Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on
Blast shocks in quasi-two-dimensional supersonic granular flows.
Boudet, J F; Cassagne, J; Kellay, H
2009-11-27
In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.
Institute of Scientific and Technical Information of China (English)
Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam
2003-01-01
A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies
Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh
1991-01-01
This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow
Wang, Chi R.; Bidek, Maleina C.
1994-01-01
Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The spatial evolution of a T-S wave and its subharmonic wave, introduced at the inlet in a 2-D supersonic mixing layer, was investigated by using DNS. The relationship between the amplitude of the disturbance wave and the strength of the shocklet caused by the disturbance was investigated. We analyzed the shape of the disturbance velocity profile on both sides of the shocklet, and found that the existence of shocklet affected appreciably the disturbance velocity. The effects on the high speed side and low speed side of the mixing layer were found to be different.
Institute of Scientific and Technical Information of China (English)
CAO; Wei
2001-01-01
.0, MNRAS,1992, 256: 349.［25］Hazard, C. , Morton, D. C., Terlevich, R. et al. , Nine new quasi-stellar objects with borad absorption lines, Astrophys.J. , 1984, 282: 33.［26］Osmer, P. S. , Q0353-383: The best case yet for abundance anomalies in quasars, Astrophys. J. , 1980, 237, 666.［27］Hamann, F. , Zuo, L., Tytler, D. , Broad Ne VIII λ774 emission from quasars in the HST-Fos snapshot survey (ABSNAP),Astrophys. J., 1995, 444: L69.［28］Laor, A. , Bahcall, J. N., Jannuzi, B. T. , The ultraviolet emission properties of five low-redshift active galactic unclei at high signal-to-noise ratio and spectral resolution, Astrophys. J., 1994, 420: 110.［29］Barthel, P. D., Tytler, D. R., Thomson, B., Optical spectra of distant radio loud quasars, A&AS, 1990, 82: 339.［30］Schmidt, M., Schneider, D. P., Gunn, J. E., Pc0910 + 5625: An optically selected quasar with a redshift of 4.04, Astro-phys. J., 1987, 321: L7.［31］Adams, M. T., Coleman, G. D., Stockman, H. S. et al., The spectrum of Markarian 132, Astrophys. J., 1978, 228:758.［32］Hammann, F. , Shields, J. C. , Ferland, G. J. et al. , Broad NE VIII lambda 744 emission from the Quasar PG 148 + 549,Astrophys. J., 1995, 454: 688.［33］Baldwin, J. A., McMahon, R., Hazard, C. et al., QSOs with narrow emission lines, Astrophys. J., 1988, 327: 103.［34］Baldwin, J. A. , Burbidge, E. M. , Hazard, C. et al. , A spectroscopic surrvey of 92 QSO candidates, Astrophys. J. ,1973, 185: 739.［35］Baldwin, J. A. , Ferland, G. J. , Korista, K. T., Very high density clumps and out flowing winds in QSO broad-line re-gions, Astrophys. J., 1996, 461: 664.［36］Ferland, G. J., Baldwin, J. A., Korista, K. T., High metal enrichments in luminous quasars, Astrophys. J., 461: 683.［37］Bceker, R. H., Helfand, D. J., White, R. L., The discovery of an X-ray selected radio-loud quasar at z = 3.9 AJ, 1992,104: 531.［38］Schneider, D. P., Lawrence, C. R., Schmide, M. et al., Deep optical and radio observations of the
Pinkel, I Irving; Serafini, John S; Gregg, John L
1952-01-01
The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.
Pfeiffer, F.; Meyer-Koenig, W.
1949-01-01
By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.
Steinke, Ronald J.
1989-01-01
The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Supersonic flows over cavities
Institute of Scientific and Technical Information of China (English)
Tianwen FANG; Meng DING; Jin ZHOU
2008-01-01
The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.
Experimental investigation of the structure of supersonic two-dimensional air microjets
Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey
2016-10-01
We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.
An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet
LI, S.-M.; HANUSKA, C. A.; NG, W. F.
2001-11-01
An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.
Infinitesimal Conical Supersonic Flow
Busemann, Adolf
1947-01-01
The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.
Rao, Srisha M. V.; Jagadeesh, Gopalan
2014-03-01
Key features that drive the operation of a supersonic ejector are the complex gasdynamic interactions of the primary and secondary flows within a variable area duct and the phenomenon of compressible turbulent mixing between them, which have to be understood at a fundamental level. An experimental study has been carried out on the mixing characteristics of a two dimensional supersonic ejector with a supersonic primary flow (air) of Mach number 2.48 and the secondary flow (subsonic) which is induced from the ambient. The non-mixed length, which is the length within the ejector for which the primary and secondary flow remain visually distinct is used to characterize the mixing in the ejector. The operating pressures, flow rates and wall static pressures along the ejector have been measured. Two flow visualization tools have been implemented—time resolved schlieren and laser scattering flow visualization. An important contribution has been the development of in-house image processing algorithms on the MATLAB platform to detect the non-mixed length from the schlieren and laser scattering images. The ratio of mass flow rates of the secondary flow to primary flow (entrainment ratio) has been varied in a range of 0.15-0.69 for two locations of the primary nozzle in the ejector duct. Representative cases have been computed using commercial CFD tool (Fluent) to supplement the experiments. Significant outcomes of the study are—the non-mixed length quantified from the flow visualization images is observed to lie within 4.5 to 5.2 times the height of the mixing duct which is confirmed by the wall static pressure profiles. The flow through the supersonic ejector in the mixed regime is explained using corroborative evidences from different diagnostic tools. A reduction of the non-mixed length by 46.7% is observed at operating conditions when the nozzle is sufficiently overexpanded. The disturbance caused to the mixing layer due to unsteady shock-boundary layer interactions
Two dimensional axisymmetric smooth lattice Ricci flow
Brewin, Leo
2015-01-01
A lattice based method will be presented for numerical investigations of Ricci flow. The method will be applied to the particular case of 2-dimensional axially symmetric initial data on manifolds with S^2 topology. Results will be presented that show that the method works well and agrees with results obtained using contemporary finite difference methods.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise
Capone, Francis J.; Deere, Karen A.
2015-01-01
An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION
Goldman, L. J.
1994-01-01
A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.
Directory of Open Access Journals (Sweden)
Karthik Mummidisetti
2013-08-01
Full Text Available In the present work, investigation of various turbulence models has been carried out for predicting the efficient turbulence model for a two-dimensional nozzle designed for a supersonic cruise nozzle. Initially, a computational domain was created for a two-dimensional nozzle for a supersonic cruise, then, with an appropriate mesh size, various turbulence models has been used for simulations. The main objective of the present work is to determine the efficient turbulence model for nozzle designs. As till date, commercial software’s are implementing many advanced technique, the test of turbulence model is very much needed for today’s research. The results obtained from the computational approach were compared with experimental approach which was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.8 to 1.2 by NASA Langley Research Centre, Virginia. These supersonic cruise nozzles have a wide range of applications in designing Fighter jets and supersonic cruise aircraft's. The present work was conducted by using the commercial Computational Fluid Dynamics Software, STAR-CCM+. Initially, Nozzle at a free stream Mach number 0.9 was designed and all the initial and boundary conditions were calculated. From the results obtained in the present investigation, we can conclude that there was an excellent correlation between the experimental and computational data for K-Epsilon turbulence model.
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Supersonic flow imaging via nanoparticles
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.
Epi-two-dimensional flow and generalized enstrophy
Yoshida, Zensho
2016-01-01
The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\
Flow of foams in two-dimensional disordered porous media
Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team
2015-11-01
Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.
ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW
Energy Technology Data Exchange (ETDEWEB)
Blondin, John M., E-mail: John_Blondin@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)
2013-04-20
We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.
On the use of wall functions as boundary conditions for two-dimensional separated compressible flows
Viegas, J. R.; Rubesin, M. W.; Horstman, C. C.
1985-01-01
A new and improved wall function method for compressible turbulent flows has been developed and tested. This method is applicable to attached and separated flows, to both high- and low-Reynolds number flows, and to flows with adiabatic and nonadiabatic surfaces. This wall function method has been applied to the Launder-Spalding k-epsilon two-equation model of turbulence. The tests consist of comparisons of calculated and experimental results for: (1) an axisymmetrical transonic shock-wave/boundary-wave interaction flow at low Reynolds number in an adiabatic tube, (2) an axisymmetrical high-Reynolds number transonic flow over a nonadiabatic bump, and (3) a two-dimensional supersonic high-Reynolds number flow on a nonadiabatic deflected flap. Each of these experiments had significant regions of flow separation. The calculations are performed with an implicit algorithm that solves the Reynolds-averaged Navier-Stokes equations. It is shown that the results obtained agree very well with the data for the complex compressible flows tested.
Supersonic Plasma Flow Control Experiments
2005-12-01
to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing
Thin films flowing down inverted substrates: two dimensional flow
Lin, Te-sheng
2009-01-01
We consider free surface instabilities of films flowing on inverted substrates within the framework of lubrication approximation. We allow for the presence of fronts and related contact lines, and explore the role which they play in instability development. It is found that a contact line, modeled by a commonly used precursor film model, leads to free surface instabilities of convective type without any additional natural or excited perturbations. A single parameter D=(3Ca)^{1/3}cot\\alpha, where Ca is the capillary number and \\alpha is the inclination angle, is identified as a governing parameter in the problem. This parameter may be interpreted to reflect the combined effect of inclination angle, film thickness, Reynolds number and the fluid flux. Variation of D leads to change of the wave-like properties of the instabilities, allowing to observe traveling wave behavior, mixed waves, and the waves resembling solitary ones.
Numerical simulation of supersonic gap flow.
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Numerical simulation of supersonic gap flow.
Directory of Open Access Journals (Sweden)
Xu Jing
Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Institute of Scientific and Technical Information of China (English)
Toufik Zebbiche; ZineEddine Youbi
2007-01-01
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.
Supersonic flow past a flat lattice of cylindrical rods
Guvernyuk, S. V.; Maksimov, F. A.
2016-06-01
Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air
Institute of Scientific and Technical Information of China (English)
Toufik Zebbiche; ZineEddine Youbi
2007-01-01
When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model.The application is for the air.
Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator
Directory of Open Access Journals (Sweden)
Silong Zhang
2014-02-01
Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.
The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models
Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.
2015-01-01
An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian flo
Flow Modelling for partially Cavitating Two-dimensional Hydrofoils
DEFF Research Database (Denmark)
Krishnaswamy, Paddy
2001-01-01
The present work addresses te computational analysis of partial sheet hydrofoil cavitation in two dimensions. Particular attention is given to the method of simulating the flow at the end of the cavity. A fixed-length partially cavitating panel method is used to predict the height of the re...... of the model and comparing the present calculations with numerical results. The flow around the partially cavitating hydrofoil with a re-entrant jet has also been treated with a viscous/inviscid interactive method. The viscous flow model is based on boundary layer theory applied on the compound foil......, consisting of the union of the cavity and the hydrofoil surface. The change in the flow direction in the cavity closure region is seen to have a slightly adverse effect on the viscous pressure distribution. Otherwise, it is seen that the viscous re-entrant jet solution compares favourably with experimental...
Two-Dimensional Turbulent Separated Flow. Volume 1
1985-06-01
of detached turbulent boundary layers, even when the sign of U is changed to account for mean backflows. Thus, earlier researchers, such as Kuhn and...Turbulent Shear Layer," Third Symposium on Turbulent Shear Flows, pp. 16.23-16.29. Hillier, R., Latour , M.E.M.P., and Cherry, N.J. (1983), "Unsteady...344. Kuhn , G.D. and Nielsen, J.N. (1971), "An Analytical Method for Calculating Turbulent Separated Flows Due to Adverse Pressure Gradients
Bubbly flows around a two-dimensional circular cylinder
Lee, Jubeom; Park, Hyungmin
2016-11-01
Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
Hagan, Jonathan
2013-01-01
The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.
Two-Dimensional Graphs Moving by Mean Curvature Flow
Institute of Scientific and Technical Information of China (English)
CHEN Jing Yi; LI Jia Yu; TIAN Gang
2002-01-01
A surface Σ is a graph in R4 if there is a unit constant 2-form ω on R4 such that initial surface, then the mean curvature flow has a global solution and the scaled surfaces converge to a self-similar solution. A surface ∑ is a graph in M1 × M2 where M1 and M2 are Riemann surfaces,surface with scalar curvature R, v0 ≥1/√2 on the initial surface, then the mean curvature flow has a global solution and it sub-converges to a minimal surface, if, in addition, R ≥ 0 it converges to a totally geodesic surface which is holomorphic.
Two dimensional RG flows and Yang-Mills instantons
Gava, Edi; Narain, K S
2010-01-01
We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group $G$. We turn on $G$ instanton gauge fields, with instanton number $N$, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric $AdS_3\\times S^3$ backgrounds with two different values of $AdS_3$ and $S^3$ radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and $G=SU(2)$, there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N=4 $(SU(2)\\ltimes \\mathbf{R}^3)^2$ three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in ty...
Efficient solution of two-dimensional steady separated flows
Napolitano, M.
This work is concerned with the numerical solution of 2D incompressible steady laminar separated flows at moderate-to-high values of Re. The vorticity-stream function Navier-Stokes equations, as well as approximate models based upon the boundary-layer theory, will be considered. The main objective of the paper is to present the development of an efficient approach for solving a class of problems usually referred to as high Re weakly separated flows. A description is given of a block-alternating-direction-implicit method, which applies the approximate factorization scheme of Beam and Warming to the vorticity-stream function equations, using the delta form of the deferred correction procedure of Khosla and Rubin to combine the stability of upwind schemes with the accuracy of central differences. The logical steps which led to the development of a more efficient incremental block-line Gauss-Seidel method and to a simple multigrid strategy particularly suited for this kind of numerical scheme are then outlined. Finally, benchmark-quality solutions for separated flows inside diffusers and channels with smooth as well as sudden expansions are presented.
Topology of streamlines and vorticity contours for two - dimensional flows
DEFF Research Database (Denmark)
Andersen, Morten
Considering a coordinate-free formulation of helical symmetry rather than more traditional definitions based on coordinates, we discuss basic properties of helical vector fields and compare results from the literature. For inviscid flow where a velocity field is generated by a sum of helical vortex...... generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Phys. Fluids 25, 1982) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Russ. J. Eng. Thermophys. 5, 1995) we obtain a closed-form approximation...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...
Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.
2005-10-01
The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.
Stability of a Two-Dimensional Poiseuille-Type Flow for a Viscoelastic Fluid
Endo, Masakazu; Giga, Yoshikazu; Götz, Dario; Liu, Chun
2017-03-01
A viscoelastic flow in a two-dimensional layer domain is considered. An L 2-stability of the Poiseuille-type flow is established provided that both Poiseuille flow and perturbation is sufficiently small. Our analysis is based on a stream function formulation introduced by Lin et al. (Commun Pure Appl Math 58(11):1437-1471, 2005).
Turbulent Shear Layers in Supersonic Flow
Smits, Alexander J
2006-01-01
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
DEFF Research Database (Denmark)
Ruban, V.P.; Senchenko, Sergey
2004-01-01
The evolution of piecewise constant distributions of a conserved quantity related to the frozen-in canonical vorticity in effectively two-dimensional incompressible ideal EMHD flows is analytically investigated by the Hamiltonian method. The study includes the case of axisymmetric flows with zero...
Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.
1983-07-01
A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.
Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach.
Harvey, Paul McA; Shellie, Robert A; Haddad, Paul R
2010-04-01
A dynamic flow model, which maps carrier gas pressures and carrier gas flow rates through the first dimension separation column, the modulator sample loop, and the second dimension separation column(s) in a pulsed-flow modulation comprehensive two-dimensional gas chromatography (PFM-GCxGC) system is described. The dynamic flow model assists design of a PFM-GCxGC modulator and leads to rapid determination of pneumatic conditions, timing parameters, and the dimensions of the separation columns and connecting tubing used to construct the PFM-GCxGC system. Three significant innovations are introduced in this manuscript, which were all uncovered by using the dynamic flow model. A symmetric flow path modulator improves baseline stability, appropriate selection of the flow restrictors in the first dimension column assembly provides a generally more stable and robust system, and these restrictors increase the modulation period flexibility of the PFM-GCxGC system. The flexibility of a PFM-GCxGC system resulting from these innovations is illustrated using the same modulation interface to analyze Special Antarctic Blend (SAB) diesel using 3 s and 9 s modulation periods.
Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory
Adamczyk, J. J.
1978-01-01
An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.
New insight into flow development and two dimensionality of turbulent channel flows
Vinuesa, Ricardo; Bartrons, Eduard; Chiu, Daniel; Dressler, Kristofer M.; Rüedi, J.-D.; Suzuki, Yasumasa; Nagib, Hassan M.
2014-06-01
The experimental conditions required for a turbulent channel flow to be considered fully developed and nominally two dimensional remain a challenging objective. In this study, we show that the flow obtained in a high-aspect-ratio channel facility cannot be reproduced by direct numerical simulations (DNSs) of spanwise-periodic channel flows; therefore, we reserve the term "channel" for spanwise-periodic DNSs and denote the experimental flow by the term "duct." Oil film interferometry (OFI) and static pressure measurements were carried out over the range in an adjustable-geometry duct flow facility. Three-dimensional effects were studied by considering different aspect ratio (AR) configurations and also by fixing the AR and modifying the hydraulic diameter of the section. The conditions at the centerplane of the duct were characterized through the local skin friction from the OFI and the centerline velocity at four different streamwise locations and through the wall shear based on the streamwise global pressure gradient. The skin friction obtained from pressure gradient overestimated the local shear measurements obtained from the OFI and did not reproduce the same AR dependence observed with OFI. Differences between the local and global techniques were also reflected in the flow development. For the range of Reynolds numbers tested, the development length of high-aspect-ratio ducts scales with the duct full-height and is around , much larger than the values of around 100-150 H previously reported in the literature.
Interaction of two-dimensional turbulence with a sheared channel flow: a numerical study
Kamp, Leon; Marques Rosas Fernandes, Vitor; van Heijst, Gertjan; Clercx, Herman
2015-11-01
Interaction of large-scale flows with turbulence is of fundamental and widespread importance in geophysical fluid dynamics and also, more recently for the dynamics of fusion plasma. More specifically the interplay between two-dimensional turbulence and so-called zonal flows has gained considerable interest because of its relevance for transport and associated barriers. We present numerical results on the interaction of driven two-dimensional turbulence with typical sheared channel flows (Couette and Poiseuille). It turns out that a linear shear rate that is being sustained by moving channel walls (Couette flow) is far more effective in suppressing turbulence and associated transport than a Poiseuille flow. We explore the mechanisms behind this in relation to the width of the channel and the strength of the shear of the background flow. Also the prominent role played by the no-slip boundaries and the Reynolds stress is discussed.
On the existence of two-dimensional nonlinear steady states in plane Couette flow
Rincon, Francois
2007-01-01
The problem of two-dimensional steady nonlinear dynamics in plane Couette flow is revisited using homotopy from either plane Poiseuille flow or from plane Couette flow perturbed by a small symmetry-preserving identity operator. Our results show that it is not possible to obtain the nonlinear plane Couette flow solutions reported by Cherhabili and Ehrenstein [Eur. J. Mech. B/Fluids, 14, 667 (1995)] using their Poiseuille-Couette homotopy. We also demonstrate that the steady solutions obtained by Mehta and Healey [Phys. Fluids, 17, 4108 (2005)] for small symmetry-preserving perturbations are influenced by an artefact of the modified system of equations used in their paper. However, using a modified version of their model does not help to find plane Couette flow solution in the limit of vanishing symmetry-preserving perturbations either. The issue of the existence of two-dimensional nonlinear steady states in plane Couette flow remains unsettled.
Two-dimensional cellular automaton model of traffic flow with open boundaries
Tadaki, S I
1996-01-01
A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1999-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...
DEFF Research Database (Denmark)
Brøns, Morten; Hartnack, Johan Nicolai
1998-01-01
Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The dynamic effects in measurements of unsteady flow when using a probe with quasi-steady calibration curves has been investigated in this paper by numerical simulation of the compressible flow around a fixed two-dimensional 3-hole probe. The unsteady velocity and pressure distributions, as well as the hole-pressures, are calculated for high frequency flow variations. The measurement errors caused by the dynamic effects indicate that considerable measurement errors may occur for high frequency flow fluctuation, e.g., 2000Hz, especially, when the flow around the probe head approaches separation. This work shows how numerical simulation can be used to investigate and correct for the dynamic effects.
On the origins of vortex shedding in two-dimensional incompressible flows
Boghosian, M. E.; Cassel, K. W.
2016-12-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.
Coexistence of two dissipative mechanisms in two-dimensional turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Yen, Romain Nguyen van [FB Mathematik und Informatik, Freie Universitaet, Berlin (Germany); Farge, Marie [LMD-CNRS-IPSL, ENS Paris (France); Schneider, Kai, E-mail: rnguyen@zedat.fu-berlin.de [M2P2-CNRS, Universite d' Aix-Marseille (France)
2011-12-22
Two distinct dissipative mechanisms occurring in two-dimensional fully developed turbulent flows in the limit of vanishing viscosity have been highlighted by means of direct numerical simulation. First, molecular energy dissipation is triggered by the production of localized vortices at the walls. Second, instabilities intrinsic to the flow itself generate a noisy component which can be quantified by wavelet analysis. The possibilities of competition and coexistence of the two mechanisms are discussed.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Changyuan Zhai; Chunjiang Zhao; Xiu Wang; Ning Wang; Wei Zou; Wei Li
2015-01-01
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultras...
Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow.
Zhao, Yurong; Tao, Jianjun; Zikanov, Oleg
2014-03-01
Transition from a Taylor-Couette turbulent flow to a completely two-dimensional axisymmetric turbulent state is realized numerically by increasing gradually the strength of the azimuthal magnetic field produced by electric current flowing through the axial rod. With the increase of the Hartmann number, the Taylor-vortex-like structures shrink, move closer to the inner cylinder, and turn into unsteady but perfect tori at sufficiently high Hartmann numbers.
