Two-dimensional patterning of thin coatings for the control of tissue outgrowth
DEFF Research Database (Denmark)
Thissen, H.; Johnson, G.; Hartley, P.G.
2006-01-01
were used to provide evidence of successful surface modifications. Adsorption of the extracellular matrix protein collagen I followed by tissue outgrowth experiments with bovine corneal epithelial tissue for up to 21 days showed that two-dimensional control over tissue outgrowth is achievable with our......Control of the precise location and extent of cellular attachment and proliferation, and of tissue outgrowth is important in a number of biomedical applications, including biomaterials and tissue engineered medical devices. Here we describe a method to control and direct the location and define...... boundaries of tissue growth on surfaces in two dimensions. The method relies on the generation of a spatially defined surface chemistry comprising protein adsorbing and non-adsorbing areas that allow control over the adsorption of cell-adhesive glycoproteins. Surface modification was carried out...
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Establishment of the optimum two-dimensional electrophoresis system of ovine ovarian tissue.
Jia, J L; Zhang, L P; Wu, J P; Wang, J; Ding, Q
2014-08-26
Lambing performance of sheep is the most important economic trait and is regarded as a critic factoring affecting the productivity in sheep industry. Ovary plays the most roles in lambing trait. To establish the optimum two-dimensional electrophoresis system (2-DE) of ovine ovarian tissue, the common protein extraction methods of animal tissue (trichloroacetic acid/acetone precipitation and direct schizolysis methods) were used to extract ovine ovarian protein, and 17-cm nonlinear immobilized PH 3-10 gradient strips were used for 2-DE. The sample handling, loading quantity of the protein sample, and isoelectric focusing (IEF) steps were manipulated and optimized in this study. The results indicate that the direct schizolysis III method, a 200-μg loading quantity of the protein sample, and IEF steps II (20°C active hydration, 14 h→500 V, 1 h→1000 V 1 h→1000-9000 V, 6 h→80,000 VH→500 V 24 h) are optimal for 2-DE analysis of ovine ovarian tissue. Therefore, ovine ovarian tissue proteomics 2-DE was preliminarily established by the optimized conditions in this study; meanwhile, the conditions identified herein could provide a reference for ovarian sample preparation and 2-DE using tissues from other animals.
Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data
Directory of Open Access Journals (Sweden)
J. Dedkova
2012-09-01
Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.
Role of cell deformability in the two-dimensional melting of biological tissues
Li, Yan-Wei; Ciamarra, Massimo Pica
2018-04-01
The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.
Martin, Alice
2011-01-01
ABSTRACT Objectives We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Material and Methods Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Results Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Conclusions Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another. PMID:24421994
Directory of Open Access Journals (Sweden)
Jan Rustemeyer
2011-07-01
Full Text Available Objectives: We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods.Material and Methods: Twenty-six patients (mean age 25.5, standard deviation (SD 5.2 years with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded.Results: Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007; and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043 compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039.Conclusions: Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.
Directory of Open Access Journals (Sweden)
Olena Zakharchenko
2011-01-01
Full Text Available Proteomics is a highly informative approach to analyze cancer-associated transformation in tissues. The main challenge to use a tissue for proteomics studies is the small sample size and difficulties to extract and preserve proteins. The choice of a buffer compatible with proteomics applications is also a challenge. Here we describe a protocol optimized for the most efficient extraction of proteins from the human breast tissue in a buffer compatible with two-dimensional gel electrophoresis (2D-GE. This protocol is based on mechanically assisted disintegration of tissues directly in the 2D-GE buffer. Our method is simple, robust and easy to apply in clinical practice. We demonstrate high quality of separation of proteins prepared according to the reported here protocol.
Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S
2015-10-01
Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plant tissue culture techniques
Directory of Open Access Journals (Sweden)
Rolf Dieter Illg
1991-01-01
Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.
Indian Academy of Sciences (India)
Admin
Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.
Harting, Benjamin; Slenzka, Klaus
2012-07-01
To investigate the influence of microgravity environments on photosynthetic organisms we designed a 2 dimensional clinostatexperiment for a suspended cell culture of Chlamydomonas reinhardtii. A novel approach of online measurments concerning relevant parameters important for the clasification of photosynthesis was obtained. To adress the photosynthesis rate we installed and validated an optical mesurement system to monitor the evolution and consumption of dissolved oxygen. Simultaneously a PAM sensor to analyse the flourescence quantum yield of the photochemical reaction was integarted. Thus it was possible to directly classify important parameters of the phototrophic metabolism during clinorotation. The experiment design including well suited light conditions and further biochemical analysis were directly performed for microalgal cell cultures. Changes in the photosynthetic efficiancy of phototrophic cyanobacteria has been observed during parabolic flight campaign but the cause is already not understood. Explenations could be the dependency of gravitaxis by intracellular ionconcentartion or the existance of mechanosensitive ionchannels for example associated in chloroplasts of Chlamydomonas reinhardtii. The purpuse of the microalgal clinostat are studies in a qasi microgravity environment for the process design of future bioregenerative life suport systems in spaceflight missions. First results has indicated the need for special nourishment of the cell culture during microgravity experiments. Further data will be presented during the assembly.
Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong
2015-01-01
Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.
International Nuclear Information System (INIS)
Crocomo, O.J.; Sharp, W.R.
1973-01-01
Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars
Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji
2012-12-01
The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.
International Nuclear Information System (INIS)
Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J
2008-01-01
Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Directory of Open Access Journals (Sweden)
Barbara Thiem
2014-01-01
Full Text Available Proteins from leaves of Rubus chamaemorus propagated in vitro were subjected to miniaturized 2-D electrophoresis. The 2-DE patterns of proteins showed qualitative differences between plants propagated in vitro and control seedlings. More proteins of a high molecular weight were observed in leaves of plants from in vitro culture. A two-dimensional map of proteins from leaves provides detailed data concerning both polymorphism and protein patterns of this species. This makes it possible to start constructing a protein map of R. chamaemorus. The reasons for qualitative differences are discussed.
Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji
2011-11-01
For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Cestari, A.N.; Simoes, L.C.G.
1978-01-01
Several aspects are discussed related to the behavior of politenic chromosomes from Rhyncosciara salivary glands kept in culture during different periods of time, without interference of insect hormones. Nucleic acid-and protein synthesis in isolated nuclei and chromosomes are also investigated. Autoradiographic techniques and radioactive precursors for nucleic acids and proteins are used in the research. (M.A.) [pt
Biotransformations with plant tissue cultures.
Carew, D P; Bainbridge, T
1976-01-01
Suspension cultures of Catharanthus roseus, Apocynum cannabinum and Conium maculatum were examined for their capacity to transform aniline, anisole, acetanilide, benzoic acid and coumarin. None of the cultures transformed acetanilide but each produced acetanilide when fed aniline. All three cultures converted benzoic acid to its para-hydroxy derivative. Coumarin was selectively hydroxylated at the 7-position by Catharanthus and Conium and anisole was O-demethylated only by older Catharanthus tissue.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P
2000-02-01
Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.
International Nuclear Information System (INIS)
Alfakih, Khaled; Bloomer, Tim; Bainbridge, Samantha; Bainbridge, Gavin; Ridgway, John; Williams, Gordon; Sivananthan, Mohan
2004-01-01
Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods: Thirty-two subjects with history of hypertension were recruited. The images were acquired, contours were traced and the LVM was calculated for all four different echocardiography methods as well as for the cardiac MRI method. The intra-observer variabilities were calculated. The four different echocardiography methods were compared to cardiac MRI using the method described by Bland and Altman. Results: Twenty-five subjects had adequate paired data sets. The mean LVM as measured by cardiac MRI was 162±55 g and for the four different echocardiography methods were: fundamental AL 165±55 g, harmonic AL 168±53 g, fundamental TE 148±50 g, harmonic TE 149±45 g. The intra-observer variability for cardiac MRI method, expressed as bias ± 1 standard deviation of the difference (S.D.D.), was 2.3±9.2 g and for the four different echocardiography methods were: fundamental TE 0.4±26.8 g, fundamental AL 0.6±27.0 g, harmonic TE 6.7±21.8 g, harmonic AL 6.4±22.9 g. The mean LVM for the AL method was closest to the cardiac MRI technique, while TE underestimated LVM. The 95% limits of agreement were consistently wide for all the 2D echocardiography modalities when compared with the cardiac MRI technique. Conclusion: The intra-observer variability in measurements of 2D echocardiographic LVM, together with the wide limits of agreement when compared to the gold standard (cardiac MRI) are sufficiently large to make serial estimates of LVM, of single patients or small groups of subjects, by 2D echocardiography, unreliable
Epigenetics in plant tissue culture
Smulders, M.J.M.; Klerk, de G.J.M.
2011-01-01
Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at
Gastric tissue biopsy and culture
... symptoms may include: Loss of appetite or weight loss Nausea and vomiting Pain in the upper part of the belly Black stools Vomiting blood or coffee ground-like material A gastric tissue biopsy and culture can help detect: Cancer Infections, most commonly Helicobacter ...
