-sensitive detector, allowing to reconstruct the full initial three-dimensional velocity distribution. The poster will focus on results that were obtained for argon atoms. We recorded the velocity distribution of electron wave packets that were strongly driven in the IR laser field after their generation in Ar via single-photon ionization by attosecond XUV pulses. The 3D evolution of the electron wave packets was observed on an attosecond timescale. In addition to earlier experiments with APTs using a magnetic bottle electron time-of-flight spectrometers and with single attosecond pulses, the angular dependence of the electrons kinetic energies can give further insight into the details of the dynamics. Initial results that were obtained for molecular systems like H 2 , D 2 , N 2 , and CO 2 using the same powerful approach will be highlighted as well. We will show, that detailed insight into the dynamics of these systems in strong laser fields can be obtained (e.g. on the alignment, above-threshold ionization, direct vs. sequential two-photon ionization, dissociation, and

  8. Three-dimensional P velocity structure in Beijing area

    Science.gov (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De

    2003-01-01

    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  9. Second order phase transition in two dimensional sine-Gordon field theory - lattice model

    International Nuclear Information System (INIS)

    Babu Joseph, K.; Kuriakose, V.C.

    1978-01-01

    Two dimensional sine-Gordon (SG) field theory on a lattice is studied using the single-site basis variational method of Drell and others. The nature of the phase transition associated with the spontaneous symmetry breakdown in a SG field system is clarified to be of second order. A generalisation is offered for a SG-type field theory in two dimensions with a potential of the form [cossup(n)((square root of lambda)/m)phi-1].(author)

  10. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    Science.gov (United States)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  11. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  12. Jovian cloud structure and velocity fields

    International Nuclear Information System (INIS)

    Mitchell, J.L.; Terrile, R.J.; Collins, S.A.; Smith, B.A.; Muller, J.P.; Ingersoll, A.P.; Hunt, G.E.; Beebe, R.F.

    1979-01-01

    A regional comparison of the cloud structures and velocity fields (meridional as well as zonal velocities) in the jovian atmosphere (scales > 200 km) as observed by the Voyager 1 imaging system is given. It is shown that although both hemispheres of Jupiter show similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres. (UK)

  13. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  14. Hall field-induced magnetoresistance oscillations of a two-dimensional electron system

    International Nuclear Information System (INIS)

    Kunold, A.; Torres, M.

    2008-01-01

    We develop a model of the nonlinear response to a dc electrical current of a two-dimensional electron system (2DES) placed on a magnetic field. Based on the exact solution to the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the dc current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments

  15. Series expansion of two-dimensional fields produced by iron-core magnets

    International Nuclear Information System (INIS)

    Satoh, Kotaro.

    1997-02-01

    This paper discusses the validity of a series expansion of two-dimensional magnetic fields with harmonic functions, and suggests that the series may not converge outside of the pole gap. It also points out that this difficulty may appear due to a slow convergence of the series near to the pole edge, even within the convergent area. (author)

  16. Three-dimensional time-lapse velocity tomography of an underground longwall panel

    Energy Technology Data Exchange (ETDEWEB)

    Luxbacher, K.; Westman, E.; Swanson, P.; Karfakis, M. [Virginia Tech., Blacksburg, VA (United States). Dept. of Mining & Minerals Engineering

    2008-06-15

    Three-dimensional velocity tomograms were generated to image the stress redistribution around an underground coal longwall panel to produce a better understanding of the mechanisms that lead to ground failure, especially rockbursts. Mining-induced microseismic events provided passive sources for the three-dimensional velocity tomography. Surface-mounted geophones monitored microseismic activity for 18 days. Eighteen tomograms were generated and high-velocity regions correlated with high abutment stresses predicted by numerical modeling. Additionally, the high-velocity regions were observed to redistribute as the longwall face retreated, indicating that velocity tomography may be an appropriate technology for monitoring stress redistribution in underground mines.

  17. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  18. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  19. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    Science.gov (United States)

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  20. Effective field theory and integrability in two-dimensional Mott transition

    International Nuclear Information System (INIS)

    Bottesi, Federico L.; Zemba, Guillermo R.

    2011-01-01

    Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.

  1. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  2. One-dimensional transient unequal velocity two-phase flow by the method of characteristics

    International Nuclear Information System (INIS)

    Rasouli, F.

    1981-01-01

    An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed

  3. Aortoiliac stenooculusive disease and aneurysms. Screening with non-contrast enhanced two-dimensional cardiac gated cine phase contrast MR angiography with multiple velocity encoded values and cardiac gated two-dimensional time-of-flight MR angiography

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Kato, Katsuhiko

    2001-01-01

    To evaluate the performance of two-dimensional cine phase contrast MRA with multi-velocity encoded values (multi-VENC cine PC) and ECG-gated two-dimensional time-of-flight MRA (ECG-2D-TOF) for the detection of stenoocclusive lesions and aneurysms in the aortoiliac area, when each method was used individually and when the two methods were used together. Forty-one patients were included in this study. Multi-VENC cine PC and ECG-2D-TOF were obtained first, then contrast enhanced three-dimensional magnetic resonance angiography (CE-3D-MRA) was performed as the standard of reference. Two observers reviewed the images separately without knowledge of patients' symptoms or histories. Sensitivities and specificities were obtained separately for stenooclusive lesions and aneurysms by two reviewers. When the two methods were applied together, high sensitivities (93.0 by observer 1 and 91.9% by observer 2) and adequate specificities (87.6 and 82.3%) were obtained for stenoocclusive lesions. For aneurysms, moderate to high sensitivities (91.1 and 71.1%) and high specificities (98.8 and 99.4%) were obtained. These results suggest that the performance of two non-contrast enhanced MRA techniques may be valuable as a screening tool when the two methods are applied together. (author)

  4. Q-deformed Grassmann field and the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Shadura, V.N.

    1994-01-01

    In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs

  5. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  6. Soap film flows: Statistics of two-dimensional turbulence

    International Nuclear Information System (INIS)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-01-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics

  7. Three-dimensional velocity map imaging: Setup and resolution improvement compared to three-dimensional ion imaging

    International Nuclear Information System (INIS)

    Kauczok, S.; Goedecke, N.; Veckenstedt, M.; Maul, C.; Gericke, K.-H.; Chichinin, A. I.

    2009-01-01

    For many years the three-dimensional (3D) ion imaging technique has not benefited from the introduction of ion optics into the field of imaging in molecular dynamics. Thus, a lower resolution of kinetic energy as in comparable techniques making use of inhomogeneous electric fields was inevitable. This was basically due to the fact that a homogeneous electric field was needed in order to obtain the velocity component in the direction of the time of flight spectrometer axis. In our approach we superimpose an Einzel lens field with the homogeneous field. We use a simulation based technique to account for the distortion of the ion cloud caused by the inhomogeneous field. In order to demonstrate the gain in kinetic energy resolution compared to conventional 3D Ion Imaging, we use the spatial distribution of H + ions emerging from the photodissociation of HCl following the two photon excitation to the V 1 Σ + state. So far a figure of merit of approximately four has been achieved, which means in absolute numbers Δv/v=0.022 compared to 0.086 at v≅17 000 m/s. However, this is not a theoretical limit of the technique, but due to our rather short TOF spectrometer (15 cm). The photodissociation of HBr near 243 nm has been used to recognize and eliminate systematic deviations between the simulation and the experimentally observed distribution. The technique has also proven to be essential for the precise measurement of translationally cold distributions.

  8. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  9. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  10. Separation prediction in two dimensional boundary layer flows using artificial neural networks

    International Nuclear Information System (INIS)

    Sabetghadam, F.; Ghomi, H.A.

    2003-01-01

    In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)

  11. Passive tracer in a flow corresponding to two-dimensional stochastic Navier–Stokes equations

    International Nuclear Information System (INIS)

    Komorowski, Tomasz; Peszat, Szymon; Szarek, Tomasz

    2013-01-01

    In this paper we prove the law of large numbers and central limit theorem for trajectories of a particle carried by a two-dimensional Eulerian velocity field. The field is given by a solution of a stochastic Navier–Stokes system with non-degenerate noise. The spectral gap property, with respect to the Wasserstein metric, for such a system was shown in Hairer and Mattingly (2008 Ann. Probab. 36 2050–91). In this paper we show that a similar property holds for the environment process corresponding to the Lagrangian observations of the velocity. Consequently we conclude the law of large numbers and the central limit theorem for the tracer. The proof of the central limit theorem relies on the martingale approximation of the trajectory process. (paper)

  12. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  13. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  14. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  15. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  16. Energy dispersion of charged particles decelerated in a two-dimensional electrostatic field of the type x1/n

    International Nuclear Information System (INIS)

    Zashkvara, V.V.; Bok, A.A.

    1992-01-01

    Two components of the spatial dispersion of particles with respect to kinetic energy can be distinguished of the motion of charged particle beams in electrostatic mirros with a two-dimensional field φ(x,y) ans xz symmetry plane. The first is the longitudinal dispersion, which is along the z axis perpendicular to the field; the second is the transverse dispersion, along the x axis parallel to the field vector in the plane of symmetry. The longitudinal dispersion is a basic characteristic of electrostatic mirrors used as energy analyzers. It has been shown that for first-order angular focusing, the longitudinal dispersion, divided by the focal length, is independent of the structure of the two-dimensional field and is a function only of the angle at which the charged particle beam enters the mirror. The transverse dispersion stems from the energy dependence of the penetration depth of the beam as it is decelerated, and it plays an important role when the energy of a charged particle beam is analyzed by the filtering principle, making use of the property of an electrostatic mirror to transmit or reflect charged particles with kinetic energy in a specified interval. This type of dispersion in electrostatic mirrors with two-dimensional fields has not been analyzed systematically. In the present note the authors consider a particular type of two-dimensional electrostatic field which is characterized by a large transverse dispersion, many times larger than in existing electrostatic reflecting filters employing planar and cylindrical fields

  17. A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling

    International Nuclear Information System (INIS)

    Hwang, Moonkyu; Jeong, Jaejoon

    2007-07-01

    The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme

  18. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  19. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  20. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  1. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  2. Graphene-based field effect transistor in two-dimensional paper networks

    Energy Technology Data Exchange (ETDEWEB)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Hu, Jie; Xu, Feng [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); Luo, Zhengtang, E-mail: keztluo@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2016-04-21

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm{sup 2} V{sup −1} s{sup −1} and ∼2298 cm{sup 2} V{sup −1} s{sup −1} respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  3. Graphene-based field effect transistor in two-dimensional paper networks

    International Nuclear Information System (INIS)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek; Hu, Jie; Xu, Feng; Lu, Tian Jian; Luo, Zhengtang

    2016-01-01

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm 2  V −1  s −1 and ∼2298 cm 2  V −1  s −1 respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  4. Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

    Directory of Open Access Journals (Sweden)

    Jiajia Zhou

    2018-05-01

    Full Text Available This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances. Keywords: Dynamic velocity regulation, Bio-inspired model, Backstepping, Underactuated AUV, Three-dimensional trajectory tracking

  5. (2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model

    Science.gov (United States)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2018-06-01

    We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.