TWO-DIMENSIONAL PLANE WATER FLOW AND WATER QUALITY DISTRIBUTION IN BOSTEN LAKE
Institute of Scientific and Technical Information of China (English)
Feng Min-quan; Zhou Xiao-de; Zheng Bang-min; Min Tao; Zhao Ke-yu
2003-01-01
The two-dimensional plane water flow and water quality was developed by using the techniques of coordinate transformation, alternating directions, staggered grid, linear recurrence, and implicit scheme in the study of large water body in lakes. The model was proved to be suitable for treating the irregular boundary and predicting quickly water flow and water quality. The application of the model to the Bosten Lake in Xinjiang Uygur Autonomous Region of China shows that it is reasonable and practicable.
Double-Humped Transverse Density Profile in Two-Dimensional Chute Flow with Rough Sidewalls
Institute of Scientific and Technical Information of China (English)
HU Guo-Qi; ZHANG Xun-Sheng; BAO De-Song; TANG Xiao-Wei
2006-01-01
@@ We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has been found, which appears and moves as travelling wave and is the same as the phenomena in the recent experiments [Acta Phys. Sin. 53 (2004) 3389 (in Chinese)].
Modeling two-dimensional water flow and bromide transport in a heterogeneous lignitic mine soil
Energy Technology Data Exchange (ETDEWEB)
Buczko, U.; Gerke, H.H. [Brandenburg University of Technology, Cottbus (Germany)
2006-02-15
Water and solute fluxes in lignitic mine soils and in many other soils are often highly heterogeneous. Here, heterogeneity reflects dumping-induced inclined structures and embedded heterogeneous distributions of sediment mixtures and of lignitic fragments. Such two-scale heterogeneity effects may be analyzed through the application of two-dimensional models for calculating water and solute fluxes. The objective of this study was to gain more insight to what extent spatial heterogeneity of soil hydraulic parameters contributes to preferential flow at a lignitic mine soil. The simulations pertained to the 'Barenbrucker Hohe' site in Germany where previously water fluxes and applied tracers had been monitored with a cell lysimeter, and from where a soil block had been excavated for detailed two-dimensional characterization of the hydraulic parameters using pedotransfer functions. Based on those previous studies, scenarios with different distributions of hydraulic parameters were simulated. The results show that spatial variability of hydraulic parameters alone can hardly explain the observed flow patterns. The observed preferential flow at the site was probably caused by additional factors such as hydrophobicity, the presence of root channels, anisotropy in the hydraulic conductivity, and heterogeneous root distributions. To study the relative importance of these other factors by applying two-dimensional flow models to such sites, the experimental database must be improved. Single-continuum model approaches may be insufficient for such sites.
Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian
2016-10-01
Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.
Characterizing Mixing in a Quasi-Two-Dimensional Flow using Persistent Homology
Tithof, Jeffrey; Kelley, Douglas
2016-11-01
Fluid mixing is a tremendously important phenomenon present in numerous physical systems, both natural and human-made. Describing, understanding, and predicting the mixing behavior of fluid flows poses an immense challenge. In this work, we explore the utility of topological data analysis in quantifying fluid mixing. We analyze Eulerian and Lagrangian quantities obtained from a quasi-two-dimensional flow realized by driving a thin layer of fluid with electromagnetic forces. Our analysis employs persistent homology, which offers a unique framework for quantifying topological features associated with connectivity in the fluid flow. Preliminary results suggest that this topological approach offers new physical insight, complementing existing methods for quantifying fluid mixing.
EXPERIMENTAL INVESTIGATION ON TWO-DIMENSIONAL UNSTEADY COLD FLOW IN MPC EXHAUST MANIFOLD
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The gas flow in exhaust manifolds has much effect on scavenge, pumping loss and exhaust energy utilization of turbocharged diesel engines. This paper presented experimental investigation on two-dimensional unsteady flow in MPC(modular pulse converter) exhaust manifold model. The pressure and velocity distributions in six sections of the manifold model were measured when the diesel engine was motored. The probe with slitted sleeve was used to determine flow direction. The experimental results show that velocity distributions vary with place and time; the pressure traces at different points of the same section are not different obviously.
Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body
Chen, Chao; Du, Lili; Xie, Chunjing; Xin, Zhouping
2016-08-01
The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value {ρ_cr} such that if the incoming density in the upstream is larger than {ρ_cr}, then there exists a subsonic flow past a wall. Furthermore, {ρ_cr} is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than {ρ_cr}. The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.
Yatou, Hiroki
2010-01-01
We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, th...
Group classification of steady two-dimensional boundary-layer stagnation-point flow equations
Nadjafikhah, Mehdi; Hejazi, Seyed Reza
2010-01-01
Lie symmetry group method is applied to study the boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium equation. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra symmetries is determined.
Analytical Studies of Two-Dimensional Channel Turbulent Flow Subjected to Coriolis Force
鬼頭, 修己; 中林, 功一; キトウ, オサミ; Kito, Osami
1992-01-01
Coriolis effects on fully developed turbulent flow in a two-dimensional channel rotating about an axis perpendicular to its axis are considered. The Coriolis force has stabilizing/destabilizing effects on turbulence, and the mean velocity distribution changes accordingly. Experimental and numerical studies on the velocity characteristics have already been conducted by other researchers for various conditions. However, we cannot assemble the overall picture of the Coriolis effect on the veloci...
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, I. V.
2017-03-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.
Determination of two-dimensional magnetostatic equilibria and analogous Euler flows
Linardatos, D.
1993-01-01
A modified computational procedure with an improved time-stepping algorithm for two-dimensional magnetic relaxation is developed. The procedure is used to determine a family of flows in a closed (square) domain with a single elliptic stagnation point. In addition, the problem of saddle point collapse is investigated, and the tendency to form discontinuities is confirmed in the manner described by Bajer (1989).
Directory of Open Access Journals (Sweden)
Taha Aziz
2013-01-01
Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.
Energy Technology Data Exchange (ETDEWEB)
Takamori, S.; Sakaguchi, H. [National Aerospace Laboratory, Tokyo (Japan)
1991-12-01
A two-dimensional cascade experiment requires air to be sucked to prevent air flow separation at the cascades. This paper describes a straigth-tube type air ejector (subsonic) fabricated for use as an air sucking low-pressure source in a supersonic cascade tunnel. Investigations were made on effects of the ratio of nozzle area to mixing tube throat area, AR, and the total primary folw pressure ratio, P{sub 01} /P{sub A}, on the relationship between the secondary folw rate, w{sub 2}, and the secondary (suction) side pressure ratio,P{sub 02} /p{sub A}. As a result, a relationship (secondary side folw rate characterisic) was obtained of the W{sub 2} using the AR as an index and the P{sub 01} /P{sub A} as a parameter with the P{sub 2} /P{sub A}. Influences from the AR and the P{sub 01} /P{sub A} were also identified. Discussions were also given on the air sucking conditions during transonic and supersonic cascade experiment for representative cascade shapes and conditions (stagger angles, pitch chord rations, flow-in Mach numbers), as well as the secondary side flow rate characteristics of this ejector. A conclusion was drawn that this ejector can be used in experiment with a Mach number of less than 1.2. 3 refs., 11 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Takamori, S.; Sakaguchi, H. (National Aerospace Laboratory, Tokyo (Japan))
1991-12-01
A two-dimensional cascade experiment requires air to be sucked to prevent air flow separation at the cascades. This paper describes a straigth-tube type air ejector (subsonic) fabricated for use as an air sucking low-pressure source in a supersonic cascade tunnel. Investigations were made on effects of the ratio of nozzle area to mixing tube throat area, AR, and the total primary folw pressure ratio, P{sub 01} /P{sub A}, on the relationship between the secondary folw rate, w{sub 2}, and the secondary (suction) side pressure ratio,P{sub 02} /p{sub A}. As a result, a relationship (secondary side folw rate characterisic) was obtained of the W{sub 2} using the AR as an index and the P{sub 01} /P{sub A} as a parameter with the P{sub 2} /P{sub A}. Influences from the AR and the P{sub 01} /P{sub A} were also identified. Discussions were also given on the air sucking conditions during transonic and supersonic cascade experiment for representative cascade shapes and conditions (stagger angles, pitch chord rations, flow-in Mach numbers), as well as the secondary side flow rate characteristics of this ejector. A conclusion was drawn that this ejector can be used in experiment with a Mach number of less than 1.2. 3 refs., 11 figs., 2 tabs.
Flow Rate in the Discharge of a Two-dimensional Silo
Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.
2009-06-01
We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.
Two-dimensional surface river flow patterns measured with paired RiverSondes
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.
2008-01-01
Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.
Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent
2016-10-01
Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.
Seshasayanan, Kannabiran; Alexakis, Alexandros
2016-01-01
We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.
Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation
Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.
2012-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same
Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow
Jensen, K E; Okkels, F
2015-01-01
We have implemented the log-conformation method for two-dimensional viscoelastic flow in COMSOL, a commercial high-level finite element package. The code is verified for an Oldroyd-B fluid flowing past a confined cylinder. We are also able to describe the well-known bistability of the viscoelastic flow in a cross-slot geometry for a FENE-CR fluid, and we describe the changes required for performing simulations with the Phan-Thien-Tanner (PTT), Giesekus and FENE-P models. Finally, we calculate the flow of a FENE-CR fluid in a geometry with three in- and outlets. The implementation is included in the supplementary material, and we hope that it can inspire new as well as experienced researchers in the field of differential constitutive equations for viscoelastic flow.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-11-01
Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.
Energy Technology Data Exchange (ETDEWEB)
Goldberg, L.F. [Univ. of Minnesota, Minneapolis, MN (United States)
1990-08-01
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.
Water-channel study of flow and turbulence past a two-dimensional array of obstacles
Di Bernardino, Annalisa; Leuzzi, Giovanni; Querzoli, Giorgio
2016-01-01
A neutral boundary layer was generated in the laboratory to analyze the mean velocity field and the turbulence field within and above an array of two-dimensional obstacles simulating an urban canopy. Different geometrical configurations were considered in order to investigate the main characteristics of the flow as a function of the aspect ratio (AR) of the canopy. To this end, a summary of the two-dimensional fields of the fundamental turbulence parameters is given for AR ranging from 1 to 2. The results show that the flow field depends strongly on AR only within the canyon, while the outer flow seems to be less sensitive to this parameter. This is not true for the vertical momentum flux, which is one of the parameters most affected by AR, both within and outside the canyon. The experiments also indicate that, when (i.e. the skimming flow regime), the roughness sub-layer extends up to a height equal to 1.25 times the height of the obstacles (H), surmounted by an inertial sub-layer that extends up to 2.7 H. I...
Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows
Energy Technology Data Exchange (ETDEWEB)
Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering
1995-06-01
The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Particle Streak Velocimetry of Supersonic Nozzle Flows
Willits, J. D.; Pourpoint, T. L.
2016-01-01
A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.
Wake structure and thrust generation of a flapping foil in two-dimensional flow
DEFF Research Database (Denmark)
Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis
2017-01-01
We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare...... measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency...
Two-dimensional motion of unstable steps induced by flow in solution
Sato, Masahide
2011-01-01
By carrying out Monte Carlo simulation, we study step instabilities during crystal growth from solution. In previous studies [M. Sato. J. Phys. Soc. Jpn. 79 (2010) 064606; M. Sato, J. Cryst. Growth 318 (2011) 5; M. Sato. J. Phys. Soc. Jpn. 80 (2011) 024604], we used a one-dimensional model, so that we were unable to study another type of instability, step wandering. In this research, we use a two-dimensional model to study both step wandering and step bunching. When the flow of solutes is in ...
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, Igor
2016-01-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time what contradicts to the statements present in literature. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. These tensors demonstrate highly intermittent statistics of the field fluctuations both in space and time.
Two-dimensional numerical simulation of flow around three-stranded rope
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
Chemically reacting supersonic flow calculation using an assumed PDF model
Farshchi, M.
1990-01-01
This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.
The direct enstrophy cascade of two-dimensional soap film flows
Rivera, Mike; Ecke, Robert
2013-01-01
We investigate the direct enstrophy cascade of two-dimensional decaying turbulence in a flowing soap film channel. We use a coarse-graining approach that allows us to resolve the nonlinear dynamics and scale-coupling simultaneously in scale and in space. From our data, we calculate the transfer of enstrophy across scale $\\ell$ at every point $\\bx$ in the flow domain. We verify an exact relation due to Eyink (1995) between traditional 3rd-order structure function and the enstrophy flux obtained by coarse-graining. We also present experimental evidence that enstrophy cascades to smaller (larger) scales with a 60% (40%) probability, in support of theoretical predictions by Merilees & Warn (1975). Using an Eulerian coherent structure identification technique, we then determine the effect of flow topology on the enstrophy cascade. A key finding is that "centers" are inefficient at transferring enstrophy between scales, in contrast to "saddle" regions which transfer enstrophy to small scales with high efficienc...
Venaille, Antoine
2010-01-01
Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the r...
Gas-kinetic numerical schemes for one- and two-dimensional inner flows
Institute of Scientific and Technical Information of China (English)
Zhi-hui LI; Lin BI; Zhi-gong TANG
2009-01-01
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.
A characteristic mapping method for two-dimensional incompressible Euler flows
Yadav, Badal; Mercier, Olivier; Nave, Jean-Christophe; Schneider, Kai
2016-11-01
We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical scheme that has exponential resolution in linear time. The computational efficiency and the high precision of the method are illustrated for a vortex merger and a four mode flow. Comparisons with a Cauchy-Lagrangian method are also presented. KS thankfully acknowledges financial support from the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA).
Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls
Directory of Open Access Journals (Sweden)
Mohamed Gad-el-Hak
2010-03-01
Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Energy Technology Data Exchange (ETDEWEB)
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
A two-dimensional CA model for traffic flow with car origin and destination
In-nami, Junji; Toyoki, Hiroyasu
2007-05-01
Dynamic phase transitions in a two-dimensional traffic flow model defined on a decorated square-lattice are studied numerically. The square-lattice point and the decorated site denote intersections and roads, respectively. In the present model, a car has a finite deterministic path between the origin and the destination, which is assigned to the car from the beginning. In this new model, we found a new phase between the free-flow phase and the frozen-jam phase that is absent from previous models. The new model is characterized by the persistence of a macroscopic cluster. Furthermore, the behavior in this macroscopic cluster phase is classified into three regions characterized by the shape of the cluster. The boundary of the three regions is phenomenologically estimated. When the trip length is short and the car density is high, both ends of the belt-like cluster connect to each other through the periodic boundary with some probability. This type of cluster is classified topologically as a string on a two-dimensional torus.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
The flow of an aqueous foam through a two-dimensional porous medium
Dollet, B.; Jones, S. A.; Géraud, B.; Meheust, Y.; Cox, S. J.; Cantat, I.
2013-12-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soils: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that applications might benefit of. In particular, viscous dissipation arises mostly from the contact zones between the soap films and the walls, which results in peculiar friction laws allowing the foam to invade narrow pores more efficiently than Newtonian fluids would. We investigate the flow of a two-dimensional foam in three geometrical configurations. The flow velocity field and pressure field can both be reconstructed from the kinematics of the foam bubbles. We first consider a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow behavior is highly dependent on the foam structure within the narrowest of the two channels [1]; consequently, the flux ratio between the two channels exhibits a non-monotonic dependence on the ratio of their widths. We then consider two parallel channels that are respectively convergent and divergent. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels; these deformations strongly impact the foam/wall friction, and consequently the flux distribution between the two channels, causing flow irreversibility. We quantitatively predict the flux ratio as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam. We then study how film-wall friction, capillary pressures and bubble deformation impact the flow of a foam in a two-dimensional porous medium consisting of randomly
Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W
2014-04-01
We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.
Yatou, Hiroki
2010-01-01
We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, the elastic effect becomes suddenly comparable and the first transition sets in. Through the transition, a separation vortex disappears and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; The viscous drag significantly drops and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic eff...
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo.
Janda, A; Harich, R; Zuriguel, I; Maza, D; Cixous, P; Garcimartín, A
2009-03-01
We present experimental results obtained with a two-dimensional silo discharging under gravity through an orifice at the flat bottom. High-speed measurements provide enough time resolution to detect every single bead that goes out and this allows the measurement of the flow rate in short-time windows. Two different regimes are clearly distinguished: one for large orifices, which can be described by Gaussian fluctuations, and another for small orifices, in which extreme events appear. The frontier between those two regimes coincides with the outlet size below which jamming events are frequent. Moreover, it is shown that the power spectrum of the flow-rate oscillations is not dominated by any particular frequency.
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Energy Technology Data Exchange (ETDEWEB)
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Chan, B. C.
1986-05-01
A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.
Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain
Energy Technology Data Exchange (ETDEWEB)
Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P
2005-08-11
The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.
A minimum action method for small random perturbations of two-dimensional parallel shear flows
Wan, Xiaoliang
2013-02-01
In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.
Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))
1990-10-01
In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.
Stationary flow conditions in pulsed supersonic beams.
Christen, Wolfgang
2013-10-21
We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.
Drag Force Anemometer Used in Supersonic Flow
Fralick, Gustave C.
1998-01-01
To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.
Enhanced Transport of Passive Tracers In A Time Periodic Two-dimensional Flow
Boffetta, G.; Cencini, M.; Espa, S.; Musacchio, S.
, investigating systems in which the second condition is violated is much more inter- esting. With this purpose, some experiments have shown how superdiffusion arises in a two-dimensional quasi-geostrophic (planetary-type) flow, where particles can jump for very long time in the same direction performing a Levy flight (Castiglione et al., 2001 ). Moreover, two recent papers (Vulpiani, 1998; Solomon, 2001) show how, also in very simple two-dimensional, time and space periodic cellular flows,anomalous diffusive behaviours can appear. In this paper we present an experimental study of transport in an electromagnetically forced time periodic two-dimensional flow. The flow is generated by applying an electromagnetic forcing on a thin layer of an elec- trolyte solution and reveals in a square grid of alternating vortices. Time dependence can be easily obtained by changing the time dependence of the electric fields. In par- ticular, considering certain values of the imposed oscillation frequencies, particles can display very long jump. Particle Tracking Velocimetry (PTV) is used to measure the flow field. This technique is the most suitable for studying dispersion phenomena in a Lagrangian framework allowing the direct evaluation of particle displacements and related quantities (Cenedese, Querzoli; 2000). Moreover, due to the characteristics of the analyzed flow and to the improvement of the tracking procedure, we have been able to track a great number of particles for time intervals greater than the charac- teristic time-scales of the flow. In order to characterize the time correlations we will evaluate the so-called jumps probabilities with memory which represent the probabil- ities to jump in a given direction conditioned to having experienced jumps in the same direction at previous times. Such statistics will revealed very useful and suitable for detecting the onset of the aforementioned correlations. 2
Riahi-Madvar, Hossien; Ayyoubzadeh, Seyed Ali; Namin, Masoud Montazeri; Seifi, Akram
2011-01-01
Flow in compound channels with overbank flows becomes more complex because of shear interactions between flows in main channel and flood plains, lateral momentum transfer and secondary flows. Compound channels have interesting applications in flood control, civil engineering and environmental management. Because it is difficult to obtain sufficiently accurate and comprehensive understandings of flow in natural compound rivers, the developed models of flow in overbank flows have many uncertain...
Supersonic Magnetic Flows in the Quiet Sun
Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A
2012-01-01
In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Directory of Open Access Journals (Sweden)
C. Wang
2008-02-01
Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Wang, C.; Li, S.; Esaki, T.
2008-02-01
This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor
Directory of Open Access Journals (Sweden)
Changyuan Zhai
2015-10-01
Full Text Available Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Two-dimensional automatic measurement for nozzle flow distribution using improved ultrasonic sensor.
Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei
2015-10-16
Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.
Suri, Balachandra; Tithof, Jeffrey; Pallantla, Ravi Kumar; Grigoriev, Roman; Schatz, Michael
2015-11-01
The dynamical systems approach to fluid turbulence relies on understanding the role of unstable, non-chaotic solutions - such as equilibria, traveling waves, and periodic orbits - of the Navier-Stokes equations. These solutions, called Exact Coherent Structures, exist in the same parameter regime as turbulence, but being unstable, are observed in experiments only as short transients. In this talk, we present experimental evidence for the existence and dynamical relevance of unstable equilibria in a weakly turbulent quasi-two-dimensional (Q2D) Kolmogorov flow. In the experiment, this Q2D flow is generated in an electromagnetically driven shallow layer of electrolyte. The numerical simulations, however, use a strictly 2D model which incorporates the effects of the finite thickness of the fluid layer in the experiment. During its evolution, there are instances when the dynamics of a weakly turbulent flow slow down, rather dramatically. Using experimental flow fields from such instances, and by means of a Newton-Solver, we numerically compute several unstable equilibria. Additionally, using numerical simulations, we show that the dynamics of a turbulent flow in the neighbourhood of an equilibrium are accurately described by the unstable manifold of the equilibrium. This work is supported in part by the National Science Foundation under grants CBET-0900018, and CMMI-1234436.
Coherent Structures in Turbulent Flow over Two-Dimensional River Dunes
Omidyeganeh, Mohammad
2011-01-01
We performed large-eddy simulations of the flow over a typical two-dimensional dune geometry at laboratory scale (the Reynolds number based on the average channel height and mean velocity is 18,900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The flow separates at the dune crest and reattaches downstream on the bed (at x=5.7h). A favorable pressure gradient accelerates the flow over the stoss-side (the upward-sloping region for x > 8h) and an unfavorable gradient for x < 8h decelerates the flow over the lee-side of the dune. Due to the separation of the flow, a shear layer is generated after the crest that expands in the wake region towards the next dune. The outer-layer turbulence structures are visualized through isosurfaces of pressure fluctuations colored by distance to the surface. Spanwise vortices are generated in the shear layer separating from the crest due to the Kelvin-Helmholtz instability. They are convected downstream and either interact with the wall or rise to the surfa...
Flow of a two-dimensional aqueous foam in two parallel channels
Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.
2012-04-01
Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Institute of Scientific and Technical Information of China (English)
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
Mininni, P D; Pouquet, A G
2004-01-01
We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...
Experimental Analysis of Two-Dimensional Pedestrian Flow in front of the Bottleneck
cek, Marek Buká\\v; Krbálek, Milan
2014-01-01
This contribution presents experimental study of two-dimensional pedestrian flow with the aim to capture the pedestrian behaviour within the cluster formed in front of the bottleneck. Two experiments of passing through a room with one entrance and one exit were arranged according to phase transition study in Ezaki et al. (2012), the inflow rate was regulated to obtain different walking modes. By means of automatic image processing, pedestrians' paths are extracted from camera records to get actual velocity and local density. Macroscopic information is extracted by means of virtual detector and leaving times of pedestrians. The pedestrian's behaviour is evaluated by means of density and velocity. Different approaches of measurement are compared using several fundamental diagrams. Two phases of crowd behaviour have been recognized and the phase transition was described.