Bridging the gap between cell culture and live tissue
Directory of Open Access Journals (Sweden)
Stefan Przyborski
2017-11-01
Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.
Tissue culture of ornamental cacti
Directory of Open Access Journals (Sweden)
Eugenio Pérez-Molphe-Balch
2015-12-01
Full Text Available Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family.
DEFF Research Database (Denmark)
de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter
2014-01-01
AIMS: Mitral annular (MA) displacement reflects longitudinal left ventricular (LV) deformation and systolic velocity measurements reflect the rate of contraction; both are valuable in the diagnosis and prognosis of cardiac disease. The aim of this study was to test the agreement and reproducibility...... between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...
Benaron, David A.; Lennox, M.; Stevenson, David K.
1992-05-01
Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac
Ferferieva, V; Van den Bergh, A; Claus, P; Jasaityte, R; La Gerche, A; Rademakers, F; Herijgers, P; D'hooge, J
2013-08-01
This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Walnut tissue culture: research and field applications
2004-01-01
Vitrotech Biotecnologia Vegetal began researching propagating Juglans regia (English walnut) and various Juglans hybrids by tissue culture in 1993 and has operated on a commercial scale since 1996. Since this time, more than one and a half million walnuts of different species have been propagated and field planted. Tissue cultured...
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Progress in planta transformation without tissue culture
International Nuclear Information System (INIS)
Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang
2004-01-01
With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)
De Angelis, Elena; Ravanetti, Francesca; Martelli, Paolo; Cacchioli, Antonio; Ivanovska, Ana; Corradi, Attilio; Nasi, Sonia; Bianchera, Annalisa; Passeri, Benedetta; Canelli, Elena; Bettini, Ruggero; Borghetti, Paolo
2017-12-01
The present study investigated the biocompatibility of chitosan films and scaffolds modified with d-(+)raffinose and their capability to support the growth and maintenance of the differentiation of articular chondrocytes in vitro. Primary equine articular chondrocytes were cultured on films and scaffolds of modified d-(+) raffinose chitosan. Their behavior was compared to that of chondrocytes grown in conventional bi- and three-dimensional culture systems, such as micromasses and alginate beads. Chitosan films maintained the phenotype of differentiated chondrocytes (typical round morphology) and sustained the synthesis of cartilaginous extracellular matrix (ECM), even at 4weeks of culture. Indeed, starting from 2weeks of culture, chondrocytes seeded on chitosan scaffolds were able to penetrate the surface pores and to colonize the internal matrix. Moreover they produced ECM expressing the genes of typical chondrocytes differentiation markers such as collagen II and aggrecan. In conclusion, chitosan modified with d-raffinose represents an ideal support for chondrocyte adhesion, proliferation and for the maintenance of cellular phenotypic and genotypic differentiation. This novel biomaterial could potentially be a reliable support for the re-differentiation of dedifferentiated chondrocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsao, D A; Shiau, Y F; Tseng, C S; Chang, H R
2016-01-01
Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. To reduce the mortality and improve the effectiveness of therapy, it is important to search for changes in tumor-specific biomarkers whose function may involve in disease progression and which may be useful as potential therapeutic targets. Materials and Mehtods: In this study, we use two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to observe proteome alterations of 12 tissue pairs isolated from HCC patients: Normal and tumorous tissue. Comparing the tissue types with each other, 40 protein spots corresponding to fifteen differentially expressed between normal and cancer part of HCC patients. Raf kinase inhibitor protein (RKIP), an inhibitor of Raf-mediated activation of mitogen-activated protein kinase/extracellular signal-regulated kinase, may play an important role in cancer metastasis and cell proliferation and migration of human hepatoma cells. RKIP may be considered as a marker for HCC, because its expression level changes considerably in HCC compared with normal tissue. In addition, we used the methods of Western blotting and real time-polymerase chain reaction to analysis the protein expression and gene expression of RKIP. The result showed RKIP protein and gene expression in tumor part liver tissues of HCC patient is lower than peritumorous non-neoplastic liver tissue of the corresponding HCC samples. These results strongly suggest that RKIP may be considered to be a marker for HCC and RKIP are down-regulated in liver cancer cell.
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Study on tissue culture for Gelidium seedling
Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin
1996-06-01
As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
The autologus graft of epithelial tissue culture
Directory of Open Access Journals (Sweden)
Minaee B
1999-08-01
Full Text Available With the intention of research about culture and autologus graft of epithelial tissue we used 4 french Albino Rabbits with an average age of 2 months. After reproduction on the support in EMEM (Eagle's Minimum Essential Medium we used this for graft after 4 weeks. This region which grafted total replaced. After fixation of this sample and passing them through various process, histological sections were prepared. These sections were stained with H & E and masson's trichrome and studied by light microscope. We succeeded in graft. We hope in the near future by using the method of epithelium tissue culture improving to treat burned patients.
Microfluidic 3D cell culture: potential application for tissue-based bioassays
Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong
2014-01-01
Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Substituted Indoleacetic Acids Tested in Tissue Cultures
DEFF Research Database (Denmark)
Engvild, Kjeld Christensen
1978-01-01
Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable...
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture...
Tissue culture as a plant production technique for horticultural crops ...
African Journals Online (AJOL)
Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...
Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.
Hahn, Soojung; Yoo, Jongman
2017-08-17
An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.
Tissue culture of surgically prepared temporalis fascia.
Walby, A P; Kerr, A G; Nevin, N C; Woods, G
1982-10-01
Temporalis fascia which is used to graft the tympanic membrane has been shown to be viable in tissue culture by a previous pilot study. This present study reports the effect on the viability of the fascia by scraping loose connective tissue from it and allowing it to dry. Pieces of fascia from 30 patients were each divided in 4 and prepared to give explants, fresh, fresh and scraped, dried, and dried and scraped. The fascia grew from 17 patients when cultured fresh, 5 when fresh and scraped, 1 when dried, and none when dried and scraped. These results are significantly different and show that the fascia is devitilized when prepared by the normal method for use in tympanoplasty.
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Smallholder adoption and economic impacts of tissue culture ...
African Journals Online (AJOL)
This study was conducted with an objective of determining the correlates of adoption of tissue culture banana technology and its impacts on household incomes in Kenya. The results show that while some households have opted not to adopt tissue culture banana biotechnology, almost all the adopters are growing tissue ...
Nanotechnology, Cell Culture and Tissue Engineering
Directory of Open Access Journals (Sweden)
Kazutoshi Haraguchi
2011-01-01
Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N
Citrus tissue culture employing vegetative explants.
Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S
2001-11-01
Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth
[Chromosome variability in the tissue culture of rare Gentiana species].
Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A
2008-01-01
Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Lee, Hyunjin; Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom
2018-05-18
Co-culture has been applied in cell therapy, including stem cells, and has been reported to give enhanced functionality. In this study, stem-cell spheroids were formed in concave micromolds at different ratios of stem cells to osteoprecursor cells, and the amount of secretion of vascular endothelial growth factor (VEGF) was evaluated. Gingiva-derived stem cells and osteoprecursor cells in the amount of 6 × 105 were seeded on a 24-well culture plate or concave micromolds. The ratios of stem cells to osteoprecursor cells included: 0:4 (group 1), 1:3 (group 2), 2:2 (group 3), 3:1 (group 4), and 4:0 (group 5). The morphology of cells in a 2-dimensional culture (groups 1-5) showed a fibroblast-like appearance. The secretion of VEGF increased with the increase in stem cells, and a statistically significant increase was noted in groups 3, 4 and 5 when compared with the media-only group (p cells formed spheroids in concave microwells, and no noticeable change in the morphology was noted with the increase in stem cells. Spheroids containing stem cells were positive for the stem-cell markers SSEA-4. The secretion of VEGF from cell spheroids increased with the increase in stem cells. This study showed that cell spheroids formed with stem cells and osteoprecursor cells with different ratios, using microwells, had paracrine effects on the stem cells. The secretion of VEGF increased with the increase in stem cells. This stem-cell spheroid may be applied for tissue-engineering purposes.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Rasmussen, Vibeke Guldbrand; Poulsen, Steen Hvitfeldt; Dupont, Erik; Ostergaard, Karen; Safikhany, Gholamhossein; Egeblad, Henrik
2008-11-01
Ergot-derived dopamine agonists (EDDA) induce fibrotic heart valve disease. We aimed to investigate whether EDDA treatment also affects left ventricular (LV) function. Myocardial function was evaluated in 110 Parkinson patients [mean age (63.4 +/- 9.0 years)] treated for at least 6 months with either EDDA (n = 71) or non-EDDA (n = 39). LV ejection fraction did not differ between EDDA and non-EDDA patients [63 +/- 4% vs. 65 +/- 4% (ns)]. There was no difference in prevalence of diastolic dysfunction between EDDA and non-EDDA patients [7% vs. 8% (ns)]. Finally, averaged LV systolic myocardial strain and longitudinal displacement analysed by means of two-dimensional speckle tracking showed no difference between EDDA and non-EDDA patients [strain: 19 +/- 3% vs. 19 +/- 2% (ns) and longitudinal displacement: 12 +/- 2 mm vs. 12 +/- 2 mm (ns)]. Elevated p-NT-proBNP was found in 38% of EDDA patients and in 59% of non-EDDA patients (ns). In contrast to the well-established association between EDDA treatment and valvular fibrosis, EDDA did not have a detectable adverse impact on myocardial systolic and diastolic function.