  6. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)

    2008-10-21

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  7. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  8. Investigations on field-effect transistors based on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Finge, T.; Riederer, F.; Grap, T.; Knoch, J. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Mueller, M.R. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Infineon Technologies, Villach (Austria); Kallis, K. [Intelligent Microsystems Chair, TU Dortmund University (Germany)

    2017-11-15

    In the present article, experimental and theoretical investigations regarding field-effect transistors based on two-dimensional (2D) materials are presented. First, the properties of contacts between a metal and 2D material are discussed. To this end, metal-to-graphene contacts as well to transition metal dichalcogenides (TMD) are studied. Whereas metal-graphene contacts can be tuned with an appropriate back-gate, metal-TMD contacts exhibit strong Fermi level pinning showing substantially limited maximum possible drive current. Next, tungsten diselenide (WSe{sub 2}) field-effect transistors are presented. Employing buried-triple-gate substrates allows tuning source, channel and drain by applying appropriate gate voltages so that the device can be reconfigured to work as n-type, p-type and as so-called band-to-band tunnel field-effect transistor on the same WSe{sub 2} flake. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate

    Science.gov (United States)

    Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun

    2018-03-01

    We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.

  10. Some issues in the simulation of two-phase flows: The relative velocity

    International Nuclear Information System (INIS)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P.; Zeidan, D.

    2016-01-01

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  11. Some issues in the simulation of two-phase flows: The relative velocity

    Energy Technology Data Exchange (ETDEWEB)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P. [Niederrhein University of Applied Sciences, Institute for Modelling and High Performance Computing, Reinarzstraße 49, 47805 Krefeld (Germany); Zeidan, D. [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)

    2016-06-08

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  12. Massive quantum field theory in two-dimensional Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Bunch, T.S.; Christensen, S.M.; Fulling, S.A.

    1978-01-01

    The stress tensor of a massive scalar field, as an integral over normal modes (which are not mere plane waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormalization ansatz suggested by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees with the explicit results of Bernard and Duncan for a special model, and (3) has a nonzero vacuum expectation value in the two-dimensional ''Milne universe'' (flat space in hyperbolic coordinates). Following Wald, we prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the renormalization procedure. The general approach of this paper is applicable to four-dimensional models

  13. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  14. Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals

    International Nuclear Information System (INIS)

    Leon, H; Estevez-Rams, E

    2009-01-01

    A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.

  15. Two-dimensional conformal field theory and beyond. Lessons from a continuing fashion

    International Nuclear Information System (INIS)

    Todorov, I.

    2000-01-01

    Two-dimensional conformal field theory (CFT) has several sources: the search for simple examples of quantum field theory, tile description of surface critical phenomena, the study of (super)string vacua (which made it particularly fashionable). In the present overview of tile subject we emphasize the role of CFT in bridging the gap between mathematics and quantum field theory and discuss some new physical concepts that emerged in the study of CFT models: anomalous dimensions, rational CFT, braid group statistics. In an aside, at tile end of the paper, we share tile misgivings, recently expressed by Penrose, about some dominant trends in fundamental theoretical physics. (author)

  16. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  17. Description of turbulent velocity and temperature fields of single phase flow through tight rod bundles

    International Nuclear Information System (INIS)

    Monir, C.

    1991-02-01

    A two-dimensional procedure, VANTACY-II, describing the turbulent velocity and temperature fields for single phase flow in tight lattices is presented and validated. The flow is assumed to be steady, incrompressible and hydraulic and thermal fully developed. First, the state of art of turbulent momentum and heat transport in tight lattices is documented. It is shown that there is a necessity for experimental investigations in the field of turbulent heat transport. The presented new procedure is based on the turbulence model VELASCO-TUBS by NEELEN. The numerical solution of the balance equations is done by the finite element method code VANTACY by KAISER. The validation of the new procedure VANTACY-II is done by comparing the numerically calculated data for the velocity and temperature fields and for natural mixing with the experimental data of SEALE. The comparison shows a good agreement of experimental and numerically computed data. The observed differences can be mainly attributed to the model of the turbulent PRANDTL number used in the new procedure. (orig.) [de

  18. Spiral field inhibition of thermal conduction in two-fluid solar wind models

    International Nuclear Information System (INIS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven

  19. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  20. Finite-time barriers to front propagation in two-dimensional fluid flows

    Science.gov (United States)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  1. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  2. Research in string theory and two dimensional conformal field theory: Progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Friedan, D.H.; Martinec, E.J.; Shenker, S.H.

    1988-12-01

    The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics

  3. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  4. Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-03-01

    The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description

  5. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  6. Infinite additional symmetries in the two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Apikyan, S.A.

    1987-01-01

    Additional symmetries in the two-dimensional conformal field theory, generated by currents (2,3/2,5/2) and (2,3/2,3) have been studied. It has been shown that algebra (2,3/2,5/2) is the direct product of algebras (2,3/2) and (2,5/2), and algebra (2,3/2,3) is the direct product of algebras (2,3/2) and (2,3). Associative algebra, formed by multicomponent symmetry generators of spin 3 for SO(3) has also been found

  7. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  8. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  9. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  10. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  11. Two tests of electric fields, second-order in source-velocity terms of closed, steady currents: (1) an electron beam; (2) a superconducting coil

    International Nuclear Information System (INIS)

    Kenyon, C.S.

    1980-01-01

    One particular prediction of Maxwell's theory that has been previously neglected is that the motion of charges traveling in closed loops produces no constant electric fields. This study presents and analyzes the results of two new experiments designed to test for second-order, source-velocity electric fields from steady, closed currents and analyzes another experiment in light of these fields. The first experiment employed an electron beam. The second used a niobium-titanium coil designed so that the voltage measurement configuration could be easily switched from a Faraday to a non-faraday configuration between sets of runs. The implications of the observation of a null charge on magnetically suspended superconducting spheres vis-a-vis the second-order, source-velocity fields were discussed as the third case. The observation of a null potential corresponding to a null effective charge from a hypothetical velocity-squared field in both the beam and the coil experiment placed the upper bound on a field term at 0.02 with respect a Coulomb term. An observed null charge on the suspended spheres reduced this bound to 0.001. Such an upper bound is strong evidence against alternative theories predicting a relative contribution of the order of unity for a simple velocity-squared term. A simple velocity-squared electric field would be indistinguishable from a velocity-squared charge variation. The latter test limits such a charge variation to 0.001 of the total charge. The suspended-spheres test allowed the previously neglected issue of a general second-order, source-velocity electric field to be addressed. The observed null charge in this test contradicts and thus eliminates a hypothesized, general, electric field expression containing three second-order, source-velocity terms

  12. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  13. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  14. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  15. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  16. Conformal field theory with two kinds of Bosonic fields and two linear dilatons

    International Nuclear Information System (INIS)

    Kamani, Davoud

    2010-01-01

    We consider a two-dimensional conformal field theory which contains two kinds of the bosonic degrees of freedom. Two linear dilaton fields enable to study a more general case. Various properties of the model such as OPEs, central charge, conformal properties of the fields and associated algebras will be studied. (author)

  17. Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2000-01-01

    Full Text Available In a system with at least one ignorable spatial dimension charged particles moving in fluctuating fields are tied to the magnetic field lines. Thus, in one-and two-dimensional simulations cross-field diffusion is inhibited and important physics may be lost. We have investigated cross-field diffusion in self-consistent 3-D magnetic turbulence by fully 3-dimensional hybrid simulation (macro-particle ions, massless electron fluid. The turbulence is generated by the electromagnetic ion/ion beam instability. A cold, low density, ion beam with a high velocity stream relative to the background plasma excites the right-hand resonant instability. Such ion beams may be important in the region of the Earth's foreshock. The field turbulence scatters the beam ions parallel as well as perpendicular to the magnetic field. We have determined the parallel and perpendicular diffusion coefficient for the beam ions in the turbulent wave field. The result compares favourably well (within a factor 2 with hard-sphere scattering theory for the cross-field diffusion coefficient. The cross-field diffusion coefficient is larger than that obtained in a static field with a Kolmogorov type spectrum and similar total fluctuation power. This is attributed to the resonant behaviour of the particles in the fluctuating field.

  18. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    Science.gov (United States)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  19. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  20. Experimental investigation of flow over two-dimensional multiple hill models.

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  2. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    Science.gov (United States)

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  3. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  4. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  5. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...... on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation. © 1994 The American Physical Society...

  6. Lattice formulation of a two-dimensional topological field theory

    International Nuclear Information System (INIS)

    Ohta, Kazutoshi; Takimi, Tomohisa

    2007-01-01

    We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)

  7. Two-dimensional dissipation in third sound resonance

    International Nuclear Information System (INIS)

    Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana

    1981-01-01

    The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)

  8. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  9. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    Science.gov (United States)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  10. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  11. Numerical studies of unsteady coherent structures and transport in two-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Hesthaven, J.S.

    1995-08-01

    The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.

  12. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.

  13. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  14. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  15. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  16. Potential, velocity, and density fields from redshift-distance samples: Application - Cosmography within 6000 kilometers per second

    International Nuclear Information System (INIS)

    Bertschinger, E.; Dekel, A.; Faber, S.M.; Dressler, A.; Burstein, D.

    1990-01-01

    A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively. 65 refs

  17. Potential, velocity, and density fields from redshift-distance samples: Application - Cosmography within 6000 kilometers per second

    Science.gov (United States)

    Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David

    1990-12-01

    A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.

  18. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  19. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter

    2014-01-01

    AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...

  20. Fractal tracer distributions in turbulent field theories

    DEFF Research Database (Denmark)

    Hansen, J. Lundbek; Bohr, Tomas

    1998-01-01

    We study the motion of passive tracers in a two-dimensional turbulent velocity field generated by the Kuramoto-Sivashinsky equation. By varying the direction of the velocity-vector with respect to the field-gradient we can continuously vary the two Lyapunov exponents for the particle motion and t...

  1. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  2. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  3. Ion distributions in a two-dimensional reconnection field geometry

    International Nuclear Information System (INIS)

    Curran, D.B.; Goertz, C.K.; Whelan, T.A.

    1987-01-01

    ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987

  4. Methodology to estimate the relative pressure field from noisy experimental velocity data

    International Nuclear Information System (INIS)

    Bolin, C D; Raguin, L G

    2008-01-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  5. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

    International Nuclear Information System (INIS)

    Minato, Akihiko; Naitoh, Masanori

    1987-01-01

    A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

  6. High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets

    Science.gov (United States)

    Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida

    2017-01-01

    High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.

  7. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  8. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  9. Wave dispersion relation of two-dimensional plasma crystals in a magnetic field

    International Nuclear Information System (INIS)

    Uchida, G.; Konopka, U.; Morfill, G.

    2004-01-01

    The wave dispersion relation in a two-dimensional strongly coupled plasma crystal is studied by theoretical analysis and molecular dynamics simulation taking into account a constant magnetic field parallel to the crystal normal. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz force acting on the dust particles. The high-frequency and the low-frequency branches are found to belong to right-hand and left-hand polarized waves, respectively

  10. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  11. Computation of Trajectories and Displacement Fields in a Three-Dimensional Ternary Diffusion Couple: Parabolic Transform Method

    Directory of Open Access Journals (Sweden)

    Marek Danielewski

    2015-01-01

    Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.

  12. Two-dimensional molecular line transfer for a cometary coma

    Science.gov (United States)

    Szutowicz, S.

    2017-09-01

    In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).

  13. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  14. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  15. Controllable group velocity of the probe light in a Λ-type system with two fold levels

    International Nuclear Information System (INIS)

    Jin Lihui; Gong Shangqing; Niu Yueping; Li Ruxin; Jin Shiqi

    2006-01-01

    The group velocities of the probe laser field are studied in a Λ-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance, we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light

  16. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  17. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  18. Two-dimensional atom localization via Raman-driven coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk

    2014-02-07

    A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.