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.
Alexakis, Alexandros
2011-11-01
The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.
Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System
Directory of Open Access Journals (Sweden)
Yidong Hou
2017-01-01
Full Text Available A pair of ultrahigh-frequency (UHF radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.
Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry
Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-01-01
We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...
Wake Effects on Drift in Two-Dimensional Inviscid Incompressible Flows
Melkoumian, Sergei
2014-01-01
This investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible and inviscid fluid. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the F\\"oppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the F\\"oppl vortex wake some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the F\\"oppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is s...
The onset of thermal instability of a two-dimensional hydromagnetic stagnation point flow
Energy Technology Data Exchange (ETDEWEB)
Amaouche, Mustapha; Bouda, Faical Nait [Laboratoire de physique theorique, Universite de Bejaia, Route de Targua Ouzemour Bejaia (Algeria); Sadat, Hamou [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)
2005-10-01
The aim of the present paper is to examine the effects of a constant magnetic field on the thermal instability of a two-dimensional stagnation point flow. First, it is shown that a basic flow, described by an exact solution of the full Navier-Stokes equations exists under some conditions relating the orientation of the magnetic field in the plane of motion to the obliqueness of free stream. The stability of the basic flow is then investigated in the usual fashion by making use of the normal mode decomposition. The resulting eigenvalue problem is solved numerically by means of a pseudo spectral collocation method based upon Laguerre's functions. The use of this procedure is warranted by the exponential damping of disturbances far from the boundary layer and the appropriate distribution of the roots of Laguerre's polynomials to treat boundary layer problems. It is found through the calculation of neutral stability curves that magnetic field acts to increase the stability of the basic flow. (author)
Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter
Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.
2009-04-01
Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.
Numerical simulation of two-dimensional fluid flow with strong shocks
Energy Technology Data Exchange (ETDEWEB)
Woodward, P.; Colella, P.
1984-04-01
Results of an extensive comparison of numerical methods for simulating hydrodynamics are presented and discussed. This study focuses on the simulation of fluid flows with strong shocks in two dimensions. By ''strong shocks,'' we here refer to shocks in which there is substantial entropy production. For the case of shocks in air, we therefore refer to Mach numbers of three and greater. For flows containing such strong shocks we find that a careful treatment of flow discontinuities is of greatest importance in obtaining accurate numerical results. Three aproaches to treating discontinuities in the flow are discussed-artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann's problem. The advantages and disadvantages of each approach are discussed and illustrated by computed results for three test problems. In this comparison we have focused our attention entirely upon the performance of schemes for differencing the hydrodynamic equations. We have regarded the nature of the grid upon which such differencing schemes are applied as an independent issue outside the scope of this work. Therefore we have restricted our study to the case of uniform, square computational zones in Cartesian coordinates. For simplicity we have further restricted our attention to two-dimensional difference schemes which are built out of symmetrized products of one-dimensional difference operators.
Dual-RiverSonde measurements of two-dimensional river flow patterns
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.
2008-01-01
Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.
The flow of a foam in a two-dimensional porous medium
Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves
2016-02-01
Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.
One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico
Howes, David A.; Abrahams, Athol D.; Pitman, E. Bruce
2006-03-01
Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs.Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order predictor-corrector finite-difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions.The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large-scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration.
二维超音速喷管型线设计仿真研究%Design and Numerical Simulation on the Two-Dimensional Supersonic Nozzle Profile
Institute of Scientific and Technical Information of China (English)
刘晓东; 高丽敏; 李永增
2014-01-01
采用计算软件FLUENT，对四种经典收缩段型线下的流场特性进行数值模拟，为选择超声速风洞收缩段的型线提供依据。基于特征线理论，利用解析法完成超音速喷管膨胀段型线设计，通过分析总压恢复系数及均匀度等流场参数，确定型线膨胀角角度及喷管长度。结果表明，收缩段型线选用双三次曲线，膨胀角度3.5°的情况下，超音速喷管出口达到了设计要求马赫数，并获得了较好的气流品质。%In this paper, the research results about numerical simulation on the flow field of four classic convergent curves are gained by computational software FLUENT, which provides basis for selecting a kind of optimal curve to design the supersonic nozzle convergent profile. Based on the theory of characteristics line, the curve of supersonic nozzle expansion is designed with analytical method. Finally, comparing total pressure recovery coefficient and uniformity of flow field parameters, the angle of expansion curve and nozzle length are confirmed. The results show that exit velocity of the supersonic nozzle achieves the design requirements for Mach number and uniformity when Bipartite Cubic is the method of the contraction profile and the angle of expansion profile is 3.5°.
Yatou, Hiroki
2010-09-01
We numerically find three types of steady solutions of viscoelastic flows and flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Weissenberg (Wi) and Reynolds (Re) numbers using a spectral element method. The solutions are called "convective," "transition," and "elastic" in ascending order of Wi. In the convective region in the Wi-Re parameter space, convective effect and pressure gradient balance on average. As Wi increases, elastic effect becomes comparable, and the first transition sets in. Through the transition, a separation vortex disappears, and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; the viscous drag significantly drops, and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic effect becomes greater than the convective effect, the second transition occurs but it is relatively moderate. The second transition seems to be governed by the so-called Weissenberg effect. These transitions are not sensitive to driving forces. By a scaling analysis, it is shown that the stress component is proportional to the Reynolds number on the boundary of the first transition in the Wi-Re space. This scaling coincides well with the numerical result.
Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models
Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle
2016-04-05
Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.
Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows
Institute of Scientific and Technical Information of China (English)
LUDong-qiang; AllenT.CHWANG
2004-01-01
The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.
Two-dimensional relativistic space charge limited current flow in the drift space
Energy Technology Data Exchange (ETDEWEB)
Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)
2014-04-15
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Gelfgat, Alexander Yu.
2016-08-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin-Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.
Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil
2016-01-01
A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.
Two dimensional heat transfer problem in flow boiling in a rectangular minichannel
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2015-01-01
Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Huang, Huaxiong; Takagi, Shu
2003-08-01
In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.
Three-dimensional supersonic flow around double compression ramp with finite span
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
Danila, Bogdan; Mocanu, Gabriela
2015-01-01
We investigate the transition to Self Organized Criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a Self Organized Critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one dimensional signatures in the magnetic two dimensional system, once the Self Organized Critical regime is established. The applications of the model for the study of Gamma Ray Bursts is briefly considered, and it is shown that some astrophysical paramet...
HO, Yat-Kiu; LIU, Chun-Ho
2015-04-01
The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to
1987-12-01
Systems Officer in the F-4 and Electronic Warfare Officer in the F- 4G , Wild Weasel with tours in Germany and tGeorge AFB, California. He attended Bible...Cape Canaveral, Florida. Permanent Address: 8400 Cascade Union Lake, Michigan 48085 98 UNCLASSIFIED SECURIT CLASSIFICATION OF THIS PAGE REPORT
The Second Las Cruces Trench Experiment: Experimental Results and Two-Dimensional Flow Predictions
Hills, R. G.; Wierenga, P. J.; Hudson, D. B.; Kirkland, M. R.
1991-10-01
As part of a comprehensive field study designed to provide data to test stochastic and deterministic models of water flow and contaminant transport in the vadose zone, several trench experiments were performed in the semiarid region of southern New Mexico. The first trench experiment is discussed by Wierenga et al. (this issue). During the second trench experiment, a 1.2 m wide by 12 m long area on the north side of and parallel to a 26.4 m long by 4.8 m wide by 6m deep trench was irrigated with water containing tracers using a carefully controlled drip irrigation system. The irrigated area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement, and with suction samplers to monitor solute transport. Water containing tritium and bromide was. applied during the first 11.5 days of the study. Thereafter, water was applied without tracers for an additional 64 days. Both water movement and tracer movement were monitored in the subsoil during infiltration and redistribution. The experimental results indicate that water and bromide moved fairly uniformly during infiltration and the bromide moved ahead of the tritium due to anion exclusion during redistribution. Comparisons between measurements and predictions made with a two-dimensional model show qualitative agreement for two of the three water content measurement planes. Model predictions of tritium and bromide transport were not as satisfactory. Measurements of both tritium and bromide show localized areas of high relative concentrations and a large downward motion of bromide relative to tritium during redistribution. While the simple deterministic model does show larger downward motions for bromide than for tritium during redistribution, it does not predict the high concentrations of solute observed during infiltration, nor can it predict the heterogeneous behavior observed for tritium during infiltration and for bromide during redistribution.
Bouncing, rolling, energy flows, and cluster formation in a two-dimensional vibrated granular gas
Pérez-Ángel, Gabriel; Nahmad-Molinari, Yuri
2011-10-01
We study the formation of crystalline clusters for a two-dimensional (2D) sinusoidally vibrated granular gas, with maximum vertical acceleration smaller than gravity, using fully 3D simulations. It is found that this phenomenon arises from the spontaneous segregation of the granulate into two dynamical modes: one of grains that bounce in synchrony with the motion of the sustaining plate (“bouncers”) and another of grains that cease to bounce and simply rolls on the plate, without ever loosing contact with it (“rollers”). These two dynamical categories are quite robust with respect to perturbations. The populations for bouncers and rollers depend on the preparation of the granulate and can be made to take arbitrary values in all the range of accelerations where both dynamical modes are present. It is found that the dynamical mode with the largest population coalesces in clusters under the influence of the other mode, whose grains act as a higher pressure gas that compresses the clusters. In this way it is possible to produce clusters of rollers or clusters of bouncers. A gas made of grains from only one dynamical class shows only weak density fluctuations. When the occupation fractions for both modes are similar, one observes segregation and clusters of both types. The clustering of the gas is monitored using both the average coordination number and the local hexatic order parameter ψ6. Energy flows in the plane are monitored, and it is shown that roller-bouncer collisions increase horizontal kinetic energy, while all other types of collisions reduce this energy. We find that friction with the substrate is the main sink of horizontal energy for these granular gases.
Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.
Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter
2012-04-01
This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.
Energy Technology Data Exchange (ETDEWEB)
Costa-Cabral, M.C. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1999-07-01
Current Lagrangian models for simulating advective transport of trace species in a discretized two-dimensional flow field use simplified descriptions of tracer sources, receptors and flow paths. When 'forward trajectories' are used, a diffuse source spread over a two-dimensional grid cell is treated as a single point source located at the cell's center, and its flow is projected in the downflow direction by a line. When 'backward trajectories' are used, each cell is treated as a point receptor and flow is projected back in time in the upflow direction by a line. In both cases, two-dimensional sources or receptors are treated as zero dimensional, and two-dimensional flow tubes are replaced by one-dimensional lines. While these simplifications may be acceptable in some cases, they can generate large errors when the flow field contains regions of considerable divergence of flow directions, or when fine scales are used. A new algorithm is introduced, called TUBES, which provides an exact solution to advective transport in a discretized two-dimensional flow field. TUBES uses two-dimensional flow tubes whose width expands and contracts over directionally divergent and convergent regions of the flow field, respectively. TUBES has applications in a wide variety of the earth sciences, including atmospheric science, oceanography, and surface and groundwater hydrology. (orig.) [German] Gegenwaertige Lagrange-Modelle zur Simulation advektiver Transporte von Tracern in einem diskretisierten zweidimensionalen Stroemungsfeld verwenden vereinfachte Beschreibungen der Quellen, Rezeptoren und Transportwege. Bei der Verwendung vorwaerts gerichteter Trajektorien ('forward trajectories') werden diffusive Quellen, die ueber eine zweidimensionale Gitterzelle verteilt sind, als Punktquelle behandelt, und der Transport mit der Stroemung erfolgt entlang einer Linie. Bei der Verwendung rueckwaerts gerichteter Trajektorien ('backward trajectories
Olson, L. E.; Dvorak, F. A.
1976-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary-layer and potential-flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary-layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
Olson, L. E.; Dvorak, F. A.
1975-01-01
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.
NASA F-16XL supersonic laminar flow control program overview
Fischer, Michael C.
1992-01-01
The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.
Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces
Ho, Yat-Kiu; Liu, Chun-Ho
2013-04-01
Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results
Froessling, Nils
1958-01-01
The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.
水坝绕流的数值研究%Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Degani, D.
1983-01-01
A numerical study of the conjugated problem of a separated supersonic flow field and a conductive solid wall with an embedded heat source is presented. Implicit finite-difference schemes were used to solve the two-dimensional time-dependent compressible Navier-Stokes equations and the time-dependent heat-conduction equation for the solid in both general coordinate systems. A detailed comparison between the thin-layer and Navier-Stokes models was made for steady and unsteady supersonic flow and showed insignificant differences. Steady-state and transient cases were computed and the results show that a temperature pulse at the solid-fluid interface can be used to detect the flow direction near the wall in the vicinity of separation without significant distortion of the flow field.
Simulation of underexpanded supersonic jet flows with chemical reactions
Directory of Open Access Journals (Sweden)
Fu Debin
2014-06-01
Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
Simulation of underexpanded supersonic jet flows with chemical reactions
Institute of Scientific and Technical Information of China (English)
Fu Debin; Yu Yong; Niu Qinglin
2014-01-01
To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
Gallet, Basile
2015-01-01
We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-de...
Shi, Xiao-Qiu; Wu, Yi-Qi; Li, Hong; Zhong, Rui
2007-11-01
Two-dimensional cellular automaton model has been broadly researched for traffic flow, as it reveals the main characteristics of the traffic networks in cities. Based on the BML models, a first-order phase transition occurs between the low-density moving phase in which all cars move at maximal speed and the high-density jammed phase in which all cars are stopped. However, it is not a physical result of a realistic system. We propose a new traffic rule in a two-dimensional traffic flow model containing road sections, which reflects that a car cannot enter into a road crossing if the road section in front of the crossing is occupied by another car. The simulation results reveal a second-order phase transition that separates the free flow phase from the jammed phase. In this way the system will not be entirely jammed (“don’t block the box” as in New York City).
SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW
Directory of Open Access Journals (Sweden)
Tropina, A. A.
2013-06-01
Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.
A flamelet model for turbulent diffusion combustion in supersonic flow
Institute of Scientific and Technical Information of China (English)
LEE; ChunHian
2010-01-01
In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.
Adaptivity techniques for the computation of two-dimensional viscous flows using structured meshes
Szmelter, J.; Evans, A.; Weatherill, N. P.
In this paper three different adaptivity techniques have been investigated on the base of structured meshes. All the techniques indicate the significance of using adaptivity for improving computational results. In particular, the technique of combining point enrichment and node movement strategies offers the best compromise. Although, the work presented here used two-dimensional structured meshes, the techniques can be readily applied to hybrid and unstructured meshes. Also, preliminary three-dimensional numerical results have been already obtained by coauthors.
Institute of Scientific and Technical Information of China (English)
Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min
2006-01-01
Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
Mixed exhaust flow supersonic jet engine and method
Energy Technology Data Exchange (ETDEWEB)
Klees, G.W.
1993-06-08
A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.
A new Lagrangian method for three-dimensional steady supersonic flows
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows...
Itoh, Tsubasa; Miura, Hideyuki; Yoneda, Tsuyoshi
2016-09-01
In this paper, we consider the two-dimensional Euler flow under a simple symmetry condition, with hyperbolic structure in a unit square {D = {(x_1,x_2):0 < x_1+x_2 < √{2},0 < -x_1+x_2 < √{2}}}. It is shown that the Lipschitz estimate of the vorticity on the boundary is at most a single exponential growth near the stagnation point.
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
2015-01-01
A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...
Kuiper, Logan K
2016-01-01
An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.
Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils
Institute of Scientific and Technical Information of China (English)
Fahri Celik; Yasemin Arikan Ozden; Sakir Bal
2014-01-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils
Celik, Fahri; Ozden, Yasemin Arikan; Bal, Sakir
2014-09-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Experimental study of mixing enhancement using pylon in supersonic flow
Vishwakarma, Manmohan; Vaidyanathan, Aravind
2016-01-01
The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow
Directory of Open Access Journals (Sweden)
Sawan Shah
2015-01-01
Full Text Available A combined experimental and numerical investigation was conducted into impact of rigid wedges on water in two-dimensional fluid conditions. Drop test experiments were conducted involving symmetric rigid wedges of varying angle and mass impacted onto water. The kinematic behaviour of the wedge and water was characterised using high-speed video. Numerical models were analysed in LS-DYNA® that combined regions of Smoothed Particle Hydrodynamics particles and a Lagrangian element mesh. The analysis captured the majority of experimental results and trends, within the bounds of experimental variance. Further, the combined modelling technique presented a highly attractive combination of computational efficiency and accuracy, making it a suitable candidate for aircraft ditching investigations.
Meng, J. C. S.
1973-01-01
The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.
Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid
Machicoane, Nathanaël; Cortet, Pierre-Philippe
2016-01-01
We characterize the two-dimensionalization process in the turbulent flow produced by an impeller rotating at a rate $\\omega$ in a fluid rotating at a rate $\\Omega$ around the same axis for Rossby number $Ro=\\omega/\\Omega$ down to $10^{-2}$. The flow can be described as the superposition of a large-scale vertically invariant global rotation and small-scale shear layers detached from the impeller blades. As $Ro$ decreases, the large-scale flow is subjected to azimuthal modulations. In this regime, the shear layers can be described in terms of wakes of inertial waves traveling with the blades, originating from the velocity difference between the non-axisymmetric large-scale flow and the blade rotation. The wakes are well defined and stable at low Rossby number, but they become disordered at $Ro$ of order of 1. This experiment provides insight into the route towards pure two-dimensionalization induced by a background rotation for flows driven by a non-axisymmetric rotating forcing.
Mass flow and its pulsation measurements in supersonic wing wake
Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.
2016-10-01
The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.
Multi-scale coupling strategy for fully two-dimensional and depth-averaged models for granular flows
Pudasaini, Shiva P.; Domnik, Birte; Miller, Stephen A.
2013-04-01
We developed a full two-dimensional Coulomb-viscoplastic model and applied it for inclined channel flows of granular materials from initiation to their deposition. The model includes the basic features and observed phenomena in dense granular flows like the exhibition of a yield strength and a non-zero slip velocity. A pressure-dependent yield strength is proposed to account for the frictional nature of granular materials. The yield strength can be related to the internal friction angle of the material and plays an important role, for example, in deposition processes. The interaction of the flow with the solid boundary is modelled by a pressure and rate-dependent Coulomb-viscoplastic sliding law. We developed an innovative multi-scale strategy to couple the full two-dimensional, non depth-averaged model (N-DAM) with a one-dimensional, depth-averaged model (DAM). The coupled model reduces computational complexity dramatically by using DAM only in regions with smooth changes of flow variables. The numerics uses N-DAM in regions where depth-averaging becomes inaccurate, for instance, in the initiation and deposition regions, and (particularly) when the flow hits an obstacle or a defense structure. In these regions, momentum transfer must be, and is, considered in all directions. We observe very high coupling performance, and show that the numerical results deviate only slightly from results of the much more cumbersome full two-dimensional model. This shows that the coupled model, which retains all the basic physics of the flow, is an attractive alternative to an expensive, full two-dimensional simulations. We compare simulation results with different experimental data for shock waves appearing in rapid granular flows down inclined channels and impacting a wall. The model predicts the evolution of the strong shock wave and the impact force on a rigid wall for different inclination angles and sliding surfaces. It is demonstrated that the internal friction angle plays an
Dynamical separation of spherical bodies in supersonic flow
Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf
2012-01-01
An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...
Jamming of particles in a two-dimensional fluid-driven flow
Guariguata, Alfredo; Pascall, Masika A.; Gilmer, Matthew W.; Sum, Amadeu K.; Sloan, E. Dendy; Koh, Carolyn A.; Wu, David T.
2012-12-01
The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ˜3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good
Study of the flow characteristics of supersonic coaxial jets
Energy Technology Data Exchange (ETDEWEB)
Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)
2001-12-01
Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.
Flow and acoustic features of a supersonic tapered nozzle
Gutmark, E.; Bowman, H. L.; Schadow, K. C.
1992-05-01
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.
Experiments on supersonic turbulent flow development in a square duct
Gessner, F. B.; Ferguson, S. D.; Lo, C. H.
1986-01-01
The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.
Flow Control for Supersonic Inlet Applications
2014-06-10
1221-1233, May 2013 3. Loth, E., Titchener, N., Babinsky, H., Povinelli , L., “Canonical NSBLI Flows Relevant to External Compression Inlets”, AIAA J...Tennessee, Jan. 9-12, 2012 7. Loth, E.L., Titchener, N., Babinsky, H., Povinelli , L.A., “A Canonical Normal SBLI Flow Relevant to External
ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.
Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot
Denker, C; Tritschler, A; Yurchyshyn, V
2007-01-01
In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to a...
The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations
Kulikov, Yu M.; Son, E. E.
2016-11-01
The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2016-11-01
In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.
Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.
Tatom, J. W.; Cooper, M. A.; Hayden, T. K.
1972-01-01
Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.
Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi
2017-05-01
Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.
Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows
Directory of Open Access Journals (Sweden)
Kurz Rainer
2005-01-01
Full Text Available The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameters such as overall losses, exit angle, and Mach or Laval number. In compressible turbine flows, the influence of the inviscid flow field is of great importance. In this paper, an approach to take this influence into account when determining the behavior of the wake is presented. Correlations for basic characteristics of wakes in compressible flows are not readily available. Such correlations are necessary as input to unsteady flow and heat transfer calculation procedures for turbomachine blades. Based on available data on wake behavior in the compressible flow behind turbine blades, the correlations presented describe the wake behavior from the trailing edge to the confluence of the wakes of adjacent blades.
The effect of magnetic field on mean flow generation by rotating two-dimensional convection
Currie, Laura K
2016-01-01
Motivated by the significant interaction of convection, rotation and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilise a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organises them leading to stronger time-averaged flows. Further, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behaviour is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even ...
Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet
Directory of Open Access Journals (Sweden)
FEROZ AHMED SOOMRO
2016-10-01
Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.
Cross-flow blowing of a two-dimensional stationary arc.
Bose, T. K.
1971-01-01
It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.
Nonparallel stability of two-dimensional nonuniformly heated boundary-layer flows
Nayfeh, A. H.; El-Hady, N. M.
1979-01-01
An analysis is presented for the linear stability of water boundary-layer flows over nonuniformly flat plates. Included in the analysis are disturbances due to velocity, pressure, temperatures, density, and transport properties as well as variations of the liquid properties with temperature. The method of multiple scales is used to account for the nonparallelism of the mean flow. In contrast with previous analyses, the nonsimilarity of the mean flow is taken into account. No analysis agrees, even qualitatively, with the experimental data when similar profiles are used. However, both the parallel and nonparallel results qualitatively agree with the experimental results of Strazisar and Reshotko when nonsimilar profiles are used.
Numerical simulation of two-dimensional corner flows in a circulating water channel with guide vanes
Energy Technology Data Exchange (ETDEWEB)
Hung, Y.; Nishimoto, H.; Tamashima, M.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan); Wang, G.
1998-09-04
A Navier-Stokes procedure is developed based on the Finite Volume Method to simulate the 2-D comer flows in a CWC. The staggered grid is adopted and a new method is presented to coupling the velocities and the pressure when the grid lines change direction by 90deg. The turbulince is approximated using {kappa} - {epsilon} model and a transfinite algebraic method is used to generate the body fitted coordinates. After validation of the computer code, the corner flows in a CWC was calculated and the effect of guide vanes was investigated. For laminar flows, the guide vanes may restrain the separations on the inner side but not so effective on the outside; for turbulent flows, separations on the inner side disappeared even without guide vanes but still remained on the outside. By incorporating guide vanes, the separation can be effectively controlled. 6 refs., 13 figs.
A two-dimensional parabolic model for vertical annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br
2010-07-01
This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse
2014-10-01
High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.
Kiełbasa, Jan
2007-08-01
The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.
Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows
2005-01-01
The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameter...
Ensemble Distribution for Immiscible Two-Phase Flow in Two-Dimensional Networks
Savani, Isha; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex
2016-01-01
An ensemble distribution has been constructed to describe steady immiscible two-phase flow of two incompressible fluids in a network. The system is ergodic. The distribution relates the time that a bubble of the non-wetting fluid spends in a link to the local volume flow. The properties of the ensemble distribution are tested by two-phase flow simulations at the pore-scale for capillary numbers ranging from 0.1 to 0.001. It is shown that the distribution follows the postulated dependence on the local flow for Ca = 0.01 and 0.001. The distribution is used to compute the global flow performance of the network. In particular, we find the expression for the overall mobility of the system using the ensemble distribution. The entropy production at the scale of the network is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. The distribution can be used to obtain macroscopic variables from local network information, for a practical range of capillary...
An analytical theory of heated duct flows in supersonic combustors
Directory of Open Access Journals (Sweden)
Chenxi Wu
2014-01-01
Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.
Que, Ruiyi; Zhu, Rong
2013-12-31
This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
Directory of Open Access Journals (Sweden)
Ruiyi Que
2013-12-01
Full Text Available This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.
Flow Patterns and Thermal Drag in Supersonic Duct Flow with Heating
Institute of Scientific and Technical Information of China (English)
Zeng－YuanGuo; Zhi－HongLiu
1994-01-01
The supersonic duct flow with fixed back pressure to stagnation pressure ratio Pb/P0 under heating is investigated analytically.A “Flow Pattern Diagram” Which consists of six pattern zones is developed.By this diagram the actual flow state in supersonic duct flow system can be determined conveniently when Pb/Po and heating intensity are knows.It is impossible for flow with heavy heating to become supersonic,even though the pressure ratio is much smaller than the critical pressure ratio,Based on the analogy between viscous effect and heating effect a thermal drag factor has een defined.which can predict the flow property variation due to heating and the relaive importance of viscous effect and heating effect.
Moderately converging ion and electron flows in two-dimensional diodes
Cavenago, M.
2012-11-01
Flow of particles in diodes is solved selfconsistently assuming an approximated system of flow lines, that can be easily represented by an analytic transformation in a complex plane, with assumed uniformity in the third spatial direction. Beam current compression is tunable by an angle parameter α0; transformed coordinate lines are circular arcs, exactly matching to the curved cathode usually considered by rectilinear converging flows. The curvature of flow lines allows to partly balance the transverse effect of space charge. A self-contained discussion of the whole theory is reported, ranging from analytical solution for selfconsistent potential to electrode drawing to precise numerical simulation, which serves as a verification and as an illustration of typical electrode shapes. Motion and Poisson equation are written in a curved flow line system and their approximate consistency is shown to imply an ordinary differential equation for the beam edge potential. Transformations of this equation and their series solutions are given and discussed, showing that beam edge potential has a maximum, so supporting both diode (with α0 ≅ π/3) and triode design. Numerical simulations confirm the consistency of these solution. Geometrical details of diode design are discussed: the condition of a zero divergence beam, with the necessary anode lens effect included, is written and solved, as a function of beam compression; accurate relations for diode parameters and perveance are given. Weakly relativistic effects including self-magnetic field are finally discussed as a refinement.
Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.
2016-11-01
Here we report a surprising order in concentrated emulsion when flowing as a monolayer in a tapered microfluidic channel. The flow of droplets in micro-channels can be non-trivial, and may lead to unexpected phenomena such as long-period oscillations and chaos. Previously, there have been studies on concentrated emulsions in straight channels and channels with bends. The dynamics of how drops flow and rearrange in a tapered geometry has not yet been characterized. At sufficiently slow flow rates, the drops arrange into a hexagonal lattice. At a given x-position, the time-averaged droplet velocities are uniform. The instantaneous drop velocities, however, reveal a different, wave-like pattern. Within the rearrangement zone where the number of rows of drops decreases from N to N-1, there is always a drop moved faster than the others. Close examination reveals the anomalous velocity profile arises from a series of dislocations that are both spatial and temporal periodic. To our knowledge, such reproducible dislocation motion has not been reported before. Our results are useful in novel flow control and mixing strategies in droplet microfluidics as well as modeling crystal plasticity in low-dimensional nanomaterials.
CSIR Research Space (South Africa)
Naidoo, K
2011-06-01
Full Text Available et al. (1999) investigated the effect of continuous rapid wedge rotation on the point of transition with Euler CFD on moving meshes. In contrast to the work by Markelov et al. (1999), Khotyanovsky et al. (1999) considered larger move- ments... between the three-dimensional Euler CFD predictions of Ivanov et al. (2001) and their measurements from experiments with the finite aspect ratio wedge. This agreement established confidence in their two-dimensional Mach stem predictions with Euler CFD...
New families of flows between two-dimensional conformal field theories
Dorey, P; Tateo, R; Dorey, Patrick; Dunning, Clare; Tateo, Roberto
2000-01-01
We present evidence for the existence of infinitely-many new families of renormalisation group flows between the nonunitary minimal models of conformal field theory. These are associated with perturbations by the $\\phi_{21}$ and In all of the new flows, the finite-volume effective central charge is a non-monotonic function of the system size. The evolution of this effective central charge is studied by means of a nonlinear integral equation, a massless variant of an equation recently found to describe certain massive perturbations of these same models. We also observe that a similar non-monotonicity arises in the more familiar $\\phi_{13}$ perturbations, when the flows induced are between nonunitary minimal models.
Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows
Gallet, Basile
2015-01-01
We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body-force. This system admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations: the flow becomes 2D in the long-time limit. These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.
Two dimensional analytical solution for a partially vegetated compound channel flow
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong
2008-01-01
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
A Finite-Element Solution of the Navier-Stokes Equations for Two-Dimensional and Axis-Symmetric Flow
Directory of Open Access Journals (Sweden)
Sven Ø. Wille
1980-04-01
Full Text Available The finite element formulation of the Navier-Stokes equations is derived for two-dimensional and axis-symmetric flow. The simple triangular, T6, isoparametric element is used. The velocities are interpolated by quadratic polynomials and the pressure is interpolated by linear polynomials. The non-linear simultaneous equations are solved iteratively by the Newton-Raphson method and the element matrix is given in the Newton-Raphson form. The finite element domain is organized in substructures and an equation solver which works on each substructure is specially designed. This equation solver needs less storage in the computer and is faster than the traditional banded equation solver. To reduce the amount of input data an automatic mesh generator is designed. The input consists of the coordinates of eight points defining each substructure with the corresponding boundary conditions. In order to interpret the results they are plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines and the pressure inside a two-dimensional flow divider and an axis-symmetric expansion of a tube are shown for various Reynolds numbers.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.
Fundamental interactions of vortical structures with boundary layers in two-dimensional flows
DEFF Research Database (Denmark)
Coutsias, E.A.; Lynov, Jens-Peter
1991-01-01
in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...
Optical wavefront distortion due to supersonic flow fields
Institute of Scientific and Technical Information of China (English)
CHEN ZhiQiang; FU Song
2009-01-01
The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows for faster computations, and can be generalized for arbitrary curvilinear orthogonal coordinates. To illustrate the visualization method, examples of flow visualization in cylindrical and spherical coordinates, as well as post-processing of experimental 3D-PTV data are presented.
Rathbun, Wayne
2007-01-01
A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.
ANALYSIS OF WATER QUALITY IN SHALLOW LAKES WITH A TWO-DIMENSIONAL FLOW-SEDIMENT MODEL
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.
Unstable manifold computations for the two-dimensional plane Poiseuille flow
Energy Technology Data Exchange (ETDEWEB)
Casas, Pablo S. [Universidad Politecnica de Cataluna, Departamento de Matematica Aplicada I, Barcelona (Spain); Jorba, Angel [Universidad de Barcelona, Departamento de Matematica Aplicada y Analisis, Barcelona (Spain)
2004-11-01
We follow the unstable manifold of periodic and quasi-periodic solutions in time for the Poiseuille problem, using two formulations: holding a constant flux or mean pressure gradient. By means of a numerical integrator of the Navier-Stokes equations, we let the fluid evolve from an initially perturbed unstable solution until the fluid reaches an attracting state. Thus, we detect several connections among different configurations of the flow such as laminar, periodic, quasi-periodic with two or three basic frequencies, and more complex sets that we have not been able to classify. These connections make possible the location of new families of solutions, usually hard to find by means of numerical continuation of curves, and show the richness of the dynamics of the Poiseuille flow. (orig.)
Two-dimensional nonstationary flow of a conducting fluid, induced by a rotating magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kapusta, A.B.
1977-07-01
An examination is made of a full induction problem on the planar movement of a conducting fluid in a rotating magnetic field. The solution to this problem is sought by the method of degradation into Fourier series by harmonics of the rotating field. The initial system of partial differential equations is reduced to the system 2+1 of normal differential equations that bind the amplitudes of function harmonics and electrical vector potential. A solution to the problem for small anti ..omega.. was found with an accuracy up to the second approximation. The unsteadiness of flow was found to be manifested in a form of induced cross-sectional waves, traveling along the stream tubes of this flow at a speed that is equal to the phase velocity of the magnetic field. The appearance of wave effects is explained by considerations of symmetry. 5 references, 1 figure.
Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings
2016-09-02
becomes smaller relative to the random component of the error (indicated by the size of the confidence ellipse). This means that the modifications to...understanding the dynamics of these unsteady flows, and uses state-of-the-art techniques, both for measuring these phenomena in experiments (using an...art techniques, both for measuring these phenomena in experiments (using an unsteady wind tunnel at IIT), and for analyzing the data and developing
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case
Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun
2008-07-01
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.
Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S
2016-10-31
The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
2008-01-01
Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.
Statistical theory of reversals in two-dimensional confined turbulent flows
Shukla, Vishwanath; Brachet, Marc
2016-01-01
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined 2D Navier-Stokes flow with bottom friction and a spatially periodic forcing. In particular, the random reversals of the large scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation velocity that are described by the related microcanonical distribution which displays transitions from gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.
The orientation field of fibers advected by a two-dimensional chaotic flow
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg
2016-11-01
We examine the orientation of slender fibers advected by a 2D chaotic flow. The orientation field of these fibers show fascinating structures called scar lines, where they rotate by π over short distances. We use the standard map as a convenient model to represent a time-periodic 2D incompressible fluid flow. To understand the fiber orientation field, we consider the stretching field, given by the eigenvalues and eigenvectors of the Cauchy-Green strain tensors. The eigenvector field is strongly aligned with the fibers over almost the entire field, but develops topological singularities at certain points which do not exist in the advected fiber field. The singularities are points that have experienced zero stretching, and the number of such points increases rapidly with time. A key feature of both the fiber orientation and the eigenvector field are the scar lines. We show that certain scar lines form from fluid elements that are initially stretched in one direction and then stretched in an orthogonal direction to cancel the initial stretching. The scar lines that satisfy this condition contain the singularities of the eigenvector field. These scar lines highlight the major differences between the passive director field and the much more widely studied passive scalar field.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states
Naso, A; Dubrulle, B
2009-01-01
A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear $\\overline{\\omega}-\\psi$ relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determin...
Directory of Open Access Journals (Sweden)
Yuri V. Konovalov
2012-09-01
Full Text Available We present results of basal friction coefficient inversion. The inversion was performed by a 2D flow line model for one of the four fast flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago. The input data for the performance of both the forward and the inverse problems included synthetic aperture radar interferometry ice surface velocities, ice surface elevations and ice thicknesses obtained by airborne measurements (all were taken from Dowdeswell et al., 2002. Numerical experiments with: i different sea level shifts; and ii randomly perturbed friction coefficient have been carried out in the forward problem. The impact of sea level changes on vertical distribution of horizontal velocity and on shear stress distribution near the ice front has been investigated in experiments with different sea level shifts. The experiments with randomly perturbed friction coefficient have revealed that the modeled surface velocity is weakly sensitive to the perturbations and, therefore, the inverse problem should be considered ill posed. To mitigate ill posedness of the inverse problem, Tikhonov’s regularization was applied. The regularization parameter was determined from the relation of the discrepancy between observed and modeled velocities to the regularization parameter. The inversion was performed for both linear and non-linear sliding laws. The inverted spatial distributions of the basal friction coefficient are similar for both sliding laws. The similarity between these inverted distributions suggests that the changes in the friction coefficient are accompanied by appropriate water content variations at the glacier base.
Two-dimensional finite volume method for dam-break flow simulation
Institute of Scientific and Technical Information of China (English)
M.ALIPARAST
2009-01-01
A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).
Verjus, Romuald; Angilella, Jean-Régis
2016-05-01
Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity, and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements through the boundary of the cell. The critical particle Stokes number Stc below which aerosols also enter and exit the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing streamline of the recirculation cell. When the flow is unsteady and St>Stc , a regular motion takes place due to gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped permanently. In contrast, when the flow is unsteady and St
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
DIAMOND PORT JET INTERACTION WITH SUPERSONIC FLOW
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe.The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure,where the largest losses are incurred by the 90 degrees, circular injector.
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Flow Simulation of Supersonic Inlet with Bypass Annular Duct
Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.
2011-01-01
A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
Directory of Open Access Journals (Sweden)
Richard J. Simpson
2006-04-01
Full Text Available This review deals with the application of a new prefractionation tool, free-flow electrophoresis (FFE, for proteomic analysis of colorectal cancer (CRC. CRC is a leading cause of cancer death in the Western world. Early detection is the single most important factor influencing outcome of CRC patients. If identified while the disease is still localized, CRC is treatable. To improve outcomes for CRC patients there is a pressing need to identify biomarkers for early detection (diagnostic markers, prognosis (prognostic indicators, tumour responses (predictive markers and disease recurrence (monitoring markers. Despite recent advances in the use of genomic analysis for risk assessment, in the area of biomarker identification genomic methods alone have yet to produce reliable candidate markers for CRC. For this reason, attention is being directed towards proteomics as a complementary analytical tool for biomarker identification. Here we describe a proteomics separation tool, which uses a combination of continuous FFE, a liquid-based isoelectric focusing technique, in the first dimension, followed by rapid reversed-phase HPLC (1Ã¢Â€Â“6 min/analysis in the second dimension. We have optimized imaging software to present the FFE/RP-HPLC data in a virtual 2D gel-like format. The advantage of this liquid based fractionation system over traditional gel-based fractionation systems is the ability to fractionate large quantity protein samples. Unlike 2D gels, the method is applicable to both high-Mr proteins and small peptides, which are difficult to separate, and in the case of peptides, are not retained in standard 2D gels.
Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.
2003-05-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.
Allen, H Julian; Vincenti, Walter G
1944-01-01
Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.
Runyan, Harry L; Watkins, Charles E
1953-01-01
This report treats the effect of wind-tunnel walls on the oscillating two-dimensional air forces in a compressible medium. The walls are simulated by the usual method of placing images at appropriate distances above and below the wing. An important result shown is that, for certain conditions of wing frequency, tunnel height, and Mach number, the tunnel and wing may form a resonant system so that the forces on the wing are greatly changed from the condition of no tunnel walls. It is pointed out that similar conditions exist for three-dimensional flow in circular and rectangular tunnels and apparently, within certain Mach number ranges, in tunnels of nonuniform cross section or even in open tunnels or jets.
Directory of Open Access Journals (Sweden)
Wenqiang Zhao
2014-11-01
Full Text Available This work studies the long-time behavior of two-dimensional micropolar fluid flows perturbed by the generalized time derivative of the infinite dimensional Wiener processes. Based on the omega-limit compactness argument as well as some new estimates of solutions, it is proved that the generated random dynamical system admits an H^1-random attractor which is compact in H^1 space and attracts all tempered random subsets of L^2 space in H^1 topology. We also give a general abstract result which shows that the continuity condition and absorption of the associated random dynamical system in H^1 space is not necessary for the existence of random attractor in H^1 space.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Bohling, G.C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
Dorsch, Robert G.; Serafini, John S.; Fletcher, Edward A.; Pinkel, I. Irving
1959-01-01
Pressure distributions associated with stable combustion of aluminum borohydride in the airstream adjacent to the lower surface of a 13-inch chord, two-dimensional, blunt-base wing were determined experimentally. The measurements were made with the wing at 20 angle of attack in a 1- by 1-foot tunnel at Mach numbers of 2.47 and 2.96. Static-pressure increases along the lower surface and base caused by the combustion are presented along with the resultant lift increases. The lift-drag ratio of the wing was nearly doubled by the addition of heat. The experimental values of lift during heat addition agree with those predicted by analytical calculations.
Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows
Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay
2014-06-01
We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.
Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire
Smits, A. J.; Muck, K. C.
1983-01-01
The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.
Park, Kyu-Hwan; Son, Jang-Won; Park, Won-Jong; Lee, Sang-Hee; Kim, Ung; Park, Jong-Seon; Shin, Dong-Gu; Kim, Young-Jo; Choi, Jung-Hyun; Houle, Helene; Vannan, Mani A; Hong, Geu-Ru
2013-01-01
This article is the first clinical investigation of the quantitative left atrial (LA) vortex flow by two-dimensional (2-D) transesophageal contrast echocardiography (2-D-TECE) using vector particle image velocimetry (PIV). The aims of this study were to assess the feasibility of LA vortex flow analysis and to characterize and quantify the LA vortex flow in controls and in patients with atrial fibrillation (AF). Thirty-five controls and 30 patients with AF underwent transesophageal contrast echocardiography. The velocity vector was estimated by particle image velocimetry. The morphology and pulsatility of the LA vortex flow were compared between the control and AF groups. In all patients, quantitative LA vortex flow analysis was feasible. In the control group, multiple, pulsatile, compact and elliptical-shaped vortices were seen in the periphery of the LA. These vortices were persistently maintained and vectors were directed toward the atrioventricular inflow. In the AF group, a large, merged, lower pulsatile and round-shaped vortex was observed in the center of the LA. In comparisons of vortex parameters, the relative strength was significantly lower in the AF group (1.624 ± 0.501 vs. 2.105 ± 0.226, p < 0.001). It is feasible to characterize and quantify the LA vortex flow by transesophageal contrast echocardiography in patients with AF, which offers a new method to obtain additional information on LA hemodynamics. The approach has the potential for early detection of the LA dysfunction and in decisions regarding treatment strategy and guiding anticoagulation treatment in patients with AF.
Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H
2015-10-01
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Energy Technology Data Exchange (ETDEWEB)
Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)
2015-10-15
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.
1999-04-01
We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
P. Martini
2004-01-01
Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
Flight tests of a supersonic natural laminar flow airfoil
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2015-06-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.
Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization
Energy Technology Data Exchange (ETDEWEB)
Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)
2016-01-15
Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.
Turbulence characteristics in a supersonic cascade wake flow
Energy Technology Data Exchange (ETDEWEB)
Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))
1994-10-01
The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.
Unsteady transverse injection of kerosene into a supersonic flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.
Studies of the unsteady supersonic base flows around three afterbodies
Institute of Scientific and Technical Information of China (English)
Zhixiang Xiao; Song Fu
2009-01-01
Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow patterns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5 BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.
Li, Hua; Ma, Gang
2010-08-01
The long-term lateral migration of a two-dimensional elastic capsule in a microchannel is studied numerically in this paper. The numerical method combines a finite volume technique for solving the fluid problem with a front tracking technique for capturing and tracking the capsule membrane. The capsule is modeled as a liquid medium enclosed by a thin membrane which has linear elastic properties. The capsule, whose initial shape is circle and which starts from a near-center position or a near-wall position, experiences tilting and membrane tank-treading, and migrates laterally when moving along the surrounding flow. The lateral migration demonstrates the existence of lift effect of surrounding flow on moving capsule. Before capsule approaches to the microchannel centerline closely, lower membrane dilation modulus and lower viscosity ratio tend to result in faster lateral migration. The initial position also influences the performance behavior of capsule, despite the lateral migration of capsule is a quasisteady process. Small difference in capsule behavior when capsule is not near to the microchannel centerline might lead to significant difference in capsule behavior when capsule approaches closely to the centerline. When capsules are near to microchannel wall, the effect of the wall on capsule behavior might dominate, leading to relatively faster lateral migration. When capsules are not far from microchannel centerline, the effect of the nonlinearity of Poiseuille flow might dominate, resulting in relatively slower lateral movement. When capsules are located closely to the centerline, they behave differently, where the reason still remains poorly understood and it will be one of our future studies. The comparison between the capsule behavior from the present simulation and that by the migration law proposed by Coupier [Phys. Fluids 20, 111702 (2008)] shows that the behavioral agreement for near-wall capsule is better than that for near-center capsule, and the best
Influences of friction drag on spontaneous condensation in water vapor supersonic flows
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.
Influences of friction drag on spontaneous condensation in water vapor supersonic flows
Institute of Scientific and Technical Information of China (English)
JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing
2009-01-01
A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.
Energy Technology Data Exchange (ETDEWEB)
Huerst, C.; Schulz, A.; Wittig, S. [Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen
1995-04-01
The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Yin, W.-L.
1984-04-01
It is shown that, in the case of non-zero charge density, the class of steady, plane, incompressible, aligned-fluid magnetofluiddynamic flows contains no rotational motions. Therefore, this class of flows is exhausted by the irrotational solutions of Kingston and Power.
Directory of Open Access Journals (Sweden)
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.
Quasi-DC electrical discharge characterization in a supersonic flow
Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell
2017-04-01
A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.
Unsteady transverse injection of kerosene into a supersonic flow
Institute of Scientific and Technical Information of China (English)
徐胜利; R.D.Archer; B.E.Milton; 岳朋涛
2000-01-01
A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj
Energy Technology Data Exchange (ETDEWEB)
Yoo, Y.Z.; Chmaissem, O.; Kolesnik, S.; Ullah, A.; Lurio, L.B.; Brown, D.E.; Brady, J.; Dabrowski, B.; Kimball, C.W.; Haji-Sheikh, M.; Genis, A.P. (NIU)
2010-12-03
Geometrical anisotropy axes of diverse SrRuO{sub 3} (SRO) films grown by random and directional two-dimensional and step flow modes are determined and their characteristic angular magnetizations are understood in terms of growth mode induced structural effects. Two-dimensional SRO films possess single-crystal-like structural qualities. Angular magnetization measurements show sharp minima and indicate the films easy axis to be in the [310] direction. In contrast, examination of step flow SRO films shows the presence of degenerate multiple in-plane domains and the anisotropy axis in a direction close to [110] even though directional surface steps are clearly visible.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although
Plasma-enhanced mixing and flameholding in supersonic flow
Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.
2015-01-01
The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434
Shock front width and structure in supersonic granular flows.
Boudet, J F; Amarouchene, Y; Kellay, H
2008-12-19
The full structure of a shock front around a blunt body in a quasi-two-dimensional granular flow is studied. Two features, a large density gradient and a very small thickness of the front, characterize this shock and make it different from shocks in molecular gases. Both of these features can be understood using a modified version of the granular kinetic theory. Our model separates the particles into two subpopulations: fast particles having experienced no collisions and randomly moving particles. This separation is motivated by direct measurements of the particle velocities which show a bimodal distribution. Our results not only shed new light on the use of the granular kinetic theory under extreme conditions (shock formation) but bring new insight into the physics of shocks in general.
Tangential injection to a supersonic flow on a blunted nose
Chuvakhov, P. V.; Egorov, I. V.; Ezhov, I. V.; Ezhov, I. V.; Novikov, I. V.; Vasilevskiy, E. B.
2017-06-01
The flow pattern and the heat §ux to a body surface at a tangential gas injecting have been investigated. The cooling air was injected to a §ow through the tangential axisymmetric slot on the spherically blunted cylinder. The experiments were conducted at M∞ = 6, Re∞,Rw = 0.76 · 106, angle of attack α = 0°-30°, and the slot width hk/Rw = 0-0.021. The mass rate of the injecting gas was G∗ = gj/(πρ∞ u2∞w) = 0- 0.16. It has been shown that maximum of the heat §ux toward the sphere surface can be sufficiently decreased. Numerical investigations have been carried out using the solution of the Navier-Stokes equations for axisymmetric two-dimensional (2D) viscous compressible unsteady §ows at α = 0.
Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.
2008-11-01
In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.
Energy Technology Data Exchange (ETDEWEB)
Eaton, R.R.; Hopkins, P.L.
1992-08-01
LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification.
Barnett, Mark
This investigation is concerned with calculating strong viscous-inviscid interactions in two-dimensional laminar supersonic flows with and without separation. The equations solved are the so-called parabolized Navier-Stokes equations. The streamwise pressure gradient term is written as a combination of a forward and a backward difference to provide a path for upstream propogation of information. Global iteration is employed to repeatedly update the solution from an initial guess until convergence is achieved. Interacting boundary layer theory is discussed in order to provide some essential background information for the development of the present calculation technique. The numerical scheme used is an alternating direction explicit (ADE) procedure which is adapted from the Saul'yev method. This technique is chosen as an alternative to the more difficult to program multigrid strategy used by other investigators and the slower converging Gauss-Seidel method. Separated flows are computed using the ADE method. Only small or moderate separation bubbles are considered. This restriction permits simple approximations to the convective terms in reversed flow regions without introducing severe error since the reversed flow velocities are small. Results are presented for a number of geometries including compression ramps and humps on flat plates with separation. The present results are compared with those obtained by other investigators using the full Navier-Stokes equations and interacting boundary layer theory. Comparisons were found to be qualitatively good. The quantitative comparisons varied, however mesh refinement studies indicated that the parabolized Navier-Stokes solutions tended towards second-order accurate full Navier-Stokes solutions as well as interacting boundary layer solutions for which mesh refinement studies were also executed.
Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle
Institute of Scientific and Technical Information of China (English)
ToshiakiSetoguchi; ShenYu; 等
1997-01-01
When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.
Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration
DEFF Research Database (Denmark)
Wen, Chuang; Li, Anqi; Walther, Jens Honore;
2016-01-01
The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....
Wan, Xiaoliang; Yu, Haijun; Weinan, E.
2015-05-01
In this work, we study the nonlinear instability of two-dimensional (2D) wall-bounded shear flows from the large deviation point of view. The main idea is to consider the Navier-Stokes equations perturbed by small noise in force and then examine the noise-induced transitions between the two coexisting stable solutions due to the subcritical bifurcation. When the amplitude of the noise goes to zero, the Freidlin-Wentzell (F-W) theory of large deviations defines the most probable transition path in the phase space, which is the minimizer of the F-W action functional and characterizes the development of the nonlinear instability subject to small random perturbations. Based on such a transition path we can define a critical Reynolds number for the nonlinear instability in the probabilistic sense. Then the action-based stability theory is applied to study the 2D Poiseuille flow in a short channel.
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade
DEFF Research Database (Denmark)
Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per
2014-01-01
position; all points in space within a cone with a full opening angle of 1208 can be reached from about 8mout to some hundred meters depending on the range resolution required. The first two-dimensional mean wind fields measured in a horizontal plane and in a vertical plane below a hovering search...
Unsteady flow in a supersonic cascade with strong in-passage shocks
Goldstein, M. E.; Braun, W.; Adamczyk, J. J.
1977-01-01
Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2015-07-01
In porous media, lateral mass exchange exerts a significant influence on the dilution of solute plumes in quasi steady state. This process is one of the main mechanisms controlling transport of continuously emitted conservative tracers in groundwater and is fundamental for the understanding of many degradation processes. We investigate the effects of high-permeability inclusions on transverse mixing in three-dimensional versus two-dimensional systems by experimental, theoretical, and numerical analyses. Our results show that mixing enhancement strongly depends on the system dimensionality and on the parameterization used to model transverse dispersion. In particular, no enhancement of transverse mixing would occur in three-dimensional media if the local transverse dispersion coefficient was uniform and flow focusing in both transverse directions was identical, which is fundamentally different from the two-dimensional case. However, the velocity and grain size dependence of the transverse dispersion coefficient and the correlation between hydraulic conductivity and grain size lead to prevailing mixing enhancement within the inclusions, regardless of dimensionality. We perform steady state bench-scale experiments with multiple tracers in three-dimensional and quasi two-dimensional flow-through systems at two different velocities (1 and 5 m/d). We quantify transverse mixing by the flux-related dilution index and compare the experimental results with model simulations. The experiments confirm that, although dilution is larger in three-dimensional systems, the enhancement of transverse mixing due to flow focusing is less effective than in two-dimensional systems. The spatial arrangement of the high-permeability inclusions significantly affects the degree of mixing enhancement. We also observe more pronounced compound-specific effects in the dilution of solute plumes in three-dimensional porous media than in two-dimensional ones.
The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow
Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, M. Rahimi
2017-03-01
Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.
Numerical Simulation of the Supersonic Flows in the Second Throat Ejector —Diffuser Systems
Institute of Scientific and Technical Information of China (English)
HeuydongKim; ToshiakiSetoguchi; 等
1999-01-01
The supersonic ejector-diffuser system with a second throat was simulated using CFD.A fully implicity finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations and a standard k-ε turbulence model was used to close the governing equations,The flow field in the supersonic ejectordiffuser system was investigated by changing the ejector throat area ratio and the secondary mass flow ratio at a fixed operating pressure ratio of 10. A convergent-divergent nozzle with a design Mach number of 2.11 was selected to give the supersonic operation of the ejector -diffuser system.For the constant area mixing tube the secondary mass flow seemed not to singnificantly change the flow field in the ejector-diffuser systems.It was however,found that the flow in the ejector-diffuser systems having the second throat is strongly dependent on the secondary mass flow.
Vo, Tony; Pothérat, Alban; Sheard, Gregory J.
2017-03-01
This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows
Institute of Scientific and Technical Information of China (English)
Kazuyasu Matsuo
2003-01-01
When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.
Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow.
Wan, W C; Malamud, G; Shimony, A; Di Stefano, C A; Trantham, M R; Klein, S R; Shvarts, D; Kuranz, C C; Drake, R P
2015-10-02
We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow
Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.
2005-01-01
Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d
The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer
Sun, Z.; Schrijer, F.F.J.; Scarano, F.; Van Oudheusden, B.W.
2012-01-01
The three-dimensional instantaneous flow organization in the near wake of a micro-ramp interacting with a Mach 2.0 supersonic turbulent boundary layer is studied using tomographic particle image velocimetry. The mean flow reveals a wake with approximately circular cross section dominated by a pair o
Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…
Shu, Jian-Jun
2014-01-01
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu
2009-01-01
Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.
Al-Maaitah, Ayman A.; Nayfeh, Ali H.; Ragab, Saad A.
1989-01-01
The effect of suction on the stability of compressible flows over backward-facing steps is investigated. Mach numbers up to 0.8 are considered. The results show that continuous suction stabilizes the flow outside the separation bubble, but it destabilizes the flow inside it. Nevertheless, the overall N factor decreases as the suction level increases due to the considerable reduction of the separation bubble. For the same suction flow rate, properly distributed suction strips stabilize the flow more than continuous suction. The size of the separation bubble, and hence its effect on the instability can be considerably reduced by placing strips with high suction velocities in the separation region.
EOIL power scaling in a 1-5 kW supersonic discharge-flow reactor
Davis, Steven J.; Lee, Seonkyung; Oakes, David B.; Haney, Julie; Magill, John C.; Paulsen, Dwane A.; Cataldi, Paul; Galbally-Kinney, Kristin L.; Vu, Danthu; Polex, Jan; Kessler, William J.; Rawlins, Wilson T.
2008-02-01
Scaling of EOIL systems to higher powers requires extension of electric discharge powers into the kW range and beyond with high efficiency and singlet oxygen yield. We have previously demonstrated a high-power microwave discharge approach capable of generating singlet oxygen yields of ~25% at ~50 torr pressure and 1 kW power. This paper describes the implementation of this method in a supersonic flow reactor designed for systematic investigations of the scaling of gain and lasing with power and flow conditions. The 2450 MHz microwave discharge, 1 to 5 kW, is confined near the flow axis by a swirl flow. The discharge effluent, containing active species including O II(a1Δ g, b1Σ g +), O( 3P), and O 3, passes through a 2-D flow duct equipped with a supersonic nozzle and cavity. I2 is injected upstream of the supersonic nozzle. The apparatus is water-cooled, and is modular to permit a variety of inlet, nozzle, and optical configurations. A comprehensive suite of optical emission and absorption diagnostics is used to monitor the absolute concentrations of O II(a), O II(b), O( 3P), O 3, I II, I(2P 3/2), I(2P 1/2), small-signal gain, and temperature in both the subsonic and supersonic flow streams. We discuss initial measurements of singlet oxygen and I* excitation kinetics at 1 kW power.
Coupled One and Two Dimensional Model for River Network Flow and Sediment Transport%一二维耦合河网水沙模型研究
Institute of Scientific and Technical Information of China (English)
吕文丽; 张旭
2011-01-01
Based on previous research, a new one and two-dimensional coupled model of river water and sediment was proposed.With reference to the three-level solution for one-dimensional river network water mode, the two-dimensional river section will be generalized to river section within the river network.One and two dimensional coupled river network sediment model will be established with the balance of flow amount and sediment transport.The model sets up the chasing relationship between variables of water level and sediment content at the end and first section to further establish matrix equations of the whole one and two-dimensional river network node water level and sediment content.Though the verification and calculation for generalized river network from Datong to Zhenjiang in the lower reaches of the Yangtze River, it is found that the model is of great practical value.%借鉴河网水流的三级解法,将二维河段概化为河网内部河段,通过河网节点流量和输沙量的平衡,建立一二维耦合河网水沙模型.模型采用全隐式方法建立二维河段以首末断面的水位和含沙量为中间变量的矩阵追赶关系,进而建立整个一二维河网的节点水位及含沙量的矩阵方程组.对方程组的求解,可实现一二维水沙模型的耦合求解.通过对长江下游大通至镇江概化河网的验证计算,表明模型具有很好的实用价值.
Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method
Institute of Scientific and Technical Information of China (English)
YANG Hui; LI Feng; SUN Baigang
2012-01-01
Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.
Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect are directly simulated by a mixed finite element method.A temperature perturbation is used as an initial disturbed source for the basic parallel flows.The whole spatio-temporal evolution of the binary fluid flows is exhibited:initially only the disturbed mode with the wavenumber k=π is amplified while others are damped.and continuously the amplified mode grows further and the nonlinear effect becomes important;after a nonlinear evolution transition the flow system evolves finally into a periodic right traveling wave.
1955-01-01
8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa
Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow
Institute of Scientific and Technical Information of China (English)
Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing
2015-01-01
The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.
Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow
Directory of Open Access Journals (Sweden)
Jin Di
2015-02-01
Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.
Directory of Open Access Journals (Sweden)
Yan Yang
Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.
Shahriari, S; Kadem, L; Rogers, B D; Hassan, I
2012-11-01
This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o) = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.
Energy Technology Data Exchange (ETDEWEB)
Lasseter, T.J.; Karakas, M.
1982-01-01
A simple numerical method has been developed that largely eliminates numerical diffusion errors associated with saturation discontinuities or shocks for two-phase flow in one and two dimensions. The important aspect of the approach is the computation of a variable weighting factor for the interface fractional flow between grid blocks. The approach appears to be generalizable to the multicomponent, multidimensional case including gravity and capilarity. 5 refs.
Energy Technology Data Exchange (ETDEWEB)
Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.
Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.
Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C
2008-03-01
The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.
2013-11-01
269–275. 9. Stahl, B.; Edmunds , H.; Gulhan, A. Experimental Investigation of Hot and Cold Side Jet Interaction With a Supersonic Cross Flow...LICHTENBERG-SCANLAN G MALEJKO T RECCHIA C STOUT W TOLEDO J TRAVAILLE E VAZQUEZ C WILSON 4 PM CAS (PDF) M BURKE R KIEBLER
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge
Institute of Scientific and Technical Information of China (English)
Hui Cheng YIN
2006-01-01
This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.
CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation
DEFF Research Database (Denmark)
Yang, Yan; Wen, Chuang
2017-01-01
flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...
Directory of Open Access Journals (Sweden)
M.N Kherief
2016-01-01
Full Text Available Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular enclosure heated from one side and cooled from the adjacent side was considered. The governing equations were solved numerically for the stream function, vorticity and temperature using the finite-volume method for various Grashof and Hartman numbers and inclination angles and magnetic field directions. The results show that the orientation and the strength and direction of the magnetic field have significant effects on the flow and temperature fields. Counterclockwise inclination induces the formation of multiple eddies inside the enclosure significantly affecting the temperature field. Circulation inside the enclosure and therefore the convection become stronger as the Grashof number increases while the magnetic field suppresses the convective flow and the heat transfer rate.
Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-11-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
2012-05-10
light (Schmelzle, 1994 and Albano , 1994). The kinetic mechanisms were incorporated into the flow field model by introducing the species mass... Albano , M., 1994. Computer Simulation of a Photolytic Reactor to Study the Effects of a Variety of Wavelengths, A Thesis in Environmental Pollution
Takagi, S.; Oguz, H.N.; Zhang, Z.; Prosperetti, A.
2003-01-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to “transfer” the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity ari
Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems
Chen, Gui-Qiang
2017-08-01
When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.
Block, Stephan; Lundgren, Anders; Zhdanov, Vladimir P; Höök, Fredrik
2016-01-01
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and molecular composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging, which is a severe limitation. Surface-sensitive microscopy allows one to precisely determine fluorescence or scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. We here show that attaching BNPs (specifically, vesicles and functionalized gold NPs) to a supported lipid bilayer, subjecting them to a hydrodynamic flow, and tracking their motion via surface-sensitive imaging enable to determine their diffusion coefficients and flow-induced drift velocities and to accurately quantify both BNP size and emission intensity. For vesicles, the high accuracy...
Block, Stephan; Fast, Björn Johansson; Lundgren, Anders; Zhdanov, Vladimir P.; Höök, Fredrik
2016-09-01
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.
Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.
2016-10-01
When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopic crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.
Directory of Open Access Journals (Sweden)
Sabet Safa
2016-03-01
Full Text Available In the present study, the fluid flow in a periodic, non-isotropic dual scale porous media consisting of permeable square rods in inline arrangement is analyzed to determine permeability, numerically. The continuity and Navier-Stokes equations are solved to obtain the velocity and pressure distributions in the unit structures of the dual scale porous media for flows within Darcy region. Based on the obtained results, the intrinsic inter and intraparticle permeabilities and the bulk permeability tensor of the dual scale porous media are obtained for different values of inter and intraparticle porosities. The study is performed for interparticle porosities between 0.4 and 0.75 and for intraparticle porosities from 0.2 to 0.8. A correlation based on Kozeny-Carman relationship in terms of inter and intraparticle porosities and permeabilities is proposed to determine the bulk permeability tensor of the dual scale porous media.
Belfort, Benjamin; Weill, Sylvain; Lehmann, François
2017-07-01
A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.
Energy Technology Data Exchange (ETDEWEB)
Votsish, A.D.
1977-07-01
Results are given for experimental studies of the effect that a cross-sectional magnetic field has on longitudinal and cross-sectional velocity pulsations and the coefficient of their correlation in a homogeneous shear region of averaged flow velocity. An opposite sign change for turbulent friction was obtained as the magnetic field was increased. In this connection an identification was made of an impulse transfer from regions with lower speeds to regions with high speeds. 4 references, 1 figure.
The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow
Fernando, E. M.; Donovan, J. F.; Smits, A. J.
1987-01-01
The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.
LES of an inclined jet into a supersonic cross-flow
Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall
2008-01-01
This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.
Parameters of the plasma of a dc pulsating discharge in a supersonic air flow
Energy Technology Data Exchange (ETDEWEB)
Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)
2017-03-15
A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.
ON THE ASYMPTOTIC BEHAVIOUR OF THE STEADY SUPERSONIC FLOWS AT INFINITY
Institute of Scientific and Technical Information of China (English)
ZHANG YONGQIAN
2005-01-01
This paper studies the asymptotic behaviour of steady supersonic flow past a piecewise smooth corner or bend. Under the hypothese that both vertex angle and the total variation of tangent along the boundary are small, it is shown that the solution can be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the solution is determined by the velocity of incoming flow and the limit of the tangent of the boundary at infinity.
Heat transfer in the flow of a cold, two-dimensional draining sheet over a hot, horizontal cylinder
Shu, Jian-Jun
2014-01-01
The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.
Institute of Scientific and Technical Information of China (English)
Ying-hui ZHANG; Zhong TAN
2011-01-01
In this paper,we are concerned with the asymptotic behaviour of a weak solution to the NavierStokes equations for compressible barotropic flow in two space dimensions with the pressure function satisfying p(ρ) =a(ρ)logd(ρ) for large (ρ).Here d ＞ 2,a ＞ 0.We introduce useful tools from the theory of Orlicz spaces and construct a suitable function which approximates the density for time going to infinity.Using properties of this function,we can prove the strong convergence of the density to its limit state.The behaviour of the velocity field and kinetic energy is also briefly discussed.
Numerical Simulation for Two-Phase Water Hammer Flows in Pipe by Quasi-Two-Dimensional Model
Institute of Scientific and Technical Information of China (English)
Tae Uk Jang; Yuebin Wu; Ying Xu; Qiang Sun
2016-01-01
The features of a quasi⁃two⁃dimensional ( quasi⁃2D) model for simulating two⁃phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi⁃2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi⁃2D model for pure liquid zone and one⁃dimensional ( 1D ) discrete vapor cavity model for vaporous cavity zone. The quasi⁃2D model solves two⁃dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two⁃phase water flows caused by the rapid downstream valve closure in a reservoir⁃pipe⁃valve system. The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature, respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.
DEFF Research Database (Denmark)
Brix, Lau; Christoffersen, Christian P. V.; Kristiansen, Martin Søndergaard
of the aorta. Methods: 2D phase contrast flow images of the aorta were acquired from a patient with an enlarged pulmonary artery on a Philips Achieva 1.5T CMR system. The cardiac motion was removed from the data set using the Cornelius/Kanade registration algorithm. The time resolved flow data...... promising because it saves time for post-processing. However, the k-means cluster approach is not comprehensive for quantitative flow estimations as it is but seems feasible for a subsequent segmentation algorithm like deformable contours (i.e. snakes). Future work may overcome this manual part and make...
Supersonic Flutter of Laminated Curved Panels
Directory of Open Access Journals (Sweden)
M. Ganapathi
1995-04-01
Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.
Williams, R. D.; Brasington, J.; Hicks, M.; Measures, R.; Rennie, C. D.; Vericat, D.
2013-09-01
Gravel-bed braided rivers are characterized by shallow, branching flow across low relief, complex, and mobile bed topography. These conditions present a major challenge for the application of higher dimensional hydraulic models, the predictions of which are nevertheless vital to inform flood risk and ecosystem management. This paper demonstrates how high-resolution topographic survey and hydraulic monitoring at a density commensurate with model discretization can be used to advance hydrodynamic simulations in braided rivers. Specifically, we detail applications of the shallow water model, Delft3d, to the Rees River, New Zealand, at two nested scales: a 300 m braid bar unit and a 2.5 km reach. In each case, terrestrial laser scanning was used to parameterize the topographic boundary condition at hitherto unprecedented resolution and accuracy. Dense observations of depth and velocity acquired from a mobile acoustic Doppler current profiler (aDcp), along with low-altitude aerial photography, were then used to create a data-rich framework for model calibration and testing at a range of discharges. Calibration focused on the estimation of spatially uniform roughness and horizontal eddy viscosity, νH, through comparison of predictions with distributed hydraulic data. Results revealed strong sensitivity to νH, which influenced cross-channel velocity and localization of high shear zones. The high-resolution bed topography partially accounts for form resistance, and the recovered roughness was found to scale by 1.2-1.4 D84 grain diameter. Model performance was good for a range of flows, with minimal bias and tight error distributions, suggesting that acceptable predictions can be achieved with spatially uniform roughness and νH.
Tomé, M. F.; Bertoco, J.; Oishi, C. M.; Araujo, M. S. B.; Cruz, D.; Pinho, F. T.; Vynnycky, M.
2016-04-01
This work is concerned with the numerical solution of the K-BKZ integral constitutive equation for two-dimensional time-dependent free surface flows. The numerical method proposed herein is a finite difference technique for simulating flows possessing moving surfaces that can interact with solid walls. The main characteristics of the methodology employed are: the momentum and mass conservation equations are solved by an implicit method; the pressure boundary condition on the free surface is implicitly coupled with the Poisson equation for obtaining the pressure field from mass conservation; a novel scheme for defining the past times t‧ is employed; the Finger tensor is calculated by the deformation fields method and is advanced in time by a second-order Runge-Kutta method. This new technique is verified by solving shear and uniaxial elongational flows. Furthermore, an analytic solution for fully developed channel flow is obtained that is employed in the verification and assessment of convergence with mesh refinement of the numerical solution. For free surface flows, the assessment of convergence with mesh refinement relies on a jet impinging on a rigid surface and a comparison of the simulation of a extrudate swell problem studied by Mitsoulis (2010) [44] was performed. Finally, the new code is used to investigate in detail the jet buckling phenomenon of K-BKZ fluids.
Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES
Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team
2015-11-01
Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.
Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow
Institute of Scientific and Technical Information of China (English)
WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui
2012-01-01
The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.
Hwang, Danny P.
1999-01-01
A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Filgueira, Marcelo R.; Huang, Yuan; Witt, Klaus; Castells, Cecilia; Carr, Peter W.
2011-01-01
The use of flow splitters between the two dimensions in on-line comprehensive two dimensional liquid chromatography (LC×LC) has not received very much attention in comparison to their use in GC×GC where they are quite common. In principle, splitting the flow after the first dimension column and performing on-line LC×LC on this constant fraction of the first dimension effluent should allow the two dimensions to be optimized almost independently. When there is no flow splitting any change in the first dimension flow rate has an immediate impact on the second dimension. With a flow splitter one could for example double the flow rate into the first dimension column and do a 1:1 flow split without changing the sample loop size or the sampler’s collection time. Of course, the sensitivity would be diminished but this can be partially compensated by use of a larger injection; this will likely only amount to a small price to pay for this increased resolving power and system flexibility. Among other benefits, we found a 2-fold increase in the corrected 2D peak capacity and the number of observed peaks for a 15 min analysis time by using a post first dimension flow splitter. At a fixed analysis time this improvement results primarily from an increase in the gradient time resulting from the reduced system re-equilibration time and to a smaller extent it is due to the increased peak capacity achieved by full optimization of the first dimension. PMID:22017622
CFD-Exergy analysis of the flow in a supersonic steam ejector
Boulenouar, M.; Ouadha, A.
2015-01-01
The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.
Institute of Scientific and Technical Information of China (English)
Cai Qing-Dong; Chen Shi-Yi; Sheng Xiao-Wei
2011-01-01
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. . In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.
van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef
2015-01-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...
Pavlidis, Mitrofanis
2016-01-01
Purpose. To evaluate comparative aspiration flow performance and also vitrectomy operating time efficiency using a double-cutting open port vitreous cutting system incorporated in a two-dimensional cutting (TDC, DORC International) vitrectome design versus standard vitreous cutter. Methods. In vitro investigations compared aspiration flow rates in artificial vitreous humor at varying cutter speeds and vacuum levels using a TDC vitrectome and a standard vitrectome across different aspiration pump systems. A prospective single-centre clinical study evaluated duration of core vitrectomy in 80 patients with macular pucker undergoing 25-gauge or 27-gauge vitrectomy using either a TDC vitrectome at 16,000 cuts per minute (cpm) or standard single-cut vitrectome, combined with a Valve Timing intelligence (VTi) pump system (EVA, DORC International). Results. Aspiration flow rates remained constant independent of TDC vitrectome cut rate, while flow rates decreased linearly at higher cutter speeds using a classic single-blade vitrectome. Mean duration of core vitrectomy surgeries using a TDC vitreous cutter system was significantly (p < 0.001) shorter than the mean duration of core vitrectomy procedures using a single-cut vitrectome of the same diameter (reduction range, 34%-50%). Conclusion. Vitrectomy surgery performed using a TDC vitrectome was faster than core vitrectomy utilizing a standard single-action vitrectome at similar cut speeds.
Directory of Open Access Journals (Sweden)
Mitrofanis Pavlidis
2016-01-01
Full Text Available Purpose. To evaluate comparative aspiration flow performance and also vitrectomy operating time efficiency using a double-cutting open port vitreous cutting system incorporated in a two-dimensional cutting (TDC, DORC International vitrectome design versus standard vitreous cutter. Methods. In vitro investigations compared aspiration flow rates in artificial vitreous humor at varying cutter speeds and vacuum levels using a TDC vitrectome and a standard vitrectome across different aspiration pump systems. A prospective single-centre clinical study evaluated duration of core vitrectomy in 80 patients with macular pucker undergoing 25-gauge or 27-gauge vitrectomy using either a TDC vitrectome at 16,000 cuts per minute (cpm or standard single-cut vitrectome, combined with a Valve Timing intelligence (VTi pump system (EVA, DORC International. Results. Aspiration flow rates remained constant independent of TDC vitrectome cut rate, while flow rates decreased linearly at higher cutter speeds using a classic single-blade vitrectome. Mean duration of core vitrectomy surgeries using a TDC vitreous cutter system was significantly (p<0.001 shorter than the mean duration of core vitrectomy procedures using a single-cut vitrectome of the same diameter (reduction range, 34%–50%. Conclusion. Vitrectomy surgery performed using a TDC vitrectome was faster than core vitrectomy utilizing a standard single-action vitrectome at similar cut speeds.
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
A flow control study of a supersonic mixing layer via NPLS
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS,and the transient fine structures were identifiable in NPLS images,which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer,delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer,advancing mixing layer transition. 3D structures of the mixing layer were visualized,and the H-type Λ vortexes were found with 3D tapes control.
Directory of Open Access Journals (Sweden)
Y. V. Konovalov
2015-11-01
Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.
Sun, Yi; Timofeyev, Ilya
2014-05-01
We employ an efficient list-based kinetic Monte Carlo (KMC) method to study traffic flow models on one-dimensional (1D) and two-dimensional (2D) lattices based on the exclusion principle and Arrhenius microscopic dynamics. This model implements stochastic rules for cars' movements based on the configuration of the traffic ahead of each car. In particular, we compare two different look-ahead rules: one is based on the distance from the car under consideration to the car in front of it, and the other one is based on the density of cars ahead. The 1D numerical results of these two rules suggest different coarse-grained macroscopic limits in the form of integro-differential Burgers equations. The 2D results of both rules exhibit a sharp phase transition from freely flowing to fully jammed, as a function of the initial density of cars. However, the look-ahead rule based on the density of the traffic produces more realistic results. The KMC simulations reported in this paper are compared with those from other well-known traffic flow models and the corresponding empirical results from real traffic.
Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation
2014-08-18
constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D
Nonlinear effects of energy sources and the jet at supersonic flow in the channel
Zamuraev, V. P.; Kalinina, A. P.
2016-10-01
The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.
Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow
Kurilov, E. A.; Mikhlin, Yu. V.
2007-09-01
The paper studies the dynamics of nonlinear elastic cylindrical shells using the theory of shallow shells. The aerodynamic pressure on the shell in a supersonic flow is found using piston theory. The effect of the flow and initial deflections on the vibrations of the shell is analyzed in the flutter range. The normal modes of both perfect shells in a flow and shells with initial imperfections are studied. In the latter case, the trajectories of normal modes in the configuration space are nearly rectilinear, only one mode determined by the initial imperfections being stable
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
supersonic. Oblique Shock Interface Inert Reactants β θ P1 P2e P3eUCJ P1 UCJ P2i Detonation Figure 3. Idealized flow model of a detonation wave with an...Propagation With No Confinement But With Transvers Flow A consistent cross-flow was established by calibrating the height of the gases in time relative...to the controller commands, and then staggering the triggering of the gases such that each species – hydrogen, helium, and oxygen – independently
A Computer Program to Calculate the Supersonic Flow over a Solid Cone in Air or Water.
1984-06-01
ix air or water. The rain objective is to calculate the ccne semi-vertei angle given prescribed initial ccndi- tions. The program is written in...tc the motion of the metal jet frcm an explczive shaped-charge fired underwater. A tiical result for supersonic flow over a ccne in water is as follcws...the ccne semi-vertex angle is calculated to be 7.23 degrees. Gene rally, pressures invclved in water flow are much larger than for air flow, and the
Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi
2017-05-12
The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Barnas, C. R.; Czuba, J. A.; Gendaszek, A. S.; Magirl, C. S.
2010-12-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River.
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2014-03-01
Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.
Energy Technology Data Exchange (ETDEWEB)
Chono, S.; Tsuji, T. [Fukui University, Fukui (Japan). Faculty of Engineering
1995-05-25
Finite difference solutions to the Leslie-Ericksen equations were obtained for flows in two-dimensional L-shaped channels with various contraction ratios of the upstream to downstream channel width. A streamline shift toward the outer wall occurs upstream of the reentrant corner. Such behavior is similar to that of viscoelastic fluids. With increasing contraction ratio, the streamline shift occurs further upstream. The effect of the wall anchoring angle for the director is remarkable; for example, when the anchoring angle along the downstream walls is set to be opposite to the main flow direction, a distortion of streamlines is produced in the corner region and the director moves to the downstream region upside down. At small Ericksen numbers, the orientation angle for the director is varied over a wide area so as to suppress its local deformation. In contrast, when the Ericksen number is large, the director profile in the upstream region is retained close to the corner region where the director turns rapidly to the downstream direction. 7 refs., 9 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Tomita, Yukio; Ishibashi, Yukio; Saito, Eiji; Saito, Toshio
1988-02-25
For elucidation of the flow behavior of a magnetic fluid as a one-phase fluid, water base ferrofluids were introduced in a two-dimensional channel and the action of a uniform vertical magnetic field axial magnetic field, and both fields inclined at various angles to examine the laminar flow region. The ferrofluids used in the experiment were prepared by dispersing 17.5 weight % of Fe/sub 3/ O/sub 4/ fine particles of about 100A in diameter into ion-exchange water, and adding an anionic sodium oleate to stabilize the dispersion. Under no action of the magnetic fields, ferrofluids having a higher concentration than the above value exhibited plastic fluid. As the direction of the magnetic field acting on the fluid approached the vertical, so the pressure loss was increased. The pipe friction coefficient could be expressed by the empirical formula of which the variables are the ratios of inertia force/viscous force and magnetic force/viscous force, and the inclination of the magnetic poles. (15 figs, 14 refs)
Wang, Yunpeng; Ozawa, Hiroshi; Nakamura, Yoshiaki
The flow past a capsule-shaped space transportation system (STS) is numerically analyzed using computational fluid dynamics (CFD) for different free stream Mach numbers ranging from 1.2 to 5.0, where a capsule is modeled by a cone, and a rocket by a circular cylinder. The objective of this research is to study Mach number effects on phenomena of the supersonic aerodynamic interference with periodic flow oscillations at supersonic regime. So far we have considered two models: model A (without disk) and model B (with disk). It was found from experimental and computational results that the flow around model A becomes steady, where aerodynamic interaction is not observed, while in model B, flow becomes unsteady with periodic oscillations. This flow oscillation is considered to be a potentially high risk in separation of the capsule and rocket. Therefore, the present study focuses on the unsteady case of model B. Numerical results at M=3.0 compared well with experimental ones, which validates the present CFD. Time-averaged results are employed to see the whole trajectories of shock waves and the variation in amplitude of flow oscillation during one cycle. Moreover, a fence is proposed as a device to suppress the flow oscillation.
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Behavior of Boundary Layer in Supersonic Flow with Applied Lorentz Force
Udagawa, Keisuke; Saito, Shinya; Kawaguchi, Kenji; Tomioka, Sadatake; Yamasaki, Hiroyuki
Experimental study on behavior of boundary layer in supersonic flow with applied Lorentz force was carried out. In the experiment, Mach 1.5 supersonic wind tunnel driven by a shock-tube was used. At the test section, the current from the external DC power supply and the magnetic field of 2.4 Tesla were applied to the boundary layer developing on the bottom wall. Argon seeded with cesium was used as an electrically conducting gas. Effect of the direction of the Lorentz force on static pressure distribution was investigated, and the remarkable increase of static pressure at the test section was observed for the decelerating Lorentz force. It is noted that the acceleration of the flow inside the boundary layer was demonstrated for the first time without accelerating the main flow when the accelerating Lorentz force was applied. At the same time, the acceleration efficiency defined by a ratio of work done by the Lorentz force to energy input into the flow was found 54-61%. These results have suggested the possibility of the boundary layer separation control by applying the accelerating Lorentz force. In the case of the decelerating Lorentz force, the significant reduction of Mach number was observed not only inside the boundary layer but also in the main flow. The reduction of Mach number could be ascribed to the growth of the boundary layer due to gas heating inside the boundary layer. When the direction of the current was changed, the difference of light emission from the discharge inside the boundary layer was observed, and this was due to the difference of the electromotive force induced in the supersonic flow.
Optical studies of shock generated transient supersonic base flows
Liang, P.-Y.; Bershader, D.; Wray, A.
1982-01-01
A shock tube employing interferometric and schlieren techniques is used to study transient base flow phenomena following shock wave passage over two plane bluff bodies: a hemicircular cylinder and a cylinder with the Galileo Jovian probe profile. An attempt is made to understand the physics of transition from transient to steady state flow, and to provide code verification for a study employing the Illiac IV computer. Transient base flow interactions include a series of shock diffraction, regular, and Mach reflections, coupled with boundary layer development, separation, and recompression. Vorticity generation and transport underlie these features. The quantitative verification of the computer code includes comparisons of transient pressure and density fields, near wake geometries, and bow shock standoff distances.
Improved optical techniques for studying sonic and supersonic injection into Mach 3 flow
Buggele, Alvin E.; Seasholtz, Richard G.
1997-11-01
Filtered Rayleigh Scattering and shadowgraph flow visualization were used to characterize the penetration of helium or moist air injected transversely at several pressures to a Mach 3 flow in the NASA Lewis 3.81 inch by 10 inch continuous flow supersonic wind tunnel. This work is in support of the LOX augmented nuclear thermal rocket program. The present study used an injection-seeded, frequency doubled Nd:YAG pulsed laser to illuminate a transverse section of the injectant plume. Rayleigh scattered light was passed through an iodine absorption cell to suppress stray laser light and was imaged onto a cooled CCD camera. The scattering was based on condensation of water vapor in the injectant flow. Results are presented for various configurations of sonic and supersonic injector designs mounted primarily in the floor of the tunnel. Injectors studied include a single 0.25 inch diameter hole, five 0.112 inch diameter holes on 0.177 inch spacing, and a 7 degree half angle wedge. High speed shadowgraph flow visualization images were obtained with several video camera systems. Roof and floor static pressure data are presented several ways for the three configurations of injection designs with and without helium and/or air injection into Mach 3 flow.
Unsteady flow in a supersonic cascade with subsonic leading-edge locus
Adamczyk, J. J.; Goldstein, M. E.
1978-01-01
Linearized theory is used to predict the unsteady flow in a supersonic cascade with subsonic axial flow velocity. A closed-form analytical solution is obtained by using a double application of the Wiener-Hopf technique. Although numerical and semianalytical solutions of this problem have already appeared in the literature, this paper contains the first completely analytical solution. It has been stated in the literature that the blade source should vanish at the infinite duct resonance condition. The present analysis shows that this does not occur. This apparent discrepancy is explained in the paper.
Constant-temperature hot-wire anemometer practice in supersonic flows. I - The normal wire
Smits, A. J.; Hayakawa, K.; Muck, K. C.
1983-01-01
The performance of a constant-temperature normal hot-wire in a supersonic flow is critically examined. It is shown that this instrument is inherently unsuitable for measuring turbulent temperature correlations because of the highly nonlinear response to temperature fluctuations, particularly at low overheat ratios. The instrument is therefore limited to measurements of mean and fluctuating mass-flow rates. Suitable calibration procedures, as well as the limits on spatial and temporal resolution are discussed, and corrections for mean stagnation temperature changes are suggested.
Computations of the Magnus effect for slender bodies in supersonic flow
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur
2016-06-01
Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.
IRROTATIONAL APPROXIMATION TO STEADY SUPERSONIC FLOW IN TWO SPACE VARIABLES
Institute of Scientific and Technical Information of China (English)
Liu Chong
2008-01-01
On the assumption that the total variation of the initial data is sufficiently small,we can use the stability results of Dafermos to get the L2 estimate of the difference between the solutions to the isentropic steady Euler system and the potential flow equations with the same initial data.
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encodingwas set to 80 cm/s. Results of the measurements showed that the error rate was 7.0 ± 6.0%in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateralcommon carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. Inaddition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore,after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accuratein the determination of BFV in the carotid arteries.
Franchina, Flavio Antonio; Machado, Maria Elisabete; Tranchida, Peter Quinto; Zini, Cláudia Alcaraz; Caramão, Elina Bastos; Mondello, Luigi
2015-03-27
The present research is focused on the development of a flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry (FM GC × GC-MS/MS) method for the determination of classes of aromatic organic sulphur compounds (benzothiophenes, dibenzothiophenes, and benzonaphthothiophene) in heavy gas oil (HGO). The MS/MS instrument was used to provide both full-scan and multiple-reaction-monitoring (MRM) data. Linear retention index (LRI) ranges were used to define the MRM windows for each chemical class. Calibration solutions (internal standard: 1-fluoronaphthalene) were prepared by using an HGO sample, depleted of S compounds. Calibration information was also derived for the thiophene class (along with MRM and LRI data), even though such constituents were not present in the HGO. Linearity was satisfactory over the analyzed concentration range (1-100 mg/L); intra-day precision for the lowest calibration point was always below 17%. Accuracy was also satisfactory, with a maximum percentage error of 3.5% (absolute value) found among the S classes subjected to (semi-)quantification. The highest limit of quantification was calculated to be 299 μg/L (for the C1-benzothiophene class), while the lowest was 21 μg/L (for the C4-benzothiophene class).
Supersonic flow of a nonequilibrium gas-discharge plasma around a body
Lapushkina, T. A.; Erofeev, A. V.; Ponyaev, S. A.; Bobashev, S. V.
2009-06-01
The flow of a nonequilibrium gas-discharge plasma around a semicylindrical body is studied. The aim of the study is to see how a change in the degree of nonequilibrium of the incoming plasma changes the separation distance between a shock wave and the body. Experiments are carried out with a supersonic nozzle into which a semicylindrical body is placed. The inlet of the nozzle is connected to a shock tube. In the course of the experiment, electrodes built into the wall of the nozzle initiate a gas discharge in front of the body to produce an additional nonequilibrium ionization in the stationary incoming supersonic flow. The discharge parameters are selected such that the discharge raises the electron temperature and still minimizes heating of the gas. The degree of nonequilibrium of the flow varies with gas-discharge current. Diagnostics of the flow is carried out with a schlieren system based on a semiconductor laser. The system can record flow patterns at definite time instants after discharge initiation.
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
YANG Qin; FU Song
2008-01-01
The proper orthogonal decomposition (POD) method was applied to analyzing the database obtained from the direct numerical simulation (DNS) of supersonic plane mixing layers. The effect of different forms of the inner products in the POD method was investigated. It was observed that the mean flow contributes to a predominant part of the total flow energy, and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes. The patterns of leading (high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls, as well as oblique vortices. These flow patterns are insensitive to the velocity of the observer. As the convective Mach number increases, the energy spectrum be-comes wider, the leading POD modes contain more complicated structures, and the flow becomes more chaotic.
Analysis of flow structures in supersonic plane mixing layers using the POD method
Institute of Scientific and Technical Information of China (English)
2008-01-01
The proper orthogonal decomposition(POD) method was applied to analyzing the database obtained from the direct numerical simulation(DNS) of supersonic plane mixing layers.The effect of different forms of the inner products in the POD method was investigated.It was observed that the mean flow contributes to a predominant part of the total flow energy,and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes.The patterns of leading(high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls,as well as oblique vortices.These flow patterns are insensitive to the velocity of the observer.As the convective Mach number increases,the energy spectrum be-comes wider,the leading POD modes contain more complicated structures,and the flow becomes more chaotic.
Plasma-based Control of Supersonic Nozzle Flow
Gaitonde, Datta V
2009-01-01
The flow structure obtained when Localized Arc Filament Plasma Actuators (LAFPA) are employed to control the flow issuing from a perfectly expanded Mach 1.3 nozzle is elucidated by visualizing coherent structures obtained from Implicit Large-Eddy Simulations. The computations reproduce recent experimental observations at the Ohio State University to influence the acoustic and mixing properties of the jet. Eight actuators were placed on a collar around the periphery of the nozzle exit and selectively excited to generate various modes, including first and second mixed (m = +/- 1 and m = +/- 2) and axisymmetric (m = 0). In this fluid dynamics video http://ecommons.library.cornell.edu/bitstream/1813/13723/2/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-1.m1v, http://ecommons.library.cornell.edu/bitstream/1813/13723/3/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-2.m2v}, unsteady and phase-averaged quantities are displayed to aid understanding of the vortex dynamics associated with the m = +/- 1 and m = 0 modes exci...
Directory of Open Access Journals (Sweden)
Yonghuai Wang
Full Text Available Coronary slow-flow phenomenon (CSFP is an angiographic diagnosis characterised by a low rate of flow of contrast agent in the normal or near-normal epicardial coronary arteries. Many of the patients with CSFP may experience recurrent acute coronary syndromes. However, current clinical practice tends to underestimate the impact of CSFP due to the yet unknown effect on the cardiac function. This study was performed to evaluate left ventricular (LV and right ventricular (RV diastolic and systolic functions, using two-dimensional (2D longitudinal strain and strain rate, in patients with CSFP, and to determine the relationships between the thrombolysis in myocardial infarction (TIMI frame count (TFC and LV and RV diastolic and systolic functions.Sixty-three patients with CSFP and 45 age- and sex-matched controls without CSFP were enrolled in the study. Diagnosis of CSFP was made by TFC. LV and RV diastolic and systolic functions were assessed by 2D speckle-tracking echocardiography.LV peak early diastolic longitudinal strain rate (LSRe was lower in patients with CSFP than in controls (P = 0.01. LV peak systolic longitudinal strain (LS and LV peak systolic longitudinal strain rate (LSRs were lower in patients with CSFP than in controls (P = 0.004 and P = 0.03, respectively. There was no difference in LV ejection fraction. RV peak early diastolic longitudinal strain rate (RSRe was lower in patients with CSFP than in controls (P = 0.03. There were no differences in RV peak systolic longitudinal strain (RS, RV peak systolic longitudinal strain rate (RSRs, or RV fractional area change among the groups. The mean TFC correlated negatively with LSRe and RSRe in patients with CSFP (r = -0.26, P = 0.04 and r = -0.32, P = 0.01, respectively.LV diastolic and systolic functions were impaired in patients with CSFP. CSFP also affected RV diastolic function, but not RV systolic function.
Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling
Directory of Open Access Journals (Sweden)
Mohamed Sellam
2015-01-01
Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.
Supersonic Injection of Aerated Liquid Jet
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
Institute of Scientific and Technical Information of China (English)
Wei HUANG; Li YAN
2013-01-01
The transverse injection flow field has an important impact on the flowpath design of scramjet engines.At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream;combustion efficiency has been improved thereby,as well as engine thrust.Research on mixing techniques for the transverse injection flow field is summarized from four aspects,namely the jet-to-crossflow pressure ratio,the geometric configuration of the injection port,the number of injection ports,and the injection angle.In conclusion,urgent investigations of mixing techniques of the transverse injection flow field are proposed,especially data mining in the quantitative analytical results for transverse injection flow field,based on results from multi-objective design optimization theory.
Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process
Institute of Scientific and Technical Information of China (English)
Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO
2005-01-01
@@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.
Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Theory
Directory of Open Access Journals (Sweden)
D. E. Panayotounakos
1997-01-01
Full Text Available We construct analytical solutions for the problem of nonlinear supersonic flow past slender bodies of revolution due to small amplitude oscillations. The method employed is based on the splitting of the time dependent small perturbation equation to a nonlinear time independent partial differential equation (P.D.E. concerning the steady flow, and a linear time dependent one, concerning the unsteady flow. Solutions in the form of three parameters family of surfaces for the first equation are constructed, while solutions including one arbitrary function for the second equation are extracted. As an application the evaluation of the small perturbation velocity resultants for a flow past a right circular cone is obtained making use of convenient boundary and initial conditions in accordance with the physical problem.
Lin, Shih-Lung; Lin, Jehnming
2007-02-01
The characteristics of the supersonic flow of the laser heating technique for producing micro-scale metallic particles were investigated in this study. A numerical model was established to predict the flow fields and particle trajectories leaving a spray nozzle with shock wave effects. The compressible flow of the shock waves and the trajectories of particles in diameters of 1-20 μm were simulated and compared with the flow visualization. In the experiment, a pulsed Nd-YAG laser was used as heat source on a carbon steel target within the nozzle, and the carbon steel particles were ejected by high-pressure air. The result shows that the shock wave structures were generated at various entrance pressures, and there is a significant increase in the amount of carbon steel particles and the spraying angles by increasing the entrance air pressure.
High angle of attack aerodynamics subsonic, transonic, and supersonic flows
Rom, Josef
1992-01-01
The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...
Dense core formation in supersonic turbulent converging flows
Gong, Hao
2011-01-01
We use numerical hydrodynamic simulations to investigate prestellar core formation in the dynamic environment of giant molecular clouds, focusing on planar post-shock layers produced by colliding turbulent flows. A key goal is to test how core evolution and properties depend on the velocity dispersion in the parent cloud; our simulation suite consists of 180 models with inflow Mach numbers Ma=v/c_s=1.1-9. At all Mach numbers, our models show that turbulence and self-gravity collect gas within post-shock regions into filaments at the same time as overdense areas within these filaments condense into cores. This morphology, together with the subsonic velocities we find inside cores, is similar to observations. We extend previous results showing that core collapse develops in an ``outside-in'' manner, with density and velocity approaching the Larson-Penston asymptotic solution. The time for the first core to collapse varies as 1/sqrt(v), consistent with analytic estimates. Core building takes 10 times as long as ...
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
CFD modelling of condensation process of water vapor in supersonic flows
DEFF Research Database (Denmark)
Wen, Chuang; Walther, Jens Honore; Yan, Yuying;
2016-01-01
-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation.......The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic conditions using the nucleation and droplet growth...
Computing 3-D steady supersonic flow via a new Lagrangian approach
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Experimental study on atomization phenomena of kerosene in supersonic cold flow
Institute of Scientific and Technical Information of China (English)
FEI LiSen; XU ShengLi; WANG ChangJian; LI Qiang; HUANG ShengHong
2008-01-01
Experiments were conducted to study the atomization phenomena of kerosene jet in supersonic flow. The kerosene jet was driven by compressed nitrogen. Meanwhile, the shadowgraph and planar laser-induced fluorescence (PLIF) were used to visualize the flow field in the case of different total pressure and jet pressure. The results imply the followings: The combination of shadowgraph and PLIF is a reasonable method to study the atomization phenomena in supersonic flow. PLIF can detect the distribution of kerosene droplets accurately. Shadowgraph can visualize the wave structure. Higher jet-to-freestream dynamic pressure initiates higher penetration height and the jet column will be easier to breakup and atomize, but it also induces stronger shock waves and aggravate total pressure lost. Three-dimensional, unsteady surface wave plays an important role in making the jet break up and atomize. Higher jet-to-freestream dynamic pressure will accelerate the development of surface wave and enlarge the amplitude of surface wave, while lower jet-to-freestream ratio will inhibit the development of surface wave.
Directory of Open Access Journals (Sweden)
Jian Zhou
2016-09-01
Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.
Bouley, Simon; François, Benjamin; Roger, Michel; Posson, Hélène; Moreau, Stéphane
2017-09-01
The present work deals with the analytical modeling of two aspects of outlet guide vane aeroacoustics in axial-flow fan and compressor rotor-stator stages. The first addressed mechanism is the downstream transmission of rotor noise through the outlet guide vanes, the second one is the sound generation by the impingement of the rotor wakes on the vanes. The elementary prescribed excitation of the stator is an acoustic wave in the first case and a hydrodynamic gust in the second case. The solution for the response of the stator is derived using the same unified approach in both cases, within the scope of a linearized and compressible inviscid theory. It is provided by a mode-matching technique: modal expressions are written in the various sub-domains upstream and downstream of the stator as well as inside the inter-vane channels, and matched according to the conservation laws of fluid dynamics. This quite simple approach is uniformly valid in the whole range of subsonic Mach numbers and frequencies. It is presented for a two-dimensional rectilinear-cascade of zero-staggered flat-plate vanes and completed by the implementation of a Kutta condition. It is then validated in sound generation and transmission test cases by comparing with a previously reported model based on the Wiener-Hopf technique and with reference numerical simulations. Finally it is used to analyze the tonal rotor-stator interaction noise in a typical low-speed fan architecture. The interest of the mode-matching technique is that it could be easily transposed to a three-dimensional annular cascade in cylindrical coordinates in a future work. This makes it an attractive alternative to the classical strip-theory approach.
Energy Technology Data Exchange (ETDEWEB)
Rocha, Jussie Soares da, E-mail: jussie.soares@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Valenca, PI (Brazil); Maciel, Edisson Savio de G., E-mail: edissonsavio@yahoo.com.br [Instituto Tecnologico de Aeronautica (ITA), Sao Paulo, SP (Brazil); Lira, Carlos A.B. de O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)
2015-07-01
Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)
Huizinga, Richard J.
2007-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total
Off-Body Boundary-Layer Measurement Techniques Development for Supersonic Low-Disturbance Flows
Owens, Lewis R.; Kegerise, Michael A.; Wilkinson, Stephen P.
2011-01-01
Investigations were performed to develop accurate boundary-layer measurement techniques in a Mach 3.5 laminar boundary layer on a 7 half-angle cone at 0 angle of attack. A discussion of the measurement challenges is presented as well as how each was addressed. A computational study was performed to minimize the probe aerodynamic interference effects resulting in improved pitot and hot-wire probe designs. Probe calibration and positioning processes were also developed with the goal of reducing the measurement uncertainties from 10% levels to less than 5% levels. Efforts were made to define the experimental boundary conditions for the cone flow so comparisons could be made with a set of companion computational simulations. The development status of the mean and dynamic boundary-layer flow measurements for a nominally sharp cone in a low-disturbance supersonic flow is presented.
Study of Interaction between Supersonic Flow and Rods Surrounded by Porous Cavity
Institute of Scientific and Technical Information of China (English)
Minoru YAGA; Kenji YAMAMOTO; Piotr DOERFFER; Kenyu OYAKAWA
2006-01-01
In this paper,some preliminary calculations and the experiments were performed to figure out the flow field,in which some rods were normally inserted into the main flow surrounded by a porous cavity.As a result,it is found that the starting shock wave severely interacts with the rods,the bow shock wave,its reflections,and the porous wall,which are numerically well predicted at some conditions.Moreover,inserting the rods makes the pressure on the upper wall in the porous region increase when the main flow in the porous region is completely supersonic.The calculations also suggest that three rods cause the widest suction area.
Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.
Continuous-Wave Cavity Ring-Down Spectroscopy in a Pulsed Uniform Supersonic Flow
Thawoos, Shameemah; Suas-David, Nicolas; Suits, Arthur
2017-06-01
We introduce a new approach that couples a pulsed uniform supersonic flow with high sensitivity continuous wave cavity ringdown spectroscopy (UF-CRDS) operated in the near infrared (NIR). This combination is related to the CRESU technique developed in France and used for many years to study reaction kinetics at low temperature, and to the microwave based chirped-pulse uniform supersonic flow spectrometer (CPUF) developed in our group which has successfully demonstrated the use of pulsed uniform supersonic flow to probe reaction dynamics at temperatures as low as 22 K. CRDS operated with NIR permits access to the first overtones of C-H and O-H stretching/bending which, in combination with its extraordinary sensitivity opens new experiments complementary to the CPUF technique. The UF-CRDS apparatus (Figure) utilizes the pulsed uniform flow produced by means of a piezo-electric stack valve in combination with a Laval nozzle. At present, two machined aluminum Laval nozzles designed for carrier gases Ar and He generate flows with a temperature of approximately 25 K and pressure around 0.15 mbar. This flow is probed by an external cavity diode laser in the NIR (1280-1380 nm). Laval nozzles designed using a newly developed MATLAB-based program will be used in the future. A detailed illustration of the novel UF-CRDS instrumentation and its performance will be presented along with future directions and applications. I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, A. G. Suits, J. Phys. Chem. Lett. 6, 1599-1604, (2015). N. Suas-David, T. Vanfleteren, T. Foldes, S. Kassi, R. Georges, M. Herman, J. Phys. Chem.A, 119, 10022-10034, (2015). C. Abeysekera, B. Joalland, Y. Shi, A. Kamasah, J. M. Oldham, A. G. Suits, Rev. Sci. Instrum. 85, 116107, (2014).
Flutter and thermal buckling control for composite laminated panels in supersonic flow
Li, Feng-Ming; Song, Zhi-Guang
2013-10-01
Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
Energy Technology Data Exchange (ETDEWEB)
Abbett, M. J.; Fort, R.
1968-09-01
The three-dimensional ideal gas flow in the shock layer of a blunted supersonic cone at an angle of attack is calculated using two asymptotic solutions. The first solution calculates the steady state flow in the subsonic nose region by obtaining a time-dependent solution of the hyperbolic equations using numerical techniques. Internal, nonboundary points are calculated using a Lax-Wendroff numerical type technique. Boundary points, shock and body surface, are computed using a time-dependent method of characteristics. When a steady state solution is reached the flow properties on a surface of constant {theta}, (where the Mach number is everywhere > 1) are used for initial data for the afterbody solution. The afterbody solution, using polar coordinates (r, {theta}, {phi}) assumes at r{sub 0} an arbitrary set of initial conditions provided by the nose region solution and computes the downstream flow as a function of {theta}, {phi}, and r until an asymptotic state independent of r develops. The interior mesh points are again calculated using a Lax- Wendroff type technique and the boundary points by a method of characteristics. This report covers the coupling of the time-dependent and radius (r) dependent solutions. Instructions are given for the operation of the resulting Fortran code. The type of input data required is detailed and sample output is provided. Output data is given in two sets of coordinates. One is wind orientated; the other set is given in body orientated coordinates; The analytical transformation from one coordinate system to the other is given.
Development of a background-oriented schlieren technique with telecentric lenses for supersonic flow
Cozzi, F.; Göttlich, E.; Angelucci, L.; Dossena, V.; Guardone, A.
2017-01-01
Background oriented schlieren (BOS) is a quantitative optical technique which exploits light deflection occurring in non-homogeneous transparent media. It allows to indirectly measure the density gradients by analysing the apparent displacement of features of a background pattern when imaged through the investigated flow. Thanks to its simple set-up and to the consolidated data reduction technique based on cross-correlation algorithms the BOS technique has progressively attracted the interest of the researchers. In this work a BOS system using a telecentric lens system has been set up in order to improve measurement accuracy and to avoid 3D effects arising from using conventional entocentric lenses. The design of the telecentric lens system is reported along with an analysis of its performance in term of spatial resolution. Some preliminary tests on a supersonic flows are also reported.
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
Lashkov, V. A.; Karpenko, A. G.; Khoronzhuk, R. S.; Mashek, I. Ch.
2016-05-01
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified by microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.
The influence of boundary layers on supersonic inlet flow unstart induced by mass injection
Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.
2011-09-01
A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.
Directory of Open Access Journals (Sweden)
S.B.H Shah
2012-01-01
Full Text Available A numerical study is performed for a sonic jet issuing from a blunted cone to provide possible directional control in supersonic crossflow by solving the unsteady Reynolds-averaged Navier-Stokes (RANS equations with the twoequation k −ω turbulence model. Results are presented in the form of static aerodynamic coefficients, computed at a free stream Mach number 4.0, with varying pressure ratios, incidence angle and keeping zero yaw and roll angles. The morphology and flow structure for the jet exhausting in crossflow at various pressure ratios is described in detail. The Flight control of the projectile can be accomplished by taking advantage of a complex shock-boundary layer interaction produced by jet interacting with the oncoming crossflow by altering pressure distribution in vicinity of the jet, a net increase in the net force can be utilized for maneuvering of vehicle and possible flight control. Computed static aerodynamic coefficients and pressure distribution using CFD analyses is with an accuracy of ± 5% in the supersonic range.
Modernized scheme of thermal ignition and flame stabilization at flow supersonic speeds in channel
Goldfeld, M. A.; Nalivaychenko, D. G.; Starov, A. V.; Timofeev, K. Yu.
2016-10-01
For providing fuel ignition at the high supersonic flow velocity original device was developed. Main element of this device in the form of wall slotted channel has to provide the high flow temperature in the area of mixture. Numerical simulation has been performed based on solving the full averaged Navier-Stokes equations, supplemented k-ɛ turbulence model. The experiments were carried out in the hotshot wind tunnel IT-302M at the mode of the attached pipe. The flow parameters at the model entrance were following: M = 2 - 5.8, p0 = 12 - 390bar, T0 = 1170 - 2930K at equivalence ratio of hydrogen from 0.6 to 1.1. Self-ignition of the hydrogen in the slotted channel has occurred at total flow temperature of 2250K at the combustor entrance. The combustion process is extended to the entire channel of the combustor. When the facility worked with decreasing parameters of the flow, combustion continued until drop of the static temperature of about 230K at the entrance of the combustor.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
The flow over a 'high' aspect ratio gothic wing at supersonic speeds
Narayan, K. Y.
1975-01-01
Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.
Miner, E. W.; Lewis, C. H.
1972-01-01
An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.
Simulation of Supersonic Flow in an Ejector Diffuser Using the JPVM
Directory of Open Access Journals (Sweden)
Carlos Couder-Castañeda
2009-01-01
creating and holding a vacuum system. The goal of this job is to develop an object oriented parallel numerical code to investigate the unsteady behavior of the supersonic flow in the ejector diffuser to have an efficient computational tool that allows modeling different diffuser designs. The first step is the construction of a proper transformation of the solution space to generate a computational regular space to apply an explicit scheme. The second step, consists in developing the numerical code with an-object-oriented parallel methodology. Finally, the results obtained about the flux are satisfactory compared with the physical sensors, and the parallel paradigm used not only reduces the computational time but also shows a better maintainability, reusability, and extensibility accuracy of the code.
Malkov, Ewgenij A.; Poleshkin, Sergey O.; Kudryavtsev, Alexey N.; Shershnev, Anton A.
2016-10-01
The paper presents the software implementation of the Boltzmann equation solver based on the deterministic finite-difference method. The solver allows one to carry out parallel computations of rarefied flows on a hybrid computational cluster with arbitrary number of central processor units (CPU) and graphical processor units (GPU). Employment of GPUs leads to a significant acceleration of the computations, which enables us to simulate two-dimensional flows with high resolution in a reasonable time. The developed numerical code was validated by comparing the obtained solutions with the Direct Simulation Monte Carlo (DSMC) data. For this purpose the supersonic flow past a flat plate at zero angle of attack is used as a test case.
Supersonic flow about cone eith ijection of gas through its surface described by power law
Antonov, A. M.; Zakrevskiy, V. A.
1986-01-01
The influence of intensive mass transfer on the supersonic flow of gas about a cone of finite length is investigated. The mathematical model describing the interaction of the primary flow and the transverse flow formed by injection is the boundary problem for a system of equations presented with boundary conditions on the cone and on the contact discontinuity. It is found that the contact surface is nonrectilinear when the injected gas is described by a power law and that the thickness of the layer coming in contact with the cone increases as the intensity of the injection becomes higher. The distribution of the pressure coefficient along a finite cone is calculated as a function of the parameter(s) associated with the injection flow rate, and the Mach number of the oncoming stream. It is found that the pressure coefficient drops off along the generatrix of a cone for all velocities of injection and oncoming stream when the injection is distributed. As the injection intensity increases, the pressure coefficient on the surface increases.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.
Sarimurat, Mehmet Nasir
suction at a given location that is required to hold the shock at a given area ratio as the back pressure is varied. The formulation is based on classical inviscid- and compressible-flow theories for normal shock waves and flow transpiration in converging/diverging flow passages. The theory shows that, for the case where there is a shock wave inside a diverging section with supersonic inlet, as the back pressure is increased, the shock can be held stationary if either flow suction is applied behind the shock or flow blowing is applied in front of the shock. For the case of blowing, the amount of flow blowing required to fix the shock location decreases with both increasing total pressure and total temperature of the blown flow. Applications of this quasi-1D theory are demonstrated for 2D supersonic nozzles and supersonic sections of NASA Rotor-37 and NASA UEET R2 rotors taken at the span station 10% from tip. Excellent agreement between the theory and CFD is observed. For the NASA Rotor-37 and NASA UEET R2 rotor cascade sections studied, if suction behind the shock is applied to fix the shock location inside the passage as the back pressure is increased 3-4% from the design point back pressure, the amount of required flow removal is on the order of 3.5% of the main flow. For the same case if flow blowing is applied in front of the shock, the amount of the flow that is needed to be blown to fix the shock location is a function of the stagnation conditions of the blown flow. When the total pressure of the blown flow is taken to be 1.5 times that of the local flow and the total temperature to be 1.3 times that of the local flow the amount of the flow needed to be blown is on the order of 1% of the main flow.
AN EXPERIMENTAL EVALUATION OF TRANSIENT FLOWS IN A SUPERSONIC GUN TUNNEL
Directory of Open Access Journals (Sweden)
Al Al-Falahi Amir
2012-12-01
Full Text Available An experimental study has been performed to investigate transient flows in a supersonic gun tunnel. The experimental work was performed using a short duration high speed flow test facility at the Universiti Tenaga Nasional (UNITEN. A physical description of the facility along with the principles of operation is provided. The pressure history of the flow process was captured using a fast response pressure transducer at three stations located at the end of the facility. Experimental measurements of shock strength, peak pressure and shock wave speed change of Air-Air as a driver/driven gas are then presented and compared with a further set of experimental measurements using the gas combination of Helium-Air. The shock wave speed was measured experimentally with a two pressure transducers technique. The results showed that the existence of the piston has a very significant influence on both the moving shock wave and peak pressure value achieved. The results provide a very good estimate for the above-mentioned parameters obtained after diaphragm rupture, and also provide a better understanding of the parameters that affect the performance of the facility.
Production of high-beta magnetised plasmas by colliding supersonic flows from inverse wire arrays
Hare, Jack; Suttle, Lee; Lebedev, Sergey; Bennett, Matthew; Burdiak, Guy; Clayson, Thomas; Suzuki-Vidal, Francisco; Swadling, George; Patankar, Siddharth; Robinson, Timothy; Stuart, Nicholas; Smith, Roland; Yang, Qingguo; Wu, Jian; Rozmus, Wojciech
2015-11-01
HEDP often exhibit a high plasma β and an electron Hall parameter greater than one. This results in a complex interplay between the transport of heat and magnetic fields, relevant to the Magnetised Liner Inertial Fusion (MagLIF) concept. We can produce such plasmas by colliding two supersonic quasi-planar flows from two adjacent inverse wire arrays made from carbon. The standing shock formed by the collision heats and compresses the plasma. The plasma flows advect magnetic fields which are perpendicular to the flow direction. Depending on the experimental set up, this can result in either flux compression or reconnection in the interaction region. The experiments are conducted on MAGPIE (1.4 MA, 250 ns current pulse). The formed shock is stable over long timescales (~100 ns), and the electron temperature (100 eV) is close to the ion temperature (500 eV), measured by spatially resolved Thomson scattering. Magnetic fields above 5 T is observed using a Faraday rotation diagnostic, and an electron density of around 5x1017 cm-3 is measured by interferometry.