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Versatile electrochemial sensor for tissue culturing and sample handling
DEFF Research Database (Denmark)
Bakmand, Tanya; Kwasny, Dorota; Al Atraktchi, Fatima Al-Zahraa
2014-01-01
Culturing of organtypic brain tissues is a routine procedure in neural research. The visual inspection of the medium is the only way of determining the state of the tissue. At the end of culturing, post-processing techniques such as HPLC can be used to measure the concentration of the secreted...
Effect of lunar materials on plant tissue culture.
Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.
1973-01-01
Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.
Application of Hanging Drop Technique for Kidney Tissue Culture.
Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng
2017-01-01
The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.
Application of Hanging Drop Technique for Kidney Tissue Culture
Directory of Open Access Journals (Sweden)
Shaohui Wang
2017-05-01
Full Text Available Background/Aims: The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods: In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results: The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions: We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.
Ex vivo culture of patient tissue & examination of gene delivery.
LENUS (Irish Health Repository)
Rajendran, Simon
2012-01-31
This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Effects of ionizing radiation on plant tissue cultures
International Nuclear Information System (INIS)
Hell, K.G.
1978-01-01
A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt
Banana Musa tissue culture plants enhanced by endophytic fungi
African Journals Online (AJOL)
Mo
Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic .... While working in the laminar flow cabinet, sterile filter papers were placed in ..... University of Bonn, Bonn, Germany. Niere, B., 2001.
Low technology tissue culture materials for initiation and ...
African Journals Online (AJOL)
Low technology tissue culture materials for initiation and multiplication of banana plants. ... African Crop Science Journal ... locally available macronutrients, micronutrients, sugar, equipment and facility reduced the cost of consumable material
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Co-culture in cartilage tissue engineering.
Hendriks, J.A.A.; Riesle, J.U.; van Blitterswijk, Clemens
2007-01-01
For biotechnological research in vitro in general and tissue engineering specifically, it is essential to mimic the natural conditions of the cellular environment as much as possible. In choosing a model system for in vitro experiments, the investigator always has to balance between being able to
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Human meniscal proteoglycan metabolism in long-term tissue culture
Verbruggen, G.; Verdonk, R.; Veys, E. M.; van Daele, P.; de Smet, P.; van den Abbeele, K.; Claus, B.; Baeten, D.
1996-01-01
For the purpose of human meniscal allografting, menisci have been maintained viable in in vitro culture. The influence of long-term tissue culture on the extracellular matrix metabolism of the meniscus has been studied. Fetal calf serum (FCS) was used as a supplement for the growth factors necessary
Laboratory Workflow Analysis of Culture of Periprosthetic Tissues in Blood Culture Bottles.
Peel, Trisha N; Sedarski, John A; Dylla, Brenda L; Shannon, Samantha K; Amirahmadi, Fazlollaah; Hughes, John G; Cheng, Allen C; Patel, Robin
2017-09-01
Culture of periprosthetic tissue specimens in blood culture bottles is more sensitive than conventional techniques, but the impact on laboratory workflow has yet to be addressed. Herein, we examined the impact of culture of periprosthetic tissues in blood culture bottles on laboratory workflow and cost. The workflow was process mapped, decision tree models were constructed using probabilities of positive and negative cultures drawn from our published study (T. N. Peel, B. L. Dylla, J. G. Hughes, D. T. Lynch, K. E. Greenwood-Quaintance, A. C. Cheng, J. N. Mandrekar, and R. Patel, mBio 7:e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15), and the processing times and resource costs from the laboratory staff time viewpoint were used to compare periprosthetic tissues culture processes using conventional techniques with culture in blood culture bottles. Sensitivity analysis was performed using various rates of positive cultures. Annualized labor savings were estimated based on salary costs from the U.S. Labor Bureau for Laboratory staff. The model demonstrated a 60.1% reduction in mean total staff time with the adoption of tissue inoculation into blood culture bottles compared to conventional techniques (mean ± standard deviation, 30.7 ± 27.6 versus 77.0 ± 35.3 h per month, respectively; P < 0.001). The estimated annualized labor cost savings of culture using blood culture bottles was $10,876.83 (±$337.16). Sensitivity analysis was performed using various rates of culture positivity (5 to 50%). Culture in blood culture bottles was cost-effective, based on the estimated labor cost savings of $2,132.71 for each percent increase in test accuracy. In conclusion, culture of periprosthetic tissue in blood culture bottles is not only more accurate than but is also cost-saving compared to conventional culture methods. Copyright © 2017 American Society for Microbiology.
Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z
2015-06-01
Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.
Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture
Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.
2016-01-01
The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082
Clonal propagation of eucalyptus by tissue culture
Energy Technology Data Exchange (ETDEWEB)
Mehra-Palta, A.
1982-07-01
Multiple adventitious buds were induced on cotyledons, shoot tips and nodal stem segments of Eucalyptus species cultured on a defined nutrient medium supplemented with the cytokinin zeatin and the auxin indole-3-butyric acid (IBA). The adventitious buds could be recycled on cytokinin medium to produce more buds thus providing the possibility of producing large clones from selected genotypes. The adventitious shoots were rooted in auxin medium and some of the resulting propagules were outplanted in the field. These techniques have the potential for use in the genetic improvement of Eucalyptus. (Refs. 15).
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Development of a vinasse culture medium for plant tissue culture
International Nuclear Information System (INIS)
Silva, A.L.L.D.; Gollo, L.
2014-01-01
Vinasse is the main pollutant (effluent) obtained from the distillation of sugarcane in the production of fuel alcohol. However, this residue is rich in nutrients that are required by plants. We developed a new culture medium using vinasse for the In vitro propagation of an orchid. The vinasse was treated (decanted and filtered), and the nutrients were determined and quantified. Different formulations using vinasse were tested for an In vitro culture. The vinasse dilutions demonstrated a good buffering effect. The ideal vinasse dilution for media formulation was 2.5%. The best KC formulations with vinasse were KCV1 and KCV5. Compared to KC medium, these formulations demonstrated similar results for In vitro multiplication, with the exception of protocorm-like body number, which was inferior in the vinasse formulations. Conversely, for In vitro elongation and rooting, these vinasse media were superior to KC medium. KC medium promotes a low rooting rate (8%) compared to 68 and 100% obtained by KCV1 and KCV5, respectively. Moreover, plantlets cultured on KC medium become protocorm-like body clusters, which impeded the acclimatization of these explants. Plantlets elongated and rooted on KCV1 and KCV5 were successfully acclimatized with a 91% survival rate for both KC vinasse formulations. This study shows the great potential of this technology as a rational alternative to vinasse disposal and adds value to what is currently considered a waste product. (author)
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins
International Nuclear Information System (INIS)
Ojima, N.; Sakamoto, T.; Yamashita, M.
1996-01-01
Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation
Oxygen and tissue culture affect placental gene expression.
Brew, O; Sullivan, M H F
2017-07-01
Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.
AbouZid, S
2014-01-01
Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.
Establishment of primary keratinocyte culture from horse tissue biopsates
Directory of Open Access Journals (Sweden)
Jernej OGOREVC
2015-12-01
Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.
Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu
2017-06-29
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Three-dimensional hydrogel cell culture systems for modeling neural tissue
Frampton, John
Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was
Identification of Stevioside Using Tissue Culture-Derived Stevia () Leaves
Ziaul Karim Md.; Daisuke Uesugi; Noriyuki Nakayama; M. Monzur Hossain; Kohji Ishihara; Hiroki Hamada
2015-01-01
Stevioside is a natural sweetener from Stevia leaf, which is 300 times sweeter than sugar. It helps to reduce blood sugar levels dramatically and thus can be of benefit to diabetic people. Tissue culture is a very potential modern technology that can be used in large-scale disease-free stevia production throughout the year. We successfully produced stevia plant through in vitro culture for identification of stevioside in this experiment. The present study describes a potential method for iden...
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.
Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M
2014-01-01
The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.
The use of animal tissues alongside human tissue: Cultural and ethical considerations.
Kaw, Anu; Jones, D Gareth; Zhang, Ming
2016-01-01
Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Vandekerckhove, J; Bauw, G; Vancompernolle, K
1990-01-01
A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...
DEFF Research Database (Denmark)
Vandekerckhove, J; Bauw, G; Vancompernolle, K
1990-01-01
downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial......A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...