  19. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  20. Development of three-dimensional phasic-velocity distribution measurement in a large-diameter pipe

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2s. (author)

  1. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...

  2. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  3. Toward precise solution of one-dimensional velocity inverse problems

    International Nuclear Information System (INIS)

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent

  4. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls

    OpenAIRE

    Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-01-01

    We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, w...

  5. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  6. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    Science.gov (United States)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  7. Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)_2SbF_6

    International Nuclear Information System (INIS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-01-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (H_c_2) for β-(BDA-TTP)_2SbF_6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, H_c_2 shows twofold symmetry: H_c_2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to H_c_2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of H_c_2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of H_c_2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)_2SbF_6. (author)

  8. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  9. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    International Nuclear Information System (INIS)

    Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang

    2016-01-01

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  10. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-08-15

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  11. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    Science.gov (United States)

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.

  12. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  13. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  14. Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems

    Science.gov (United States)

    Bachsoliani, N.; Platonov, S.; Wieck, A. D.; Ludwig, S.

    2017-12-01

    Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs /(Al ,Ga )As heterostructure enable a large variety of applications ranging from fundamental research to high-speed transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates, and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric-field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. We present a first exploration of this method pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and coherent properties.

  15. Beam alignment based on two-dimensional power spectral density of a near-field image.

    Science.gov (United States)

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  16. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    Science.gov (United States)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  17. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  18. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  19. Extensions of conformal symmetry in two-dimensional quantum field theory

    International Nuclear Information System (INIS)

    Schoutens, C.J.M.

    1989-01-01

    Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs

  20. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  1. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  2. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  3. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    International Nuclear Information System (INIS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-01-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300 s was demonstrated. Also, the system could track an object with a velocity of up to 35 000 μm/s (175 diameters/s), which is significantly faster than swimming micro-organisms

  4. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    International Nuclear Information System (INIS)

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-01-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the

  5. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  6. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  7. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  8. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  9. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  10. Two-dimensional flow characteristics of wave interactions with a free-rolling rectangular structure

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Hyo Jung; Kuang-An Chang [Texas A and M University, College Station, TX (United States). Dept. of Civil Engineering; Huang, E.T. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States). Amphibious System Div.

    2005-01-01

    This paper presents laboratory observations of flow characteristics for regular waves passing a rectangular structure in a two-dimensional wave tank. The structure with a draft one-half of its height was hinged at the center of gravity and free to roll (one degree of freedom) by waves. Particle image velocimetry (PIV) was used to measure the velocity field in the vicinity of the structure. The mean velocity and turbulence properties were obtained by phase-averaging the PIV velocity maps from repeated test runs. Since the viscous damping (also called the eddy making damping) in a vortical flow affects the roll motion of a blunt body, the quantitative flow pattern was represented to elucidate the coupled interactions between the body motion and the waves. Additionally, the turbulence properties including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the interactions. The results show that vortices were generated near the structure corners at locations opposing to that of the roll damping effect for waves with a period longer than the roll natural period of the structure. (Author)

  11. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  12. On the effect of grain burnback on STS-SRM fragment velocity

    International Nuclear Information System (INIS)

    Eck, M.B.; Mukunda, M.

    1991-01-01

    Concerns raised during the Ulysses Final Safety Analysis Review (FSAR) process called the solid rocket motor (SRM) fragment velocity prediction model into question. The specific area of concern was that there was a section of the SRM casing which was exposed to SRM chamber pressure as the grain (fuel) was consumed. These questions centered on the velocity of fragments which originated from the field joint region given that failure occurred between 37 and 72 seconds mission elapsed time (MET). Two dimensional coupled Eulerian-Lagrangian calculations were performed to assess the hot gas flow field which resulted from SRM casing fragmentation. The fragment to gas interface-pressure time-history obtained from these analyses was reduced to a boundary condition algorithm which was applied to an explicit-time-integration, finite element, three dimensional shell model of the SRM casing and unburned fuel. The results of these calculations showed that the velocity of fragments originating in the field joint was adequately described by the range of velocities given in the Shuttle Data Book (1988). Based on these results, no further analyses were required, and approval was obtained from the Launch Abort Subpanel of the Interagency Nuclear Safety Review Panel to use the SRM fragment velocity environments presented in the Ulysses FSAR (1990)

  13. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  14. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  15. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  16. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  17. Twistors and four-dimensional conformal field theory

    International Nuclear Information System (INIS)

    Singer, M.A.

    1990-01-01

    This is a report (with technical details omitted) on work concerned with generalizations to four dimensions of two-dimensional Conformed Field Theory. Accounts of this and related material are contained elsewhere. The Hilbert space of the four-dimensional theory has a natural interpretation in terms of massless spinor fields on real Minkowski space. From the twistor point of view this follows from the boundary CR-manifold P being precisely the space of light rays in real compactified Minkowski space. All the amplitudes can therefore be regarded as defined on Hilbert spaces built from Lorentzian spinor fields. Thus the twistor picture provides a kind of halfway house between the Lorentzian and Euclidean field theories. (author)

  18. Characteristics of the Taylor microscale in the solar wind/foreshock. Magnetic field and electron velocity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gurgiolo, C. [Bitterroot Basic Research, Hamilton, MT (United States); Goldstein, M.L.; Vinas, A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Heliospheric Physics Lab.; Matthaeus, W.H. [Delaware Univ., Newark, DE (United States). Bartol Research Foundation; Fazakerley, A.N. [University College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2013-07-01

    The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale ({lambda}{sub T}). We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538{+-}550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show {lambda}{sub T} computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute {lambda}{sub T} based on the electron fluid velocity is not able to be determined.

  19. Characteristics of the Taylor microscale in the solar wind/foreshock: magnetic field and electron velocity measurements

    Directory of Open Access Journals (Sweden)

    C. Gurgiolo

    2013-11-01

    Full Text Available The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale (λT. We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538 ± 550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show λT computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute λT based on the electron fluid velocity is not able to be determined.

  20. Characteristics of the Taylor microscale in the solar wind/foreshock. Magnetic field and electron velocity measurements

    International Nuclear Information System (INIS)

    Gurgiolo, C.; Goldstein, M.L.; Vinas, A.; Matthaeus, W.H.; Fazakerley, A.N.

    2013-01-01

    The Taylor microscale is one of the fundamental turbulence scales. Not easily estimated in the interplanetary medium employing single spacecraft data, it has generally been studied through two point correlations. In this paper we present an alternative, albeit mathematically equivalent, method for estimating the Taylor microscale (λ T ). We make two independent determinations employing multi-spacecraft data sets from the Cluster mission, one using magnetic field data and a second using electron velocity data. Our results using the magnetic field data set yields a scale length of 1538±550 km, slightly less than, but within the same range as, values found in previous magnetic-field-based studies. During time periods where both magnetic field and electron velocity data can be used, the two values can be compared. Relative comparisons show λ T computed from the velocity is often significantly smaller than that from the magnetic field data. Due to a lack of events where both measurements are available, the absolute λ T based on the electron fluid velocity is not able to be determined.

  1. Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media

    Directory of Open Access Journals (Sweden)

    Djordjevich Alexandar

    2017-12-01

    Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.

  2. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    Science.gov (United States)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  3. Suppression of thermal noise in a non-Markovian random velocity field

    International Nuclear Information System (INIS)

    Ueda, Masahiko

    2016-01-01

    We study the diffusion of Brownian particles in a Gaussian random velocity field with short memory. By extending the derivation of an effective Fokker–Planck equation for the Lanvegin equation with weakly colored noise to a random velocity-field problem, we find that the effect of thermal noise on particles is suppressed by the existence of memory. We also find that the renormalization effect for the relative diffusion of two particles is stronger than that for single-particle diffusion. The results are compared with those of molecular dynamics simulations. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  4. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  5. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  6. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  7. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  8. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....

  9. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant.

    Science.gov (United States)

    Zeng, Guang-Ming; Jiang, Yi-Min; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

  10. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    Science.gov (United States)

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  11. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    International Nuclear Information System (INIS)

    Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks

  12. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Morales, A.L. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-11-15

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks.

  13. Variational multi-valued velocity field estimation for transparent sequences

    DEFF Research Database (Denmark)

    Ramírez-Manzanares, Alonso; Rivera, Mariano; Kornprobst, Pierre

    2011-01-01

    Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose a variational approach for estimating multi-valued velocity fields in transparent sequences. Starting from existing local motion estimators, we derive...... a variational model for integrating in space and time such a local information in order to obtain a robust estimation of the multi-valued velocity field. With this approach, we can indeed estimate multi-valued velocity fields which are not necessarily piecewise constant on a layer –each layer can evolve...

  14. Embedding Approach to Modeling Electromagnetic Fields in a Complex Two-Dimensional Environment

    Directory of Open Access Journals (Sweden)

    Anton Tijhuis

    2018-01-01

    Full Text Available An approach is presented to combine the response of a two-dimensionally inhomogeneous dielectric object in a homogeneous environment with that of an empty inhomogeneous environment. This allows an efficient computation of the scattering behavior of the dielectric cylinder with the aid of the CGFFT method and a dedicated extrapolation procedure. Since a circular observation contour is adopted, an angular spectral representation can be employed for the embedding. Implementation details are discussed for the case of a closed 434 MHz microwave scanner, and the accuracy and efficiency of all steps in the numerical procedure are investigated. Guidelines are proposed for choosing computational parameters such as truncation limits and tolerances. We show that the embedding approach does not increase the CPU time with respect to the forward problem solution in a homogeneous environment, if only the fields on the observation contour are computed, and that it leads to a relatively small increase when the fields on the mesh are computed as well.

  15. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  16. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  17. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    Science.gov (United States)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  18. Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Froehlich, J.

    1992-01-01

    Two-dimensional chiral fermions and bosons, more generally conformal blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for a system of chiral bosons of arbitrary conformal spin j is sketched. It is shown that the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled by the anomalies of a three-dimensional classical Chern-Simons action for the spin connection, expressed in terms of the dreibein field. Some tentative applications of this result to string theory are indicated. (orig.)

  19. Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution

    International Nuclear Information System (INIS)

    Fu, W.-Z.; Hau, L.-N.

    2005-01-01

    An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ

  20. Statistics of a mixed Eulerian-Lagrangian velocity increment in fully developed turbulence

    International Nuclear Information System (INIS)

    Friedrich, R; Kamps, O; Grauer, R; Homann, H

    2009-01-01

    We investigate the relationship between Eulerian and Lagrangian probability density functions obtained from numerical simulations of two-dimensional as well as three-dimensional turbulence. We show that in contrast to the structure functions of the Lagrangian velocity increment δ τ v(y)=u(x(y, τ), τ)- u(y, 0), where u(x, t) denotes the Eulerian velocity and x(y, t) the particle path initially starting at x(y, 0)=y, the structure functions of the velocity increment δ τ w(y)=u(x(y, τ), τ)- u(y, τ) exhibit a wide range of scaling behavior. Similar scaling indices are detected for the structure functions for particles diffusing in frozen turbulent fields. Furthermore, we discuss a connection to the scaling of Eulerian transversal structure functions.