Institute of Scientific and Technical Information of China (English)
Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi
2006-01-01
When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.
Musial, Norman T.; Ward, James J.
1959-01-01
An investigation of the thrust characteristics and internal pressure distributions of two convergent-divergent 15 deg. half-angle exhaust nozzles having area ratios of 6 and 9 was made in the NASA Lewis 10- by 10-foot supersonic wind tunnel. The tests were conducted at free-stream Mach numbers of 0, 2.0, 2.5, 3.0, and 3.5 over a range of nozzle pressure ratios from 3 to 105. Attempts were made to induce separation of the overexpanded nozzle flow using secondary airflow and a wedge. Nozzle flow expansion under all free-stream conditions followed one-dimensional theory until separation from the nozzle wall occurred. In quiescent air the nozzle flow expanded to a pressure approximately one-half the base pressure before separation. When the nozzles were tested with supersonic external flow at the same effective pressure ratios, the nozzle flow separated with negligible expansion below the base pressure. The effect of a supersonic stream on internal nozzle flow separation characteristics was well defined only at a free-stream Mach number of 2.0. Thrust data at supersonic free-stream conditions indicate that only a small percentage of the ideal nozzle thrust will be available at nozzle pressure ratios below design. However, the overexpanded primary nozzle thrust loss was decreased by injecting large quantities of secondary air near the nozzle exit. In most cases no net gain in thrust resulted from secondary-air injection when the nozzle thrust was compared with the ideal thrust of both the primary and secondary airflows.
Institute of Scientific and Technical Information of China (English)
袁生学
1999-01-01
Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.
Application of Tomo-PIV in a large-scale supersonic jet flow facility
Wernet, Mark P.
2016-09-01
Particle imaging velocimetry (PIV) has been used extensively at NASA GRC over the last 15 years to build a benchmark data set of hot and cold jet flow measurements in an effort to understand acoustic noise sources in high-speed jets. Identifying the noise sources in high-speed jets is critical for ultimately modifying the nozzle hardware design/operation and therefore reducing the jet noise. Tomographic PIV (Tomo-PIV) is an innovative approach for acquiring and extracting velocity information across extended volumes of a flow field, enabling the computation of additional fluid mechanical properties not typically available using traditional PIV techniques. The objective of this work was to develop and implement the Tomo-PIV measurement capability and apply it in a large-scale outdoor test facility, where seeding multiple flow streams and operating in the presence of daylight presents formidable challenges. The newly developed Tomo-PIV measurement capability was applied in both a subsonic M 0.9 flow and an under-expanded M 1.4 heated jet flow field. Measurements were also obtained using traditional two-component (2C) PIV and stereo PIV in the M 0.9 flow field for comparison and validation of the Tomo-PIV results. In the case of the M 1.4 flow, only the 2C PIV was applied to allow a comparison with the Tomo-PIV measurement. The Tomo-PIV fields-of-view covered 180 × 180 × 10 mm, and the reconstruction domains were 3500 × 3500 × 200 voxels. These Tomo-PIV measurements yielded all three components of vorticity across entire planes for the first time in heated supersonic jet flows and provided the first full 3D reconstruction of the Mach disk and oblique shock intersections inside of the barrel shocks. Measuring all three components of vorticity across multiple planes in the flow, potentially reduces the number of measurement configurations (streamwise and cross-stream PIV) required to fully characterize the mixing-enhanced nozzle flows routinely studied in
Numerical simulations of Kelvin-Helmholtz instability: a two-dimensional parametric study
Tian, Chunlin
2016-01-01
Using two-dimensional simulations, we numerically explore the dependences of Kelvin-Helmholtz instability upon various physical parameters, including viscosity, width of sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirm that the linear coupling between magnetic field and Kelvin-Helmholtz modes is negligible if the magnetic field is weak enough. The morphological behaviour suggests that the multi-vortex coalescence might be driven by the underlying wave-wave interaction. Based on these results, we make a preliminary discussion about seve...
Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow
Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam
2017-01-01
The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.
Quantified infrared imaging of ignition and combustion in a supersonic flow
Ombrello, Timothy; Blunck, David L.; Resor, Michael
2016-09-01
The utility of quantified infrared radiation imaging was evaluated through interrogating ignition and burning processes within a cavity-based flameholder in supersonic flows. Two ignition techniques, spark discharge and pulse detonation, along with quasi-steady cavity burning were used to assess the sensitivities of measurements of radiation intensities in the infrared. The shedding of ignition kernels from the spark discharge was imaged, showing that sufficient signal-to-noise ratios can be achieved even with weak radiation emission levels. The ignition events using a pulse detonator were captured with time-resolved measurements of the plume evolution, including the barrel shock, Mach disk, and shock diamonds. Radiation emissions from subsequent firings of the pulse detonator increased, indicating that heat loss to the tube walls occurred in the early pulses. Imaging of the quasi-steady burning within the cavity demonstrated that the highest burning flux (visible broadband chemiluminescence) and radiation from hydrocarbons (3.4 µm) do not coincide with each other for the fueling strategy used. Numerical simulations provided insight into the species distributions that caused the infrared emissions. Overall, infrared radiation measurements have been shown to be feasible through combustor windows in the harsh combustion environments that were interrogated, and offer a new avenue for rapid and quantitative measurements of reactive flow.
Impact of surface proximity on flow and acoustics of a rectangular supersonic jet
Gutmark, Ephraim; Baier, Florian; Mora, Pablo; Kailsanath, Kailas; Viswanath, Kamal; Johnson, Ryan
2016-11-01
Advances in jet technology have pushed towards faster aircraft, leading to more streamlined designs and configurations, pushing engines closer to the aircraft frame. This creates additional noise sources stemming from interactions between the jet flow and surfaces on the aircraft body, and interaction between the jet and the ground during takeoff and landing. The paper studies the impact of the presence of a flat plate on the flow structures and acoustics in an M =1.5 (NPR =3.67) supersonic jet exhausting from a rectangular C-D nozzle. Comparisons are drawn between baseline cases without a plate and varying nozzle-plate distance at NPRs from 2.5 to 4.5, and temperature ratios of up to 3.0. At the shielded side and sideline of the plate noise is mitigated only when the plate is at the nozzle lip (h =0). Low frequency mixing noise is increased in the downstream direction only for h =0. Screech tones that exist only for low NTR are fully suppressed by the plate at h =0. However, for h>0 the reflection enhances screech at both reflected side and sideline. Low frequency mixing noise is enhanced by the plate at the reflected side at all plate distances, while broad band shock associated noise is reduced only at the sideline for h =0. Increased temperature mitigates the screech tones across all test conditions. The results are compared to a circular nozzle of equivalent diameter with an adjacent plate.
Two-Dimensional Supersonic Jet Mixing of Air and Helium.
1978-12-01
fraction of each gas in the bottle. The pressure of each sample was taken using a low volume U-tube mercury manometer . The accuracy of these pressure...Elfments of Gasdynamics. New York: Jehn Wiley and Sons, Inc., 1957. 41 Appendix A Gas Sample Pressure Calculation A low volume U-tube mercury ... manometer was used to measure the pressure in the gas sample bottles. However, the pressure read from the manometer was not the actual pressure in the
Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling
Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.
2011-01-01
Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.
2016-11-09
AFRL-AFOSR-VA-TR-2016-0357 (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON...COVERED (From - To) 03 Sep 2010 to 29 Sep 2011 4. TITLE AND SUBTITLE (DURIP 10) HIGH-SPEED INTENSIFIED IMAGING SYSTEM FOR STUDIES OF MIXING AND COMBUSTION ...91125 HIGH SPEED INTENSIFIED IMAGING SYSTEM FOR MIXING AND COMBUSTION IN SUPERSONIC FLOWS AND HYDROCARBON- FLAME STRUCTURE MEASUREMENTS AT
Directory of Open Access Journals (Sweden)
Chih Chiang Hong
2017-03-01
Full Text Available A model is presented for functionally-graded material (FGM, thick, circular cylindrical shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT with varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated by using the generalized differential quadrature (GDQ method. The varied shear correction coefficients are usually functions of FGM total thickness, power law index, and environment temperature. Two parametric effects of the environmental temperature and FGM power law index on the thermal stress and center deflection are also presented. The novelty of the paper is that the maximum flutter value of the center deflection amplitude can be predicted and occurs at a high frequency of applied heat flux for a supersonic air flow.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Heat transfer in a supersonic steady flow of a dilute dusty-gas past a sphere is considered at large and moderate Reynolds numbers. For the regime of inertial particle deposition on the frontal surface of the body, a parametric study of maximum increase in the particle-induced heat flux at the stagnation point is performed over a wide range of the Reynolds number, the particle inertia parameter, the ratio of the phase specific heats, and the body surface temperature.
Hemidi, Amel; Henry, François; Leclaire, Sébastien; Seynhaeve, Jean-Marie; Bartosiewicz, Yann
2009-01-01
Abstract This paper presents an original CFD analysis of the operation of a supersonic ejector. This study is based on CFD and experimental results obtained in the first part paper [1]. Results clearly demonstrates that a good predictions of the entrainment rate, even over a wide range of operating conditions, do not necessarily mean a good prediction of the local flow features. This issue is shown through the results obtained for two turbulence models, and also raises the problem ...
Energy Technology Data Exchange (ETDEWEB)
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows
Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian
2015-06-01
Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.
Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow
Heeb, N.; Gutmark, E.; Kailasanath, K.
2016-05-01
An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.
Institute of Scientific and Technical Information of China (English)
LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu
2011-01-01
This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.
Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment
Gladden, Herbert J.; Melis, Matthew E.
1994-01-01
A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.
Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow
Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano
2016-06-01
HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
2016-04-12
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Van den Hove, L E; Meeus, P; Derom, A; Demuynck, H; Verhoef, G E; Vandenberghe, P; Boogaerts, M A
1998-06-01
The distribution of 27 T-, B-, and natural killer-cell subsets in the peripheral blood of 40 patients with multiple myeloma (MM), ten patients with monoclonal gammopathy of undetermined significance (MGUS), and 40 healthy donors was investigated by means of classical univariate statistics and advanced multivariate data-analytical techniques. The latter approach was used to describe, represent, and analyze lymphocyte subset distribution in a two-dimensional correlation biplot, allowing comparison of complex lymphocyte profiles (i.e., compound lymphocyte subset distributions) of individual subjects rather than isolated subset values of selected patient and/or donor groups. The correlation biplot revealed that, in accordance with the univariate statistics, the MM patients were characterized by marked shifts towards CD8+, CD57+, CD62L-, CD(16+56)+, and HLA-DR+ T cells, suggesting in vivo immune activation. The activation profile was most markedly observed in treated MM patients in the advanced disease stage category. The lymphocyte profiles of MGUS patients were heterogeneous, with approximately half of them located in the swarm of MM patients and the other half in the swarm of healthy donors. Although the univariate statistics revealed significant differences between MGUS patients and healthy donors only within the B-cell compartment, the correlation biplot revealed that two MGUS patients clearly had a typical T-cell activation profile similar to that of the MM patients. One MGUS patient with a T-cell activation profile progressed 13 months later to a stage IA MM and required chemotherapy. A marked lymphocyte profile shift in one MM patient was associated with terminal and aggressive disease transformation. Our study illustrates further the practical use of correlation biplots for the detection of aberrant lymphocyte profiles and/or profile shifts in individual patients.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was
Zeroth-order flutter prediction for cantilevered plates in supersonic flow
CSIR Research Space (South Africa)
Meijer, M-C
2015-08-01
Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...
Mantič-Lugo, Vladislav; Gallaire, François
2016-12-01
Selective noise amplifiers are characterized by large linear amplification to external perturbations in a particular frequency range despite their global linear stability. Applying a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear saturation when compared to the linear estimation. Building upon our previous work, we introduce a predictive model that describes this nonlinear dynamics, and we apply it to a canonical example of selective noise amplifiers: the backward-facing step flow. Rewriting conveniently the stochastic forcing and response in the frequency domain, the model consists in a mean flow equation coupled to the linear response to forcing at each frequency. This coupling is attained by the Reynolds stress, which is constructed by the integral in frequency of the independent responses. We generalize the model for a response to a white noise forcing δ -correlated in space and time restricting the flow dynamics to its most energetic patterns calculated from the optimal harmonic forcing and response of the flow. The model estimates accurately the response saturation when compared to direct numerical simulations, and it correctly approximates the structure of the response and the mean flow modification. It also shows that the response undergoes a selective process governed by the nonlinear gain, which promotes a response structure with an approximately single frequency and wavelength in the whole domain. These results suggest that the mean flow modification by the Reynolds stress is the key nonlinearity in the saturation process of the response to white noise.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Directory of Open Access Journals (Sweden)
V. Rajesh
2014-08-01
Full Text Available The interaction of free convection with thermal radiation of a viscous incompressible unsteady flow past a vertical plate with ramped wall temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The fluid is gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative flux in the energy equation. The dimensionless governing equations are solved using an implicit finite-difference method of the Crank-Nicolson type, which is stable and convergent. The velocity profiles are compared with the available theoretical solution and are found to be in good agreement. Numerical results for the velocity, the temperature, the concentration, the local and average skin friction, the Nusselt number and Sherwood number are shown graphically. This work has wide application in chemical and power engineering and also in the study of vertical air flow into the atmosphere. The present results can be applied to an important class of flows in which the driving force for the flow is provided by combination of the thermal and chemical species diffusion effects.
Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier
2017-03-01
This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.
1987-01-01
Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Institute of Scientific and Technical Information of China (English)
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
Messaris, G. T.; Papastavrou, C. A.; Loukopoulos, V. C.; Karahalios, G. T.
2009-08-01
A new finite-difference method is presented for the numerical solution of the Navier-Stokes equations of motion of a viscous incompressible fluid in two (or three) dimensions and in the primitive-variable formulation. Introducing two auxiliary functions of the coordinate system and considering the form of the initial equation on lines passing through the nodal point (x0, y0) and parallel to the coordinate axes, we can separate it into two parts that are finally reduced to ordinary differential equations, one for each dimension. The final system of linear equations in n-unknowns is solved by an iterative technique and the method converges rapidly giving satisfactory results. For the pressure variable we consider a pressure Poisson equation with suitable Neumann boundary conditions. Numerical results, confirming the accuracy of the proposed method, are presented for configurations of interest, like Poiseuille flow and the flow between two parallel plates with step under the presence of a pressure gradient.
Sabri, Farhad
Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled
Institute of Scientific and Technical Information of China (English)
杨延强; 易维明; 李志合; 柏雪源; 李永军
2012-01-01
In the cold PIV (particle image velocimetry) system of the laminar entrained flow reactor, the relative position between the camera and the measuring tube was an important condition to ensure accurate test data. To make the PIV operation more convenient, accurate, and fast in the test, two-dimensional PIV automatic control system was designed. And the reliability of the system was tested in the cold simulation equipment of laminar flow furnace, compared with no using two-dimensional PIV automatic control system, the results showed that in different sections of the measuring tube, the particle speed of the axial center achieves a smooth transition, and eliminates the jump change; when collection distance is 350mm and main air flow rate is 1. 5 mVh, the relative error of particle residence time is 9. 218% ; and the operation saves time and effort in the test process. These suggested that the two-dimensional PIV automatic control system could satisfy the cold test of the laminar entrained flow reactor needs, achieve uniform and continuous test, reduce human error and improve the accuracy of test data.%在层流炉冷态粒子图像测速( PIV)系统中,相机与测量管的相对位置是保证试验数据精确的重要条件.为使试验过程中整个PIV系统操作起来更加方便、准确、快捷,设计了二维PIV自动控制系统,并在层流炉冷态模拟装置上对该系统的可靠性进行了试验验证.与没有使用二维PIV自动控制系统之前的试验结果相比:各测量段颗粒的轴向中心速度相互之间的衔接实现了平滑过渡,消除了跳跃性变化；收集距离为350 mm,主气流流量为1.5 m3/h时,层流炉内颗粒停留时间的相对误差为9.218％.说明该二维PIV自动控制系统能够满足层流炉冷态试验需要,实现了均匀、连续拍摄,减少了人为误差,提高了试验数据的准确性.
Zhu, Lin; Qi, Yin-Yin; Liu, Wei-Lai; Xu, Bao-Jian; Ge, Jia-Ru; Xuan, Xiang-Chun; Jen, Tien-Chien
2016-12-01
The incident shock wave generally has a strong effect on the transversal injection field in cold kerosene-fueled supersonic flow, possibly due to its affecting the interaction between incoming flow and fuel through various operation conditions. This study is to address scale effect of various injection diameters on the interaction between incident shock wave and transversal cavity injection in a cold kerosene-fueled scramjet combustor. The injection diameters are separately specified as from 0.5 to 1.5 mm in 0.5 mm increments when other performance parameters, including the injection angle, velocity and pressure drop are all constant. A combined three dimensional Couple Level Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model is used to characterize penetration height, span expansion area, angle of shock wave and sauter mean diameter (SMD) distribution of the kerosene droplets with/without considering evaporation. Our results show that the injection orifice surely has a great scale effect on the transversal injection field in cold kerosene-fueled supersonic flows. Our findings show that the penetration depth, span angle and span expansion area of the transverse cavity jet are increased with the injection diameter, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the combustor for the orifice diameter of 1.5 mm. The calculation predictions are compared against the reported experimental measurements and literatures with good qualitative agreement. The simulation results obtained in this study can provide the evidences for better understanding the underlying mechanism of kerosene atomization in cold supersonic flow and scramjet design improvement.
Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando
2016-04-01
Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential
Directory of Open Access Journals (Sweden)
Szymkiewicz Adam
2015-09-01
Full Text Available Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions, water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting. It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Szymkiewicz, Adam; Tisler, Witold; Burzyński, Kazimierz
2015-09-01
Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting). It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Mckenzie, R. L.; Gross, K. P.; Logan, P.
1985-01-01
A pulsed laser-induced fluorescence technique is described that provides simultaneous measurements of temperature, density, and pressure in low-temperature, turbulent flows. The measurements are made with spatial and temporal resolution comparable to that obtained with modern laser anemometer techniques used for turbulent boundary layer research. The capabilities of the method are briefly described and its demonstration in a simple two-dimensional turbulent boundary layer at Mach 2 is reported. The results are compared with conventional hot-wire anemometer data obtained in the same flow.
Fuchs, L.; Schmeling, H.
2013-08-01
A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille-Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh-Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and
Bao, Cheng; Bessler, Wolfgang G.
2015-03-01
The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called 'configuration of system dynamics', which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.
2011-11-01
This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.
Institute of Scientific and Technical Information of China (English)
LI Liang; SUN Xiuling; LI Guojun; FENG Zhenping
2006-01-01
The self-excited flow oscillation due to supercritical heat addition during the condensation process in wet steam turbine is an important issue. With an Eulerian/Eulerian model, the self-excited oscillation of wet steam flow in a supersonic turbine cascade is investigated. A proper inlet supercooling results in the transition from steady flow to self-excited oscillating flow in the cascade of steam turbine.The frequency dependency on the inlet supercooling is not monotonic. The flow oscillation leads to non-synchronous periodical variation of the inlet and outlet mass flow rate. The aerodynamic force on the blade varies periodically due to the self-excited flow oscillation. With the frequency lies between 18.1-80.64 Hz, the oscillating flow is apt to act with the periodical variation of the inlet supercooling due to stator rotor interaction in a syntonic pattern, and results in larger aerodynamic force on the blade. The loss in the oscillating flow increases 20.64 ％ compared with that in the steady flow.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
沟道二维泥石流运动和冲淤数值模型研究%Two-dimensional numerical model for debris flow motion and gully bed evolution
Institute of Scientific and Technical Information of China (English)
张万顺; 赵琰鑫; 崔鹏; 彭虹; 陈雪娇
2012-01-01
以水沙混合流模型为基础,采用混合流沙量动态变化模式,提出泥石流运动控制方程组,建立适用于模拟泥石流在天然沟道中的运动和冲淤过程的二维数值模型.模型基于水动力学理论、水沙两相混合流理论和宾汉体模型理论,考虑了泥石流运动、泥沙输移、沟床变形、泥石流宾汉体流变特性等主要动力学过程.将模型应用于云南东川蒋家沟实测泥石流过程的模拟研究,结果较好地反映了泥石流运动不连续性的特征和泥石流沟道冲淤随时间演变的实际规律.%A two-dimensional mathematical model of debris flow in natural gully is developed. Based on the hydrodynamic theory, the water-sediments two-phase flow theory and the Bingham rheological theory, the dynamic processes of debris flow movement, sediment transport, bed evolution and rheological properties of the debris flow are considered. The model is applied to simulate debris flow event in Jiangjia Gully, Yunnan Province and predict the flow pattern and bed erosion-deposition processes. The results show the effectiveness of the proposed model.
Laosunthara, Ampan; Akatsuka, Hiroshi
2016-09-01
In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.
Berglund, M.; Fedina, E.; Fureby, C.; Sabel'nikov, V.; Tegnér, J.
2009-01-01
In this study, Large Eddy Simulation (LES) is used to analyze supersonic flow, mix ing and combustion in a supersonic combustor equipped with a two-stage fuel injector strut. An explicit LES model, using a mixed subgrid model and two different tur bulence- chemistry interaction models is used in an unstructured finite volume framework. The LES model and its components, has been carefully validated in a large number of studies. The LES predictions are compared to experimental data such as the center line wall pressure distribution and OH-PLIF distributions in two cross- sections of the combustor, showing good qualitative and quantitative agreement. The LES results are furthermore used to elucidate the complex flow, mixing and combustion physics, imposed by the multi-injector, two-stage injector strut. The importance of the chemical kinetics, although weaker than anticipated, is noticeable and must be taken into account, as is the effects of the turbulence- chemistry interaction model. It is here demonstrated that a 7-step reaction scheme is sufficient to capture mixing, self-ignition and transition into turbulent combustion responsible for most of the thrust generation in a scramjet .