A Method to Preclude Moisture Condensation in Plated Tissue Cultures
Alex M. Diner
1992-01-01
Excessive condensate normally accumulates in in vitro-illuminated petri dishes containing plant tissue cultures, causing avariety of problems. A dark-colored rubber net-mesh placed over the petri dishes prevented such condensation, even when charcoal-supplemented media are used under high light intensity in a growth chamber.
Smallholder adoption and economic impacts of tissue culture ...
African Journals Online (AJOL)
PRECIOUS
2009-12-01
Dec 1, 2009 ... ISSN 1684–5315 © 2009 Academic Journals. Full Length ... Key words: Biotechnology, adoption, tissue culture bananas, Kenya. INTRODUCTION ... Recent studies about the agronomic and economic impacts of biotech- ..... accused scientist for 'playing God', others have supported biotechnologies.
Mathematical modelling of tissue formation in chondrocyte filter cultures.
Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J
2011-12-17
In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.
Propagation of Aquilaria malaccensis seedlings through tissue culture techniques
International Nuclear Information System (INIS)
Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim
2010-01-01
Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)
The role of activated charcoal in plant tissue culture.
Thomas, T Dennis
2008-01-01
Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.
Variations on metabolic activities of legume tissues through radiation in tissue culture
International Nuclear Information System (INIS)
Batra, Amla
1977-01-01
Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)
Variations on metabolic activities of legume tissues through radiation in tissue culture
Energy Technology Data Exchange (ETDEWEB)
Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany
1977-12-01
Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Directory of Open Access Journals (Sweden)
Trisha N. Peel
2016-01-01
Full Text Available Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM in addition to applying the Infectious Diseases Society of America (IDSA criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014 at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32% met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively; this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003. The time to microorganism detection was shorter with BCBs than with standard media (P < 0.0001, with aerobic and anaerobic BCBs yielding positive results within a median of 21 and 23 h, respectively. Results of our study demonstrate that the semiautomated method of periprosthetic tissue culture in blood culture bottles is more sensitive than and as specific as agar and thioglycolate broth cultures and yields results faster.
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture
Amornvit, Pokpong; Srithavaj, Theerathavaj
2014-01-01
Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638
Peel, Trisha N; Dylla, Brenda L; Hughes, John G; Lynch, David T; Greenwood-Quaintance, Kerryl E; Cheng, Allen C; Mandrekar, Jayawant N; Patel, Robin
2016-01-05
Despite known low sensitivity, culture of periprosthetic tissue specimens on agars and in broths is routine. Culture of periprosthetic tissue samples in blood culture bottles (BCBs) is potentially more convenient, but it has been evaluated in a limited way and has not been widely adopted. The aim of this study was to compare the sensitivity and specificity of inoculation of periprosthetic tissue specimens into blood culture bottles with standard agar and thioglycolate broth culture, applying Bayesian latent class modeling (LCM) in addition to applying the Infectious Diseases Society of America (IDSA) criteria for prosthetic joint infection. This prospective cohort study was conducted over a 9-month period (August 2013 to April 2014) at the Mayo Clinic, Rochester, MN, and included all consecutive patients undergoing revision arthroplasty. Overall, 369 subjects were studied; 117 (32%) met IDSA criteria for prosthetic joint infection, and 82% had late chronic infection. Applying LCM, inoculation of tissues into BCBs was associated with a 47% improvement in sensitivity compared to the sensitivity of conventional agar and broth cultures (92.1 versus 62.6%, respectively); this magnitude of change was similar when IDSA criteria were applied (60.7 versus 44.4%, respectively; P = 0.003). The time to microorganism detection was shorter with BCBs than with standard media (P Prosthetic joint infections are a devastating complication of arthroplasty surgery. Despite this, current microbiological techniques to detect and diagnose infections are imperfect. This study examined a new approach to diagnosing infections, through the inoculation of tissue samples from around the prosthetic joint into blood culture bottles. This study demonstrated that, compared to current laboratory practices, this new technique increased the detection of infection. These findings are important for patient care to allow timely and accurate diagnosis of infection. Copyright © 2016 Peel et al.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Tissue culture of three species of Laurencia complex
Shen, Songdong; Wu, Xunjian; Yan, Binlun; He, Lihong
2010-05-01
To establish a micropropagation system of three Laurencia complex species ( Laurencia okamurai, Laurencia tristicha, and Chondrophycus undulatus) by tissue culture techniques, we studied the regeneration characteristics and optimal culture conditions of axenic algal fragments cultured on solid medium and in liquid medium. Regeneration structures were observed and counted regularly under a reverse microscope to investigate the regeneration process, polarity and optimal illumination, and temperature and salinity levels. The results show that in most cultures of the three species, we obtained bud regeneration on solidified medium with 0.5% agar and in liquid medium. Rhizoid-like regeneration was filamentous and developed from the lower cut surface of fragments in L. okamurai, but was discoid and developed from the apical back side of bud regeneration in L. tristicha and C. undulatus. Regeneration polarity was localized to the apical part of algal fronds in all three species, and on fragments cut from the basal part of algae buds could develop from both the upper and the lower cut surfaces. Buds could develop from both the medullary and the cortical portions in L. okamurai and C. undulatus, while in L. tristicha, buds only emerged from the cortex. The optimal culture conditions for L. okamurai were 4 500 lx, 20°C and 35 (salinity); for C. undulatus, 4 500 lx, 20°C and 30; and for L. tristicha, 4 500 lx, 25°C and 30.
HYPOLIPIDEMIC EFFECT OF ARGLABIN IN HEPATOMA TISSUE CULTURE
Directory of Open Access Journals (Sweden)
A. V. Ratkin
2015-01-01
Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone Arglabin in hepatoma tissue culture (HTC.Materials and methods. In this study we’ve evaluated the effect of sesquiterpene γ-lactone Arglabin and gemfibrozil (reference drug on the lipid content in the hepatoma tissue culture (HTC which were incubated with a fat emulsion “Lipofundin” by fluorescent method with vital dye Nile Red. The cell viability was investigated using the MTT-test and staining by Trypan blue.Results. Cultivation of cell cultures of rat’s hepatoma cell line HTC with Arglabin and gemfibrozil in concentrations from 10 to 50 μmol and from 0.25 to 0.5 mmol, respectively, had no cytotoxic effect. HTC cell viability did not change compared with the corresponding rate in the control culture. Experimental hyperlipidemia in hepatoma culture was induced by the addition in the incubation medium of fat emulsion “Lipofundin” in a final concentration of 0.05 %. The fluorescence intensity of Nile Red in the cells was increased 4-fold (p < 0.05, which indicates a significant accumulation of lipids in the cytosol of cells. In these steady-state Arglabin and gemfibrozil at concentrations 75–100 μM and 0.25–1.0 mM, respectively, reduced the content of lipid in cells. Conclusion. In the model of hyperlipidemia induced by lipofundin, sesquiterpene γ-lactone Arglabin prevents the accumulation of lipids in the HTC cell line, as evidenced by a decrease in Nile Red fluorescence. However hypolipidemic effect of Arglabin is associated with cytotoxic effects, which is typical for anticancer drugs.
Addressing the instability of DNA nanostructures in tissue culture.
Hahn, Jaeseung; Wickham, Shelley F J; Shih, William M; Perrault, Steven D
2014-09-23
DNA nanotechnology is an advanced technique that could contribute diagnostic, therapeutic, and biomedical research devices to nanomedicine. Although such devices are often developed and demonstrated using in vitro tissue culture models, these conditions may not be compatible with DNA nanostructure integrity and function. The purpose of this study was to characterize the sensitivity of 3D DNA nanostructures produced via the origami method to the in vitro tissue culture environment and identify solutions to prevent loss of nanostructure integrity. We examined whether the physiological cation concentrations of cell culture medium and the nucleases present in fetal bovine serum (FBS) used as a medium supplement result in denaturation and digestion, respectively. DNA nanostructure denaturation due to cation depletion was design- and time-dependent, with one of four tested designs remaining intact after 24 h at 37 °C. Adjustment of medium by addition of MgSO4 prevented denaturation. Digestion of nanostructures by FBS nucleases in Mg(2+)-adjusted medium did not appear design-dependent and became significant within 24 h and when medium was supplemented with greater than 5% FBS. We estimated that medium supplemented with 10% FBS contains greater than 256 U/L equivalent of DNase I activity in digestion of DNA nanostructures. Heat inactivation at 75 °C and inclusion of actin protein in medium inactivated and inhibited nuclease activity, respectively. We examined the impact of medium adjustments on cell growth, viability, and phenotype. Adjustment of Mg(2+) to 6 mM did not appear to have a detrimental impact on cells. Heat inactivation was found to be incompatible with in vitro tissue culture, whereas inclusion of actin had no observable effect on growth and viability. In two in vitro assays, immune cell activation and nanoparticle endocytosis, we show that using conditions compatible with cell phenotype and nanostructure integrity is critical for obtaining reliable
Plant cell tissue culture: A potential source of chemicals
Energy Technology Data Exchange (ETDEWEB)
Scott, C.D.; Dougall, D.K.