  1. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  2. Topological aspect of disclinations in two-dimensional crystals

    International Nuclear Information System (INIS)

    Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)

  3. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  4. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    Science.gov (United States)

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  5. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    Science.gov (United States)

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  6. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  7. Two-dimensional interpolation with experimental data smoothing

    International Nuclear Information System (INIS)

    Trejbal, Z.

    1989-01-01

    A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs

  8. Infinite-dimensional Lie algebras in 4D conformal quantum field theory

    International Nuclear Information System (INIS)

    Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan

    2008-01-01

    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively

  9. Magnetic fields, velocity fields and brightness in the central region of the Solar disk

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, T T

    1978-01-01

    The longitudinal magnetic fields, velocity fields and brightness at the center of the Solar disk are studied. Observations of the magnetic field, line-of-sight velocities and brightness have been made with the doublemagnetograph of the Crimean astrophysical observatory. It is found that the average magnetic field strength recorded in the iron line lambda 5233 A is 18 Gs for the elements of N-polarity and 23 Gs for the elements of S-polarity. The magnetic elements with the field strength more than 200 Gs are observed in some of the cases. There is a close correlation between the magnetic field distribution in the lambda 5250 A FeI and D/sub 1/ Na I lines and between the magnetic field in the lambda 5250 A and brightness in the K/sub 3/CaII line. The dimensions of the magnetic elements in the lambda and D/sub 1/NaI lines are equal. The comparison of the magnetic field with the radial velocity recorded in the lambda 5250 and 5233 A lines has shown that radial velocities are close to zero in the regions of maximum longitudinal magnetic field. The chromospheric network-like pattern is observed in the brightness distribution of ten different spectral lines.

  10. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  11. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  12. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin—orbit couplings

    International Nuclear Information System (INIS)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin—orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin—orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin—orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. The large-scale peculiar velocity field in flat models of the universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Turner, M.S.

    1986-10-01

    The inflationary Universe scenario predicts a flat Universe and both adiabatic and isocurvature primordial density perturbations with the Zel'dovich spectrum. The two simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict with observations. Flat models are examined with two components of mass density, where one of the components of mass density is smoothly distributed and the large-scale (≥10h -1 MpC) peculiar velocity field for these models is considered. For the smooth component relativistic particles, a relic cosmological term, and light strings are considered. At present the observational situation is unsettled; but, in principle, the large-scale peculiar velocity field is very powerful discriminator between these different models. 61 refs

  14. Microbunching instability in a chicane: Two-dimensional mean field treatment

    Directory of Open Access Journals (Sweden)

    Gabriele Bassi

    2009-08-01

    Full Text Available We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case.

  15. Assessment of RELAP5-3D copyright using data from two-dimensional RPI flow tests

    International Nuclear Information System (INIS)

    Davis, C.B.

    1998-01-01

    The capability of the RELAP5-3D copyright computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code's logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved

  16. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  17. Dynamics of two-dimensional vortex system in a strong square pinning array at the second matching field

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qing-Bao [Department of Physics, Lishui University, Lishui 323000 (China); Luo, Meng-Bo, E-mail: Luomengbo@zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2013-10-30

    We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.

  18. Comparative study of the two-fluid momentum equations for multi-dimensional bubbly flows: Modification of Reynolds stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2017-01-15

    Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.

  19. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.

    2015-01-01

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability

  20. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  1. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    International Nuclear Information System (INIS)

    Kowal, Grzegorz; Lazarian, A.

    2010-01-01

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

  2. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  3. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    Science.gov (United States)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  4. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  5. Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

    Science.gov (United States)

    Šimkanin, Ján; Kyselica, Juraj

    2017-12-01

    Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.

  6. Mass spectrum of the two dimensional lambdaphi4-1/4phi2-μphi quantum field model

    International Nuclear Information System (INIS)

    Imbrie, J.Z.

    1980-01-01

    It is shown that r-particle irreducible kernels in the two-dimensional lambdaphi 4 -1/4phi 2 -μphi quantum field theory have (r+1)-particle decay for vertical stroke μ vertical stroke 2 << 1. As a consequence there is an upper mass gap and, in the subspace of two-particle states, a bound state. The proof extends Spencer's expansion to handle fluctuations between the two wells of the classical potential. A new method for resumming the low temperature cluster expansion is introduced. (orig.)

  7. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  8. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru [Russian Academy of Sciences, Institute for Problems in Mechanics (Russian Federation)

    2017-03-15

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  9. Investigation of the velocity field in a full-scale model of a cerebral aneurysm

    International Nuclear Information System (INIS)

    Roloff, Christoph; Bordás, Róbert; Nickl, Rosa; Mátrai, Zsolt; Szaszák, Norbert; Szilárd, Szabó; Thévenin, Dominique

    2013-01-01

    Highlights: • We investigate flow fields inside a phantom model of a full-scale cerebral aneurysm. • An artificial blood fluid is used matching viscosity and density of real blood. • We present Particle Tracking results of fluorescent tracer particles. • Instantaneous model inlet velocity profiles and volume flow rates are derived. • Trajectory fields at three of six measurement planes are presented. -- Abstract: Due to improved and now widely used imaging methods in clinical surgery practise, detection of unruptured cerebral aneurysms becomes more and more frequent. For the selection and development of a low-risk and highly effective treatment option, the understanding of the involved hemodynamic mechanisms is of great importance. Computational Fluid Dynamics (CFD), in vivo angiographic imaging and in situ experimental investigations of flow behaviour are powerful tools which could deliver the needed information. Hence, the aim of this contribution is to experimentally characterise the flow in a full-scale phantom model of a realistic cerebral aneurysm. The acquired experimental data will then be used for a quantitative validation of companion numerical simulations. The experimental methodology relies on the large-field velocimetry technique PTV (Particle Tracking Velocimetry), processing high speed images of fluorescent tracer particles added to the flow of a blood-mimicking fluid. First, time-resolved planar PTV images were recorded at 4500 fps and processed by a complex, in-house algorithm. The resulting trajectories are used to identify Lagrangian flow structures, vortices and recirculation zones in two-dimensional measurement slices within the aneurysm sac. The instantaneous inlet velocity distribution, needed as boundary condition for the numerical simulations, has been measured with the same technique but using a higher frame rate of 20,000 fps in order to avoid ambiguous particle assignment. From this velocity distribution, the time

  10. Basic Pilot Code Development for Two-Fluid, Three-Field Model

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H.

    2006-03-01

    A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report

  11. Basic Pilot Code Development for Two-Fluid, Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H

    2006-03-15

    A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report.

  12. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  13. Experimental investigation of two-dimensional critical surface structure, stimulated Raman scattering, and two-plasmon decay instability. Annual report, January 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Wong, A.Y.; Eggleston, D.L.; Tanikawa, T.; Qian, S.J.

    1982-11-01

    Experimental observations of the space and time evolution of resonantly enhanced electrostatic electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal location with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical, analytical, and qualitative hybrid models for a driven, two-dimensional, inhomogeneous plasma are presented. Preliminary work is presented in the following additional areas: weak magnetic field effects on critical surface physics, optical measurements of fast electron production, two-dimensional effects in microwave-plasma interactions, Langmuir wave trapping, stimulated Raman scattering and two-plasmon decay instability

  14. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient

    Science.gov (United States)

    Zhu, Jian-Zhou

    2018-03-01

    The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.

  15. Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression

    KAUST Repository

    Bressloff, Paul C.

    2011-01-01

    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.

  16. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  17. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  18. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  19. Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map

    Science.gov (United States)

    Rosales, Carlos

    2011-07-01

    A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is

  20. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  1. Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, A.N.; Frolov, Valeri P.

    2004-01-01

    In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3

  2. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  3. Multi-dimensional two-phase flow measurements in a large-diameter pipe using wire-mesh sensor

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa; Ueda, Nobuyuki

    2011-01-01

    The authors developed a method of measurement to determine the multi-dimensionality of two phase flow. A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. A high-speed camera is used to set the parameter of cross-correlation analysis. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2 s. (author)

  4. Boundary effects in a quasi-two-dimensional driven granular fluid.

    Science.gov (United States)

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  5. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  6. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  7. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  8. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  9. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    Science.gov (United States)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  10. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.

    Science.gov (United States)

    Xu, Li-Chun; Du, Aijun; Kou, Liangzhi

    2016-10-05

    The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.

  11. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  12. Simulation of diffusion in a two-dimensional lattice gas cellular automaton: a test of mode-coupling theory

    NARCIS (Netherlands)

    Frenkel, D.; Ernst, M.H.

    1989-01-01

    We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas cellular automaton using a method that is about a million times more efficient than existing techniques. A t-1 algebraic tail in the tagged-particle velocity autocorrelation function is clearly

  13. Time-dependent perturbations in two-dimensional string black holes

    CERN Document Server

    Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E

    1992-01-01

    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}

  14. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  15. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  16. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  17. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  18. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    Science.gov (United States)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  19. Two-dimensional numerical modeling of the cosmic ray storm

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    A numerical model of the cosmic ray storm in the two-dimensional heliosphere is constructed incorporating the drift effect. We estimate the effect of a flare-associated interplanetary shock and the disturbed region behind it (characterized by enhancement in velocity and magnetic field, and decrease in mean free path) on the density and anisotropy of cosmic rays in the heliosphere. As the disturbance propagates outward, a density enhancement appears on the front side, and a density depression region is produced on the rear side. The effect of drift on the cosmic ray storm appears most clearly in the higher-latitude region. For the parallel (antiparallel) state of the solar magnetic field which corresponds to the pre(post-) 1980 period, the density in the higher-latitude region decreases (increases) before the shock arrival. The maximum density depression near the earth for the parallel state is greater than for the antiparallel state, and the energy spectrum of the density depression in percentage is softer for the parallel state than for the antiparallel state. Prior to the arrival of the shock, the phase of solar diurnal anisotropy begins to shift to the earlier hours, and its amplitude becomes greater for both polarity states. North-south anisotropy also becomes greater because of the enhanced drift for both polarity states

  20. The velocity field induced by a helical vortex tube

    DEFF Research Database (Denmark)

    Fukumoto, Y.; Okulov, Valery

    2005-01-01

    The influence of finite-core thickness on the velocity field around a vortex tube is addressed. An asymptotic expansion of the Biot-Savart law is made to a higher order in a small parameter, the ratio of core radius to curvature radius, which consists of the velocity field due to lines of monopoles...... and dipoles arranged on the centerline of the tube. The former is associated with an infinitely thin core and is featured by the circulation alone. The distribution of vorticity in the core reflects on the strength of dipole. This result is applied to a helical vortex tube, and the induced velocity due...

  1. UTILIZATION OF MULTIPLE MEASUREMENTS FOR GLOBAL THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Wang, A. H.; Wu, S. T.; Tandberg-Hanssen, E.; Hill, Frank

    2011-01-01

    Magnetic field measurements, line of sight (LOS) and/or vector magnetograms, have been used in a variety of solar physics studies. Currently, the global transverse velocity measurements near the photosphere from the Global Oscillation Network Group (GONG) are available. We have utilized these multiple observational data, for the first time, to present a data-driven global three-dimensional and resistive magnetohydrodynamic (MHD) simulation, and to investigate the energy transport across the photosphere to the corona. The measurements of the LOS magnetic field and transverse velocity reflect the effects of convective zone dynamics and provide information from the sub-photosphere to the corona. In order to self-consistently include the observables on the lower boundary as the inputs to drive the model, a set of time-dependent boundary conditions is derived by using the method of characteristics. We selected GONG's global transverse velocity measurements of synoptic chart CR2009 near the photosphere and SOLIS full-resolution LOS magnetic field maps of synoptic chart CR2009 on the photosphere to simulate the equilibrium state and compute the energy transport across the photosphere. To show the advantage of using both observed magnetic field and transverse velocity data, we have studied two cases: (1) with the inputs of the LOS magnetic field and transverse velocity measurements, and (2) with the input of the LOS magnetic field and without the input of transverse velocity measurements. For these two cases, the simulation results presented here are a three-dimensional coronal magnetic field configuration, density distributions on the photosphere and at 1.5 solar radii, and the solar wind in the corona. The deduced physical characteristics are the total current helicity and the synthetic emission. By comparing all the physical parameters of case 1 and case 2 and their synthetic emission images with the EIT image, we find that using both the measured magnetic field and the

  2. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  3. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  4. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  5. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  6. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  7. Two- to three-dimensional crossover in a dense electron liquid in silicon

    Science.gov (United States)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  8. Retrieving 3D Wind Field from Phased Array Radar Rapid Scans

    Directory of Open Access Journals (Sweden)

    Xiaobin Qiu

    2013-01-01

    Full Text Available The previous two-dimensional simple adjoint method for retrieving horizontal wind field from a time sequence of single-Doppler scans of reflectivity and/or radial velocity is further developed into a new method to retrieve both horizontal and vertical winds at high temporal and spatial resolutions. This new method performs two steps. First, the horizontal wind field is retrieved on the conical surface at each tilt (elevation angle of radar scan. Second, the vertical velocity field is retrieved in a vertical cross-section along the radar beam with the horizontal velocity given from the first step. The method is applied to phased array radar (PAR rapid scans of the storm winds and reflectivity in a strong microburst event and is shown to be able to retrieve the three-dimensional wind field around a targeted downdraft within the storm that subsequently produced a damaging microburst. The method is computationally very efficient and can be used for real-time applications with PAR rapid scans.

  9. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  10. Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences ...

  11. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  12. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    Science.gov (United States)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  13. Reconstruction of Typhoon Structure Using 3-Dimensional Doppler Radar Radial Velocity Data with the Multigrid Analysis: A Case Study in an Idealized Simulation Context

    Directory of Open Access Journals (Sweden)

    Hongli Fu

    2016-01-01

    Full Text Available Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS with multigrid data assimilation developed in Earth System Research Laboratory (ESRL in National Oceanic and Atmospheric Administration (NOAA has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

  14. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  15. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    Science.gov (United States)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  16. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Three-dimensional magnetotelluric characterization of the Coso geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Gregory A.; Gasperikova, Erika [Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720 (United States); Hoversten, G. Michael [Chevron Energy Technology Company, Seismic Analysis and Property Estimation, San Ramon, CA 94583 (United States); Wannamaker, Philip E. [Energy and Geoscience Institute, University of Utah, Salt Lake City, UT 84108 (United States)

    2008-08-15

    A dense grid of 125 magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at Parkfield, CA was used as a remote reference to suppress this cultural EM noise interference. These data have been inverted to a fully three-dimensional (3D) resistivity model. This model shows the controlling geological structures possibly influencing well production at Coso and correlations with mapped surface features such as faults and the regional geoelectric strike. The 3D model also illustrates the refinement in positioning of resistivity contacts when compared to isolated 2D inversion transects. The resistivity model has also been correlated with micro-earthquake locations, reservoir fluid production intervals and most importantly with an acoustic and shear velocity model derived by Wu and Lees [Wu, H., Lees, J.M., 1999. Three-dimensional P and S wave velocity structures of the Coso Geothermal Area, California, from microseismic travel time data. J. Geophys. Res. 104 (B6), 13217-13233]. This later correlation shows that the near-vertical low-resistivity structure on the eastern flank of the producing field is also a zone of increased acoustic velocity and increased V{sub p}/V{sub s} ratio bounded by mapped fault traces. Over of the Devils' Kitchen is an area of large geothermal well density, where highly conductive near surface material is interpreted as a smectite clay cap alteration zone manifested from the subsurface geothermal fluids and related geochemistry. Enhanced resistivity beneath this cap and within the reservoir is diagnostic of propylitic alteration causing the formation of illite clays, which is typically observed in high-temperature reservoirs (>230 C). In the southwest flank of the field the V{sub p}/V{sub s} ratio is enhanced over the production intervals, but the

  18. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  19. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    Science.gov (United States)

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  20. Effect of disorder on the density of states of a two-dimensional electron gas under magnetic field

    International Nuclear Information System (INIS)

    Bonifacie, S.; Meziani, Y.M.; Chaubet, C.; Jouault, B.; Raymond, A.

    2004-01-01

    We have calculated the density of states (DOS) of a two-dimensional electron gas in a perpendicular magnetic field, using a multiple scattering method, in the ultraquantum limit. We have considered doped and disordered 2D systems. The results of the scattering method are compared with direct simulations of disordered samples. Using the DOS, we have studied the metal-insulator transition and the magnetic freeze-out including a comparison with experimental results

  1. Gate control of the spin mobility through the modification of the spin-orbit interaction in two-dimensional systems

    Science.gov (United States)

    Luengo-Kovac, M.; Moraes, F. C. D.; Ferreira, G. J.; Ribeiro, A. S. L.; Gusev, G. M.; Bakarov, A. K.; Sih, V.; Hernandez, F. G. G.

    2017-06-01

    Spin drag measurements were performed in a two-dimensional electron system set close to the crossed spin helix regime and coupled by strong intersubband scattering. In a sample with an uncommon combination of long spin lifetime and high charge mobility, the drift transport allows us to determine the spin-orbit field and the spin mobility anisotropies. We used a random walk model to describe the system dynamics and found excellent agreement for the Rashba and Dresselhaus couplings. The proposed two-subband system displays a large tuning lever arm for the Rashba constant with gate voltage, which provides a new path towards a spin transistor. Furthermore, the data show large spin mobility controlled by the spin-orbit constants setting the field along the direction perpendicular to the drift velocity. This work directly reveals the resistance experienced in the transport of a spin-polarized packet as a function of the strength of anisotropic spin-orbit fields.

  2. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  3. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  4. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  5. TRAJ - a FORTRAN 77 computer program for the calculation of trajectories on the basis of space and time varying velocity fields

    International Nuclear Information System (INIS)

    Zimmer, J.

    1986-09-01

    The computation of three dimensional trajectories is described in this report. Since measurements of the position and velocity of individual fluid parcels are difficult to be carried out and analytic solutions applicable to the trajectory problem are not available, trajectories have to be calculated by successive observations of the corresponding velocity fields using a method of successive approximation. The application is restricted to cartesian grid coordinate system with equidistant grid points. This model was developed for meteorological purposes (transport of pollutants) but can also be used for other fluids and scales. (orig./PW) [de

  6. Two-dimensional sparse wavenumber recovery for guided wavefields

    Science.gov (United States)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  7. Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); University Mouloud Mammeri, Tizi Ouzou (Algeria); Merah, A. [University M' hammed Bougara, Boumerdes (Algeria); Zizi, M. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P B.P 17 Bordj El Bahri, Algiers (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France); Bouabdallah, A.

    2010-06-15

    The effects of several growth parameters in cylindrical and spherical Czochralski crystal process are studied numerically and particularly, we focus on the influence of the pressure field. We present a set of three-dimensional computational simulations using the finite volume package Fluent in two different geometries, a new geometry as cylindro-spherical and the traditional configuration as cylindro-cylindrical. We found that the evolution of pressure which is has not been studied before; this important function is strongly related to the vorticity in the bulk flow, the free surface and the growth interface. It seems that the pressure is more sensitive to the breaking of symmetry than the other properties that characterize the crystal growth as temperature or velocity fields. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  9. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  10. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    Science.gov (United States)

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  11. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  12. Investigation of Horizontal Velocity Fields in Stirred Vessels with Helical Coils by PIV

    Directory of Open Access Journals (Sweden)

    Volker Bliem

    2014-01-01

    Full Text Available Horizontal velocity flow fields were measured by particle image velocimetry for a stirred vessel with baffles and two helical coils for enlargement of heat transfer area. The investigation was carried out in a cylindrical vessel with flat base and two different stirrers (radial-flow Rushton turbine and axial-flow propeller stirrer. Combined velocity plots for flow fields at different locations are presented. It was found that helical coils change the flow pattern significantly. Measurements for the axial-flow Rushton turbine showed a strong deflection by the coils, leading to a mainly tangential flow pattern. Behind baffles large areas of unused heat transfer area were found. First results for the axial-flow propeller reveal an extensive absence of fluid movement in the horizontal plane. Improved design considerations for enhanced heat transfer by more compatible equipment compilation are proposed.

  13. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  14. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  15. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-02-15

    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  16. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  17. Investigational study of optical function materials for two-dimensional data processing; Nijigen joho shoriyo hikari kino zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper investigated/studied `space light modulation materials,` `dynamic hologram/memory materials,` `optical waveguide path materials,` etc. which become key materials in the high speed two dimensional processing. As to electrooptical materials proposed in this investigational study, the external electric field and the electric charges generated make quality of molecules themselves directly change to memory strong/weak signals of light. Therefore, the response velocity becomes less than a millionth of that of the liquid crystal display, and high speed which is needed for realtime moving image processing is anticipated. Hologram includes the phase information in addition to information on light strength. Therefore, it is a large capacity record medium and at the same time a record medium which can read/write two dimensional information as it is. With optical fiber, images cannot be transmitted as they are. Light waveguide path materials are those that accumulate roles of mirror and lens in a sheet of the material and construct a system which is strong in vibration, as optical parts connecting among materials for two dimensional data processing. 273 refs., 107 figs., 17 tabs.

  18. Monrelativistic particle in a magnetic field in two-dimensional Lobachevsky space, the cylindrical coordinates and the Poincare half-plane

    International Nuclear Information System (INIS)

    Ovsiyu, E.M.

    2012-01-01

    Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)

  19. Stabilized Discretization in Spline Element Method for Solution of Two-Dimensional Navier-Stokes Problems

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2014-01-01

    Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.

  20. Two dimensional numerical model for steam--water flow in a sudden contraction

    International Nuclear Information System (INIS)

    Crowe, C.T.; Choi, H.N.