1987-08-01
Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.
Anaerobic Cultures from Preserved Tissues of Baby Mammoth
Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel
2011-01-01
Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.
Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.
Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin
2016-01-01
Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.
Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture
Directory of Open Access Journals (Sweden)
Urszula Adamczyk-Rogozińska
2014-01-01
Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue
DEFF Research Database (Denmark)
Bakmand, Tanya; Waagepetersen, Helle S.
The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...... with mass production. The last part of this thesis also includes perspectives on how to expand the latest designed device to facilitate culturing of tissue and co-culturing of cells....
Tobacco clones derived from tissue culture with supersensitivity to ozone
International Nuclear Information System (INIS)
Sun, E.J.; Kang, H.W.
2003-01-01
New tobacco clones supersensitive to ozone were obtained from tissue culture. - At least two supersensitive tobacco somaclones were obtained from tissue culture (TC) , when this approach was used to asexually propagate Bel-W3 tobacco indicator plants. These somaclones can detect as low as 30 ppb ozone for a 4-h exposure duration both within CSTR exposure chambers and in ambient air. Comparison of the injury index and their coefficient of variance showed that the TC plantlets usually have more uniform performance in response to ozone in addition to their higher sensitivity. A quick regeneration procedure was established to preserve the supersensitive germplasm immediately when it was found. The TC plantlets will flower and produce seed similar to seed-grown tobacco. The TC approach proved to be a better propagation system for valuable indicator plant species. The mechanism that causes the variation and the possible difference in their genome from seed-grown tobacco is still unknown. Further studies are needed in the future to determine if factors in the TC system may be responsible for the sensitivity difference
Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.
Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won
2017-01-01
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Discarded human fetal tissue and cell cultures for transplantation research
International Nuclear Information System (INIS)
Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.
1999-01-01
A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial
Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure
Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.
2012-01-01
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and
Micropropagation and maintenance of phytoplasmas in tissue culture.
Bertaccini, Assunta; Paltrinieri, Samanta; Martini, Marta; Tedeschi, Mara; Contaldo, Nicoletta
2013-01-01
Maintenance of phytoplasma strains in tissue culture is achievable for all strains transmitted to periwinkle (Catharanthus roseus), and also for other naturally infected plant host species. Shoots of 1-3 cm length are grown in a solid medium containing Murashige and Skoog (MS) micro- and macroelements and 0.12 mg/L benzylaminopurine. The continued presence of phytoplasmas in infected shoots of periwinkle that have been maintained in micropropagation for up to 20 years can be shown by diagnostic methods such as nested PCR tests using the 16S rDNA gene (see Chapters 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,and 26 for phytoplasma diagnostic methods).
Tissue culture and micropropagation for forest biomass production
Energy Technology Data Exchange (ETDEWEB)
Mason, E.; Maine, F.W.
1984-09-01
An increase in forest production will be necessary in the future when wood becomes a major renewable source of energy and chemicals along with its traditional role of fibre source. This increase could eventually by achieved be proper selection and breeding of trees. Clonal forestry by vegetative propagation of cuttings is becoming a viable alternative to a seedling-based forestry with many advantages, and cutting could be used to quickly propagate large numbers of clones of control-pollinated seedlings. Most forest trees are propagated sexually and seed orchards were started in the US and Canada in the last 40-50 years for breeding purposes. Forests could ultimately be established with improved seedlings instead of from seed with unknown genetic potential, or by natural regeneration. Micropropagation is the term used to refer to the propagation of plants raised by tissue culture methods rather than from seeds or cuttings. Many clonal plantlets could be regenerated asexually in the laboratory and eventually transplanted to permanent sites. In addition the technology could be developed to produce new variants from somatic cells. Tissue culture is a technique which may be useful for plant propagation where conventional methods are inadequate or unsuitable. However, traditional studies of field planting observed over long periods of time would still be necessary. This document has the object of informing those who may wish to know more about these techniques in relation to practical application, and require a general overview rather than experimental details, which are given in an annotated bilbiography. 274 refs., 2 figs., 1 tab.
Organotypic culture of human bone marrow adipose tissue.
Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji
2010-04-01
The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.
Tissue culture of black pepper (piper nigrum l.) in Pakistan
International Nuclear Information System (INIS)
Hussain, A.; Naz, S.; Nazir, H.; Shinwari, Z.K.
2011-01-01
Black pepper (Piper nigrum L.) the 'King of Spices' is a universal table condiment. It is extensively used in Pakistani cuisines and herbal medicines and imported in bulk from neighboring countries. The black pepper vine is generally cultivated by seed because other vegetative propagation methods are slow and time consuming. Therefore the tissue culture technique is considered more efficient and reliable method for rapid and mass propagation of this economically important plant. The present study was initiated to develop protocol for micro-propagation of black pepper vine. The stem, leaf and shoot tip explants from mature vine were cultured on MS medium supplemented with different concentrations of plant growth regulators (2,4-D, BA, IBA). Best callus was produced on MS medium with 1.5 mg/l BA by shoot tip explant. Shoot regeneration was excellent on MS medium with 0.5 mg/l BA. The plantlets formed were rooted best on 1.5 mg/l IBA. The rooted plants were transplanted in soil medium and acclimatized in growth room. The plants raised were test planted under the local conditions of Hattar. (author)
The use of tissue culture techniques to detect irradiated vegetables
International Nuclear Information System (INIS)
Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I
2001-01-01
the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Cells in human postmortem brain tissue slices remain alive for several weeks in culture
Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.
2002-01-01
Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Chaotic dynamics in two-dimensional noninvertible maps
Mira, Christian; Cathala, Jean-Claude; Gardini, Laura
1996-01-01
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim
2017-03-01
The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of
Effects of Apollo 12 lunar material on lipid levels of tobacco tissue and slash pine cultures
Weete, J. D.
1972-01-01
Investigations of the lipid components of pine tissues (Pinus elloitii) are discussed, emphasizing fatty acids and steroids. The response by slash pine tissue cultures to growth in contact with Apollo lunar soil, earth basalt, and Iowa soil is studied. Tissue cultures of tobacco grown for 12 weeks in contact with lunar material from Apollo 12 flight contained 21 to 35 percent more total pigment than control tissues. No differences were noted in the fresh or dry weight of the experimental and control samples.
Mass micropropagation of pineapple tissue culture using bioreactor technology
International Nuclear Information System (INIS)
Irwan Syafri; Amir Hamzah Harun; Rusli Ibrahim
2005-01-01
Pineapple (ananas comosus) is the most important fruit in terms of revenue earner in this country. The export of the canned pineapple is about 2 million standard cases annually valued at RM 60 million, while the export of fresh pineapple is about 40,000 tonnes worth about RM 10 million. The industry for canning is however, an ailing industry with production on the decline since the 70s. Scaling up the pineapple propagation using in vitro methods seems to be possible solutions for the lack of planting material. Temporary immersion system (TIS) has been described by Teisson and Alvard (1995) for plant tissue culture propagation. This system, also known as RITA, has been successfully used with embryogenic tissues of banana (Alvard et al 1993), coffee (Berthouly 1991), rubber (Etienne et al 1993) and sugarcane (Lorenzo et al 1998). In this study, the system has been set up with a potential capacity of 3 manifolds with 10 RITA each, to multiply meristem explants at different immersion periods. The system was compared with the conventional micropropagation system on solid medium. Both systems were treated with MS media containing 2.5 mg/l BAP and 0.1 NAA. In TIS the shoots were able to multiplied faster in comparison with solid media. The multiplication rates were increased up to 1:3 to 1:5 compared to normal propagation on solid media. The results show that TIS not only increase the propagation rates of pineapple but could also be adapted to reduce implementation costs to establish low-cost propagation systems. (Author)
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-01-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
First principles calculation of two dimensional antimony and antimony arsenide
Energy Technology Data Exchange (ETDEWEB)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Two-dimensional turbulent flows on a bounded domain
Kramer, W.
2006-01-01
Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.
Quantitative optical mapping of two-dimensional materials
DEFF Research Database (Denmark)
Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.
2018-01-01
The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...
Temperature maxima in stable two-dimensional shock waves
International Nuclear Information System (INIS)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-01-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society
Two-dimensional molecular line transfer for a cometary coma
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
Sub-Nanometer Channels Embedded in Two-Dimensional Materials
Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.
2017-01-01
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Coherent Electron Focussing in a Two-Dimensional Electron Gas.
Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.
1988-01-01
The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Interior design of a two-dimensional semiclassical black hole
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Two-dimensional profiling of Xanthomonas campestris pv. viticola ...
African Journals Online (AJOL)
However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...
Mass relations for two-dimensional classical configurations
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1980-01-01
Using the two-dimensional sigma-nonlinear models as a framework mass relations for classical configurations of instanton/soliton type are derived. Our results suggest an interesting differential-geometric interpretation of the mass of a classical configuration in terms of the topological characteristics of an associated manifold. (orig.)
Seismically constrained two-dimensional crustal thermal structure of ...
Indian Academy of Sciences (India)
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Two-dimensional NMR studies of allyl palladium complexes of ...
Indian Academy of Sciences (India)
Administrator
h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show tha...
Two-Dimensional Charge Transport in Disordered Organic Semiconductors
Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.
2012-01-01
We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides
Noninteracting beams of ballistic two-dimensional electrons
International Nuclear Information System (INIS)
Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.
1991-01-01
We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels
Two-dimensional dissipation in third sound resonance
International Nuclear Information System (INIS)
Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana
1981-01-01
The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)
Graphene: a promising two-dimensional support for heterogeneous catalysts
Directory of Open Access Journals (Sweden)
Xiaobin eFan
2015-01-01
Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.
Two-dimensional interpolation with experimental data smoothing
International Nuclear Information System (INIS)
Trejbal, Z.
1989-01-01
A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs
Tunneling between parallel two-dimensional electron liquids
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.
361/362, - (1996), s. 167-170 ISSN 0039-6028. [International Conference on the Electronic Properties of Two Dimensional Systems /11./. Nottingham, 07.08.1995-11.08.1995] R&D Projects: GA ČR GA202/94/1278 Grant - others:INT(XX) 9106888 Impact factor: 2.783, year: 1996
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo
2018-01-01
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Transient two-dimensional flow in porous media
International Nuclear Information System (INIS)
Sharpe, L. Jr.
1979-01-01
The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media
Two-dimensional QCD as a model for strong interaction
International Nuclear Information System (INIS)
Ellis, J.
1977-01-01
After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Kubo conductivity of a strongly magnetized two-dimensional plasma.
Montgomery, D.; Tappert, F.
1971-01-01
The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.
Bayesian approach for peak detection in two-dimensional chromatography
Vivó-Truyols, G.
2012-01-01
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Giant 1/f noise in two-dimensional polycrystalline media
International Nuclear Information System (INIS)
Snarskii, A.; Bezsudnov, I.
2008-01-01
The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant
NMR-based metabolomics of mammalian cell and tissue cultures
International Nuclear Information System (INIS)
Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan; Niemitz, Matthias; Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D.
2011-01-01
NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.
Flowering of Woody Bamboo in Tissue Culture Systems
Directory of Open Access Journals (Sweden)
Jin-Ling Yuan
2017-09-01
Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.
NMR-based metabolomics of mammalian cell and tissue cultures
Energy Technology Data Exchange (ETDEWEB)
Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan [Bristol-Myers Squibb Company (United States); Niemitz, Matthias [PERCH Solutions Ltd. (Finland); Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D., E-mail: michael.reily@bms.com [Bristol-Myers Squibb Company (United States)
2011-04-15
NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.
Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry
Directory of Open Access Journals (Sweden)
Honoré Bent
2010-01-01
Full Text Available Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and mass spectrometry (MS. Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
21 CFR 864.2240 - Cell and tissue culture supplies and equipment.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment. 864.2240 Section 864.2240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products...
21 CFR 864.2220 - Synthetic cell and tissue culture media and components.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and components. 864.2220 Section 864.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.
Eiraku, Mototsugu; Sasai, Yoshiki
2011-12-15
Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown
Energy Technology Data Exchange (ETDEWEB)
Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)
2016-01-04
Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Folding two dimensional crystals by swift heavy ion irradiation
International Nuclear Information System (INIS)
Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika
2014-01-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Linear negative magnetoresistance in two-dimensional Lorentz gases
Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.
2018-03-01
Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Transport behavior of water molecules through two-dimensional nanopores
International Nuclear Information System (INIS)
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-01-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules
Research progress in plant mutation by combining ion beam irradiations and tissue culture
International Nuclear Information System (INIS)
Zhou Linbin; Li Wenjian; Qu Ying; Li Ping
2007-01-01
About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)
Two-dimensional superconductivity in ultrathin disordered thin films
International Nuclear Information System (INIS)
Beasley, M.R.
1992-01-01
The status of the understanding of two-dimensional superconductivity in ultrathin, disordered thin films is reviewed. The different consequences of microscopic versus macroscopic disorder are stressed. It is shown that microscopic disorder leads to a rapid suppression of the mean-field transition temperature. The consequences of macroscopic disorder are not well understood, but a universal behavior of the zero-bias resistance as a function of field and temperature has been observed. (orig.)
Two-dimensional heat conducting simulation of plasma armatures
International Nuclear Information System (INIS)
Huerta, M.A.; Boynton, G.
1991-01-01
This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature
Topological field theories and two-dimensional instantons
International Nuclear Information System (INIS)
Schaposnik, F.A.
1990-01-01
In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model
Two-dimensional color-code quantum computation
International Nuclear Information System (INIS)
Fowler, Austin G.
2011-01-01
We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.
Collision dynamics of two-dimensional non-Abelian vortices
Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio
2017-09-01
We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
Graphene – A Two-Dimensional Dirac Material
Liu, Danny; Wicklund, Johan
2014-01-01
Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are...
Resistive-strips micromegas detectors with two-dimensional readout
Byszewski, M.; Wotschack, J.
2012-02-01
Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.
Hall effect in the two-dimensional Luttinger liquid
International Nuclear Information System (INIS)
Anderson, P.W.
1991-01-01
The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong
Theory of a Nearly Two-Dimensional Dipolar Bose Gas
2016-05-11
order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16
SU(1,2) invariance in two-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2017-02-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.
Decaying Two-Dimensional Turbulence in a Circular Container
Schneider, Kai; Farge, Marie
2005-01-01
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...
Two-dimensional readout in a liquid xenon ionisation chamber
Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando
2002-01-01
A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.
Stochastic and collisional diffusion in two-dimensional periodic flows
International Nuclear Information System (INIS)
Doxas, I.; Horton, W.; Berk, H.L.
1990-05-01
The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs
The Convergence Acceleration of Two-Dimensional Fourier Interpolation
Directory of Open Access Journals (Sweden)
Anry Nersessian
2008-07-01
Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Spatial Discrete Soliton in Two dimensional with Kerr medium
International Nuclear Information System (INIS)
Aghdami, M.; Mostafavi, D.; Mokhtari, F.; Keradmand, R.
2012-01-01
In this theoretical work propagation of the Gaussian beam through a two dimensional waveguides array is numerically investigated, in which each waveguide contains medium with Kerr nonlinearity considering coupling to vertical, horizontal and diagonal neighbor through light electric field. Different values of intensity, nonlinear coefficient Kerr and Gaussian beam width of incident Gaussian beam are examined and finally suitable parameters for providing central spatial solitons are obtained.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
Acoustic transparency in two-dimensional sonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es
2009-01-15
Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.
Two-dimensional manifolds with metrics of revolution
International Nuclear Information System (INIS)
Sabitov, I Kh
2000-01-01
This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R 3 other than a sphere and a torus (moreover, in the smoothness class C ∞ such surfaces, understood in a certain generalized sense, exist in any topological class)
Warranty menu design for a two-dimensional warranty
International Nuclear Information System (INIS)
Ye, Zhi-Sheng; Murthy, D.N. Pra
2016-01-01
Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
Two-dimensional analysis of trapped-ion eigenmodes
International Nuclear Information System (INIS)
Marchand, R.; Tang, W.M.; Rewoldt, G.
1979-11-01
A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Two-dimensional shielding benchmarks for iron at YAYOI, (1)
International Nuclear Information System (INIS)
Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.
The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Automated Processing of Two-Dimensional Correlation Spectra
Sengstschmid; Sterk; Freeman
1998-04-01
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Revision washout decreases implant capsule tissue culture positivity: a multicenter study.
Henry, Gerard D; Carson, Culley C; Wilson, Steven K; Wiygul, Jeremy; Tornehl, Chris; Cleves, Mario A; Simmons, Caroline J; Donatucci, Craig F
2008-01-01
Positive cultures, visible biofilm and confocal micrography confirm bacterial presence on clinically uninfected inflatable penile prostheses at revision surgery. Salvage irrigation has been proved to rescue patients with clinically infected inflatable penile prostheses. Similar washout at revision for noninfectious reasons significantly lowers subsequent infection rates. We investigated a larger series of patients for positive culture rates and evaluated implant capsule tissue culture rates before and after revision washout. At 4 institutions a total of 148 patients with inflatable penile prostheses underwent revision surgery for noninfectious reasons between June 2001 and September 2005. Swab cultures of the fluid around the pump and visible biofilm were obtained. Also, in 65 patients a wedge of tissue from the capsule that forms around the pump was cultured. After implant removal revision washout of the implant spaces was performed and a second wedge of tissue was cultured. Of the 148 patients 97 (66%) had positive bacterial swab cultures of the fluid around the pump or biofilm. A total of 124 isolates were cultured. Of the 65 implant capsule tissue cultures obtained before washout 28 (43%) were positive for bacteria, while 16 (25%) obtained after revision washout were positive. Positive cultures and visible bacterial biofilm are present on clinically uninfected inflatable penile prostheses at revision surgery in most patients. Revision washout appears to decrease the bacterial load on implant capsule tissue at revision surgery of inflatable penile prostheses for noninfectious reasons.
Propagation of jarrah (Eucalyptus marginata) by organ and tissue culture
Energy Technology Data Exchange (ETDEWEB)
Bennett, M.J.; McComb, J.A.
1982-01-01
Micropropagation methods are described for the production of clonal lines from Eucalyptus marginata (jarrah) seedlings. Nodal explants from mature trees can also yield shoot cultures, but a high frequency of contamination occurs among such explants. Uncontaminated callus cultures can be produced from mature trees by culturing stamen filaments and shoots can subsequently be regenerated from this callus. The rooting percentage of shoot cultures from either nodes or stamen callus of mature trees is low compared with that from seedling explants. Considerable variation was observed between trees in the ability of stamen callus to regenerate shoots and in the frequency of rooting. (Refs. 27)
Directory of Open Access Journals (Sweden)
Kamal R. Acharya
2017-12-01
Full Text Available Johne’s disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP. Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38. Likewise, almost all tissue culture (61/64 or histopathology (52/58 positives were detected with good to moderate agreement (Cohen’s kappa statistic and no significant difference to the reference tests (McNemar’s Chi-square test. Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07. Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption.
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2013-11-01
Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.
Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul
2014-05-01
Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sluis, C.
1980-09-01
The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.
Application of tissue culture to cashew ( Anacardium occidentale L ...
African Journals Online (AJOL)
Summary of the previous works on the in vitro culture of cashew is highlighted with emphasis on the critical factors that influence the explants response and plantlet regeneration. The recalcitrant nature of cashew has been attributed to the limited success recorded so far in the in vitro culture of the crop and abnormal ...
Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat
Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi
2010-07-01
Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.
Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.
Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E
2009-01-01
The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Equine ovarian tissue viability after cryopreservation and in vitro culture
The efficiency of several cryoprotective agents were compared using both slow-freezing and vitrification methods. Results indicate that the viability of ovarian tissue cells increases when DMSO (slow-freezing) and ethylene glycol (vitrification) are used....
Introduction to two dimensional conformal and superconformal field theory
International Nuclear Information System (INIS)
Shenker, S.H.
1986-01-01
Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed
Quasi-integrability and two-dimensional QCD
International Nuclear Information System (INIS)
Abdalla, E.; Mohayaee, R.
1996-10-01
The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab
Two dimensional hybrid simulation of a curved bow shock
International Nuclear Information System (INIS)
Thomas, V.A.; Winske, D.
1990-01-01
Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters
Focused two-dimensional antiscatter grid for mammography
International Nuclear Information System (INIS)
Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.
2002-01-01
We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed
Two-dimensional 220 MHz Fourier transform EPR imaging
International Nuclear Information System (INIS)
Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello
1998-01-01
In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
Two-dimensionally confined topological edge states in photonic crystals
International Nuclear Information System (INIS)
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)
Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver
Scott, Matthew T.; Mccune, James E.
1988-01-01
This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.
Two-dimensional unsteady lift problems in supersonic flight
Heaslet, Max A; Lomax, Harvard
1949-01-01
The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.
Engineering topological edge states in two dimensional magnetic photonic crystal
Yang, Bing; Wu, Tong; Zhang, Xiangdong
2017-01-01
Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Energy Technology Data Exchange (ETDEWEB)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.
2015-12-17
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Pattern formation in two-dimensional square-shoulder systems
International Nuclear Information System (INIS)
Fornleitner, Julia; Kahl, Gerhard
2010-01-01
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Pattern formation in two-dimensional square-shoulder systems
Energy Technology Data Exchange (ETDEWEB)
Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)
2010-03-17
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Cavalier perspective plots of two-dimensional matrices. Program Stereo
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)
Bosonization in a two-dimensional Riemann Cartan geometry
International Nuclear Information System (INIS)
Denardo, G.; Spallucci, E.
1987-01-01
We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)
Periodic trajectories for two-dimensional nonintegrable Hamiltonians
International Nuclear Information System (INIS)
Davies, K.T.R.
1990-02-01
I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs
Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides
Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration
2015-03-01
Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Repulsion of polarized particles from two-dimensional materials
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 chemical potential tunable electrically or by chemical doping.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Poincare' maps of impulsed oscillators and two-dimensional dynamics
International Nuclear Information System (INIS)
Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.
1996-01-01
The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Two-Dimensional One-Component Plasma on Flamm's Paraboloid
Fantoni, Riccardo; Téllez, Gabriel
2008-11-01
We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.
Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry
International Nuclear Information System (INIS)
Pascoli, G.
1990-01-01
Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure
Gibbs perturbations of a two-dimensional gauge field
International Nuclear Information System (INIS)
Petrova, E.N.
1981-01-01
Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)
Saddle-points of a two dimensional random lattice theory
International Nuclear Information System (INIS)
Pertermann, D.
1985-07-01
A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
Two-dimensional N = 2 Super-Yang-Mills Theory
August, Daniel; Wellegehausen, Björn; Wipf, Andreas
2018-03-01
Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
Mixed-symmetry superconductivity in two-dimensional Fermi liquids
International Nuclear Information System (INIS)
Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.
1996-01-01
We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society
Magnus force in discrete and continuous two-dimensional superfluids
International Nuclear Information System (INIS)
Gecse, Z.; Khlebnikov, S.
2005-01-01
Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays
Network patterns in exponentially growing two-dimensional biofilms
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
Two dimensional topological insulator in quantizing magnetic fields
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
The Penalty Cost Functional for the Two-Dimensional
Directory of Open Access Journals (Sweden)
Victor Onomza WAZIRI
2006-07-01
Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.
Wave dispersion relations in two-dimensional Yukawa systems
International Nuclear Information System (INIS)
Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang
2003-01-01
Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ
Two-dimensional simulations of magnetically-driven instabilities
International Nuclear Information System (INIS)
Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.
1986-01-01
A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program
Autocorrelation based reconstruction of two-dimensional binary objects
International Nuclear Information System (INIS)
Mejia-Barbosa, Y.; Castaneda, R.
2005-10-01
A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)
Linear and nonlinear viscous flow in two-dimensional fluids
International Nuclear Information System (INIS)
Gravina, D.; Ciccotti, G.; Holian, B.L.
1995-01-01
We report on molecular dynamics simulations of shear viscosity η of a dense two-dimensional fluid as a function of the shear rate γ. We find an analytic dependence of η on γ, and do not find any evidence whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In accordance with the linear response theory, the GK value of η agrees remarkably well with nonequilibrium values at small shear rates. (c) 1995 The American Physical Society
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...
Two-dimensional approach to relativistic positioning systems
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
[18S-25S rDNA variation in tissue culture of some Gentiana L. species].
Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A
2007-01-01
18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.
International Nuclear Information System (INIS)
Quan, Xu; Qiang, Tian
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)
Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu
2015-08-01
At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.
Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.
Zottoli, Steven J; Seyfarth, Ernst-August
2018-05-16
The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Growth and characterization of two-dimensional nanostructures
International Nuclear Information System (INIS)
Herrera Sancho, Oscar Andrey
2008-01-01
Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es
Strain-engineered growth of two-dimensional materials.
Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali
2017-09-20
The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
Emergence of geometry: A two-dimensional toy model
International Nuclear Information System (INIS)
Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.
Chimera patterns in two-dimensional networks of coupled neurons
Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp
2017-03-01
We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence for two-dimensional ising structure in atomic nuclei
International Nuclear Information System (INIS)
MacGregor, M.H.
1976-01-01
Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Aspects of jamming in two-dimensional athermal frictionless systems.
Reichhardt, C; Reichhardt, C J Olson
2014-05-07
In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
The emergence of geometry: a two-dimensional toy model
Alfaro, Jorge; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...
Two-dimensional sparse wavenumber recovery for guided wavefields
Sabeti, Soroosh; Harley, Joel B.
2018-04-01
The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.
Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis
International Nuclear Information System (INIS)
Goldman, D.; Merril, C.R.
1983-01-01
A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Bayesian approach for peak detection in two-dimensional chromatography.
Vivó-Truyols, Gabriel
2012-03-20
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.
The effect of plant growth regulators on optimization of tissue culture ...
African Journals Online (AJOL)
USER
2010-04-05
Apr 5, 2010 ... ISSN 1684–5315 © 2010 Academic Journals ... tissue culture system in Malaysian upland rice ... Scientists believe that using new cultivars which have potential ..... providing the financial support and to Firouzeh Ashjazadeh ...
How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.
Haldeman, Janice H.; Ellis, Jane P.
1988-01-01
Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)
Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.
Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N
2009-02-01
Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.
International Nuclear Information System (INIS)
Taylor, N.; Shifrine, M.; Wolf, H.G.; Trommershausen-Smith, A.
1975-01-01
Radiation-induced osteosarcoma, its metastasis, and cells grown in tissue culture were karyotyped. Both hypodiploid and hyperdiploid stem lines were observed. The hypodiploid line contained 45-55 chromosomes with 10 to 15 abnormal metacentric and submetacentric chromosomes and one subtelocentric marker. The hyperdiploid line contained 90 to 105 chromosomes with 20 to 30 abnormal metacentric and submetacentric chromosomes with two subtelocentric markers. Karyotypic analysis can be used to monitor osteosarcomas maintained in tissue culture
Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures
Directory of Open Access Journals (Sweden)
Agnieszka Mironowicz
2014-01-01
Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.
Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P
2015-05-09
The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM
Cloning higher plants from aseptically cultured tissues and cells
Krikorian, A. D.
1982-01-01
A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.
Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.
Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.
1972-01-01
Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.
[Research progress of co-culture system for constructing vascularized tissue engineered bone].
Fu, Weili; Xiang, Zhou
2014-02-01
To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.
Plant Regeneration Through Tissue Culture Of Pear Millet ...
African Journals Online (AJOL)
1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...
Organoid culture systems for prostate epithelial and cancer tissue
Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans
This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material
Tissue culture as a plant production technique for horticultural crops
African Journals Online (AJOL)
STORAGESEVER
2009-08-18
Aug 18, 2009 ... Recovery of regenerants from transformed cells. - Cell culture .... methods. Micropropagation techniques. Micropropagation is a simple concept. The basic pro- tocols were well established by the 1960s and a whole research field and ... the environment are naturally contaminated on their sur- faces (and ...
Rat fetal ventral mesencephalon grown as solid tissue cultures
DEFF Research Database (Denmark)
Höglinger, G U; Sautter, J; Meyer, Morten
1998-01-01
in vitro (DIV) in the presence or absence (controls) of BDNF [100 ng/ml]. The dopamine content in the culture medium, analyzed by HPLC, was significantly higher (4-5 fold) in the BDNF group at DIV 8 and DIV 12 compared to the corresponding control levels (40 pg/ml). The number of tyrosine hydroxylase...
Co-culture systems-based strategies for articular cartilage tissue engineering.
Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi
2018-03-01
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.
Optimal Padding for the Two-Dimensional Fast Fourier Transform
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that
International Nuclear Information System (INIS)
Giometti, C.S.; Willard, K.E.; Anderson, N.L.
1982-01-01
Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125 I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture
Two dimensional neutral transport analysis in tokamak plasma
International Nuclear Information System (INIS)
Shimizu, Katsuhiro; Azumi, Masafumi
1987-02-01
Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.
2017-01-01
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Global geometry of two-dimensional charged black holes
International Nuclear Information System (INIS)
Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus
2006-01-01
The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation
Suspension and simple optical characterization of two-dimensional membranes
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Disorder effect in two-dimensional topological insulators
International Nuclear Information System (INIS)
Zhang Xianglin; Feng Shiping; Guo Huaiming
2012-01-01
We conduct a systematic study on the disorder effect in two-dimensional (2D) topological insulators by calculating the Z 2 topological invariant. Starting from the trivial and nontrivial topological phases of the model describing HgTe/CdTe quantum wells (QWs), we introduce three different kinds of disorder into the system, including the fluctuations in the on-site potential, the hopping amplitude and the topological mass. These kinds of disorder commonly exist in HgTe/CdTe QWs grown experimentally. By explicit numerical calculations, we show that all three kinds of disorder have the similar effect: the topological phase in the system is not only robust to them, but also can be brought about by introducing them to the trivial insulator phase. These results make a further confirmation and extendability of the study on the interplay between the disorder and the topological phase.
Thermoelectric transport in two-dimensional giant Rashba systems
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Two-dimensional DFA scaling analysis applied to encrypted images
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2015-01-01
The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Sample preparation guidelines for two-dimensional electrophoresis.
Posch, Anton
2014-12-01
Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.
Two-dimensional divertor modeling and scaling laws
International Nuclear Information System (INIS)
Catto, P.J.; Connor, J.W.; Knoll, D.A.
1996-01-01
Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)
Two-dimensional spectrophotometry of planetary nebulae by CCD imaging
International Nuclear Information System (INIS)
Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)
1987-01-01
The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references
Two-dimensional neutron scintillation detector with optimal gamma discrimination
International Nuclear Information System (INIS)
Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.
1993-01-01
The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented
Mixing times in quantum walks on two-dimensional grids
International Nuclear Information System (INIS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-01-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Two dimensional radiated power diagnostics on Alcator C-Mod
International Nuclear Information System (INIS)
Reinke, M. L.; Hutchinson, I. H.
2008-01-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.
Superconductivity of the two-dimensional Penson-Kolb model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2001-01-01
Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy
International Nuclear Information System (INIS)
Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W
2012-01-01
Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)
Cooperation in two-dimensional mixed-games
International Nuclear Information System (INIS)
Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas
2015-01-01
Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)
The first principle calculation of two-dimensional Dirac materials
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Advancements of two dimensional correlation spectroscopy in protein researches
Tao, Yanchun; Wu, Yuqing; Zhang, Liping
2018-05-01
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Superfluid response of two-dimensional parahydrogen clusters in confinement
Energy Technology Data Exchange (ETDEWEB)
Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
2015-04-07
We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Two dimensional tunable photonic crystals and n doped semiconductor materials
International Nuclear Information System (INIS)
Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.
2015-01-01
In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh
2018-04-20
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Critical behavior of the two-dimensional first passage time
International Nuclear Information System (INIS)
Chayes, J.T.; Chayes, L.; Durrett, R.
1986-01-01
We study the two-dimensional first passage problem in which bonds have zero and unit passage times with probability p and 1-p, respectively. We provide that as the zero-time bonds approach the percolation threshold p/sub c/, the first passage time exhibits the same critical behavior as the correlation function of the underlying percolation problem. In particular, if the correlation length obeys ξ(p)--chemical bondp-p/sub c/chemical bond/sup -//sup v/, then the first passage time constant satisfies μ(p)--chemical bondp-p/sub c/chemical bond/sup v/. At p/sub c/, where it has been asserted that the first passage time from 0 to x scales as chemical bondxchemical bond to a power psi with 0< psi<1, we show that the passage times grow like log chemical bondxchemical bond, i.e., the fluid spreads exponentially rapidly
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Charge ordering in two-dimensional ionic liquids
Perera, Aurélien; Urbic, Tomaz
2018-04-01
The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.
Two-dimensional fruit ripeness estimation using thermal imaging
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2013-06-01
Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.
Two-Dimensional Perovskite Activation with an Organic Luminophore.
Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle
2015-10-07
A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.
Atomically thin two-dimensional organic-inorganic hybrid perovskites
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Photo-switchable two-dimensional nanofluidic ionic diodes.
Wang, Lili; Feng, Yaping; Zhou, Yi; Jia, Meijuan; Wang, Guojie; Guo, Wei; Jiang, Lei
2017-06-01
The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc .
Tachyon hair on two-dimensional black holes
International Nuclear Information System (INIS)
Peet, A.; Susskind, L.; Thorlacius, L.
1993-01-01
Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type
On wakefields with two-dimensional planar geometry
International Nuclear Information System (INIS)
Chao, A.W.; Bane, K.L.F.
1996-10-01
In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied
Ion distributions in a two-dimensional reconnection field geometry
International Nuclear Information System (INIS)
Curran, D.B.; Goertz, C.K.; Whelan, T.A.
1987-01-01
ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.
Yang, Yuting; Jiang, Hua; Hang, Zhi Hong
2018-01-25
Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.
Two-dimensional plasma photonic crystals in dielectric barrier discharge
International Nuclear Information System (INIS)
Fan Weili; Dong Lifang; Zhang Xinchun
2010-01-01
A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine D; Savran, Mona Meral; Konge, Lars
2016-01-01
were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Two-dimensional echocardiographic features of right ventricular infarction
International Nuclear Information System (INIS)
D'Arcy, B.; Nanda, N.C.
1982-01-01
Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients
Two-dimensional computer simulation of high intensity proton beams
Lapostolle, Pierre M
1972-01-01
A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).
Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors
DEFF Research Database (Denmark)
Tang, Yingying; Cao, Xianyi; Chi, Qijin
2018-01-01
Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra; Abuhimd, Hatem; Wahyudi, Wandi; Li, Mengliu; Ming, Jun; Li, Lain-Jong
2016-01-01
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Two-dimensional void reconstruction by neutron transmission
International Nuclear Information System (INIS)
Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.
1978-01-01
Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data
Drifting plasmons in open two-dimensional channels: modal analysis
International Nuclear Information System (INIS)
Sydoruk, O
2013-01-01
Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Efficient two-dimensional compressive sensing in MIMO radar
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Vosoughi, Naser E-mail: vosoughi@mehr.sharif.edu; Salehi, Ali A.; Shahriari, Majid
2003-02-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.