    1976-01-01

    A computational model developed for two-dimensional dispersed two-phase flows is applied to steam--water flow in a sudden contraction. The calculational scheme utilizes the cellular approach in which each cell is regarded as a control volume and the droplets are regarded as sources of mass, momentum and energy to the conveying (steam) phase. The predictions show how droplets channel in the entry region and affect the velocity and pressure distributions along the duct

  1. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  2. Measurement of pressure distributions and velocity fields of water jet intake flow

    International Nuclear Information System (INIS)

    Jeong, Eun Ho; Yoon, Sang Youl; Kwon, Seong Hoon; Chun, Ho Hwan; Kim, Mun Chan; Kim, Kyung Chun

    2002-01-01

    Waterjet propulsion system can avoid cavitation problem which is being arised conventional propeller propulsion system. The main issue of designing waterjet system is the boundary layer separation at ramp and lib of water inlet. The flow characteristics are highly depended on Jet to Velocity Ratio(JVR) as well as the intake geometry. The present study is conducted in a wind tunnel to provide accurate pressure destribution at the inlet wall and velocity field of the inlet and exit planes. Particle image velocimetry technique is used to obtain detail velocity fields. Pressure distributions and velocity field are discussed with accelerating and deaccelerating flow zones and the effect of JVR

  3. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  4. Velocity field in the wake of a hydropower farm equipped with Achard turbines

    International Nuclear Information System (INIS)

    Georgescu, A-M; Cosoiu, C I; Alboiu, N; Hamzu, Al; Georgescu, S C

    2010-01-01

    The study consists of experimental and numerical investigations related to the water flow in the wake of a hydropower farm, equipped with three Achard turbines. The Achard turbine is a French concept of vertical axis cross-flow marine current turbine, with three vertical delta-blades, which operates irrespective of the water flow direction. A farm model built at 1:5 scale has been tested in a water channel. The Achard turbines run in stabilized current, so the flow can be assumed to be almost unchanged in horizontal planes along the vertical z-axis, thus allowing 2D numerical modelling, for different farm configurations: the computational domain is a cross-section of all turbines at a certain z-level. The two-dimensional numerical model of that farm has been used to depict the velocity field in the wake of the farm, with COMSOL Multiphysics and FLUENT software, to compute numerically the overall farm efficiency. The validation of the numerical models with experimental results is performed via the measurement of velocity distribution, by Acoustic Doppler Velocimetry, in the wake of the middle turbine within the farm. Three basic configurations were studied experimentally and numerically, namely: with all turbines aligned on a row across the upstream flow direction; with turbines in an isosceles triangular arrangement pointing downstream; with turbines in an isosceles triangular arrangement pointing upstream. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The farm configuration with all turbines aligned on a same row leads to lower values of the experimental velocities than the numerical ones, while the farm configurations where the turbines are in isosceles triangular arrangement, pointing downstream or upstream, present a better match between numerical and experimental data.

  5. Self-running and self-floating two-dimensional actuator using near-field acoustic levitation

    Science.gov (United States)

    Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping

    2016-09-01

    Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.

  6. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  7. Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model

    International Nuclear Information System (INIS)

    Prahm, L.P.; Christensen, O.

    1977-01-01

    The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies

  8. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  9. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  10. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  11. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  12. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  13. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    Science.gov (United States)

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices

    International Nuclear Information System (INIS)

    Vugalter, G A; Pastukhov, A S

    2004-01-01

    Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account

  15. Internal structure and interfacial velocity development for bubbly two-phase flow

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Huang, W.D.

    1994-01-01

    This paper describes an experimental study of the internal structure of air-water flowing horizontally. The double-sensor resistivity probe technique was applied for measurements of local interfacial parameters, including void fraction, interfacial area concentration, bubble size distributions, bubble passing frequency and bubble interface velocity. Bubbly flow patterns at several flow conditions were examined at three axial locations, L/D=25, 148 and 253, in which the first measurement represents the entrance region where the flow develops, and the second and third may represent near fully developed bubbly flow patterns. The experimental results are presented in three-dimensional perspective plots of the interfacial parameters over the cross-section. These multi-dimensional presentations showed that the local values of the void fraction, interfacial area concentration and bubble passing frequency were nearly constant over the cross-section at L/D=25, with slight local peaking close to the channel wall. Although similar local peakings were observed at the second and third locations, the internal flow structure segregation due to buoyancy appeared to be very strong in the axial direction. A simple comparison of profiles of the interfacial parameters at the three locations indicated that the flow pattern development was a continuous process. Finally, it was shown that the so-called ''fully developed'' bubbly two-phase flow pattern cannot be established in a horizontal pipe and that there was no strong correspondence between void fraction and interface velocity profiles. ((orig.))

  16. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  17. Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionality

    International Nuclear Information System (INIS)

    Wilms, D; Virnau, P; Binder, K; Deutschländer, S; Siems, U; Franzrahe, K; Henseler, P; Keim, P; Schwierz, N; Maret, G; Nielaba, P

    2012-01-01

    In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures

  18. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer

  19. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  20. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-01-01

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems

  1. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  2. Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence

    Science.gov (United States)

    Bandi, Mahesh M.; Connaughton, Colm

    2008-03-01

    We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig’s XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms.

  3. Lagrangian statistics in weakly forced two-dimensional turbulence.

    Science.gov (United States)

    Rivera, Michael K; Ecke, Robert E

    2016-01-01

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.

  4. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  5. Two-Dimensional Charge Transport in Disordered Organic Semiconductors

    NARCIS (Netherlands)

    Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.

    2012-01-01

    We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides

  6. Kinetics of two-dimensional electron plasma, interacting with fluctuating potential

    International Nuclear Information System (INIS)

    Boiko, I.I.; Sirenko, Y.M.

    1990-01-01

    In this paper, from the first principles, after the fashion of Klimontovich, the authors derive quantum kinetic equation for electron gas, inhomogeneous in z-direction and homogeneous in XY-plane. Special attention is given to the systems with quasi-two-dimensional electron gas (2 DEG), which are widely explored now. Both interaction between the particles of 2 DEG (in general, of several sorts), and interaction with an external system (phonons, impurities, after change carries etc.) are considered. General theory is used to obtain energy and momentum balance equations and relaxation frequencies for 2 DEG in the basis of plane waves. The case of crossed electric and magnetic fields is also treated. As an illustration the problems of 2 DEG scattering on semibounded three-dimensional electron gas and on two-dimensional hole gas are considered; transverse conductivity of nondegenerate 2 DEG, scattered by impurities in ultraquantum magnetic field, is calculated

  7. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay

    2002-01-01

    Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  8. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  9. Dimensional analysis in field theory

    International Nuclear Information System (INIS)

    Stevenson, P.M.

    1981-01-01

    Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms

  10. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  11. A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection

    International Nuclear Information System (INIS)

    Pontin, D.I.; Galsgaard, K.; Hornig, G.; Priest, E.R.

    2005-01-01

    A knowledge of the nature of fully three-dimensional magnetic reconnection is crucial in understanding a great many processes in plasmas. It has been previously shown that in the kinematic regime the evolution of magnetic flux in three-dimensional reconnection is very different from two dimensions. In this paper a numerical fully magnetohydrodynamic simulation is described, in which this evolution is investigated. The reconnection takes place in the absence of a magnetic null point, and the nonideal region is localized in the center of the domain. The effect of differently prescribed resistivities is considered. The magnetic field is stressed by shear boundary motions, and a current concentration grows within the volume. A stagnation-point flow develops, with strong outflow jets emanating from the reconnection region. The behavior of the magnetic flux matches closely that discovered in the kinematic regime. In particular, it is found that no unique field line velocity exists, and that as a result field lines change their connections continually and continuously throughout the nonideal region. In order to describe the motion of magnetic flux within the domain, it is therefore necessary to use two different field line velocities. The importance of a component of the electric field parallel to the magnetic field is also demonstrated

  12. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  13. Asymptotic behavior of the elastic form factor in two-dimensional scalar field theory of the bag model

    International Nuclear Information System (INIS)

    Krapchev, V.

    1976-01-01

    In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory

  14. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  15. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    Science.gov (United States)

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  16. The inversion layer of electric fields and electron phase-space-hole structure during two-dimensional collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.

    2011-01-01

    Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.

  17. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  18. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    Science.gov (United States)

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  19. Two-dimensional receptive-field organization in striate cortical neurons of the cat.

    Science.gov (United States)

    Sun, M; Bonds, A B

    1994-01-01

    The two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.

  20. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    Science.gov (United States)

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  1. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  2. Development and Verification of a Pilot Code based on Two-fluid Three-field Model

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Jeong, J. J.; Ha, K. S.; Kang, D. H

    2006-09-15

    In this study, a semi-implicit pilot code is developed for a one-dimensional channel flow as three-fields. The three fields are comprised of a gas, continuous liquid and entrained liquid fields. All the three fields are allowed to have their own velocities. The temperatures of the continuous liquid and the entrained liquid are, however, assumed to be equilibrium. The interphase phenomena include heat and mass transfer, as well as momentum transfer. The fluid/structure interaction, generally, include both heat and momentum transfer. Assuming adiabatic system, only momentum transfer is considered in this study, leaving the wall heat transfer for the future study. Using 10 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. It was confirmed that the inlet pressure and velocity boundary conditions work properly. It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. Complete phase depletion which might occur during a phase change was found to adversely affect the code stability. A further study would be required to enhance code capability in this regard.

  3. The geostrophic velocity field in shallow water over topography

    Science.gov (United States)

    Charnock, Henry; Killworth, Peter D.

    1998-01-01

    A recent note (Hopkins, T.S., 1996. A note on the geostrophic velocity field referenced to a point. Continental Shelf Research 16, 1621-1630) suggests a method for evaluating absolute pressure gradients in stratified water over topography. We demonstrate that this method requires no along-slope bottom velocity, in contradiction to what is usually observed, and that mass is not conserved.

  4. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    Science.gov (United States)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling

  5. Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2013-04-01

    In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.

  6. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  7. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  8. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  9. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  10. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  11. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  12. Two-dimensional superconductivity in ultrathin disordered thin films

    International Nuclear Information System (INIS)

    Beasley, M.R.

    1992-01-01

    The status of the understanding of two-dimensional superconductivity in ultrathin, disordered thin films is reviewed. The different consequences of microscopic versus macroscopic disorder are stressed. It is shown that microscopic disorder leads to a rapid suppression of the mean-field transition temperature. The consequences of macroscopic disorder are not well understood, but a universal behavior of the zero-bias resistance as a function of field and temperature has been observed. (orig.)

  13. A one-dimensional model to describe flow localization in viscoplastic slender bars subjected to super critical impact velocities

    Science.gov (United States)

    Vaz-Romero, A.; Rodríguez-Martínez, J. A.

    2018-01-01

    In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.

  14. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    Science.gov (United States)

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b

  15. Supersonic N-Crowdions in a Two-Dimensional Morse Crystal

    Science.gov (United States)

    Dmitriev, S. V.; Korznikova, E. A.; Chetverikov, A. P.

    2018-03-01

    An interstitial atom placed in a close-packed atomic row of a crystal is called crowdion. Such defects are highly mobile; they can move along the row, transferring mass and energy. We generalize the concept of a classical supersonic crowdion to an N-crowdion in which not one but N atoms move simultaneously with a high velocity. Using molecular dynamics simulations for a close-packed two-dimensional Morse crystal, we show that N-crowdions transfer mass much more efficiently, because they are capable of covering large distances while having a lower total energy than that of a classical 1-crowdion.

  16. Bosonization in a two-dimensional Riemann Cartan geometry

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1987-01-01

    We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)

  17. Anomalous cross-field velocities in a CIV laboratory experiment

    International Nuclear Information System (INIS)

    Axnaes, I.

    1988-10-01

    The axial and radial ion velocities and the electron radial velocity are determined in coaxial plasma gun operated under critical velocity conditions. The particle celocities are determined from probe measurement together with He I 3889 AA absolute intensity measurements and the consideration of the total momentum balance of the current sheet. The ions are found move axially and the electrons radially much faster than predicted by the E/B drift in the macroscopic fields. These results agree with what can be expected from the instability processes, which has earlier been proposed to operate in these experiments. It is therefore a direct experimental demonstration that instability processes have to be invoked not only for the electron heating, but also to explain the macroscopic velocities and currents. (author)

  18. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  19. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

    International Nuclear Information System (INIS)

    Casa, L D C; Krueger, P S

    2013-01-01

    Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

  20. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  1. Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2009-03-01

    Full Text Available On 20 February 2005, Cluster in the outer magnetosphere and Double Star-2 (TC-2 at mid-altitude are situated in the vicinity of the northern cusp/mantle, with Cluster moving sunward and TC-2 anti-sunward. Their magnetic footprints come very close together at about 15:28 UT, over the common field-of-view of SuperDARN radars. Thanks to this conjunction, we determine the velocity, the transverse sizes, perpendicular and parallel to this velocity, and the shape of three magnetic flux tubes of magnetosheath plasma injection. The velocity of the structures determined from the Cluster four-spacecraft timing analysis is almost purely antisunward, in contrast with the antisunward and duskward convection velocity inside the flux tubes. The transverse sizes are defined from the Cluster-TC-2 separation perpendicular to the magnetic field, and from the time spent by a Cluster spacecraft in one structure; they are comprised between 0.6 and 2 RE in agreement with previous studies. Finally, using a comparison between the eigenvectors deduced from a variance analysis of the magnetic perturbation at the four Cluster and at TC-2, we show that the upstream side of the injection flux tubes is magnetically well defined, with even a concave front for the third one giving a bean-like shape, whereas the downstream side is far more turbulent. We also realise the first quantitative comparison between field-aligned currents at Cluster calculated with the curlometer technique and with the single-spacecraft method, assuming infinite parallel current sheets and taking into account the velocity of the injection flux tubes. The results agree nicely, confirming the validity of both methods. Finally, we compare the field-aligned current distribution of the three injection flux tubes at the altitudes of Cluster and TC-2. Both profiles are fairly similar, with mainly a pair of opposite field-aligned currents, upward at low-latitude and downward at high-latitude. In terms of

  2. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations.

  3. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    International Nuclear Information System (INIS)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo

    2014-01-01

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations

  4. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  5. GEPOIS: a two dimensional nonuniform mesh Poisson solver

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Freeman, J.R.

    1979-06-01

    A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces

  6. Coding for Two Dimensional Constrained Fields

    DEFF Research Database (Denmark)

    Laursen, Torben Vaarbye

    2006-01-01

    a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....

  7. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    Science.gov (United States)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  8. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO 6O 17

    Science.gov (United States)

    Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  9. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO6O17

    International Nuclear Information System (INIS)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-01-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations

  10. Two-dimensional Dirac fermions in thin films of C d3A s2

    Science.gov (United States)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  11. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  12. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha; Ferreira, Rita; Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  13. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha

    2016-10-04

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  14. Some exact velocity profiles for granular flow in converging hoppers

    Science.gov (United States)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  15. Analytical solutions of the Schrödinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-01-01

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schrödinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  16. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  17. Coulomb interactions in dense two-dimensional electron systems in a magnetic field

    International Nuclear Information System (INIS)

    Cheng, Szucheng.

    1988-01-01

    The simplest model of a two-dimensional system ignores the Coulomb interactions between the electrons. In this approximation, the electrons occupy the Landau levels, broadened by impurities and irregularities in the lattice. This independent electron approximation has usually been used to discuss observations for electron densities ρ and magnetic fields B where bar ν > 1 (bar ν triple-bond the number of Landau levels occupied). The most famous example is the theory of the integral Quantum Hall effect. However, when bar ν 1, electron-electron interactions should become important through the mixing of Landau levels. This thesis describes calculations for bar ν > 1 on phenomena which should be sensitive to electron-electron interactions: Wigner crystallization, the stability of the Landau levels under electron-electron interactions, the existence of quasiparticles and quasiholes, and the densities of states. The main results obtained concern: (1) The values of ρ and B where crystallization should occur when bar ν > 1. (2) The effect of electron-electron interactions in broadening the individual Landau levels, and in distributing the amplitudes for the excitation of independent electrons over many Landau levels. (3) The existence of quasiparticles and quasiholes whose lifetime is infinite near the Fermi level

  18. Long-range inverse two-spin correlations in one-dimensional Potts lattices

    International Nuclear Information System (INIS)

    Tejero, C.F.; Cuesta, J.A.; Brito, R.

    1989-01-01

    The inverse two-spin correlation function of a one-dimensional three-state Potts lattice with constant nearest-neighbor interactions in a uniform external field is derived exactly. It is shown that the external field induces long-range correlations. The inverse two-spin correlation function decays in a monotonic exponential fashion for a ferromagnetic lattice, while it decays in an oscillatory exponential fashion for an antiferromagnetic lattice. With no external field the inverse two-spin correlation function has a finite range equal to that of the interactions

  19. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  20. Intertwined Hamiltonians in two-dimensional curved spaces

    International Nuclear Information System (INIS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-01-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle

  1. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  2. Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1982-01-01

    The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs

  3. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  4. Coherent Electron Focussing in a Two-Dimensional Electron Gas.

    NARCIS (Netherlands)

    Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.

    1988-01-01

    The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At

  5. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  6. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  7. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  8. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  9. Nonstandard approximation schemes for lower dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fitzpatrick, D.A.

    1981-01-01

    The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results

  10. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  11. Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver

    Science.gov (United States)

    Scott, Matthew T.; Mccune, James E.

    1988-01-01

    This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.

  12. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  13. Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation

    Science.gov (United States)

    Cardoso, Wesley B.; Salasnich, Luca; Malomed, Boris A.

    2017-05-01

    We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  14. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  15. Dilution and Mixing in transient velocity fields: a first-order analysis

    Science.gov (United States)

    Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto

    2017-04-01

    between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.

  16. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C. R., E-mail: weber30@llnl.gov; Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-03-15

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.

  17. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    International Nuclear Information System (INIS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-01-01

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement

  18. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  19. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...

  20. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  1. Decentralized Cooperation Strategies in Two-Dimensional Traffic of Cellular Automata

    International Nuclear Information System (INIS)

    Fang Jun; Qin Zheng; Xu Zhaohui; Chen Xiqun; Leng Biao; Jiang Zineng

    2012-01-01

    We study the two-dimensional traffic of cellular automata using computer simulation. We propose two type of decentralized cooperation strategies, which are called stepping aside (CS-SA) and choosing alternative routes (CS-CAR) respectively. We introduce them into an existing two-dimensional cellular automata (CA) model. CS-SA is designed to prohibit a kind of ping-pong jump when two objects standing together try to move in opposite directions. CS-CAR is designed to change the solution of conflict in parallel update. CS-CAR encourages the objects involved in parallel conflicts choose their alternative routes instead of waiting. We also combine the two cooperation strategies (CS-SA-CAR) to test their combined effects. It is found that the system keeps on a partial jam phase with nonzero velocity and flow until the density reaches one. The ratios of the ping-pong jump and the waiting objects involved in conflict are decreased obviously, especially at the free phase. And the average flow is improved by the three cooperation strategies. Although the average travel time is lengthened a bit by CS-CAR, it is shorten by CS-SA and CS-SA-CAR. In addition, we discuss the advantage and applicability of decentralized cooperation modeling.

  2. Temporal Changes of the Photospheric Velocity Fields

    Czech Academy of Sciences Publication Activity Database

    Klvaňa, Miroslav; Švanda, Michal; Bumba, Václav

    2005-01-01

    Roč. 29, č. 1 (2005), s. 89-98 ISSN 0351-2657. [Hvar astrophysical colloquium /7./: Solar activity cycle and global phenomena. Hvar, 20.09.2004-24.09.2004] R&D Projects: GA ČR GA205/04/2129 Institutional research plan: CEZ:AV0Z10030501 Keywords : Solar photosphere * velocity fields * tidal waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. A three dimensional model of a vane rheometer

    International Nuclear Information System (INIS)

    Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas

    2013-01-01

    Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results

  4. Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler

    Directory of Open Access Journals (Sweden)

    Munkhbat Batsaikhan

    2017-11-01

    Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.

  5. Magnetooscillations of the tunneling current between two-dimensional electron systems

    International Nuclear Information System (INIS)

    Raichev, O.E.; Vasko, F.T.

    1995-08-01

    We calculate electric current caused by electron tunnelling between two-dimensional layers in the magnetic field applied perpendicular to the layers. An elastic scattering of the electrons is taken into account. Analytical results are obtained for two regimes: i) small magnetic field, when the Landau quantization is suppressed by the scattering and the oscillatory part of the current shows nearly harmonic behaviour; ii) high magnetic field, when the Landau levels are well-defined and the conductivity shows series of sharp peaks corresponding to resonant magnetotunneling. In the last case, we used two alternative approaches: self-consistent Born approximation and path integral method, and compared obtained results. (author). 12 refs, 3 figs

  6. Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W

    2007-11-15

    A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.

  7. Generation of acoustic phonons from quasi-two-dimensional hole gas

    International Nuclear Information System (INIS)

    Singh, J.; Oh, I.K.

    2002-01-01

    Full text: Generation of phonons from two dimensional electron and hole gases in quantum wells has attracted much attraction recently. The mechanism of phonon emission plays an important role in the phonon spectroscopy which enables us to study the angular and polarization dependence of phonon emission. The acoustic phonon emission from a quasi-two-dimensional hole gas (2DHG) in quantum wells is influenced by the anisotropic factors in the valence band structure, screening, elastic property, etc. The anisotropy in the valence band structure gives rise to anisotropic effective mass and deformation potential and that in the elastic constants leads to anisotropic sound velocity. Piezoelectric coupling in non-centrosymmetric materials such as GaAs is also anisotropic. In this paper, considering the anisotropy in the effective mass, deformation potential, piezoelectric coupling and screening effect, we present a theory to study the angular and polarization dependence of acoustic phonon emission from a quasi-2DHG in quantum wells. The theory is finally applied to calculate the rate of acoustic phonon emission in GaAs quantum wells

  8. Spectral properties of a two dimensional photonic crystal with quasi-integrable geometry

    International Nuclear Information System (INIS)

    Cruz-Bueno, J J; Méndez-Bermúdez, J A; Arriaga, J

    2013-01-01

    In this paper we study the statistical properties of the allowed frequencies for electromagnetic waves propagating in two-dimensional photonic crystals with quasi-integrable geometry. We compute the level spacing, group velocity, and curvature distributions (P(s), P(v), and P(c), respectively) and compare them with the corresponding random matrix theory predictions. Due to the quasi-integrability of the crystal we observe signatures of intermediate statistics in P(s) and P(c) for high refractive index contrasts

  9. Remarks on the paper ''Two-dimensional quantum field theories involving massless particles'' by N.Nakanishi

    International Nuclear Information System (INIS)

    Stoyanov, D.Ts.

    1978-01-01

    Some critical remarks on the paper by N.Nakanishi ''Tso-Dimensional Quantum Field Theories Involving Massless Particles'' are presented. It is stated that because of the obtained commutation relations the massless scalar fields of the theory connot have the asymptotic behaviour assumed by N.Nakanishi. The contradiction, appearing in the proof of the irreducibility of the scalar field, is demonstrated. Therefore, the theory constructed by Nakanishi, in which an attempt is made to formulate it with the help of one scalar field and correspondingly with one topological charge, is contradictory. It is shown that the statistics of the solutions is not fixed and the solutions satisfying Bose or Fermi statistics differ by constant operator factors

  10. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  11. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  12. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  13. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    Science.gov (United States)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  14. Numerical simulation of fluid field and in vitro three-dimensional fabrication of tissue-engineered bones in a rotating bioreactor and in vivo implantation for repairing segmental bone defects.

    Science.gov (United States)

    Song, Kedong; Wang, Hai; Zhang, Bowen; Lim, Mayasari; Liu, Yingchao; Liu, Tianqing

    2013-03-01

    In this paper, two-dimensional flow field simulation was conducted to determine shear stresses and velocity profiles for bone tissue engineering in a rotating wall vessel bioreactor (RWVB). In addition, in vitro three-dimensional fabrication of tissue-engineered bones was carried out in optimized bioreactor conditions, and in vivo implantation using fabricated bones was performed for segmental bone defects of Zelanian rabbits. The distribution of dynamic pressure, total pressure, shear stress, and velocity within the culture chamber was calculated for different scaffold locations. According to the simulation results, the dynamic pressure, velocity, and shear stress around the surface of cell-scaffold construction periodically changed at different locations of the RWVB, which could result in periodical stress stimulation for fabricated tissue constructs. However, overall shear stresses were relatively low, and the fluid velocities were uniform in the bioreactor. Our in vitro experiments showed that the number of cells cultured in the RWVB was five times higher than those cultured in a T-flask. The tissue-engineered bones grew very well in the RWVB. This study demonstrates that stress stimulation in an RWVB can be beneficial for cell/bio-derived bone constructs fabricated in an RWVB, with an application for repairing segmental bone defects.

  15. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields

    International Nuclear Information System (INIS)

    Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi

    2009-01-01

    The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced

  16. NMR experiments on a three-dimensional vibrofluidized granular medium

    Science.gov (United States)

    Huan, Chao; Yang, Xiaoyu; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2004-04-01

    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient NMR coupled with one-dimensional magnetic resonance imaging. The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers Nl⩽4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom, which was highly skewed and non-Gaussian. Data taken for three values of Nl and two dimensionless accelerations Γ=15,18 were fitted to a hydrodynamic theory, which successfully models the density and temperature profiles away from the vibrating container bottom. A temperature inversion near the free upper surface is observed, in agreement with predictions based on the hydrodynamic parameter μ which is nonzero only in inelastic systems.

  17. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  18. Correction of raindrop size distributions measured by Parsivel disdrometers, using a two-dimensional video disdrometer as a reference

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2015-01-01

    Full Text Available The raindrop size distribution (DSD quantifies the microstructure of rainfall and is critical to studying precipitation processes. We present a method to improve the accuracy of DSD measurements from Parsivel (particle size and velocity disdrometers, using a two-dimensional video disdrometer (2DVD as a reference instrument. Parsivel disdrometers bin raindrops into velocity and equivolume diameter classes, but may misestimate the number of drops per class. In our correction method, drop velocities are corrected with reference to theoretical models of terminal drop velocity. We define a filter for raw disdrometer measurements to remove particles that are unlikely to be plausible raindrops. Drop concentrations are corrected such that on average the Parsivel concentrations match those recorded by a 2DVD. The correction can be trained on and applied to data from both generations of OTT Parsivel disdrometers, and indeed any disdrometer in general. The method was applied to data collected during field campaigns in Mediterranean France for a network of first- and second-generation Parsivel disdrometers, and on a first-generation Parsivel in Payerne, Switzerland. We compared the moments of the resulting DSDs to those of a collocated 2DVD, and the resulting DSD-derived rain rates to collocated rain gauges. The correction improved the accuracy of the moments of the Parsivel DSDs, and in the majority of cases the rain rate match with collocated rain gauges was improved. In addition, the correction was shown to be similar for two different climatologies, suggesting its general applicability.

  19. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  20. Mean Field Theory, Ginzburg Criterion, and Marginal Dimensionality of Phase-Transitions

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgenau, R. J.

    1977-01-01

    By applying a real space version of the Ginzburg criterion, the role of fluctuations and thence the self‐consistency of mean field theory are assessed in a simple fashion for a variety of phase transitions. It is shown that in using this approach the concept of ’’marginal dimensionality’’ emerges...... in a natural way. For example, it is shown that for many homogeneous structural transformations the marginal dimensionality is two, so that mean field theory will be valid for real three‐dimensional systems. It is suggested that this simple self‐consistent approach to Landau theory should be incorporated...

  1. Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV)

    International Nuclear Information System (INIS)

    Soria, J; Atkinson, C

    2008-01-01

    Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV

  2. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  3. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  4. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  5. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)

    2012-11-01

    We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.

  6. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  7. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    International Nuclear Information System (INIS)

    Jyegal, Jang

    2015-01-01

    Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices

  8. Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field

    International Nuclear Information System (INIS)

    Avellaneda, M.; Apelian, C.; Elliott, F. Jr.

    1993-01-01

    The authors analyze the advection of particles in a velocity field with Hamiltonian H(x,y) = bar V 1 y-bar V 2 x + W 1 (y) - W 2 (x), where W i , i=1,2, are random functions with stationary, independent increments. In the absence of molecular diffusion, the particle dynamics are sensitive to the streamline topology, which depends on the mean-to-fluctuations ratio p=max(|bar V 1 |/bar U;|bar V 2 |/bar U), with bar U = [|W' 1 | 2 ] 1/2 = rms fluctuations. The model is exactly solvable for p≥1 and well suited for Monte Carlo simulations for all p. Statistics are considered of streamlines for p=0, deriving power laws for the escape probability and the length of escaping trajectories for a box of size L much-gt 1. Also obtained is a characterization of the statistical topography of the Hamiltonian. The large-scale transport is studied of advected particles with p > 0. For 0 -v/2 [x(t) - (x(t))] and t -v/2 [y(t) - (y(t))]. The large-scale motions are Fickian (v=1) or superdiffusive (v=3/2) with a non-Gaussian coarse-grained probability, according to the direction of the mean velocity relative to the underlying lattice. These results are obtained analytically for p≥1 and extended to the regime 0 1 , bar V 2 ) for which stagnation regions in the flow exist. The results are compared with existing predictions on the topology of streamlines based on percolation theory and with mean-field calculations of effective diffusivities. 29 refs., 15 figs., 7 tabs

  9. Fermionic greybody factors of two and five-dimensional dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-08-15

    We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)

  10. Drift velocities of 150-km Field-Aligned Irregularities observed by the Equatorial Atmosphere Radar

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2013-11-01

    Full Text Available Between 130 and 170 km altitude in the daytime ionosphere, the so-called 150-km field-aligned irregularities (FAIs have been observed since the 1960s at equatorial regions with several very high frequency (VHF radars. We report statistical results of 150-km FAI drift velocities on a plane perpendicular to the geomagnetic field, acquired by analyzing the Doppler velocities of 150-km FAIs observed with the Equatorial Atmosphere Radar (EAR at Kototabang, Indonesia during the period from Aug. 2007 to Oct. 2009. We found that the southward/upward perpendicular drift velocity of the 150-km FAIs tends to decrease in the afternoon and that this feature is consistent with that of F-region plasma drift velocities over the magnetic equator. The zonal component of the 150-km FAI drift velocity is westward and decreases with time, whereas the F-region plasma drift velocity observed with the incoherent scatter radar at Jicamarca, Peru, which is westward, reaches a maximum at about noon. The southward/upward and zonal drift velocities of the 150-km FAIs are smaller than that of the F-region plasma drift velocity by approximately 3 m/s and 25 m/s, respectively, on average. The large difference between the 150-km FAI and F-region plasma drift velocities may not arise from a difference in the magnetic latitudes at which their electric fields are generated. Electric fields generated at the altitude at which the 150-km FAIs occur may not be negligible.

  11. Anomalous scaling of a passive vector advected by the Navier-Stokes velocity field

    International Nuclear Information System (INIS)

    Jurcisinova, E; Jurcisin, M; Remecky, R

    2009-01-01

    Using the field theoretic renormalization group and the operator-product expansion, the model of a passive vector field (a weak magnetic field in the framework of the kinematic MHD) advected by the velocity field which is governed by the stochastic Navier-Stokes equation with the Gaussian random stirring force δ-correlated in time and with the correlator proportional to k 4-d-2ε is investigated to the first order in ε (one-loop approximation). It is shown that the single-time correlation functions of the advected vector field have anomalous scaling behavior and the corresponding exponents are calculated in the isotropic case, as well as in the case with the presence of large-scale anisotropy. The hierarchy of the anisotropic critical dimensions is briefly discussed and the persistence of the anisotropy inside the inertial range is demonstrated on the behavior of the skewness and hyperskewness (dimensionless ratios of correlation functions) as functions of the Reynolds number Re. It is shown that even though the present model of a passive vector field advected by the realistic velocity field is mathematically more complicated than, on one hand, the corresponding models of a passive vector field advected by 'synthetic' Gaussian velocity fields and, on the other hand, than the corresponding model of a passive scalar quantity advected by the velocity field driven by the stochastic Navier-Stokes equation, the final one-loop approximate asymptotic scaling behavior of the single-time correlation or structure functions of the advected fields of all models are defined by the same anomalous dimensions (up to normalization)

  12. Velocity-space particle loss in field-reversed theta pinches

    International Nuclear Information System (INIS)

    Hsiao, M.Y.

    1983-01-01

    A field-reversed theta pinch (FRTP) is a compact device for magnetic fusion. It has attracted much attention in recent years since encouraging experimental results have been obtained. However, the definite causes for the observed particle loss rate and plasma rotation are not well known. In this work, we study the velocity-space particle loss (VSPL), i.e., particle loss due to the existence of a loss region in velocity space, in FRTP's in order to have a better understanding about the characteristics of this device

  13. Two-dimensional field theory description of a disoriented chiral condensate

    International Nuclear Information System (INIS)

    Kogan, I.I.

    1993-01-01

    We consider the effective (1+1)-dimensional chiral theory describing fluctuations of the order parameter of the disoriented chiral condensate (DCC) which can be formed in the central rapidity region in relativistic nucleus-nucleus or nucleon-nucleon collisions at high energy. Using (1+1)-dimensional reduction of QCD at high energies and assuming spin polarization of the DDC one can find the Wess-Zumino-Novikov-Witten model at the level k=3 as the effective chiral theory for the one-dimensional DDC. Some possible phenomenological consequences are briefly discussed

  14. Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Peclet number

    Science.gov (United States)

    Tanveer, S.

    1989-01-01

    An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.

  15. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  16. Numerically-quantified two dimensionality of microstructure evolution accompanying variant selection of FePd

    International Nuclear Information System (INIS)

    Ueshima, N; Yoshiya, M; Yasuda, H; Fukuda, T; Kakeshita, T

    2015-01-01

    Through three-dimensional (3D) simulations of microstructure evolution by phase-field modeling (PFM), microstructures have been quantified during their time evolution by an image processing technique with particular attention to the shape of variants in the course of variant selection. It is found that the emerging variants exhibit planar shapes rather than 3D shapes due to the elastic field around the variants arising upon disorder-to-order transition to the L1 0 phase. The two-dimensionality is more pronounced as variant selection proceeds. Although three equivalent variants compete for dominance under an external field, one of the three variants vanishes before final competition occurs between the remaining variants, which can be explained by the elastic strain energy. These numerical analyses provide better understanding of the microstructure evolution in a more quantitative manner, including the small influence of the third variant, and the results obtained confirm that the understanding of variant selection obtained from two-dimensional (2D) simulations by PFM is valid. (paper)

  17. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  18. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    International Nuclear Information System (INIS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula

    2015-01-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed

  19. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    Science.gov (United States)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  20. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock