WorldWideScience

Sample records for two-dimensional steady-state heat

  1. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    Science.gov (United States)

    2017-03-09

    UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A ...any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...August 2014 4. TITLE AND SUBTITLE TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b

  2. On the existence of two-dimensional nonlinear steady states in plane Couette flow

    CERN Document Server

    Rincon, Francois

    2007-01-01

    The problem of two-dimensional steady nonlinear dynamics in plane Couette flow is revisited using homotopy from either plane Poiseuille flow or from plane Couette flow perturbed by a small symmetry-preserving identity operator. Our results show that it is not possible to obtain the nonlinear plane Couette flow solutions reported by Cherhabili and Ehrenstein [Eur. J. Mech. B/Fluids, 14, 667 (1995)] using their Poiseuille-Couette homotopy. We also demonstrate that the steady solutions obtained by Mehta and Healey [Phys. Fluids, 17, 4108 (2005)] for small symmetry-preserving perturbations are influenced by an artefact of the modified system of equations used in their paper. However, using a modified version of their model does not help to find plane Couette flow solution in the limit of vanishing symmetry-preserving perturbations either. The issue of the existence of two-dimensional nonlinear steady states in plane Couette flow remains unsettled.

  3. Quasi-steady-state analysis of two-dimensional random intermittent search processes

    KAUST Repository

    Bressloff, Paul C.

    2011-06-01

    We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

  4. Locating CVBEM collocation points for steady state heat transfer problems

    Science.gov (United States)

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  5. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  6. A two-dimensional MHD global coronal model - Steady-state streamers

    Science.gov (United States)

    Wang, A.-H.; Wu, S. T.; Suess, S. T.; Poletto, G.

    1992-01-01

    A 2D, time-dependent, numerical, MHD model for the simulation of coronal streamers from the solar surface to 15 solar is presented. Three examples are given; for dipole, quadrupole and hexapole (Legendre polynomials P1, P2, and P3) initial field topologies. The computed properties are density, temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions, their accuracy is discussed. Besides solutions for dipole, quadrupole, and hexapole geometries, the model use of realistic values for the density and Alfven speed while still meeting the requirement that the flow speed be super-Alfvenic at the outer boundary by extending the outer boundary to 15 solar radii.

  7. Formulation and validation of a two-dimensional steady-state model of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin R.;

    2015-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air-conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  8. Technical note: Analytical drawdown solution for steady-state pumping tests in two-dimensional isotropic heterogeneous aquifers

    Science.gov (United States)

    Zech, Alraune; Attinger, Sabine

    2016-05-01

    A new method is presented which allows interpreting steady-state pumping tests in heterogeneous isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in heterogeneous media cannot be described by a single effective or equivalent value of hydraulic transmissivity. An effective description of transmissivity is required, being a function of the radial distance to the well and including the parameters of log-transmissivity: mean, variance, and correlation length. Such a model is provided by the upscaling procedure radial coarse graining, which describes the transition of near-well to far-field transmissivity effectively. Based on this approach, an analytical solution for a steady-state pumping test drawdown is deduced. The so-called effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the drawdown within an individual heterogeneous transmissivity field. The analytical form of the solution allows inversely estimating the parameters of aquifer heterogeneity. For comparison with the effective well flow solution, virtual pumping tests are performed and analysed for both cases, the ensemble mean drawdown and pumping tests at individual transmissivity fields. Interpretation of ensemble mean drawdowns showed proof of the upscaling method. The effective well flow solution reproduces the drawdown for two-dimensional pumping tests in heterogeneous media in contrast to Thiem's solution for homogeneous media. Multiple pumping tests conducted at different locations within an individual transmissivity field are analysed, making use of the effective well flow solution to show that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus, the presented method is a promising tool with which to estimate parameters of aquifer heterogeneity, in particular variance and horizontal correlation length of log-transmissivity fields from steady-state pumping test measurements.

  9. Multiple nonequilibrium steady states for one-dimensional heat flow.

    Science.gov (United States)

    Zhang, F; Isbister, D J; Evans, D J

    2001-08-01

    A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have multiple steady states for any fixed heat field strength f(e) ranging from zero to a certain positive value. We demonstrate that, depending on the initial conditions, there are at least two possibilities for the system's evolution: (i) formation of a stable traveling wave (soliton), and (ii) chaotic motion throughout the entire simulation. The percentage of the soliton-generating trajectories is zero for small field strength f(e), but increases sharply to unity over a critical region of the parameter f(e).

  10. Nonequilibrium steady-state circulation and heat dissipation functional.

    Science.gov (United States)

    Qian, H

    2001-08-01

    A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.

  11. NASA Lewis Steady-State Heat Pipe Code Architecture

    Science.gov (United States)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  12. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  14. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual.

  15. Artifact-reduced two-dimensional cine steady state free precession for myocardial blood- oxygen-level-dependent imaging.

    Science.gov (United States)

    Zhou, Xiangzhi; Tsaftaris, Sotirios A; Liu, Ying; Tang, Richard; Klein, Rachel; Zuehlsdorff, Sven; Li, Debiao; Dharmakumar, Rohan

    2010-04-01

    To minimize image artifacts in long TR cardiac phase-resolved steady state free precession (SSFP) based blood-oxygen-level-dependent (BOLD) imaging. Nine healthy dogs (four male, five female, 20-25 kg) were studied in a clinical 1.5 Tesla MRI scanner to investigate the effect of temporal resolution, readout bandwidth, and motion compensation on long repetition time (TR) SSFP images. Breath-held 2D SSFP cine sequences with various temporal resolutions (10-204 ms), bandwidths (239-930 Hz/pixel), with and without first-order motion compensation were prescribed in the basal, mid-ventricular, and apical along the short axis. Preliminary myocardial BOLD studies in dogs with controllable coronary stenosis were performed to assess the benefits of artifact-reduction strategies. Shortening the readout time by means of increasing readout bandwidth had no observable reduction in image artifacts. However, increasing the temporal resolution in the presence of first-order motion compensation led to significant reduction in image artifacts. Preliminary studies demonstrated that BOLD signal changes can be reliably detected throughout the cardiac cycle. Artifact-reduction methods used in this study provide significant improvement in image quality compared with conventional long TR SSFP BOLD MRI. It is envisioned that the methods proposed here may enable reliable detection of myocardial oxygenation changes throughout the cardiac cycle with long TR SSFP-based myocardial BOLD MRI. (c) 2010 Wiley-Liss, Inc.

  16. Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations

    Science.gov (United States)

    Wong, Teresa; Solomatov, Viatcheslav S.

    2015-12-01

    The strongly temperature-dependent viscosity of rocks leads to the formation of nearly rigid lithospheric plates. Previous studies showed that a very low yield stress might be necessary to weaken and mobilize the plates, for example, due to water. However, the magnitude of the yield stress remains poorly understood. While the convective stresses below the lithosphere are relatively small, sublithospheric convection can induce large stresses in the lithosphere indirectly, through thermal thinning of the lithosphere. The magnitude of the thermal thinning, the stresses associated with it, and the critical yield stress to initiate subduction depend on several factors including the viscosity law, the Rayleigh number, and the aspect ratio of the convective cells. We conduct a systematic numerical analysis of lithospheric stresses and other convective parameters for single steady-state convection cells. Such cells can be considered as part of a multi-cell, time-dependent convective system. This allows us a better control of convective solutions and a relatively simple scaling analysis. We find that subduction initiation depends much stronger on the aspect ratio than in previous studies and speculate that plate tectonics initiation may not necessarily require significant weakening and can, at least in principle, start if a sufficiently long cell develops during planetary evolution.

  17. Meteorites, Continents, Heat, and Non-Steady State Geodynamics

    Science.gov (United States)

    White, W. M.; Morgan, J. P.

    2011-12-01

    Previous geochemical estimates of terrestrial radiogenic heat production were based on the assumption that refractory lithophile elements, such as the REE, U, and Th, are present in the Earth in chondritic relative proportions (the 'modified chondritic Earth' model, e.g., McDonough & Sun, Chem. Geol., 120: 223, 1995). However, 142Nd/144Nd ratios in modern terrestrial materials are 10 and 18 ppm higher than in enstatite and ordinary chondrites, respectively. One explanation is that the Sm/Nd ratio in the Earth, or at least the observable part of it, is 3 to 6% higher than chondritic, implying the Earth is non-chondritic, even for refractory lithophile elements. The most likely explanation is that a low Sm/Nd igneous protocrust formed as the Earth accreted and was lost through collisional erosion. A protocrust 3 to 6% enriched in Nd relative to Sm would have been even more strongly enriched in the more highly incompatible elements K, U, and Th. Calculations based on a model of protocrust formation and collisional erosion (O'Neill, & Palme, Phil. Trans. R. Soc. A366: 4205, 2008) that satisfy both Sm-Nd and Lu-Hf isotopic constraints imply U and Th concentrations in the bulk silicate Earth (BSE) that are 20 to 40% lower than in the 'modified chondritic Earth' model. Assuming a K/U = 13800 for the BSE, the K concentration is 10 to 30% lower than previously believed. This corresponds to a terrestrial heat production of 3.0 to 3.9 pW/kg or 11.9 to 15.8 TW. At the high end, these estimates are in excellent agreement with those of Lyubetskaya & Korenaga (JGR, 112: B03211, 2007), but are much lower than the 20 TW value derived from the 'modified chondritic Earth' model. Of this, some 5 to 10 TW of heat production is in the continental crust, leaving ≤10 TW of heat production in the mantle. For comparison, recent estimates of U, Th, and K in the depleted mantle imply heat production in the range of 0.7-1.0 pW/kg; if the depleted mantle occupies the entire mantle, this

  18. Steady state heat transfer in ORR irradiation capsules. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Michel, R.C.; Michaels, S.L.; Wilkes, G.R.

    1976-04-26

    The mathematical model developed by Stiros for prediction of temperature profiles in ORR irradiation capsules was modified and a numerical solution obtained. A Fortran computer program was written to solve the generalized finite difference equations applied to a fixed lattice system superimposed on the capsule cross section. The Liebmann iterative method was employed. The solution accounts for changes in internal heat generation, thermal expansion, and thermal conductivity induced by both temperature and fluence. The computed temperatures deviated from actual experimental measurements in the fuel rods by less than 2.0 percent.

  19. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    of low-energy DH systems. Various design concepts are considered in this paper: flexible pre-insulated twin pipes with symmetrical or asymmetrical insulation, double pipes, triple pipes. These technologies are potentially energyefficient and cost-effective solutions for DH networks in low-heat density......The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design...... areas. We start with a review of theories and methods for steady-state heat loss calculation. Next, the article shows how detailed calculations with 2D-modeling of pipes can be carried out by means of computer software based on the finite element method (FEM). The model was validated by comparison...

  20. Steady-state testing of an advanced solar-assisted heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1982-06-01

    A prototype water-to-air solar assisted heat pump (SAHP) has been tested under steady state conditions. The results of the tests indicate that the nominal goal for the hardware portion of the contract was achieved and surpassed. The tests show some areas of potential improvement, which are discussed.

  1. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  2. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  3. Maximum efficiency of steady-state heat engines at arbitrary power.

    Science.gov (United States)

    Ryabov, Artem; Holubec, Viktor

    2016-05-01

    We discuss the efficiency of a heat engine operating in a nonequilibrium steady state maintained by two heat reservoirs. Within the general framework of linear irreversible thermodynamics we derive a universal upper bound on the efficiency of the engine operating at arbitrary fixed power. Furthermore, we show that a slight decrease of the power below its maximal value can lead to a significant gain in efficiency. The presented analysis yields the exact expression for this gain and the corresponding upper bound.

  4. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  5. Two-dimensional fast imaging employing steady-state acquisition (FIESTA) cine acquisition of fetal non-central nervous system abnormalities.

    Science.gov (United States)

    Shen, Shu-Huei; Guo, Wan-Yuo; Hung, Jeng-Hsiu

    2007-09-01

    To evaluate the value of two-dimensional fast imaging employing steady-state acquisition (2D FIESTA) cine MR with parallel imaging techniques in the diagnosis of fetal non-central nervous system (CNS) anomalies. A total of 28 pregnant women were referred for further MR evaluation on fetuses after abnormal sonographic results. A total of 33 fetal MR examinations were performed by a 1.5 T MR scanner with eight-channel phase-arrayed body coils. Single-shot fast spin-echo (SSFSE(R), GE) of three orthogonal planes and 2D FIESTA for cine fetal MR of three sagittal planes (midsagittal and 10 mm off midline on left and right) were routinely acquired. Additional planes on target organs with variable imaging frames were added if indicated. Nine of the 33 examinations (9/33; 27.3%) had motion artifacts obscuring the detail in SSFSE imaging; 2D FIESTA imaging provided motion-artifact-free imaging in all of them. Cine 2D FIESTA imaging provided additional information on the visceral peristalsis. The information helped in differentiating dilated gastrointestinal (GI) tract from other intraabdominal cystic lesions and in confirming the nature and level of GI tract obstruction. With sub-half-second temporal resolution of the 2D FIESTA sequences, fetal movement is no longer problematic. In addition to the anatomical information also provided by conventional SSFSE sequences, 2D FIESTA demonstrates information on motility and peristalsis of hollow organs and helps the diagnosis of fetal visceral anomalies. (c) 2007 Wiley-Liss, Inc.

  6. High-power and steady-state operation of ICRF heating in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  7. Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems.

    Science.gov (United States)

    Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng

    2012-05-01

    We study the statistics of heat transferred in a given time interval t_{M}, through a finite harmonic chain, called the center, which is connected to two heat baths, the left (L) and the right (R), that are maintained at two temperatures. The center atoms are driven by external time-dependent forces. We calculate the cumulant generating function (CGF) for the heat transferred out of the left lead, Q_{L}, based on the two-time quantum measurement concept and using the nonequilibrium Green's function method. The CGF can be concisely expressed in terms of Green's functions of the center and an argument-shifted self-energy of the lead. The expression of the CGF is valid in both transient and steady-state regimes. We consider three initial conditions for the density operator and show numerically, for a one-atom junction, how their transient behaviors differ from each other but, finally, approach the same steady state, independent of the initial distributions. We also derive the CGF for the joint probability distribution P(Q_{L},Q_{R}), and discuss the correlations between Q_{L} and Q_{R}. We calculate the CGF for total entropy production in the reservoirs. In the steady state we explicitly show that the CGFs obey steady-state fluctuation theorems. We obtain classical results by taking ℏ→0. We also apply our method to the counting of the electron number and electron energy, for which the associated self-energy is obtained from the usual lead self-energy by multiplying a phase and shifting the contour time, respectively.

  8. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  9. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  10. New analytical solution for solving steady-state heat conduction problems with singularities

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2013-01-01

    Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.

  11. Quench Limit Model and Measurements for Steady State Heat Deposits in LHC Magnets

    CERN Document Server

    Bocian, D; Siemko, A

    2009-01-01

    A quench, transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in accelerator magnets if one of the three parameters: temperature, magnetic field or current density, exceeds its critical value. The protons lost from the beam and impacting on the vacuum chamber, create a secondary particle shower that deposes its energy in the magnet coil. Energy deposited in the superconductor by these particles can provoke quenches that can be detrimental for the accelerator operation. A network model is developed to study the thermodynamic behavior of the LHC magnets. The results of the heat flow simulation in the main dipole and quadrupole LHC magnets calculated by means of the network model were validated with measurements performed at superfluid helium temperatures in the CERN magnet test facility. A steady state heat flow was introduced in the magnet coil by using a dedicated internal heating apparatus (IHA) installed inside the magnet cold bore. The value of the heat so...

  12. Structural Integrity Evaluation of Intermediate Heat Exchanger in a Steady State Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyun; Koo, Gyeong-Hoi; Joo, Hyung-Kook; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In PGSFR (prototype Gen. IV sodium cooled fast reactor), four cylindrical-shaped intermediate heat exchangers (IHXs) are arranged in the PHTS (primary heat transfer system) to transfer heat generated from primary sodium to secondary sodium. The structural integrity of IHX is ensured by the choice of high ductile materials, and design and construction as per code like ASME. In order to respect the design code rule, the structural integrity evaluation of IHX was reviewed. In this study, the results of its structural integrities in a steady state condition based on ASME BPV Sec. III Division 5 HB are addressed. In this paper, the structural integrities of IHX under the design condition, service level A and B, and service level C load combinations have been reviewed. As a result, it was confirmed that the structural design of IHX is satisfied with ASME BPV Sec. III Division 5 under a steady state condition. In the future, the structural integrities of IHX under a transient condition will be reviewed.

  13. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    Science.gov (United States)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the

  14. Two-dimensional nonlinear nonequilibrium kinetic theory under steady heat conduction.

    Science.gov (United States)

    Hyeon-Deuk, Kim

    2005-04-01

    The two-dimensional steady-state Boltzmann equation for hard-disk molecules in the presence of a temperature gradient has been solved explicitly to second order in density and the temperature gradient. The two-dimensional equation of state and some physical quantities are calculated from it and compared with those for the two-dimensional steady-state Bhatnagar-Gross-Krook equation and information theory. We have found that the same kind of qualitative differences as the three-dimensional case among these theories still appear in the two-dimensional case.

  15. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  16. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  17. Cosmic ray heating in cool core clusters I: diversity of steady state solutions

    CERN Document Server

    Jacob, Svenja

    2016-01-01

    The absence of large cooling flows in cool core clusters appears to require self-regulated energy feedback by active galactic nuclei (AGNs) but the exact heating mechanism has not yet been identified. Here, we analyse whether a combination of cosmic ray (CR) heating and thermal conduction can offset radiative cooling. To this end, we compile a large sample of 39 cool core clusters and determine steady state solutions of the hydrodynamic equations that are coupled to the CR energy equation. We find stable solutions that match the observed density and temperature profiles for all our clusters well. Radiative cooling is balanced by CR heating in the cluster centres and by thermal conduction on larger scales, thus demonstrating the relevance of both heating mechanisms. Our mass deposition rates vary by three orders of magnitude and are linearly correlated to the observed star formation rates. Clusters with large mass deposition rates show larger cooling radii and require a larger radial extent of the CR injection...

  18. Heat Transfer Investigation of Intake Port Engine Based on Steady-State and Transient Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available his research is presents the gas flow heat transfer investigation in the intake port of four stroke direct injection compression ignition engine using GT-Suite software for steady-state and transient simulation. To investigate and simulate the intake port gas flow heat transfer profile of compression ignition engine is using GT-Power engine model were developed in this research. GT-Power is sub-system menu from GT-Suite. The engine model is developed from the real compression ignition engine data and input to software library. In this research, the simulation of engine model is running in variations engine speeds. The simulation output data is collected from the GT-Post results plots and casesRLT in post processing. The simulation results of the intake port engine model are shown the characters in intake port heat transfer profile of engine in variations engine speeds. The detail performance intake port gas flow heat transfer is shown that in 3500 rpm engine speed is the best

  19. Parameter estimation in heat conduction using a two-dimensional inverse analysis

    Science.gov (United States)

    Mohebbi, Farzad; Sellier, Mathieu

    2016-07-01

    This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.

  20. A principle for the noninvasive measurement of steady-state heat transfer parameters in living tissues

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    thermal field in biotissue (measuring procedure with the number i, dUiis a variation of a physical value U which unambiguously determines the steady-state thermal field, {pj} is a set of parameters to be measured.Theoretical analysis has shown that the implementation of the above principle leads to the equations that do not contain unknown values of blood temperature and power density of biological heat sources, unlike the starting Pennes equation [4]. This is the main advantage of the developed approach in comparison with non-stationary methods. In addition, there is no dynamic measurement error which is inevitably associated with the measurement procedure for the transient processes.Numerical and physical experiments have been carried out to validate the functionality of the above principle for noninvasive measuring the parameters of stationary heat transfer. For example, with use a thermophysical model of biological tissue [5] the procedure of measuring was simulated to obtain the values of two thermophysical parameters of model biological tissue, namely the blood perfusion (in absolute units and the thermal conductivity. Also, with use a specially designed probe the measurements were carried out for the natural biological tissue of human skin epithelium. The blood perfusion parameter estimation value is in good agreement with the literature data [6], despite the illustrative purpose of conducted measurements. These experiments have also demonstrated the possibility of simultaneous measuring the several thermophysical properties of biological tissue in a noninvasive manner, using a rather simple equipment.Formula (1 can contain not only thermophysical parameters of the living tissue, but any other parameters provided that each one unambiguously affects the heat transfer in a particular experiment. For example, it was shown that it is possible to recover the thicknesses of subcutaneous tissue layers of model of skin on the results of thermal measurements on the basis of

  1. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    Science.gov (United States)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  2. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    Science.gov (United States)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  3. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    Science.gov (United States)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  4. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  5. Current fluctuations in a two dimensional model of heat conduction

    Science.gov (United States)

    Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.

    2011-03-01

    In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.

  6. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper;

    2008-01-01

    into account the effects of condensation and frost formation. The model is developed as an Excel spreadsheet, and specific results are compared with laboratory measurements. As an example, the model is used to determine the most energy-efficient control strategy for a specific heat-exchanger under northern......Using mechanical ventilation with highly efficient heat-recovery in northern European or arctic climates is a very efficient way of reducing the energy use for heating in buildings. However, it also presents a series of problems concerning condensation and frost formation in the heat......-exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  7. Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force

    Energy Technology Data Exchange (ETDEWEB)

    Vega Reyes, Francisco, E-mail: fvega@unex.es; Santos, Andrés, E-mail: andres@unex.es [Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06071 Badajoz (Spain)

    2015-11-15

    We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational modes, translational and rotational kurtoses, and translational-rotational velocity correlations. By comparison with a numerical solution of the Boltzmann kinetic equation (by means of the direct simulation Monte Carlo method), we show that our analytical solution provides a good description that is quantitatively very accurate in certain ranges of inelasticity and roughness. We also find three important features that make the forced granular gas steady state very different from the homogeneous cooling state (attained by an unforced granular gas). First, the marginal velocity distributions are always close to a Maxwellian. Second, there is a continuous transition to the purely smooth limit (where the effects of particle rotations are ignored). And third, the angular translational-rotational velocity correlations show a preference for a quasiperpendicular mutual orientation (which is called “lifted-tennis-ball” behavior)

  8. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    Science.gov (United States)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  9. Self-heating and drying in two-dimensional bagasse piles

    Science.gov (United States)

    Sexton, M. J.; Macaskill, C.; Gray, B. F.

    2001-12-01

    This paper describes a two-dimensional model for self-heating and changes in water levels in bagasse piles of constant rectangular or triangular cross section. (Bagasse is the residue, mainly cellulose, that remains after sugar has been extracted from sugar-cane.) After milling, the bagasse has almost 50% water by weight, as hot water is used to remove the last of the sugar. The bagasse can be used as fuel in electrical power stations, but needs to be dried out before use. This paper discusses the way in which the drying out of a pile depends on the ambient conditions, and the shape and size of the pile. Accordingly, the energy equation, and equations for liquid water, water vapour and oxygen are solved numerically using the method of lines. The equations include terms describing heat conduction, diffusion of water vapour and oxygen, condensation and evaporation and an Arrhenius self-heating term. In addition, recent measurements show that there is also self-heating due to the presence of water in the bagasse, with a maximum effect near 60 °C, which is modelled by a modified Arrhenius expression. The local maximum in the heat release curve for the problem leads to approximate steady-state behaviour on short time scales that eventually is lost as the pile dries out. This interesting physical behaviour motivates an approximate analytical model for the rate at which liquid water is reduced in the pile. Analytical and numerical results are presented for a variety of pile configurations and some fairly general conclusions are drawn.

  10. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    Science.gov (United States)

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  11. A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer

    CERN Document Server

    Peng, Xiaohui; Protas, Bartosz

    2013-01-01

    This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the sol...

  12. Steady State Heat Transfer of Ladle Furnace During Steel Production Process

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdali; Murat.Tun(c)

    2006-01-01

    The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.

  13. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  14. Optimum heating of thick-walled pressure components assuming a quasi-steady state of temperature distribution

    Science.gov (United States)

    Dzierwa, Piotr; Trojan, Marcin; Taler, Dawid; Kamińska, Katarzyna; Taler, Jan

    2016-08-01

    As a result of the development of wind farms, the gas — steam blocks, which shall quickly ensure energy supply in case the wind velocity is too low, are introduced to the energy system. To shorten the start-up time of the gas — steam and conventional blocks, the structure of the basic components of the blocks are changed, e.g. by reducing the diameter of the boiler, the thickness of its wall is also reduced. The attempts were also made to revise the currently binding TRD 301 regulations, replacing them by the EN 12952-3 European Standard, to reduce the allowable heating and cooling rates of thick walled boiler components. The basic assumption, on which the boiler regulations allowing to calculate the allowable temperature change rates of pressure components were based, was the quasi — steady state of the temperature field in the simple shaped component, such as a slab, cylindrical or spherical wall.

  15. Evaluation of The Thermal Performance of Multi-Element Doped Graphite under Steady-State High Heat Flux

    Institute of Scientific and Technical Information of China (English)

    陈俊凌; 李建刚; 野田信明; 久保田雄辅; 郭全贵; 裘亮

    2002-01-01

    Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000 ℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.

  16. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Alexander, E-mail: A.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Arakcheev, Aleksey; Burdakov, Aleksander [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Shoshin, Andrey [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Terra, Alexis; Unterberg, Bernhard [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ{sub target} = 2.5–4.0 × 10{sup 21} m{sup −2} s{sup −1}, ion energy on surface E{sub ion} = 60 eV, T{sub e} ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m{sup 2}, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m{sup 2}. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  17. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  18. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  19. Meshless Least-Squares Method for Solving the Steady-State Heat Conduction Equation

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHANG Xiong; LU Mingwan

    2005-01-01

    The meshless weighted least-squares (MWLS) method is a pure meshless method that combines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method possesses several advantages, such as high accuracy, high convergence rate, good stability, and high computational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat transfer problems.

  20. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  1. Steady-state observations and theoretical modeling of critical heat flux phenomena on a downward facing hemispherical surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H. [Pennsylvania State Univ., University Park, PA (United States)

    1996-03-01

    Steady-state boiling experiments were performed in the SBLB test facility to observe the two-phase boundary layer flow behavior on the outer surface of a heated hemispherical vessel near the critical heat flux (CHF) limit and to measure the spatial variation of the local CHF along the vessel outer surface. Based upon the flow observations, an advanced hydrodynamic CHF model was developed. The model considers the existence of a micro-layer underneath an elongated vapor slug on the downward facing curved heating surface. The micro-layer is treated as a thin liquid film with numerous micro-vapor jets penetrating through it. The micro-jets have the characteristic size dictated by Helmholtz instability. Local dryout is considered to occur when the supply of fresh liquid from the two phase boundary layer to the micro-layer is not sufficient to prevent depletion of the liquid film by boiling. A boundary layer analysis, treating the two-phase motion as a separated flow, is performed to determine the liquid supply rate and thus the local critical heat flux. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel.

  2. Novel approach to analytical modelling of steady-state heat transfer from the exterior of TEFC induction motors

    Directory of Open Access Journals (Sweden)

    Klimenta Dardan O.

    2017-01-01

    Full Text Available The purpose of this paper is to propose a novel approach to analytical modelling of steady-state heat transfer from the exterior of totally enclosed fan-cooled induction motors. The proposed approach is based on the geometry simplification methods, energy balance equation, modified correlations for forced convection, the Stefan-Boltzmann law, air-flow velocity profiles, and turbulence factor models. To apply modified correlations for forced convection, the motor exterior is presented with surfaces of elementary 3-D shapes as well as the air-flow velocity profiles and turbulence factor models are introduced. The existing correlations for forced convection from a short horizontal cylinder and correlations for heat transfer from straight fins (as well as inter-fin surfaces in axial air-flows are modified by introducing the Prandtl number to the appropriate power. The correlations for forced convection from straight fins and inter-fin surfaces are derived from the existing ones for combined heat transfer (due to forced convection and radiation by using the forced-convection correlations for a single flat plate. Employing the proposed analytical approach, satisfactory agreement is obtained with experimental data from other studies.

  3. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    Science.gov (United States)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  4. Comparative analysis of steady state heat transfer in a TBC and functionally graded air cooled gas turbine blade

    Indian Academy of Sciences (India)

    Nilanjan Coomar; Ravikiran Kadoli

    2010-02-01

    Internal cooling passages and thermal barrier coatings (TBCs) are presently used to control metal temperatures in gas turbine blades. Functionally graded materials (FGMs), which are typically mixtures of ceramic and metal, have been proposed for use in turbine blades because they possess smooth property gradients thereby rendering them more durable under thermal loads. In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of external gas temperature, coolant temperature, surface emissivity changes and different average ceramic/metal content of the blade on the temperature distributions are examined. Simulations are also carried out to compare cooling effectiveness of functionally graded blades with that of blades having TBC. The results highlight the effect of including radiation in the simulation and also indicate that external gas temperature influences the blade heat transfer more strongly. It is also seen that graded blades with about 70% ceramic content can deliver better cooling effectiveness than conventional blades with TBC.

  5. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  6. A Galerkin, finite-element analysis of steady-state flow and heat transport in the shallow hydrothermal system in the East Mesa area, Imperial Valley, California

    Science.gov (United States)

    Miller, R.E.

    1977-01-01

    A steady-state simulation model was applied to the shallow hydrothermal system in the East Mesa area of Imperial Valley, Calif. The steady-state equations of flow and heat transport were solved by use of a Galerkin, finite-element method. A solution was obtained by iterating between the temperature and pressure equations, using updated densities and viscosities. Temperature and pressure were obtained for each node, and corresponding head values were calculated. The simulated temperature and pressure patterns correlated well with the observed patterns. Additional data, mainly from test drilling, would be required for construction of a similar model of the deep hydrothermal system.

  7. STEADY STATE SYSTEM SIMULATION OF HIGH TEMPERATURE HEAT PUMP%高温热泵系统稳态仿真

    Institute of Scientific and Technical Information of China (English)

    马利敏; 王怀信; 杨强

    2011-01-01

    针对水-水高温热泵实验台建立了系统稳态仿真模型.模型输入参数为系统结构参数和载热流体参数,输出参数则为系统性能参数和换热器温度场.采用P-T状态方程计算工质相平衡性质,故模型适用于新型纯质和混合工质.在压缩机建模中,根据实验数据辨识拟合了压缩机容积效率、定熵效率和热效率,在两器模型中考虑了压降和输运性质对换热过程的影响.对比实验数据,表明模型精度在10%以内.%The steady state computer simulation model was developed for heat pump circuits of high temperature heat pump experimental apparatus. The simulation model includes hermetic reciprocating compressor, expansion valve, tube in tube evaporator and condenser. The main inputs to the model include the physical details of the heat exchangers and the compressor, mass flow rates of heat transfer fluids and their inlet temperatures to the evaporator and the condenser. The outputs of the model include system performance parameters and temperature field of the heat exchangers. The model can be applied to new pure and mixture working fluids for phase equilibrium calculation based on P-T state equation. The efficiency-based compressor model was built and the method to identify the efficiencies, e. G. Volumetric efficiency, isoentropic efficiency and thermal efficiency, was introduced through experiments The influence of pressure drops and transport properties of the working fluids on heat exchanger model was considered. Model results deviate from that experimentally obtained within a 10% range.

  8. A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer

    Directory of Open Access Journals (Sweden)

    Xu Shu

    2015-01-01

    Full Text Available In this work, the local fractional variational iteration method is employed to obtain approximate analytical solution of the two-dimensional diffusion equation in fractal heat transfer with help of local fractional derivative and integral operators.

  9. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete sys...... be taken into account in a future version of the model. More experimental data have to be gathered to implement eventual missing phenomena and validate the model for all input parameters....... systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should......Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  10. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  11. Steady-state heat transfer in transversely heated porous media with application to focused solar energy collectors

    Science.gov (United States)

    Nichols, L. D.

    1976-01-01

    A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.

  12. Steady state tests of high voltage ceramic feedthroughs and co-axial transmission line of ICRF heating system for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo; Simpo, Fujio; Nomura, Goro; Ido, Tsuyoshi; Watari, Tetsuo [National Inst. for Fusion Science, Toki, Gifu (Japan); Norterdaeme, J.M.

    1998-06-01

    Steady state ICRF heating technologies have been developed to heat plasma for more than 30 minutes in the LHD. Steady state operation tests of high voltage up to 40 kV{sub OP} for more than 30 minutes were carried out on the RF vacuum feedthroughs and the co-axial transmission line in the test set. Four types of ceramic feedthroughs each having a diameter of 240 mm were tested. The cone-type alumina ceramic and the cylinder-type silicon nitride composite-ceramic feedthroughs produced good performances of 40 kV/30 minutes and 50 kV/10 seconds. The others had vacuum leaks when subjected to a long pulse duration. The temperature of the cone-type alumina ceramic feedthrough was measured during the ICRF operations. By using gas-cooling techniques, the temperature increase of the ceramic was substantially reduced and saturated within 20 minutes. Without gas-cooling, the temperature increased linearly and did not saturated. So, this approach could not be used for steady state. The RF dissipation on the ceramic was calculated using the finite element computer code (ANSYS). It was found that damaged feedthroughs had local high heat spots, which could result in vacuum leaks. A water-cooled co-axial transmission line of 240 mm diameter was designed and tested. The specially designed connector components and Teflon insulator disks were tested. During the test, the insulation gases of nitrogen, sulfur hexafluoride and carbon dioxide were used to compare the capability of insulation for steady state. For the duration of a 10-second pulse, these gases performed well up to 60 kV{sub OP}. However, for steady state operation, carbon dioxide gas could not withstand voltages above 40 kV{sub OP}. The connector components of the transmission line performed without problems below 50 kV{sub OP} and 1 kA{sub OP} for a 30-minute operation. The performance of the feedthroughs and transmission line exceeded the specifications for steady state heating in the LHD. (J.P.N.)

  13. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  14. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C.K.

    2001-06-06

    The ORNL Heat Pump Model and an optimizing program were used to explore the limits of steady-state heating efficiency for conventional air-source heat pumps. The method used allows for the simultaneous optimization of ten selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. Designs were optimized for a fixed heating capacity, but the results may be scaled to other capacities. Substantial performance improvement is predicted compared to today's state of the art heat pump. With increased component efficiencies that are expected in the near future and with modest increases in heat exchanger area, a 28% increase in heating efficiency is predicted; for long-term improvements with considerably larger heat exchangers, a 56% increase is possible. The improved efficiencies are accompanied by substantial reductions in the requirements for compressor and motor size. The predicted performance improvements are attributed not only to improved components and larger heat exchangers but also to the use of an optimizing design procedure. Deviations from the optimized design may be necessary to make use of available component sizes and to maintain good cooling-mode performance while improving the heating efficiency. Sensitivity plots (i.e., COP as a function of one or more design parameters) were developed to explore design flexibilities and to evaluate their consequences. The performance of the optimized designs was compared to that of modified ideal cycles to assess the factors that limit further improvement. It is hoped that the design methods developed will be useful to designers in the heat pump industry.

  15. Analytic Solution for Two-Dimensional Heat Equation for an Ellipse Region

    Directory of Open Access Journals (Sweden)

    Nurcan Baykus Savasaneril

    2016-01-01

    Full Text Available In this study, an altenative method is presented for the solution of two-dimensional heat equation in an ellipse region. In this method, the solution function of the problem is based on the Green, and therefore on elliptic functions. To do this, it is made use of the basic consepts associated with elliptic integrals, conformal mappings and Green functions.

  16. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media

    CERN Document Server

    Hao Jin Bo

    2003-01-01

    Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.

  17. Steady Heat Transfer through a Two-Dimensional Rectangular Straight Fin

    Directory of Open Access Journals (Sweden)

    Raseelo J. Moitsheki

    2011-01-01

    Full Text Available Exact solutions for models describing heat transfer in a two-dimensional rectangular fin are constructed. Thermal conductivity, internal energy generation function, and heat transfer coefficient are assumed to be dependent on temperature. We apply the Kirchoff transformation on the governing equation. Exact solutions satisfying the realistic boundary conditions are constructed for the resulting linear equation. Symmetry analysis is carried out to classify the internal heat generation function, and some reductions are performed. Furthermore, the effects of physical parameters such as extension factor (the purely geometric fin parameter and Biot number on temperature are analyzed. Heat flux and fin efficiency are studied.

  18. Fission-gas release at extended burnups: effect of two-dimensional heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K

    2000-09-01

    To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)

  19. Modelo para la Simulación en Estado Estable de Redes de Recuperación de Calor Model for Steady State Simulation of Heat Recovery Networks

    Directory of Open Access Journals (Sweden)

    M Picón-Núñez

    2004-01-01

    Full Text Available En este trabajo se desarrolla un modelo para la simulación en estado estable de redes de recuperación de calor considerando una sola fase. Se utilizan el modelo básico de la efectividad térmica y de las relaciones con el Número de Unidades de Transferencia de Calor para la simulación de la operación de intercambiadores de calor. La aplicación del modelo se demuestra en un caso de estudio tomado de la literatura donde se determinan las nuevas temperaturas de una red una vez que las perturbaciones de tipo flujo másico y temperatura entran al sistema. Se concluye que la simulación en estado estable desarrollada entrega resultados confiables.In this work, a model for the steady state simulation of heat recovery networks in single phase is developed. The basic model of the thermal effectiveness and its relation to the Number of Heat Transfer Units are used for the simulation of the operation of heat exchangers. The application of the model is demonstrated for a study case from the literature where network temperatures are calculated after perturbation to the flow rate and to the temperature are introduced into the system. It is concluded that the steady state simulation developed in this work gives reliable results.

  20. Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges

    Science.gov (United States)

    Kandula, Max; Haddad, George

    2007-01-01

    This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant

  1. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... and foundation on the performance of the floor heating sys-tem. The ground coupled floor heating model is validated against measurements from a single-family house. The simulation model is coupled to a whole-building energy simu-lation model with inclusion of heat losses and heat supply to the room above...

  2. Development of a real-time steady state detector of a heat pump system to develop fault detection and diagnosis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yoon, Seok Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Min Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2008-07-01

    Identification of steady-state is the first step in developing a Fault Detection and Diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to 'tune' itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  3. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    CERN Document Server

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  4. Steady State and Dynamics of Joule Heating in Magnetic Tunnel Junctions Observed via the Temperature Dependence of RKKY Coupling

    Science.gov (United States)

    Chavent, A.; Ducruet, C.; Portemont, C.; Vila, L.; Alvarez-Hérault, J.; Sousa, R.; Prejbeanu, I. L.; Dieny, B.

    2016-09-01

    Understanding quantitatively the heating dynamics in magnetic tunnel junctions submitted to current pulses is very important in the context of spin-transfer-torque magnetic random-access memory development. Here we provide a method to probe the heating of magnetic tunnel junctions using the Ruderman-Kittel-Kasuya-Yoshida coupling of a synthetic ferrimagnetic storage layer as a thermal sensor. The temperature increase versus applied bias voltage is measured thanks to the decrease of the spin-flop field with temperature. This method allows distinguishing spin-transfer torque effects from the influence of temperature on the switching field. The heating dynamics is then studied in real time by probing the conductance variation due to spin-flop rotation during heating. This approach provides a method for measuring fast heating in spintronic devices, particularly magnetic random-access memory using thermally assisted or spin-transfer torque writing.

  5. Molecular shear heating and vortex dynamics in thermostatted two-dimensional Yukawa liquids

    CERN Document Server

    Gupta, Akanksha; Joy, Ashwin

    2016-01-01

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and MD studies of shear flows in strongly coupled Yukawa liquids, indicated occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to destruction of macroscale vorticity. To understand the vortex dynamics of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve while at the same time, "removes" the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way...

  6. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    Science.gov (United States)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  7. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    Science.gov (United States)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  8. Optimal Design of Multistage Two-Dimensional Cellular-Cored Sandwich Panel Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Yongcun Zhang

    2014-08-01

    Full Text Available For a two-dimensional (2D cellular-cored sandwich panel heat exchanger, there exists an optimum cell size to achieve the maximum heat transfer with the prescribed pressure drop when the length is fixed and the two plates are isothermal. However, in engineering design, it is difficult to find 2D cellular materials with the ideal cell size because the cell size selected must be from those commercially available, which are discrete, not continuous. In order to obtain the maximum heat dissipation, an innovative design scheme is proposed for the sandwich panel heat exchanger which is divided into multiple stages in the direction of fluid flow where the 2D cellular material in each stage has a specific cell size. An analytical model is presented to evaluate the thermal performance of the multistage sandwich panel heat exchanger when all 2D cellular materials have the same porosity. Also, a new parameter named equivalent cell size (ECS is defined, which is dependent on the cell size and length of cellular material in all stages. Results show that the maximum heat dissipation design of the multistage sandwich panel heat exchanger can be converted to make the ECS equal to the optimal cell size of the single-stage exchanger.

  9. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  10. NUMERICAL SIMULATION OF FLUID FLOW AND HEAT TRANSFER DURING THE INITIAL PHASE LEADING TO STEADY STATE SOLIDIFICATION IN D.C CAST ALIMINIUM ALLOYS

    OpenAIRE

    KORTI, Abdel Illah Nabil

    2010-01-01

    In this paper, two dimensional unsteady flow and energy equations are employed for simulating the fluid flow, heat transfer and solidification during direct chill continuous casting of Al-Mg alloy billet. In these processes, the formation of some macro defects such as thermal cracking, hot tearing, surface cracking, etc, has been found to initiate during the starting phase of the operation. International Journal of Computational Methods.

  11. Combined radiative and natural or forced convective heat transfer between parallel vertical plates with two-dimensional discrete heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, T.W.

    1988-01-01

    This study numerically analyzes combined radiative and natural or forced convective heat transfer between vertical parallel plates with two-dimensional discrete heat sources. The numerical method was verified by comparing its results with other published experimental data and the agreement was excellent. It is shown that radiative heat transfer is a significant and useful mode of heat transfer in combination with both natural and forced convection in this situation and cannot be neglected. Radiative heat transfer accounted for 50-60% or more of the total heat transfer in some cases, and usually approximately 30-35% on the top of a discrete heat source. This fact can be used to advantage in the thermal design of electronic circuit boards.

  12. Study on Absorption Heat transfer of Two-Dimensionally Constant Curvature Surface Tubes-1

    Science.gov (United States)

    Ogawa, Kiyoshi; Isshiki, Naotsugu

    In order to get better heat transfer coefficient of absorption in actual apparatus, it is considered that the wettability of the surface should be high, and that the thickness of liquid film should not be too thin or too thick all over the surface. So, new conception of two-dimensionally constant curvature surface (CCS) for absorption heat transfer has been introduced for the first time by the authors. First, theoretical CCS section curves of CCS tubes were calculated, and some of them were manufactured for the test. The wettability of CCS is tested and compared to the other finned tubes (radial fin tubes of triangular and rectangular profiles). As may be seen from photographs and compared to the other finned tubes, on the CCS surface, the thickness of liquid has shown to be even all over the surface without creating paticulary thick or thin place, so that, liquid films are very wettable on the CCS surface.

  13. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    Science.gov (United States)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  14. Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels

    Directory of Open Access Journals (Sweden)

    A. Ramiar

    2013-01-01

    Full Text Available Laminar two-dimensional forced convective heat transfer of CuO-water and Al2O3-water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.

  15. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    CERN Document Server

    Bocian, D; Barzi, E; Bossert, R; Caspi, S; Chlachidze, G; Dietderich, D; Feher, S; Felice, H; Ferracin, P; Hafalia, R; Kashikhin, V V; Lamm, M; Sabbi, G L; Turrioni, D; Wanderer, P; Zlobin, A V

    2012-01-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb3Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  16. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, D.; Ambrosio, G.; Felice, H.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Hafalia, R.; /Fermilab /Lawrence Berkeley Lab /Brookhaven

    2011-09-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb{sub 3}Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  17. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    Science.gov (United States)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  18. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    Science.gov (United States)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  19. SOLUTION OF TWO-DIMENSIONAL HEAT AND MASS TRANSFER EQUATION WITH POWER-LAW TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY

    National Research Council Canada - National Science Library

    S Pamuk; N Pamuk

    2014-01-01

      In this paper, we obtain the particular exact solutions of the two-dimensional heat and mass transfer equation with power-law temperature-dependent thermal con- ductivity using the Adomian's decomposition method...

  20. Polarized heat current generated by quantum pumping in two-dimensional topological insulators

    Science.gov (United States)

    Ronetti, F.; Carrega, M.; Ferraro, D.; Rech, J.; Jonckheere, T.; Martin, T.; Sassetti, M.

    2017-03-01

    We consider the transport properties of a two-dimensional topological insulator in a double quantum point contact geometry in the presence of a time-dependent external field. In the proposed setup an external gate is placed above a single constriction and it couples only with electrons belonging to the top edge. This asymmetric configuration and the presence of an ac signal allow for a quantum pumping mechanism, which, in turn, can generate finite heat and charge currents in an unbiased device configuration. A microscopic model for coupling with the external time-dependent gate potential is developed and the induced finite heat and charge currents are investigated. We demonstrate that in the noninteracting case, heat flow is associated with a single spin component, due to the helical nature of the edge states, and therefore a finite and polarized heat current is obtained in this configuration. The presence of e -e interchannel interactions strongly affects the current signal, lowering the degree of polarization of the system. Finally, we also show that separate heat and charge flows can be achieved, varying the amplitude of the external gate.

  1. Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change

    Science.gov (United States)

    Irvine, Dylan J.; Cartwright, Ian; Post, Vincent E. A.; Simmons, Craig T.; Banks, Eddie W.

    2016-02-01

    Steady state 1-D analytical solutions to estimate groundwater fluxes from temperature profiles are an attractive option because they are simple to apply, with no complex boundary or initial conditions. Steady state solutions have been applied to estimate both aquifer scale fluxes as well as to estimate groundwater discharge to streams. This study explores the sources of uncertainty in flux estimates from regional scale aquifers caused by sensor precision, aquifer heterogeneity, multidimensional flow and variations in surface temperature due to climate change. Synthetic temperature profiles were generated using 2-D groundwater flow and heat transport models with homogeneous and heterogeneous hydraulic and thermal properties. Temperature profiles were analyzed assuming temperature can be determined with a precision between 0.1°C and 0.001°C. Analysis of synthetic temperature profiles show that the Bredehoeft and Papadopulos (1965) method can provide good estimates of the mean vertical Darcy flux over the length of the temperature profile. Reliable flux estimates were obtained when the ratio of vertical to horizontal flux was as low as 0.1, and in heterogeneous media, providing that temperature at the upper boundary was constant in time. However, temporal increases in surface temperature led to over-estimation of fluxes. Overestimates increased with time since the onset of, and with the rate of surface warming. Overall, the Bredehoeft and Papadopulos (1965) method may be more robust for the conditions with constant temperature distributions than previously thought, but that transient methods that account for surface warming should be used to determine fluxes in shallow aquifers.

  2. The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J., E-mail: jerome.bucalossi@cea.fr; Missirlian, M.; Moreau, P.; Samaille, F.; Tsitrone, E.; Houtte, D. van; Batal, T.; Bourdelle, C.; Chantant, M.; Corre, Y.; Courtois, X.; Delpech, L.; Doceul, L.; Douai, D.; Dougnac, H.; Faïsse, F.; Fenzi, C.; Ferlay, F.; Firdaouss, M.; Gargiulo, L.; and others

    2014-10-15

    The WEST project recently launched at Cadarache consists in transforming Tore Supra in an X-point divertor configuration while extending its long pulse capability, in order to test the ITER divertor technology. The implementation of a full tungsten actively cooled divertor with plasma facing unit representative of ITER divertor targets will allow addressing risks both in terms of industrial-scale manufacturing and operation of such components. Relevant plasma scenarios are foreseen for extensive testing under high heat load in the 10–20 MW/m{sup 2} range and ITER-like fluences (1000 s pulses). Plasma facing unit monitoring and development of protection strategies will be key elements of the WEST program. WEST is scheduled to enter into operation in 2016, and will provide a key facility to prepare and be prepared for ITER.

  3. 脉动热管稳态运行的理论模型研究%Theoretical Research of Pulsating Heat Pipe in Steady State

    Institute of Scientific and Technical Information of China (English)

    薛志虎; 曲伟

    2013-01-01

    The model of operating mechanism for pulsating heat pipe (PHP) under steady state was established. To simulate the flow state of PHP more actually, the model of flow mechanism and capillary hysteresis resistances were revised. Meanwhile, the fitting ratio of PHP and evaporating-condensing two-phase thermal model were coupled and solved. The results showed that, the ratio of latent heat transfer to sensible heat transfer was within 30 percent, and flow mechanism in PHP was turbulent flow, which demonstrated the modified model could illustrate the flow and heat transfer law more accurately in actual working conditions.%建立了脉动热管稳态运行机制的物理和数学模型.针对脉动热管中工质的实际流动状态,改进了模型中的流动机理和毛细滞后阻力机理,并耦合脉动热管的充液率、蒸发凝结两相传热模型进行了迭代求解.结果显示,潜热传热量占总传热量的比例在30%以内,管内工质流动属于湍流流动状态,表明改进后的求解模型比较符合脉动热管实际运行工况,较为准确地反映了脉动热管的流动和传热规律.

  4. Application of Mixed Differential Quadrature Method for Solving the Coupled Two-Dimensional Incompressible Navier-Stokes Equation and Heat Equation%混合型微分求积法对求解联立的二维不可压Navier-Stokes方程和热方程的应用

    Institute of Scientific and Technical Information of China (English)

    A.S.J.AL-SAIF; 朱正佑

    2003-01-01

    The traditional differential quadrature method was improved by using the upwind difference scheme for the convectiveterms to solve the coupled two-dimensional incompressible Navier-stokes equations and heat equation. The new method was comparedwith the conventional differential quadrature method in the aspects of convergence and accuracy. The results show that the newmethod is more accurate, and has better convergence than the conventional differential quadrature method for numerically computingthe steady-state solution.

  5. Code-to-code comparison for analysing the steady-state heat transfer and natural circulation in an air-cooled RCCS using GAMMA+ and Flownex

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P.G., E-mail: pgr@mtechindustrial.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X 6001, Potchefstroom (South Africa); Toit, C.G. du [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X 6001, Potchefstroom (South Africa); Jun, J.S.; Noh, J.M. [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2015-09-15

    Highlights: • The GAMMA+ and Flownex codes are used in the analyses of the air-cooled RCCS system. • Radiation heat transfer comprises the bulk of the total rate of heat transfer. • It is possible to obtain reverse flow through the RCCS standpipes. • It has been found that the results obtained with the two codes are in good agreement. • RCCS remain functional for very high blockage ratios thus supporting the safety case. - Abstract: The GAMMA+ and Flownex codes are both based on a one-dimensional flow network modelling approach and both can account for any complex network of different heat transfer phenomena occurring simultaneously. However, there are notable differences in some of the detail modelling aspects, such as the way in which the convection in the reactor cavity is represented. Despite this, it was found in the analyses of the air-cooled RCCS system that the results provided by the two codes compare very well if similar input values are used for the pressure drop coefficients, heat transfer coefficients and view factors. The results show that the radiation heat transfer comprises the bulk of the total rate of heat transfer from the RPV surface. It is also shown that it is possible to obtain a stable and sustainable steady-state operational condition where the flow is in the reverse direction through the RCCS standpipes, resulting in excessively high values for the concrete wall temperature. It is therefore crucial in the design to ensure that such a flow reversal will not occur under any circumstances. In general the good comparison between the two codes provides confidence in the ability of both to correctly solve the fundamental conservation and heat transfer relations in an integrated manner for the complete RCCS system. Provided that appropriate input values are available, these codes can therefore be used effectively to evaluate the integrated performance of the system under various operating conditions. It is shown here that the RCCS

  6. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  7. CHAOS-REGULARIZATION HYBRID ALGORITHM FOR NONLINEAR TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    王登刚; 刘迎曦; 李守巨

    2002-01-01

    A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regalarization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.

  8. Tuning of Feedback Decoupling Controller for Two-Dimensional Heat Plate by Using VRFT Method

    Science.gov (United States)

    Matsunaga, Nobutomo; Nakano, Masahiko; Okajima, Hiroshi; Kawaji, Shigeyasu

    In manufacturing processes, inappropriate thermal distribution, which is observed in both steady and transient states of the thermal plant, leads to inferior quality. For a plant with strong thermal interaction, decoupling control is effective in precisely tuning the control system. We proposed the decoupling controller based on the temperature-difference feedback model. However, no parameter-identification method of thermal interaction has been presented so far. Traditionally, iterative tuning by trial and error has been used to tune the controller parameters. In the case of an industrial plant, the tuning time would be long because of the large time constants of the plant. Recently, the virtual reference feedback tuning (VRFT) method, which can be used for off-line tuning of the controller parameters using a set of I/O data, has been studied to examine the possibility of shortening the tuning time. In this paper, a VRFT method for the feedback decoupling controller is proposed for a two-dimensional heat plate by taking consideration the thermal interaction property. The effectiveness of this VRFT method is evaluated by performing an experimental simulation.

  9. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides

    Science.gov (United States)

    Zhao, Chunsong; Zhang, Haitian; Si, Wenjie; Wu, Hui

    2016-09-01

    Two-dimensional (2D) nanoscale oxides have attracted research interest owing to their electronic, magnetic optical and catalytic properties. If they could be manufactured on a large scale, 2D oxides would be attractive for applications ranging from electronics to energy conversion and storage. Herein, we report facile fabrication of oxide nanosheets by rapid thermal annealing of corresponding hydrous-chloride compounds. By heating CrCl3.6H2O, ZrOCl2.8H2O, AlCl3.6H2O and YCl3.6H2O crystals as precursors, we immediately collect large quantities of ultrathin Cr2O3, ZrO2, Al2O3 and Y2O3 nanosheets, respectively. The formation of layered nanosheets relies on exfoliation driven by rapid evaporation of water and/or other gas molecules generated under annealing. Our route allows simple, efficient and inexpensive production of 2D oxides. As a demonstration, we evaluate Cr2O3 nanosheets prepared by our method as anodes in lithium-ion batteries and find superior performance in comparison with their microcrystalline counterparts.

  10. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  11. Einstein's steady-state cosmology

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2014-09-01

    Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.

  12. Steady state magnetic field configurations for the earth's magnetotail

    Science.gov (United States)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  13. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  14. Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering

    1997-12-31

    The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.

  15. Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.

    1983-07-01

    A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.

  16. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    circulation (Ooyama, 1969; Shapiro and Willoughby , 1982). Above the frictional boundary layer, this steady-state circulation must be along absolute angular...u′ sin λ〉 on the right-hand side of this equation. ‖According to axisymmetric balance dynamics (Ooyama, 1969; Shapiro and Willoughby , 1982), the...such as the diabatic heating rate and frictional and eddy processes (Shapiro and Willoughby , 1982; Shapiro and Montgomery, 1993; Vigh and Schubert, 2009

  17. Two-dimensional transport study of scrape off layer plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Nobuyuki [Interdisciplinary Graduate School of Advanced Energy Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1999-09-01

    Two-dimensional transport code is developed to analyzed the heat pulse propagation in the scrape-off layer plasma. The classical and anomalous transport models are considered as a thermal diffusivity perpendicular to the magnetic field. On the other hand, the classical transport model is chosen as a thermal diffusivity parallel to the magnetic field. The heat deposition profiles are evaluated for various kinds of transport models. It is found that the heat pulse which arrives at the divertor plate due to the classical transport is largest compared with other models. The steady state temperate profiles of the electron and ion are also discussed. (author)

  18. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process.......This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...

  19. A δ-function-like peak in the specific heat of two-dimensional vortex lattice: Monte carlo study

    Institute of Scientific and Technical Information of China (English)

    梁彦天; 曹义刚; 焦正宽

    2002-01-01

    A repulsive vortex-vortex interaction model was used to numerically study the melting transition of the two-dimensional vortex system with Monte Carlo method. Then a δ-function-like peak in the specific heat was observed and the internal energy showed a sharp drop at the melting temperature, whieh indicated that there exists a first-order melting transition at finite temperatures. The Lindemarm criterion was also investigated and valid, but different from previous simulation results.

  20. Two-dimensional monitoring of surface temperature distribution of a heated material by laser-ultrasound scanning

    Science.gov (United States)

    Ihara, I.; Yamada, H.; Takahashi, M.

    2011-01-01

    A non-contact method with a laser-ultrasonic technique for measuring two-dimensional temperature distribution on a material surface is presented. The method consists of a laser-ultrasonic measurement of a one-dimensional temperature distribution on a material surface and its two-dimensional area mapping. The surface temperature is basically determined from a temperature dependence of the velocity of the surface acoustic wave (SAW) propagating on a material surface. One-dimensional surface temperature distributions are determined by an inverse analysis consisting of a SAW measurement and a finite difference calculation. To obtain a two-dimensional distribution of surface temperature on a material surface, SAW measurements within the area of a square on the surface are performed by a pulsed laser scanning with a galvanometer system. The inverse analysis is then applied to each of the SAW data to determine the surface temperature distribution in a certain direction, and the obtained one-dimensional distributions are combined to construct a two-dimensional distribution of surface temperature. It has been demonstrated from the experiment with a heated aluminum plate that the temperature distributions of the area of a square on the aluminium surface determined by the ultrasonic method almost agree with those measured using an infrared camera.

  1. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches i...

  2. Steady-state turbulent flow of a conducting liquid in a longitudinal magnetic field with volume heat evolution. I. Analytical study of flow in the inwall region

    Energy Technology Data Exchange (ETDEWEB)

    Bortsaikin, S.M.; Levitan, Yu.S.

    1977-07-01

    An examination is made of steady-state turbulent flow of a conducting liquid in a cylindrical channel in a longitudinal magnetic field. The system of motion equations and energy can be recorded in a convenient integral form by using the Prandtl hypothesis for computing turbulent coefficients with rather simple assumptions about the nature of the velocity gradient. A small parameter in the equations can be easily identified in direct proximity to the channel's wall that makes it possible to find an approximate analytical solution to this problem in this region. 6 references, 1 figure.

  3. Steady-state properties of a finite system driven by a chemical-potential gradient

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1990-01-01

    A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials applied at the open edges. By computer-simulation techniques the steady-state current...

  4. Improved modeling and numerics to solve two-dimensional elliptic fluid flow and heat transfer problems

    Science.gov (United States)

    Chan, B. C.

    1986-05-01

    A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.

  5. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors

    Science.gov (United States)

    Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu

    2016-11-01

    A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.

  6. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    Science.gov (United States)

    Meng, J. C. S.

    1973-01-01

    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  7. Energy repartition in the nonequilibrium steady state

    Science.gov (United States)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  8. Laser heating of finite two-dimensional dust clusters: A. Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schablinski, Jan; Block, Dietmar; Piel, Alexander [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany); Melzer, Andre [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, 17487 Greifswald (Germany); Thomsen, Hauke; Kaehlert, Hanno; Bonitz, Michael [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany)

    2012-01-15

    Laser manipulation allows to control the kinetic particle temperature in dusty plasmas. Different methods of laser heating for plasma crystals are benchmarked experimentally. The methods are analyzed with respect to homogeneity and isotropy in a spatial, temporal, and statistical sense. It is shown that it is possible to achieve particle dynamics very close to thermal equilibrium and that laser heating methods allow for a detailed study of phase transitions in finite size systems.

  9. Two-dimensional hybrid models of H+-He++ expanding solar wind plasma heating

    Science.gov (United States)

    Ofman, L.; Viñas, A. F.; Maneva, Y.

    2014-06-01

    Preferential heating and acceleration of the solar wind He++ ions compared to protons in fast solar wind streams have been known for decades, thanks to in situ spacecraft measurements at 0.29-5 AU. Turbulent magnetic field fluctuations with approximate power law spectra have been observed as well. However, the exact causes of these processes are still not known due to the lack of detailed information on the magnetic field fluctuations and ion velocity distributions in the acceleration region of the solar wind. Here the collisionless heating processes in expanding solar wind plasma are investigated using 2-D hybrid modeling with parameters appropriate to the heliocentric distance of 10 RS. In this study the ion dynamics is described kinetically, while electrons are treated as a background massless fluid in an expanding solar wind model. The source of free energy for the heating is introduced through an initial nonequilibrium state of the plasma with large He++ ion temperature anisotropy or with super-Alfvénic relative ion drift. We also employ an externally imposed spectrum of magnetic fluctuations in the frequency range below the proton gyroresonant frequency to heat the He++ ions. We investigate the effects of solar wind radial expansion by modeling several values of the expansion rate in a parametric study. We find that the preferential ion heating is attained in both nonexpanding and expanding solar wind models. Thus, the expansion has little effect on the preferential He++ ion heating by the processes considered here. Moreover, the expansion leads to faster evolution of the magnetosonic drift instability, reducing the drift velocity to lower values sooner, and the corresponding generation of the magnetic fluctuations that heat the ions, compared to the nonexpanding case. This is due to the reduction of the perpendicular particle velocities in the expanding (inflated) frame. For cases with little proton perpendicular heating, the solar wind expansion leads to

  10. Experimental investigations and validation of two dimensional model for multistream plate fin heat exchangers

    Science.gov (United States)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2017-03-01

    Experimental investigations are carried out using a specially developed three-layer plate fin heat exchanger (PFHE), with helium as the working fluid cooled to cryogenic temperatures using liquid nitrogen (LN2) as a coolant. These results are used for validation of an already proposed and reported numerical model based on finite volume analysis for multistream (MS) plate fin heat exchangers (PFHE) for cryogenic applications (Goyal et al., 2014). The results from the experiments are presented and a reasonable agreement is observed with the already reported numerical model.

  11. Study on the crystalline structure transition of syndiotactic polystyrene film during heat treatment by two-dimensional infrared correlation spectroscopy.

    Science.gov (United States)

    Li, Weizhen; Wu, Peiyi

    2009-08-01

    The crystal structure transition of syndiotactic polystyrene film from the helical conformation to the more stable planar zigzag conformation during a heating process was studied using Fourier transform infrared (FT-IR) spectroscopy in combination with two-dimensional (2D) correlation analysis and perturbation-correlation moving-window 2D analysis. The sequence of different conformations during the transition was investigated by analyzing two-dimensional FT-IR correlation spectra in the spectral ranges of 800-700 cm(-1) and 600-500 cm(-1). It was observed that the conformation of delta helical changes prior to gamma helical, and the gamma helical phase is faster than the alpha' planar zigzag phase. By utilizing the 2D asynchronous correlation spectra, the 744 cm(-1) band, which is usually incorporated in the broad 750 cm(-1) band, can now be uniquely attributed as the alpha' zigzag configuration for the first time. Furthermore, by employing thermal perturbation, the shorter helical segments consisting of m = 7-12 and m = 12-20 monomeric units were disturbed in a shorter time than the longer helical segments m = 20-30 during the heating process.

  12. Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet

    Directory of Open Access Journals (Sweden)

    FEROZ AHMED SOOMRO

    2016-10-01

    Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.

  13. User's Manual for HPTAM: a Two-Dimensional Heat Pipe Transient Analysis Model, Including the Startup from a Frozen State

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.

  14. THERM 2.0: a PC Program for Analyzing Two-Dimensional HeatTransfer through Building Products

    Energy Technology Data Exchange (ETDEWEB)

    Windows and Daylighting Group

    1997-12-08

    THERM is a state-of-the-art, Microsoft Windows{trademark}-based computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product's energy efficiency and local temperature patterns, which may relate directly to problems with condensation, moisture damage, and structural integrity. THERM's two-dimensional conduction heat-transfer analysis is based on the finite-element method, which can model the complicated geometries of building products. The program's graphic interface allows you to draw cross sections of products or components to be analyzed. To create the cross sections, you can trace imported files in DXF or bitmap format, or input the geometry from known dimensions. Each cross section is represented by a combination of polygons. You define the material properties for each polygon and introduce the environmental conditions to which the component is exposed by defining the boundary conditions surrounding the cross section. Once the model is created, the remaining analysis (mesher and heat transfer) is automatic. You can view results from THERM in several forms, including U-factors, isotherms, heat-flux vectors, and local temperatures. This version of THERM includes several new technical and user interface features; the most significant is a radiation view-factor algorithm. This feature increases the accuracy of calculations in situations where you are analyzing non-planar surfaces that have different temperatures and exchange energy through radiation heat transfer. This heat-transfer mechanism is important in greenhouse windows, hollow

  15. Numerical analysis of two dimensional natural convection heat transfer following a contained explosion

    Science.gov (United States)

    Manson, Steven James

    The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.

  16. Experimental and numerical evaluation of the heat fluxes in a basic two-dimensional motor

    Science.gov (United States)

    Nicoud, F.

    In the framework of a study assessing the ablation of Internal Thermal Insulation (ITI) of the Ariane 5 P230 Solid Rocket Booster (SRB), a 2D basic motor has been designed and manufactured at ONERA. During the first phase of the study, emphasis has been put on the heat flux measurements on an inert wall facing a propellant grain. In order to numerically reproduce the increase of the heat transfer exchange coefficient which is experimentally observed when one proceeds from the head-end to the aft-end of the port, a 2D explicit code with a two-equation turbulence model has been used. It is found that the computed heat transfer coefficient is closer to the experimental one when a wall law accounting for the mean density variations due to the large temperature gradient near the ITI is used. For this, the ITI is assumed to be completely inert and the wall temperature is imposed. The experimental data for two other tests, not numerically simulated, are also presented.

  17. BEM/FDM Conjugate Heat Transfer Analysis of a Two-dimensional Air-cooled Turbine Blade Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A coupled boundary element method (BEM) and finite difference method (FDM) are applied to solve conjugate heat transfer problem of a two-dimensional air-cooled turbine blade boundary layer. A loosely coupled strategy is adopted, in which each set of field equations is solved to provide boundary conditions for the other. The Navier-Stokes equations are solved by HIT-NS code. In this code, the FDM is adopted and is used to resolve the convective heat transfer in the fluid region. The BEM code is used to resolve the conduction heat transfer in the solid region. An iterated convergence criterion is the continuity of temperature and heat flux at the fluid-solid interface. The numerical results from the BEM adopted in this paper are in good agreement with the results of analyrical solution and the results of commercial code, such as Fluent 6.2. The BEM avoids the complicated mesh needed in other computation method and saves the computation time. The results prove that the BEM adopted in this paper can give the same precision in numerical results with less boundary points. Comparing the conjugate results with the numerical results of an adiabatic wall flow solution, it reveals a significant difference in the distribution of metal temperatures. The results from conjugate heat transfer analysis are more accurate and they are closer to realistic thermal environment of turbines.

  18. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  19. Two-dimensional analysis of coupled heat and moisture transport in masonry structures

    Science.gov (United States)

    Krejčí, Tomáš

    2016-06-01

    Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.

  20. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  1. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  2. FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.

    Directory of Open Access Journals (Sweden)

    Efthalia K Chatziefstratiou

    Full Text Available FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.

  3. The Effect of Buoyancy Force in Computational Fluid Dynamics Simulation of a Two-Dimensional Continuous Ohmic Heating Process

    Directory of Open Access Journals (Sweden)

    Elzubier A. Salih

    2009-01-01

    Full Text Available Problem statement: Earlier research on ohmic heating technique focused on viscous food and foods containing solid particles. In this study, use of ohmic heating on sterilization of guava juice is carried out. Computational fluid dynamics was used to model and simulate the system. Investigate the buoyancy effect on the CFD simulation of continuous ohmic heating systems of fluid foods. Approach: A two-dimensional model describing the flow, temperature and electric field distribution of non-Newtonian power law guava juice fluid in a cylindrical continuous ohmic heating cell was developed. The electrical conductivity, thermo physical and rheological properties of the fluid was temperature dependent. Numerical simulation was carried out using FLUENT 6.1 software package. A user defined functions available in FLUENT 6.1 was employed for the electric field equation. The heating cell used consisted of a cylindrical tube of diameter 0.05 m, height 0.50 m and having three collinear electrodes of 0.02 m width separated by a distance of 0.22 m. The sample was subjected to zero voltage at the top and bottom of electrodes while electrical potential of 90 volts (AC 50-60 Hz was set at the middle electrode. The inlet velocity is 0.003 m sec-1 and the temperature is in the range of 30-90°C. Results: Simulation was carried with and without buoyancy driven force effect. The ohmic heating was successfully simulated using CFD and the results showed that the buoyancy had a strong effect in temperature profiles and flow pattern of the collinear electrodes configuration ohmic heating. A more uniform velocity and temperature profiles were obtained with the buoyancy effect included. Conclusion: For accurate results, the inclusion of buoyancy effect into the CFD simulation is important.

  4. Two-Dimensional Thermal Shock Problem of Generalized Magneto-Thermoelasticity with a Time-Fractional Heat Conduction Law

    Science.gov (United States)

    Bachher, M.; Sarkar, N.

    2016-11-01

    An electromagneto-thermoelastic coupled problem for a homogeneous, isotropic, thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock is considered in two-dimensional space. The equations of the theory of generalized electromagneto-thermoelasticity with fractional derivative heat transfer allowing the second sound effects are considered. An initial magnetic field acts parallel to the plane boundary of the half-space. The normal mode analysis and the eigenvalue approach techniques are used to solve the resulting nondimensional coupled field equations for the three theories. Numerical results for the temperature, displacements and thermal stresses distributions are presented graphically and discussed. A comparison is made with the results obtained in the presence and absence of the magnetic field.

  5. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    Science.gov (United States)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  6. Fundamental Research in Engineering Education. Development of Concept Questions and Inquiry-Based Activities in Thermodynamics and Heat Transfer: An Example for Equilibrium vs. Steady-State

    Science.gov (United States)

    Vigeant, Margot; Prince, Michael; Nottis, Katharyn

    2011-01-01

    This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…

  7. Non-Markovianity assisted Steady State Entanglement

    CERN Document Server

    Huelga, Susana F; Plenio, Martin B

    2011-01-01

    We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.

  8. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    Science.gov (United States)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  9. Dynamics of a multimode system coupled to multiple heat baths probed by two-dimensional infrared spectroscopy.

    Science.gov (United States)

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2007-09-27

    Reduced equation of motion for a multimode system coupled to multiple heat baths is constructed by extending the quantum Fokker-Planck equation with low-temperature correction terms (J. Phys. Soc. Jpn. 2005, 74, 3131). Unlike such common approaches used to describe intramolecular multimode vibration as a Bloch-Redfield theory and a stochastic theory, the present formalism is defined by the molecular coordinates. To explore the correlation among different modes through baths, we consider two cases of system-bath couplings. One is a correlated case in which two modes are coupled to a single bath, and the other is an uncorrelated case in which each mode is coupled to a different bath. We further classify the correlated case into two cases, the plus- and minus-correlated cases, according to distinct correlation manners. For these, one-dimensional and two-dimensional infrared (2D-IR) spectra are calculated numerically by solving the equation of motion. It is demonstrated that 2D-IR spectroscopy has the ability to analyze the correlation of fluctuation-dissipation processes among different modes.

  10. Characterization of polyester films used in capacitors. 2: Effects of heat treatments on transient and steady-state charging currents in polyethylene terephthalate thin films

    Science.gov (United States)

    Thielen, A.; Cerfontaine, J.; Niezette, J.; Feyder, G.; Vanderschueren, J.

    1994-10-01

    The effects of various heat treatments performed before or after the vacuum deposition of aluminum electrodes on the charging currents flowing through polyethylene terephthalate (PET) thin films (6 and 12 micrometers) were studied. The amorphous phase of the PET films was characterized by the use of thermally stimulated current/relaxation map analysis spectrometry, allowing precise determination of thermodynamic and thermokinetic parameters. Density measurements were used to calculate the rate of crystallinity achieved after annealing. A correlation was found between the relaxation parameters of the alpha dipolar relaxation of PET, the rate of crystallinity, and the properties of the charging currents observed from room temperature to 200 C. Strain-induced crystallization has been put forward to account for the experimental evidences.

  11. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states

    Science.gov (United States)

    Rotskoff, Grant M.

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  12. Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals

    Science.gov (United States)

    Ong, Zhun-Yong; Cai, Yongqing; Zhang, Gang

    2016-10-01

    We present a theory of the phononic thermal (Kapitza) resistance at the interface between graphene or another single-layer two-dimensional (2D) crystal (e.g., MoS2) and a flat substrate, based on a modified version of the cross-plane heat transfer model by Persson, Volokitin, and Ueba [J. Phys.: Condens. Matter 23, 045009 (2011), 10.1088/0953-8984/23/4/045009]. We show how intrinsic flexural phonon damping is necessary for obtaining a finite Kapitza resistance and also generalize the theory to encased single-layer 2D crystals with a superstrate. We illustrate our model by computing the thermal boundary conductance (TBC) for bare and SiO2-encased single-layer graphene and MoS2 on a SiO2 substrate, using input parameters from first-principles calculation. The estimated room temperatures TBC for bare (encased) graphene and MoS2 on SiO2 are 34.6 (105) and 3.10 (5.07) MWK -1m-2 , respectively. The theory predicts the existence of a phonon frequency crossover point, below which the low-frequency flexural phonons in the bare 2D crystal do not dissipate energy efficiently to the substrate. We explain within the framework of our theory how the encasement of graphene with a top SiO2 layer introduces new low-frequency transmission channels, which significantly reduce the graphene-substrate Kapitza resistance. We emphasize that the distinction between bare and encased 2D crystals must be made in the analysis of cross-plane heat dissipation to the substrate.

  13. Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot

    Institute of Scientific and Technical Information of China (English)

    Zhai Zhi-Yuan; Li Yu-Qi; Pan Xiao-Yin

    2012-01-01

    We investigate the effects due to anisotropy and magnetic field interaction for a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot.The specific heat is studied with varying temperature,anisotropy,and magnetic field strength.The cases without and with the inclusion of the spin Zeeman interaction are considered.

  14. 热型连铸过程的二维稳态传热模型%Two-dimensional steady-state heat-transfer model of ohno continuous casting process

    Institute of Scientific and Technical Information of China (English)

    王维; 倪锋

    2005-01-01

    根据热型连铸技术原理,建立了热型连铸凝固过程二维稳态温度场的物理、数学模型.通过数值计算,得出了铸型出口温度、冷却距离、拉铸速度和喷水冷却强度等工艺参数对铸坯固液界面位置的影响.计算结果与文献报道的实验结果吻合较好.

  15. Non-Markovianity-assisted steady state entanglement.

    Science.gov (United States)

    Huelga, Susana F; Rivas, Ángel; Plenio, Martin B

    2012-04-20

    We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

  16. Study on the Interface Effects Based on Two-Dimensional Green's Functions for the Fluid and Pyroelectric Two-Phase Plane under a Line Heat Source

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou

    2014-11-01

    Full Text Available Two-dimensional Green's functions for a line heat source applied in the fluid and pyroelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the pyroelectric components in the fluid and pyroelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. And the undetermined constants can be obtained by the interface compatibility conditions and the mechanical, electric, and thermal equilibrium conditions. Numerical results are given graphically by contours.

  17. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  18. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  19. Fluctuations When Driving Between Nonequilibrium Steady States

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  20. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  1. Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems

    Science.gov (United States)

    Taniguchi, Tooru; Cohen, E. G. D.

    2008-02-01

    We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.

  2. 厌氧发酵反应器一维稳态传热模型的建立与验证%Development and verification of one-dimensional model of steady-state heat transfer for anaerobic fermentation reactor

    Institute of Scientific and Technical Information of China (English)

    刘建禹; 陈泽兴; 李文涛

    2012-01-01

    在北方高寒地区,采取适当的加热及保温措施,确保沼气厌氧发酵所需的稳定温度,是关系到沼气工程冬季能否正常运行的关键所在.厌氧发酵反应器传热耗热量是沼气发酵料液加热系统设计的最基本的数据,它直接影响着加热系统方案的选择、供热管道管径和加热器等主要设备的确定.该文在稳态传热理论的基础上,通过对集厌氧发酵和沼气收集为一体式的全地上反应器传热过程的理论分析,建立了一维稳态传热模型,并通过试验对传热模型进行了修正和验证.结果表明,通过模型计算得到的模拟值与实际值在统计上没有明显差异,传热模型可用于反应器耗热量的计算.这为今后大型沼气工程中厌氧发酵反应器热负荷的计算和反应器能耗的预测提供了依据.%In order to ensure normal operation of the biogas engineering in the alpine regions of northern of China in winter, it is a key factor to keep the stable temperature in the biogas anaerobic fermentation process by means of measurements of proper heating and warming preservation. Thermal consumption of heat transfer in the anaerobic fermentation reactor is the basis for the design of fermentation liquid heating system. It has obvious effect on the selection of heating scheme and determination of major equipments, such as heating system, diameter of heating pipes and heater. Basic on steady state heat transfer theory, a one-dimensional steady heat transfer model was developed by the heat transfer analysis for an integral and overground collection of anaerobic fermentation reactor and methane. This model was modified and validated. The results show that there is no significant difference between the simulation value and the actual value. Therefore, the heat transfer model is feasible for the calculation of thermal consumption of rector. This model can be used for the calculation of heat load and prediction of energy consumption

  3. Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow

    Science.gov (United States)

    Froessling, Nils

    1958-01-01

    The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.

  4. Energy spectrum and specific heat of two-dimensional electron systems with spin-orbit interaction in a magnetic field parallel to the conducting layer

    Science.gov (United States)

    Shevchenko, O. S.; Kopeliovich, A. I.

    2016-03-01

    The energy spectrum of a quasi-two-dimensional electron gas in an in-plane magnetic field is studied using the perturbation theory and quasiclassical approach in the presence of the Rashba and Dresselhaus spin-orbit coupling. The existence of the intersection of energy sublevels in electron spectrum is demonstrated. The reciprocal mass tensor of electrons is analyzed. The heat capacity of the degenerate electron gas is examined, and its relations with the key features of the spectrum are shown.

  5. A steady state theory for processive cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;

    2013-01-01

    . This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....... remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady......-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity...

  6. Multiple steady state phenomenon in martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.

  7. Steady-state Physics, Effective Temperature Dynamics in Holography

    CERN Document Server

    Kundu, Arnab

    2013-01-01

    Using the gauge-gravity duality, we argue that for a certain class of out-of-equilibrium steady-state systems in contact with a heat bath at a given temperature, the macroscopic physics can be captured by an effective thermodynamic description. The steady-state is obtained by applying a constant electric field that results in a stationary current flow. Within holography, we consider generic probe systems where an open string equivalence principle and an open string metric govern the effective thermodynamics. This description comes equipped with an effective temperature, which is larger than the bath temperature, and a corresponding effective entropy. For conformal or scale-invariant theories, certain scaling behaviours follow immediately. In general, in the large electric field limit, this effective temperature is also observed to obey certain generic relations with various physical parameters in the system.

  8. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  9. Cellular neural network analysis for two-dimensional bioheat transfer equation.

    Science.gov (United States)

    Niu, J H; Wang, H Z; Zhang, H X; Yan, J Y; Zhu, Y S

    2001-09-01

    The cellular neural network (CNN) method is applied to solve the Pennes bioheat transfer equation, and its feasibility is demonstrated. Numerical solutions were obtained for a cellular neural network for a two-dimensional steady-state temperature field obtained from focused and unfocused ultrasound heat sources. Transient-state temperature fields were also studied and compared with experimental results obtained elsewhere. The cellular neural networks' key features of asynchronous parallel processing, continuous-time dynamics and local interaction enable real-time temperature field estimation for clinical hyperthermia.

  10. A Two-dimensional Heat Transfer Model for Atmosphere-land System in the Lake-dominated Alaskan Arctic

    Institute of Scientific and Technical Information of China (English)

    LING Feng; ZHANG Ting-jun

    2002-01-01

    Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phasechange in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt,sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.

  11. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  12. Ideal MHD Stability of ITER Steady State Scenarios with ITBs

    Energy Technology Data Exchange (ETDEWEB)

    F.M. Poli, C.E. Kessel, S. Jardin, J. Manickam, M. Chance, J. Chen

    2011-07-27

    One of ITER goals is to demonstrate feasibility of continuous operations using non-inductive current drive. Two main candidates have been identified for advanced operations: the long duration, high neutron fluency hybrid scenario and the steady state scenario, both operating at a plasma current lower than the reference ELMy scenario [1][2] to minimize the required current drive. The steady state scenario targets plasmas with current 7-10 MA in the flat-top, 50% of which will be provided by the self-generated, pressure-driven bootstrap current. It has been estimated that, in order to obtain a fusion gain Q > 5 at a current of 9 MA, it should be ΒN > 2.5 and H > 1.5 [3]. This implies the presence of an Internal Transport Barrier (ITB). This work discusses how the stability of steady state scenarios with ITBs is affected by the external heating sources and by perturbations of the equilibrium profiles.

  13. SBWR Model for Steady-State and Transient Analysis

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2008-01-01

    Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.

  14. Steady State Analysis of Towed Marine Cables

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; HUANG Guo-liang; DENG De-heng

    2008-01-01

    Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems, the steady state problem can be resolved into two-point boundary-value problem, or initial value problem in some special cases where the initial values are available directly. A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency. First, the boundary conditions are transformed into a set of nonlinear governing equations about the initial values, then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method. In common sense, non-uniform (sheared) current is assumed, which varies in magnitude and direction with depth. The schemes are validated through the DE Zoysa's example, then several numerical examples are also presented to illustrate the numerical schemes.

  15. On Typicality in Nonequilibrium Steady States

    Science.gov (United States)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  16. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    Science.gov (United States)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  17. Heat transfer in the flow of a cold, two-dimensional vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

  18. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, H.-S. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Wolf, R. C. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Andreeva, T. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Cardella, A [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Erckmann, V. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Gantenbein, G [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Hathiramani, D [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Kasparek, W [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Klinger, T. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Koenig, R [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Kornejew, P [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Laqua, H P [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Lechte, C [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Michel, G [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Peacock, A. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Sunn Pedersen, T [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Thumm, M [Karlsruhe Institute for Technology, IHM, EURATOM Association, Karlsruhe, Germany; Turkin, Yu. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Wegener, Lutz [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Werner, A. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Zhang, D [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Beidler, C. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Bozhenkov, S. [EURATOM-Association, Max Planck Institute of Plasma Physics, Greifswald, Germany; Brown, T. [Princeton Plasma Physics Laboratory (PPPL); Geiger, J. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Harris, Jeffrey H [ORNL; Heitzenroeder, P. [Princeton Plasma Physics Laboratory (PPPL); Lumsdaine, Arnold [ORNL; Maassberg, H. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Marushchenko, N B [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Neilson, G. H. [Princeton Plasma Physics Laboratory (PPPL); Otte, M [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Rummel, Thomas [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Spong, Donald A [ORNL; Tretter, Jorg [Max Planck Institute for Plasma Physics, Garching, Germany

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  19. Magneto-Hydrodynamic Flow in a Two-Dimensional Inclined Rectangular Enclosure Heated and Cooled on Adjacent Walls

    Directory of Open Access Journals (Sweden)

    M.N Kherief

    2016-01-01

    Full Text Available Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular enclosure heated from one side and cooled from the adjacent side was considered. The governing equations were solved numerically for the stream function, vorticity and temperature using the finite-volume method for various Grashof and Hartman numbers and inclination angles and magnetic field directions. The results show that the orientation and the strength and direction of the magnetic field have significant effects on the flow and temperature fields. Counterclockwise inclination induces the formation of multiple eddies inside the enclosure significantly affecting the temperature field. Circulation inside the enclosure and therefore the convection become stronger as the Grashof number increases while the magnetic field suppresses the convective flow and the heat transfer rate.

  20. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  1. Heat transfer in the flow of a cold, two-dimensional draining sheet over a hot, horizontal cylinder

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.

  2. Conditionally sampled two-dimensional optical wavefront measurements in the near-nozzle region of a heated axisymmetric jet

    Science.gov (United States)

    Hugo, Ronald J.; McMackin, Lenore J.

    1996-10-01

    The time-evolution of optical degradation in the near nozzle region of a heated axisymmetric jet is measured using conditional sampling techniques. A novel linearized stability experiment is performed in order to identify the flowfield states most applicable for conditional sampling techniques. The results of the conditional sampling experiment exhibit a condition where two distinct flowfield states are evident. Potential explanations for the observance of these two distinct states are proposed, with the most probable explanation being due to pi-jumps that can arise between the phase of the excitation signal and the phase of the flowfield events.

  3. On circulating power of steady state tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-03-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  4. Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics.

    Science.gov (United States)

    Chacón, L; Simakov, Andrei N; Zocco, A

    2007-12-07

    We formulate a rigorous nonlinear analytical model that describes the dynamics of the diffusion (reconnection) region in driven systems in the context of electron magnetohydrodynamics (EMHD). A steady-state analysis yields allowed geometric configurations and associated reconnection rates. In addition to the well-known open X-point geometry, elongated configurations are found possible. The model predictions have been validated numerically with two-dimensional EMHD nonlinear simulations, and are in excellent agreement with previously published work.

  5. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    Science.gov (United States)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the

  6. Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States

    KAUST Repository

    Komatsu, Teruhisa S.

    2010-01-01

    We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.

  7. Progress Toward Steady-State Operation on Tore Supra

    Institute of Scientific and Technical Information of China (English)

    J. Jacquinot; G. T. Hoang; the Tore Supra Team

    2004-01-01

    Important technological and physics issues related to steady-state operation required for next step are being examined on Tore Supra, after a major upgrade of internal components in order to increase the heat extraction capability to 25 MW for 1000 s. Here, we show first experimental results, where all the plasma facing components were actively cooled during pulses exceeding four minutes, with reactor-relevant heat load. New physics was observed in non-inductively driven plasmas, including a stationary peaked radial profile of the plasma density generated by an anomalous inward pinch; and a regime characterized by sinusoidal oscillations of central electron temperature, governed by non-linear coupling between heat transport and plasma current analogous to a predator-prey mechanism.

  8. Linear stability of horizontal, laminar fully developed, quasi-two-dimensional liquid metal duct flow under a transverse magnetic field and heated from below

    Science.gov (United States)

    Vo, Tony; Pothérat, Alban; Sheard, Gregory J.

    2017-03-01

    This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.

  9. The effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-B\\'enard convection

    CERN Document Server

    van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef

    2015-01-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...

  10. Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates

    Science.gov (United States)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.; Yan, Min

    2016-09-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer process.

  11. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    OpenAIRE

    Guo Zerong; Xia Quan; Yan Peiyu; Du Zhiming

    2016-01-01

    To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. T...

  12. Realization of minute-long steady-state H-mode discharges on EAST

    Science.gov (United States)

    Xianzu, GONG; Baonian, WAN; Jiangang, LI; Jinping, QIAN; Erzhong, LI; Fukun, LIU; Yanping, ZHAO; Mao, WANG; Handong, XU; A, M. GAROFALO; Annika, EKEDAH; Siye, DING; Juan, HUANG; Ling, ZHANG; Qing, ZANG; Haiqing, LIU; Long, ZENG; Shiyao, LIN; Biao, SHEN; Bin, ZHANG; Linming, SHAO; Bingjia, XIAO; Jiansheng, HU; Chundong, HU; Liqun, HU; Liang, WANG; Youwen, SUN; Guosheng, XU; Yunfeng, LIANG; Nong, XIANG; EAST Team

    2017-03-01

    In the 2016 EAST experimental campaign, a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive, through an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management, and effective coupling of multiple RF heating and current drive sources at high injected power. The plasma current (I p ∼ 0.45 MA) was fully-noninductively driven (V loop technology studies on EAST, and will benefit the physics basis for steady state operation of ITER and CFETR.

  13. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  14. Frozen steady states in active systems

    CERN Document Server

    Schaller, Volker; Hammerich, Benjamin; Frey, Erwin; Bausch, Andreas R

    2011-01-01

    Even simple active systems can show a plethora of intriguing phenomena and often we find complexity were we would have expected simplicity. One striking example is the occurrence of a quiescent or absorbing state with frozen fluctuations that at first sight seems to be impossible for active matter driven by the incessant input of energy. While such states were reported for externally driven systems through macroscopic shear or agitation, the investigation of frozen active states in inherently active systems like cytoskeletal suspensions or active gels is still at large. Using high density motility assay experiments, we demonstrate that frozen steady states can arise in active systems if active transport is coupled to growth processes. The experiments are complemented by agent-based simulations which identify the coupling between self-organization, growth and mechanical properties to be responsible for the pattern formation process.

  15. Fluctuations When Driving Between Nonequilibrium Steady States

    CERN Document Server

    Riechers, P M

    2016-01-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balance dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify constraints on excess thermodynamic quantities that ride above the NESS housekeeping background. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. Altogether, these point to universal thermodynamic laws that are immediately app...

  16. Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.

    2009-11-01

    M3D- C1 is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlüter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed.

  17. Steady-state evaporator models of Solar Sea Power Plants. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Hetyei, S. A.; Neuman, C. P.

    1976-08-01

    Previously, a methodology was developed for modeling the dynamic and steady-state behavior of Solar Sea Power Plants (SSPP). Here, the pertinent physical laws of heat transfer and mass balance are applied to develop a lumped parameter, steady-state model for tube-and-shell evaporators incorporating falling films. This model is analyzed to investigate the assumption of constant heat transfer coefficients in modeling the steady-state behavior of smooth-tube evaporators operated in the turbulent flow regime. It is concluded that, for all practical purposes, the local heat transfer coefficient on the working fluid side of the evaporator tube is constant for both fixed and +-10% changes in the inlet working fluid flow rate. The overall objective is to develop simulation models of a complete SSPP as tools of design and optimization.

  18. Interaction-induced mode switching in steady-state microlasers.

    Science.gov (United States)

    Ge, Li; Liu, David; Cerjan, Alexander; Rotter, Stefan; Cao, Hui; Johnson, Steven G; Türeci, Hakan E; Stone, A Douglas

    2016-01-11

    We demonstrate that due to strong modal interactions through cross-gain saturation, the onset of a new lasing mode can switch off an existing mode via a negative power slope. In this process of interaction-induced mode switching (IMS) the two involved modes maintain their identities, i.e. they do not change their spatial field patterns or lasing frequencies. For a fixed pump profile, a simple analytic criterion for the occurrence of IMS is given in terms of their self- and cross-interaction coefficients and non-interacting thresholds, which is verified for the example of a two-dimensional microdisk laser. When the spatial pump profile is varied as the pump power is increased, IMS can be induced even when it would not occur with a fixed pump profile, as we show for two coupled laser cavities. Our findings apply to steady-state lasing and are hence different from dynamical mode switching or hopping. IMS may have potential applications in robust and flexible all-optical switching.

  19. Development of a Two-Dimensional Zonally Averaged Statistical-Dynamical Model. Part III: The Parameterization of the Eddy Fluxes of Heat and Moisture.

    Science.gov (United States)

    Stone, Peter H.; Yao, Mao-Sung

    1990-07-01

    A number of perpetual January simulations are carried out with a two-dimensional (2-D) zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional (3-D) general circulation model with zonally symmetric forcing. The 3-D model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations.Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. In particular, Branscome's parameterization underestimates the vertically integrated flux of heat by about 30%, mainly because it misses out the secondary peak in this flux near the tropopause; and Leovy's parameterization of the meridional eddy flux of moisture underestimates the magnitude of this flux by about 20%. The analogous parameterizations of the vertical eddy fluxes of heat and moisture are found to perform much more poorly, i.e., they give fluxes only one quarter to one half as strong as those calculated in the 3-D model. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the 2-D model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the 3-D model, and only underestimate the magnitude of the fluxes by 10% to 20%.

  20. A two dimensional thermal network model for a photovoltaic solar wall

    Energy Technology Data Exchange (ETDEWEB)

    Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

    2009-11-15

    A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

  1. Steady-state and non-steady state operation of counter-current chromatography devices.

    Science.gov (United States)

    Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A

    2013-11-01

    Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.

  2. Steady-state creep in the mantle

    Directory of Open Access Journals (Sweden)

    G. RANALLI

    1977-06-01

    Full Text Available SUMMARY - The creep equations for steady-state flow of olivine at high
    pressure and temperature are compared in an attempt to elucidate the rheological
    behaviour of the mantle. Results are presented in terms of applied deformation
    maps and curves of effective viscosity v depth.
    In the upper mantle, the transition stress between dislocation and diffusion
    creep is between 10 to 102 bar (as orders of magnitude for grain sizes from
    0.01 to 1 cm. The asthenosphere under continents is deeper, and has higher
    viscosity, than under oceans. Predominance of one creep mechanism above the
    others depends on grain size, strain rate, and volume fraction of melt; the
    rheological response can be different for different geodynamic processes.
    In the lower mantle, on the other hand, dislocation creep is predominant
    at all realistic grain sizes and strain rates. If the effective viscosity has to be only
    slightly higher than in the upper mantle, as some interpretations of glacioisostatic
    rebound suggest, then the activation volume cannot be larger than
    11 cm3 mole^1.

  3. Modelling of pulsed and steady-state DEMO scenarios

    Science.gov (United States)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  4. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  5. Multiple steady states of fluid catalytic cracking unit with high-efficiency regenerator:effect of reaction temperature control strategy on heat feedback%高效再生催化裂化装置多稳态分析:反应温度开/闭环控制条件对热反馈机制的影响

    Institute of Scientific and Technical Information of China (English)

    王锐; 罗雄麟; 许锋

    2014-01-01

    针对催化裂化反应-再生系统在提升管反应温度开环和闭环控制条件下的输出与输入多稳态问题,分析了烧焦罐式高效再生催化裂化反应-再生系统在两种条件下随着CO助燃剂添加量变化时的多稳态分布。在反应温度开环条件下,因再生温度与反应温度的耦合程度较低,使系统移热曲线呈单调递增,导致了系统出现3个稳态操作点。在反应温度闭环控制条件下,提升管反应器和再生器间热反馈机制发生改变,由于再生剂循环量可以作为额外的自由度对再生温度和反应温度之差进行补偿,再生器和提升管反应器的耦合程度增强,使得系统只会在助燃剂添加量极低时才会出现多个稳态点,而在基准操作条件下只有一个稳态点,规避了系统在提升管反应温度开环时的多个稳态点的问题。%Analyses of multiple steady states of a fluid catalytic cracking unit (FCCU) with high-efficiency regenerator with the riser reaction temperature under open loop and closed loop control were performed based on the theory of output multiplicity and input multiplicity. The multiple steady states under these two conditions were determined with respect to the amount of the added CO combustion promoter. The heat removal curve was found monotonously increasing with riser reaction temperature under open loop control, which resulted in the existence of three multiple steady states because of weak coupling between regenerator temperature and riser reaction temperature. On the other hand, the heat feedback of regenerator and riser reactor changed under closed loop control because regenerated catalyst flow rate could be used as an extra measure to compensate the difference between regenerator temperature and riser reaction temperature to enhance coupling between regerator temperature and riser reactor temperature. Multiple steady states would exist only when CO promoter was extremely

  6. Constrained optimal steady-state control for isolated traffic intersections

    Institute of Scientific and Technical Information of China (English)

    Jack HADDAD; David MAHALEL; Ilya IOSLOVICH; Per-Olof GUTMAN

    2014-01-01

    The steady-state or cyclic control problem for a simplified isolated traffic intersection is considered. The optimization problem for the green-red switching sequence is formulated with the help of a discrete-event max-plus model. Two steady-state control problems are formulated: optimal steady-state with green duration constraints, and optimal steady-state control with lost time. In the case when the criterion is a strictly increasing, linear function of the queue lengths, the steady-state control problems can be solved analytically. The structure of constrained optimal steady-state traffic control is revealed, and the effect of the lost time on the optimal solution is illustrated.

  7. A two-dimensional study on natural convection and heat transfer in the enclosure with heat transfer and radiation coupled in natural convection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Numerical investigation using SIMPLE algorithm with QUICK scheme for natural convection and heat transfer in the enclosure bounded by a solid wall and with heat transfer and radiation coupled in natural convection has been conducted.The various parameters are:Rayleigh number(from 103 to 105),dimensionless conductivity of bounding wall(from 0 to 100),dimensionless wall thickness(from 0 to 0.6) and radiation emissivity of all surfaces(from 0 to 1).The results suggest that flow and heat transfer are influenced by radiation.Radiation is a dominant action on flow and heat transfer.With increase of the thermal conductivity of wall,flow and heat transfer turn stronger.The temperature distribution changes obviously.When the thermal conductivity of wall is over a certain critical number,the increasing trend of flow and heat transfer may disappear.With increase of enclosure wall thickness,flow and heat transfer turn slighter.When the enclosure wall thickness is over a certain critical number,the flow and heat transfer will turn slow.

  8. Isotropic model of fractional transport in two-dimensional bounded domains.

    Science.gov (United States)

    Kullberg, A; del-Castillo-Negrete, D; Morales, G J; Maggs, J E

    2013-05-01

    A two-dimensional fractional Laplacian operator is derived and used to model nonlocal, nondiffusive transport. This integro-differential operator appears in the long-wavelength, fluid description of quantities undergoing non-Brownian random walks without characteristic length scale. To study bounded domains, a mask function is introduced that modifies the kernel in the fractional Laplacian and removes singularities at the boundary. Green's function solutions to the fractional diffusion equation are presented for the unbounded domain and compared to the one-dimensional Cartesian approximations. A time-implicit numerical integration scheme is presented to study fractional diffusion in a circular disk with azimuthal symmetry. Numerical studies of steady-state reveal temperature profiles in which the heat flux and temperature gradient are in the same direction, i.e., uphill transport. The response to off-axis heating, scaling of confinement time with system size, and propagation of cold pulses are investigated.

  9. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    Science.gov (United States)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  10. Interval finite difference method for steady-state temperature field prediction with interval parameters

    Science.gov (United States)

    Wang, Chong; Qiu, Zhi-Ping

    2014-04-01

    A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters. [Figure not available: see fulltext.

  11. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  12. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  13. Particle Velocity Fluctuations in Steady State Sedimentation: Stratification Controlled Correlations

    CERN Document Server

    Segrè, P N

    2007-01-01

    The structure and dynamics of steady state sedimentation of semi-concentrated ($\\phi=0.10$) monodisperse spheres are studied in liquid fluidized beds. Laser turbidity and particle imaging methods are used to measure the particle velocity fluctuations and the steady state concentration profiles. Using a wide range of particle and system sizes, we find that the measured gradients $\

  14. Coexistence Steady States in a Predator-Prey Model

    CERN Document Server

    Walker, Christoph

    2010-01-01

    An age-structured predator-prey system with diffusion and Holling-Tanner-type nonlinearities is considered. Regarding the intensity of the fertility of the predator as bifurcation parameter, we prove that a branch of positive coexistence steady states bifurcates from the marginal steady state with no prey. A similar result is obtained when the fertility of the prey varies.

  15. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  16. Steady State of Pedestrian Flow in Bottleneck Experiments

    CERN Document Server

    Liao, Weichen; Seyfried, Armin; Chraibi, Mohcine; Drzycimski, Kevin; Zheng, Xiaoping; Zhao, Ying

    2015-01-01

    Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. In this work, a feasible algorithm - Cumulative Sum Control Chart - is proposed and improved to automatically detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with previous manually selected ones, the modified algorithm gives more reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The study about pedestrian flow shows that the difference between the flows in all states and in steady state mainly depends on the ratio of pedestrian number to bottleneck width. When the ratio is higher than a critical value (approximately 115 persons/m), the flow in all states is almost ...

  17. Steady states and stability in metabolic networks without regulation.

    Science.gov (United States)

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological

  18. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  19. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  20. Steady State Pyrolysis and Ablation Investigation

    Science.gov (United States)

    2008-03-31

    about 10.000 K, using electrical current loops induced inside a 160 mm diameter plasma torch. The inductively-coupled plasma wind tunnel uses a high...stagnation point heat transfer from high-enthalpy reacting gas flow to surface with catalysis and gas injection. In Proceedings of the fourth...Lundell and Dickey [3] also gave stagnation point surface temperature, pressure and recession rates in the Ames arc heated wind tunnel. But they

  1. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas.

    Science.gov (United States)

    Brey, J Javier; Buzón, V; Maynar, P; García de Soria, M I

    2015-05-01

    The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.

  2. Improvement of Convergence to Steady State Solutions of Euler Equations with Weighted Compact Nonlinear Schemes

    Institute of Scientific and Technical Information of China (English)

    Shu-hai ZHANG; Xiao-gang DENG; Mei-liang MAO; Chi-Wang SHU

    2013-01-01

    The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X.and Zhang H.(2000),J.Comput.Phys.165,22-44 and Zhang S.,Jiang S.and Shu C.-W.(2008),J.Comput.Phys.227,7294-7321] is studied through numerical tests.Like most other shock capturing schemes,WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level.In this paper,the techniques studied in [Zhang S.and Shu.C.-W.(2007),J.Sci.Comput.31,273-305 and Zhang S.,Jiang S and Shu.C.-W.(2011),J.Sci.Comput.47,216-238],to improve the convergence to steady state solutions for WENO schemes,are generalized to the WCNS.Detailed numerical studies in one and two dimensional cases are performed.Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS.The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.

  3. Steady-state decoupling and design of linear multivariable systems

    Science.gov (United States)

    Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.

  4. Steady-state vortex-line density in turbulent He II counterflow

    Science.gov (United States)

    Ostermeier, R. M.; Cromar, M. W.; Donnelly, R. J.; Kittel, P.

    1978-01-01

    We have measured the steady-state vortex-line density in turbulent counterflow using a second-sound-burst technique as a local probe. Contrary to the Vinen theory and previous assumptions, we find substantial line-density inhomogeneity and strong departures from the predicted heat-current dependence. Anomalous behavior of the line density at higher heat currents provides evidence for a new secondary flow state.

  5. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    Science.gov (United States)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  6. Enhancement of the steady-state magnetization in TROSY experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riek, Roland [Institut fuer Molekularbiologie und Biophysik Eidgenoessische Technische Hochschule Hoenggerberg (Switzerland)], E-mail: rr@mol.biol.ethz.ch

    2001-10-15

    Under the condition that the longitudinal relaxation time of spin I is shorter than the longitudinal relaxation time of spin S the steady-state magnetization in [S,I]-TROSY-type experiments can be enhanced by intermediate storage of a part of the steady-state magnetization of spin I on spin S with a pulse sequence element during the relaxation delay. It is demonstrated with samples ranging in size from the 1 kDa cyclosporin to the 110 kDa {sup 15}N,{sup 2}H-labeled dihydroneopterin Aldolase that intermediate storage of steady-state magnetization in a [{sup 15}N,{sup 1}H]-TROSY experiment yields a signal gain of 10-25%. The method proposed here for intermediate storage of steady-state magnetization can be implemented in any [{sup 15}N,{sup 1}H]-TROSY-type experiments.

  7. Steady state and time resolved spectroscopy of photoswitchable systems

    NARCIS (Netherlands)

    Hou, Lili

    2013-01-01

    Steady state en time resolved spectroscopie zijn twee fundamentele methodes voor het bestuderen van fotochemische processen. In dit proefschrift zijn drie zelf-opgezette spectroscopische systemen beschreven, waarmee samen met andere spectroscopische methoden verscheidende met licht schakelbare syste

  8. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  9. Development of the ITER Advanced Steady State and Hybrid Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, D. Campbell, T. Casper, Y. Gribov, and J. Snipes

    2010-09-24

    Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, βN ~ 2.5 for H98 = 1.6, Q’s range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ~ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.

  10. Steady state relativistic stellar dynamics around a massive black hole

    CERN Document Server

    Bar-Or, Ben

    2015-01-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...

  11. Analytic description of adaptive network topologies in a steady state.

    Science.gov (United States)

    Wieland, Stefan; Nunes, Ana

    2015-06-01

    In many complex systems, states and interaction structure coevolve towards a dynamic equilibrium. For the adaptive contact process, we obtain approximate expressions for the degree distributions that characterize the interaction network in such active steady states. These distributions are shown to agree quantitatively with simulations except when rewiring is much faster than state update and used to predict and to explain general properties of steady-state topologies. The method generalizes easily to other coevolutionary dynamics.

  12. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  13. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  14. Multiple steady states in coupled flow tank reactors

    Science.gov (United States)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  15. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in steady state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun; Wang, Chenglong [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); An, Hongzhen [Nuclear and Radiation Safety Center, Ministry of Environmental Protection of the People' s Republic of China, Beijing 100082 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Developed a three dimensional coupled code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under steady state condition. • Analyzed the influence of inlet temperature and inlet velocity to thermal-hydraulics characteristics of the reactor. - Abstract: MSR (molten salt reactor) uses liquid molten salt as the coolant and fuel solvent, making it the only liquid reactor among the six generation IV reactor types. As a liquid reactor the physical properties of the reactor are significantly influenced by the fuel salt flow therefore conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code and applied it to investigate the thermal-hydraulic characteristics of the core in steady state condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The temperature distribution, neutron fluxes and delayed neutron precursors distribution of the core in steady state conditions was studied, and the result analyzed when inlet temperature and velocity were changed. From simulation it was found that the inlet temperature has little influence to neutron distribution however inlet velocity affects the delayed neutron distribution in steady state condition. The results provide some valuable information in design and research of this kind of reactor.

  16. Geomorphic and Thermal Steady State Regimes: Reality or Wishful Thinking?

    Science.gov (United States)

    Lock, J.; Furlong, K.

    2003-04-01

    In many tectonic geomorphic studies, it is assumed that rates of uplift within an orogen are matched by rates of exhumation producing a steady-state orogen. However, the tools used to determine exhumation are thermally driven (e.g. Fission Track, U-Th/He) and exhumation can substantially perturb the crustal thermal regime. Since knowing the thermal regime is key to determining exhumation from thermochronology, problems arise. In order to interpret a rate of exhumation we make the assumption that an area is in thermal 'steady state', which in young active orogens unlikely exists. Taiwan, the Southern Alps, Fiordland, and Nanga Parbat are relatively young mountain belts that have begun to uplift or have experienced increased rates of uplift during the past 5-10 Ma. As there is a time lag between the onset of uplift and achieving geomorphic steady state and again between reaching geomorphic steady state and thermal steady state, these orogens may be too young to have achieved this final stage. Additionally, young orogens may not have experienced a constant rate of uplift and denudation in the time over which the thermochronometers average. Certainly, in the case of the Southern Alps, present uplift rates can not have existed since uplift begun. Therefore, an apparent age is recording a transient thermal state. Even in a case where geomorphic steady state exists i.e. exhumation balances uplift, it is unlikely that a thermal steady state has been reached. This precludes the simple interpretation of exhumation rates often made. When multiple thermochronometers are used, inconsistencies can arise. For example, an increase in the rate of uplift is often observed when comparing the rates of exhumation using different thermochronometers. Our modeling shows that in some cases this phenomena is actually eliminated by considering the transient nature of the thermal regime following the onset of uplift and exhumation of an active orogen. To accurately determine exhumation rate

  17. Soil residence time: A window into landscape morphologic steady state

    Science.gov (United States)

    Almond, P. C.; Roering, J. J.

    2005-12-01

    For a landscape in true morphologic steady state the erosion rate and the average residence time of the debris mantle regolith (including the soils) are everywhere equal. Where other factors influencing soil properties such as climate, organisms and parent material are relatively invariant the degree of weathering and extent of pedological development in the debris mantle regolith should be spatially invariant. The corollary to this argument, commonly exploited in soil-geomorphic analysis, is that variation in debris mantle regolith development in a landscape reflects inheritance of older geomorphic surfaces and hence departure from steady state, at least over some time and space scale. The Oregon Coast Range (OCR) experiences a constant rate of rock uplift and has escaped the effects of Pleistocene glacial and periglacial processes. Furthermore, rock uplift and denudation rates have been shown to be approximately in balance, and consequently the OCR is promoted as being a good candidate for a (flux) steady state landscape. This is, however, not a sufficient condition for morphologic steady state, which is often assumed in numerical landscape simulations. The rock underlying the OCR is relatively homogeneous turbidites of the Tyee formation, and climatic and vegetation factors are relatively uniform over large areas. The degree of weathering and pedological development of the regolith on hillslopes should therefore dominantly reflect variation in regolith residence time, such that significant variation implies non-morphologic-steady state conditions. Indeed, spatial variation in soil/regolith age indicates the extent of departure from morphologic steady state. We have observed ubiquitous but localised deep, highly weathered regoliths and soils on ridge tops in the OCR. The extent, depth, geometry and elevational distribution of these deep regolith patches combined with relative measures of their age derived from total element and meteoric 10Be inventory will enable

  18. Dynamics of the current filament formation and its steady-state characteristics in chalcogenide based PCM

    Science.gov (United States)

    Bogoslovskiy, Nikita; Tsendin, Konstantin

    2017-03-01

    In the phase-change memory (PCM) crystallization occurs in the high-current filament which forms during switching to the conductive state. In the present paper we conduct a numerical modeling of the current filament formation dynamics in thin chalcogenide films using an electronic-thermal model based on negative-U centers tunnel ionization and Joule heating. The key role of inhomogeneities in the filament formation process is shown. Steady-state filament parameters were obtained from the analysis of the stationary heat conduction equation. The filament formation dynamics and the steady-state filament radius and temperature could be controlled by material parameters and contact resistance. Consequently it is possible to control the size of the region wherein crystallization occurs. A good agreement with numerous experimental data leads to the conclusion that thermal effects play a significant role in CGS conduction and high-current filament formation while switching.

  19. Nonlinear transport in a two dimensional holographic superconductor

    Science.gov (United States)

    Zeng, Hua Bi; Tian, Yu; Fan, Zhe Yong; Chen, Chiang-Mei

    2016-06-01

    The problem of nonlinear transport in a two-dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both the near- and nonequilibrium regimes. The limit of weak electric field corresponds to the near-equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting nonequilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Increasing the amplitude of the applied electric field results in a far-from-equilibrium nonsuperconducting steady state with a universal linear conductivity of one. In the lower temperature regime we also find chaotic behavior of the superconducting gap, which results in a nonmonotonic field-dependent nonlinear conductivity.

  20. Nonlinear Transport in a Two Dimensional Holographic Superconductor

    CERN Document Server

    Zeng, Hua Bi; Fan, Zhe Yong; Chen, Chiang-Mei

    2016-01-01

    The problem of nonlinear transport in a two dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both near- and non-equilibrium regimes. The limit of weak electric field corresponds to the near equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting non-equilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Keeping increasing the amplitude of applied electric field results in a far-from-equilibrium non-superconducting steady state with a universal linear conductivity of one. In lower temperature regime we also find chaotic behavior of superconducting gap, which results in a non-monotonic field dependent nonlinear conductivity.

  1. Overview of EAST experiments on the development of high-performance steady-state scenario

    Science.gov (United States)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  2. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  3. A two-dimensional analytical model of petroleum vapor intrusion

    Science.gov (United States)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  4. Stable MIMO Constrained Predictive Control with Steady state Objective Optimization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is pre sented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that .the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.

  5. Structural simplification of chemical reaction networks in partial steady states.

    Science.gov (United States)

    Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa

    2016-11-01

    We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology.

  6. Quantum quasi-steady states in current transport

    Science.gov (United States)

    D'Agosta, Roberto; Zwolak, Michael; di Ventra, Massimiliano

    2007-03-01

    We investigate quasi-steady state solutions to transport in quantum systems by finding states which at some time minimize the change in density throughout all space and have a given current density flowing from one part of the system to another [1]. Contrary to classical dynamics, in a quantum mechanical system there are many states with a given energy and particle number which satisfy this minimization criterion. Taking as an example spinless fermions on a one-dimensional lattice, we explicitly show the phase space of a class of quasi-steady states. We also discuss the possibility of coherent and incoherent mixing of these steady state solutions leading to a new type of noise in quantum transport. [1] M. Di Ventra and T.N. Todorov J. Phys. Cond. Matt. 16, 8025 (2004).

  7. Lattice gas dynamics: application to driven vortices in two dimensional superconductors.

    Science.gov (United States)

    Gotcheva, Violeta; Wang, Albert T J; Teitel, S

    2004-06-18

    A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.

  8. Steady state decoupling and design of linear multivariable systems

    Science.gov (United States)

    Huang, J. Y.; Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of linear multivariable systems is developed. The criterion consists of n(n-1) inequalities with the type numbers of the compensator transfer functions as the unknowns. These unknowns can be chosen to satisfy the inequalities and hence achieve a steady state decoupling scheme. It turns out that pure integrators in the loops play an important role. An extended root locus design method is then developed to take care of the stability and transient response. The overall procedure is applied to the compensation design for STOL C-8A aircraft in the approach mode.

  9. Adaptive steady-state stabilization for nonlinear dynamical systems

    Science.gov (United States)

    Braun, David J.

    2008-07-01

    By means of LaSalle’s invariance principle, we propose an adaptive controller with the aim of stabilizing an unstable steady state for a wide class of nonlinear dynamical systems. The control technique does not require analytical knowledge of the system dynamics and operates without any explicit knowledge of the desired steady-state position. The control input is achieved using only system states with no computer analysis of the dynamics. The proposed strategy is tested on Lorentz, van der Pol, and pendulum equations.

  10. Electric machines steady state, transients, and design with Matlab

    CERN Document Server

    Boldea, Ion

    2009-01-01

    Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui

  11. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  12. Noncontrast-enhanced renal angiography using multiple inversion recovery and alternating TR balanced steady-state free precession.

    Science.gov (United States)

    Dong, Hattie Z; Worters, Pauline W; Wu, Holden H; Ingle, R Reeve; Vasanawala, Shreyas S; Nishimura, Dwight G

    2013-08-01

    Noncontrast-enhanced renal angiography techniques based on balanced steady-state free precession avoid external contrast agents, take advantage of high inherent blood signal from the T 2 / T 1 contrast mechanism, and have short steady-state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady-state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background T 1 species while allowing for adjustable inflow times; alternating pulse repetition time steady-state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three-dimensional as well as projective two-dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique.

  13. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    CERN Document Server

    Jin, Xiao

    2016-01-01

    Nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but much less investigated under non-isothermal conditions. However, once the heat exchange between subsystems is rather slow, the isothermal assumption of the whole system meets great challenge, which is indeed the case inside many kinds of living organisms. Here we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics, in the master-equation models, to the situation in which the temperatures of subsystems can be far from uniform. We first obtain a new thermodynamic relation between the chemical reaction rates and thermodynamic potentials under such a non-isothermal circumstances, which immediately implies simply applying the isothermal transition-state rate formula for each chemical reaction in terms of only the reactants' temperature, is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction-rate formulas which not only obey the new ...

  14. Nonequilibrium density-matrix description of steady-state quantum transport.

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Hänggi, Peter

    2012-01-01

    With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

  15. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  16. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...

  17. The Enlisted Steady State-Simulation (ESS-SIM) Tool

    Science.gov (United States)

    2014-07-01

    1 Model design ...current inven- tories. A simulation of the transition from a current inventory toward the steady state is required for such an understanding. Model design ...described by paygrade (e.g., the Navy needs 100 E-5 OS personnel). • Longevity (length of service): Many personnel policies address longevity (e.g., Zone A

  18. The concave river long profile: a morphodynamic steady state?

    Science.gov (United States)

    Blom, A.

    2011-12-01

    By definition, a morphodynamic steady state is governed by a spatially constant sediment transport rate. As the sediment transport rate is a function of shear stress associated with skin friction, the morphodynamic steady state has been considered to be governed by a spatially constant bed slope. For this reason, the typical concave river long profile has been considered to be a quasi-steady state. The river's steady state has been considered to be one with a spatially constant bed slope, with tributaries inducing a stepwise decrease in bed slope in streamwise direction. Yet, for the sediment transport rate to be spatially constant, it rather is the product of water surface slope and water depth associated with skin friction that needs to be constant. This implies that physical mechanisms that induce streamwise variation in the sediment transport rate can be compensated by a streamwise variation in bed slope so as to guarantee a spatially constant sediment transport rate. Following the river course, such physical mechanisms can be bedrock exposure, partial transport, and a spatially lagging bedform growth. At locations where tributaries increase the water discharge, the above mechanisms cause the river bed profile to be upward concave over a significant reach. At bifucations or at locations where river widening prevails, the river bed profile is upward convex.

  19. ONLINE MONITORING STEADY STATE STABILITY LIMIT PADA SISTEM INTERKONEKSI SULSELRABAR

    OpenAIRE

    2015-01-01

    Pada beberapa dekade terakhir, fenomena black-out (pemadaman total)akibat voltage collapse mengalami peningkatan.Hal ini disebabkan oleh peningkatan konsumen pemakai listrik yang tidak sebanding dengan peningkatan pembangkit dan pengembangan jaringan transmisi. Berdasarkan kenyataan dilapangan, ketidakstabilan steady state sangat berhubungan dengan rendahnya ketersediaan daya aktif/reaktif, level tegangan yang rendah, dan besarnya perubahan tegangan untuk perubahan beban atau daya pembangkit....

  20. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  1. Steady state nutrition by transpiration controlled nutrient supply

    NARCIS (Netherlands)

    Braakhekke, W.G.; Labe, D.A.

    1990-01-01

    Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no

  2. The solution of the two-dimensional inverse heat transfer problem with the use of the FEM in combination with Trefftz functions

    Directory of Open Access Journals (Sweden)

    Maciejewska Beata

    2012-04-01

    Full Text Available The aim of this paper is to determine the boiling heat transfer coefficient for the cooling liquid flow in a rectangular minichannel with asymmetric heating. The main part of the test section is made up of a vertical minichannel of 1.0 mm depth. The heating foil on the side of the fluid flowing in the minichannel is singlesided enhanced on the selected area. The experiment is carried out with FC-72. The investigations focus on the transition from single-phase forced convection to nucleate boiling, that is, from the zone of boiling incipience further to developed boiling. Owing to the liquid crystal layer located on the heating surface contacting the glass, it is possible to measure the heating wall temperature distribution while increasing the heat flux transferred to the liquid flowing in the minichannel. The objective of the calculations is to evaluate a heat transfer model and numerical approach to solving the inverse boundary problem, and to calculate the heat transfer coefficient. This problem has been solved by means the finite element method in combination with Trefftz functions (FEMT. Trefftz functions are used to construct base functions in Hermite space of the finite element.

  3. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    Science.gov (United States)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  4. Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2007-08-01

    Full Text Available Multiple steady states in the atmosphere-biosphere system can arise as a consequence of interactions and positive feedbacks. While atmospheric conditions affect vegetation productivity in terms of available light, water, and heat, different levels of vegetation productivity can result in differing energy- and water partitioning at the land surface, thereby leading to different atmospheric conditions. Here we investigate the emergence of multiple steady states in the terrestrial atmosphere-biosphere system and focus on the role of how vegetation is represented in the model: (i in terms of a few, discrete vegetation classes, or (ii a continuous representation. We then conduct sensitivity simulations with respect to initial conditions and to the number of discrete vegetation classes in order to investigate the emergence of multiple steady states. We find that multiple steady states occur in our model only if vegetation is represented by a few vegetation classes. With an increased number of classes, the difference between the number of multiple steady states diminishes, and disappears completely in our model when vegetation is represented by 8 classes or more. Despite the convergence of the multiple steady states into a single one, the resulting climate-vegetation state is nevertheless less productive when compared to the emerging state associated with the continuous vegetation parameterization. We conclude from these results that the representation of vegetation in terms of a few, discrete vegetation classes can result (a in an artificial emergence of multiple steady states and (b in a underestimation of vegetation productivity. Both of these aspects are important limitations to be considered when global vegetation-atmosphere models are to be applied to topics of global change.

  5. Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2007-02-01

    Full Text Available Multiple steady states in the atmosphere-biosphere system can arise as a consequence of interactions and positive feedbacks. While atmospheric conditions affect vegetation productivity in terms of available light, water, and heat, different levels of vegetation productivity can result in differing energy- and water partitioning at the land surface, thereby leading to different atmospheric conditions. Here we investigate the emergence of multiple steady states in the terrestrial atmosphere-biosphere system and focus on the role of how vegetation is represented in the model: (i in terms of a few, discrete vegetation classes, or (ii a continuous representation. We then conduct sensitivity simulations with respect to initial conditions and to the number of discrete vegetation classes in order to investigate the emergence of multiple steady states. We find that multiple steady states occur in our model only if vegetation is represented by a few vegetation classes. With an increased number of classes, the difference between the number of multiple steady states diminishes, and disappears completely in our model when vegetation is represented by 8 classes or more. Despite the convergence of the multiple steady states into a single one, the resulting climate-vegetation state is nevertheless less productive when compared to the emerging state associated with the continuous vegetation parameterization. We conclude from these results that the representation of vegetation in terms of a few, discrete vegetation classes can result (a in an artificial emergence of multiple steady states and (b in a underestimation of vegetation productivity. Both of these aspects are important limitations to be considered when global vegetation-atmosphere models are to be applied to topics of global change.

  6. A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad. M.S. Thesis. Final Contractor Report

    Science.gov (United States)

    Wright, William B.

    1988-01-01

    Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  7. Analysis of slow transitions between nonequilibrium steady states

    Science.gov (United States)

    Mandal, Dibyendu; Jarzynski, Christopher

    2016-06-01

    Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green-Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, Δ {{s}\\text{na}} . Furthermore, our results extend—to nonequilibrium steady states—the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

  8. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  9. Hydrodynamics of stratified epithelium: steady state and linearized dynamics

    CERN Document Server

    Yeh, Wei-Ting

    2015-01-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.

  10. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  11. Nonequilibrium Steady States of a Stochastic Model System.

    Science.gov (United States)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  12. Task-specific stability of multifinger steady-state action.

    Science.gov (United States)

    Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-01-01

    The authors explored task-specific stability during accurate multifinger force production tasks with different numbers of instructed fingers. Subjects performed steady-state isometric force production tasks and were instructed not to interfere voluntarily with transient lifting-and-lowering perturbations applied to the index finger. The main results were (a) intertrial variance in the space of finger modes at steady states was larger within the subspace that had no effect on the total force (the uncontrolled manifold [UCM]); (b) perturbations caused large deviations of finger modes within the UCM (motor equivalence); and (c) deviations caused by the perturbation showed larger variance within the UCM. No significant effects of the number of task fingers were noted in any of the 3 indicators. The results are discussed within the frameworks of the UCM and referent configuration hypotheses. The authors conclude, in particular, that all the tasks were effectively 4-finger tasks with different involvement of task and nontask fingers.

  13. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  14. Approach to steady-state transport in nanoscale conductors.

    Science.gov (United States)

    Bushong, Neil; Sai, Na; Di Ventra, Massimiliano

    2005-12-01

    We show, using a tight-binding model and time-dependent density-functional theory, that a quasi-steady-state current can be established dynamically in a finite nanoscale junction without any inelastic effects. This is simply due to the geometrical constriction experienced by the electron wave packets as they propagate through the junction. We also show that in this closed nonequilibrium system two local electron occupation functions can be defined on each side of the nanojunction which approach Fermi distributions with increasing number of atoms in the electrodes. The resultant conductance and current-voltage characteristics at quasi-steady state are in agreement with those calculated within the static scattering approach.

  15. Multiplying steady-state culture in multi-reactor system.

    Science.gov (United States)

    Erm, Sten; Adamberg, Kaarel; Vilu, Raivo

    2014-11-01

    Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.

  16. Extending Molecular Theory to Steady-State Diffusing Systems

    Energy Technology Data Exchange (ETDEWEB)

    FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.

    1999-10-22

    Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.

  17. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation.

  18. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Science.gov (United States)

    Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F

    2012-01-01

    Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  19. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  20. Visual steady state in relation to age and cognitive function

    DEFF Research Database (Denmark)

    Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris

    2017-01-01

    examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power......, global cognition, executive function, memory, and education (p

  1. Anthropic-principle arguments against steady-state cosmological theories

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, F.J. (Tulane Univ., New Orleans, LA (USA))

    1982-04-01

    Steady-state theories are very difficult to rule out on observational grounds, particularly if they are adjusted to contain a three-degree isotropic thermal-background radiation. However, anthropic-principle arguments can be used to rule out virtually any cosmological theory which has the universe stationary in the large. For example, anthropic considerations show that the perfect cosmological principle is self-contradictory.

  2. Oscillations and multiple steady states in active membrane transport models.

    Science.gov (United States)

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  3. Optimal operation of Petlyuk distillation: Steady-state behavior

    OpenAIRE

    Ivar J. Halvorsen; Sigurd Skogestad

    2001-01-01

    The "Petlyuk" or "dividing-wall" or "fully thermally coupled" distillation column is an interesting alternative to the conventional cascaded binary columns for separation of multi-component mixtures. However, the industrial use has been limited, and difficulties in operation have been reported as one reason. With three product compositions controlled, the system has two degrees of freedom left for on-line optimization. We show that the steady-state optimal solution surface is quite narrow, an...

  4. Approach to steady state transport in nanoscale conductors

    OpenAIRE

    2005-01-01

    We show, using a tight-binding model and time-dependent density-functional theory, that a quasi-steady state current can be established dynamically in a finite nanoscale junction without any inelastic effects. This is simply due to the geometrical constriction experienced by the electron wavepackets as they propagate through the junction. We also show that in this closed non-equilibrium system two local electron occupation functions can be defined on each side of the nanojunction which approa...

  5. The Approach to Steady State Using Homogeneous and Cartesian Coordinates

    Directory of Open Access Journals (Sweden)

    D. F. Gochberg

    2013-01-01

    Full Text Available Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.

  6. Steady state equivalence among autocatalytic peroxidase-oxidase reactions

    Science.gov (United States)

    Méndez-González, José; Femat, Ricardo

    2016-12-01

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  7. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    Science.gov (United States)

    2007-11-02

    evoked potentials, multiple color, FFT, bispectrum I. INTRODUCTION Visual evoked potential ( VEP ) is the electrical response of...brain under visual stimulation, which can be recorded from the scalp over the visual cortex of the brain. A distinction is made between transient VEP ...and steady-state VEP (SSVEP) based on the stimulation frequencies. The former arises when the stimulation frequencies are less than 2 Hz. However

  8. Steady state nutrition by transpiration controlled nutrient supply

    OpenAIRE

    Braakhekke, W.G.; Labe, D. A.

    1990-01-01

    Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no exponential growth phase. A two-weeks experiment with transpiration controlled nitrogen supply to Pennisetum americanum was carried out to evaluate this method. After an adaptation phase a constant...

  9. Steady-state solution methods for open quantum optical systems

    OpenAIRE

    Nation, P. D.

    2015-01-01

    We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that...

  10. Evaluation of a steady-state test of foam stability

    Science.gov (United States)

    Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima

    2011-02-01

    We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.

  11. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  12. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-01

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  13. Basin stability measure of different steady states in coupled oscillators.

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-05

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  14. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-01-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760

  15. Transient and steady-state currents in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2006-02-07

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.

  16. Steady states of continuous-time open quantum walks

    Science.gov (United States)

    Liu, Chaobin; Balu, Radhakrishnan

    2017-07-01

    Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long-time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).

  17. Cavitation modeling for steady-state CFD simulations

    Science.gov (United States)

    Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.

    2016-11-01

    Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.

  18. Heat capacity and magnetic phase transition of two-dimensional metal-assembled complex, K[{l_brace}Mn{sup III}(3-MeOsalen){r_brace}{sub 2}Fe{sup III}(China){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Yuji [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)]. E-mail: miyazaki@chem.sci.osaka-u.ac.jp; Wang, Qi [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Yu, Qing-sen [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Matsumoto, Tetsuya [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Miyasaka, Hitoshi [Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji, Tokyo 192-0397 (Japan); Matsumoto, Naohide [Department of Chemistry, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Sorai, Michio [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2005-06-15

    Heat capacities of the two-dimensional metal-assembled complex, K[{l_brace}Mn{sup III}(3-MeOsalen){r_brace}{sub 2}Fe{sup III}(China){sub 6}] [3-MeOsalen N,N'-ethylenebis(3-methoxysalicylideneaminato) dianion], were measured at the temperatures from 0.5 to 300 K by adiabatic calorimetry. An antiferromagnetic phase transition was observed at T {sub N} = 8.29 K. Above T {sub N}, a heat capacity tail arising from the short-range-order effect of the spins was found, which is characteristic of two-dimensional magnets. The magnetic enthalpy and entropy were evaluated to be {delta}H = 373 J mol{sup -1} and {delta}S = 31.3 J K{sup -1} mol{sup -1}, respectively. The experimental magnetic entropy is in good agreement with {delta}S = R ln (5 x 5 x 2) (=32.5 J K{sup -1} mol{sup -1}; R being the gas constant), which is expected for the metal complex with two Mn(III) ions in high spin state (spin quantum number S = 2) and one Fe(III) ion in low spin state (S = 1/2). The spin wave analysis suggests that the complex shows three-dimensional antiferromagnetic order below T {sub N}. The heat capacity tail above T {sub N} was decreased by grinding and pressurizing the crystal. This mechanochemical effect would originate in the increase of lattice defects and imperfections in the crystal lattice, leading to decrease of the magnetic heat capacity and hence the magnetic enthalpy and entropy.

  19. Global analysis of steady-state energy transfer measurements in membranes: resolution of structural and binding parameters.

    Science.gov (United States)

    Domanov, Yegor A; Gorbenko, Galina P; Molotkovsky, Julian G

    2004-01-01

    A method has been developed allowing structural and binding parameters to be recovered by global analysis of two-dimensional array of steady-state RET data in the special case where energy acceptors distribute between aqueous and lipid phases while donors are embedded in the membrane at a known depth. To test the validity of this approach, correlation and error analyses have been performed using simulated data. To exemplify the method application to the membrane studies, energy transfer from anthrylvinyl-labeled phosphatidylcholine incorporated into mixed phosphatidylcholine/cardiolipin unilamellar vesicles to heme group of cytochrome c is analyzed.

  20. The technology and science of steady-state operation in magnetically confined plasmas

    Science.gov (United States)

    Bécoulet, A.; Hoang, G. T.

    2008-12-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  1. Numerical modeling of two-dimensional heat-transfer and temperature-based calibration using simulated annealing optimization method: Application to gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Bjelić Mišo B.

    2016-01-01

    Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020

  2. Steady-state and pre-steady-state kinetic analysis of Mycobacterium smegmatis cysteine ligase (MshC).

    Science.gov (United States)

    Fan, Fan; Luxenburger, Andreas; Painter, Gavin F; Blanchard, John S

    2007-10-09

    Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.

  3. Predicting the geometry and location of defects in adhesive and spot-welded lap joints using steady-state thermographic techniques

    Science.gov (United States)

    Turler, Daniel; Orlando, Ernest

    1999-03-01

    Development of nondestructive evaluation (NDE) methods for spot-welded and adhesive-bonded sheet metal joints is essential for widespread use of lightweight materials and new construction techniques in automotive applications. An important objective of research in progress is development of NDE methods to identify and characterize critical flaws in welded and adhesive-bonded joints. We used steady-state heat- flow and thermographic imaging techniques to test welded and adhesive-bonded lap joints in steel and aluminum samples and in adhesive-bonded composite panels and to identify defective spot welds. The resulting surface-temperature maps or thermograms were used to detect voids and areas where the adhesive was not bonded. To better characterize defects in welds and adhesive layers, algorithms have been developed to post process temperature data, producing more accurate definition of the geometry and location of defects than in previous images. Classic heat-transfer theory was used to calculate the heat-flux equilibrium for each individual pixel on the thermograms. Convective and radiative surface heat- transfer coefficients were applied to compensate for the heat exchange between the sample and the environment. This post processing permits us to determine the locations of spot welds and the sizes of the weld nuggets in welded joints, and to clearly image voids in adhesive layers between joints. The effectiveness of the image-processing algorithms was investigated using data from laboratory experiments on test specimens with flaws of known size and location. In addition, the images of the defects produced with the new method were compared to results of two-dimensional heat transfer simulations through the same samples. The simulations were also used to determine boundary conditions for post-processing of images.

  4. Output Regulation of Large-Scale Hydraulic Networks with Minimal Steady State Power Consumption

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal; De Persis, Claudio;

    2014-01-01

    that the system is overactuated is exploited for minimizing the steady state electrical power consumption of the pumps in the system, while output regulation is maintained. The proposed control actions are decentralized in order to make changes in the structure of the hydraulic network easy to implement.......An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact...

  5. DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas

    Science.gov (United States)

    Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.

    2014-10-01

    Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  6. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, K., E-mail: vinod@igcar.gov.in; Sharma, Shilpam; Sundar, C. S.; Bharathi, A. [Low Temperature Studies Section, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102 (India)

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  7. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  8. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  9. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  10. Relaxation versus adiabatic quantum steady-state preparation

    Science.gov (United States)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  11. Steady-State Plasmas in KT5D Magnetized Torus

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenhua; LIU Wandong; WAN Baonian; ZHAO Yanping; LI Jiangang; YAN Longwen; YANG Qingwei; DING Xuantong; XU Min; YU Yi; WANG Zhijiang; LU Ronghua; WEN Yizhi; YU Changxuan; MA Jinxiu; WAN Shude

    2007-01-01

    Steady-state plasma generated by electron cyclotron resonance (ECR) wave in the KT5D magnetized torus was studied using a fast high-resolution camera and Langmuir probes. It was found that both the discharge patterns taken by the camera and the plasma parameters measured by the probes were very sensitive to the working gas pressure and the magnetic configuration of the torus both without and with vertical fields. There existed fast vertical motion of the plasma. Tentative discussion is presented about the observed phenomena such as the bright resonance layer at a high gas pressure and the wave absorption mechanism at a low pressure. Further explanations should be found.

  12. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

    2012-01-01

    Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...... — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures...... the rotational components and is suitable for controlling liquid animations where tangential motion is pronounced, such as in a breaking wave...

  13. Quantum-classical correspondence in steady states of nonadiabatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  14. Full steady-state operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Peysson, Y.

    1996-06-01

    In order to produce fully non-inductive, Lower Hybrid (LH) driven discharges in a systematic and reproducible manner, new operation modes have been studied on the superconducting TORE SUPRA tokamak. It is shown that this operation mode allows to reach full steady-state within a characteristic time of a few seconds. The underlying physics is described and a detailed analysis of the experiments is made. It is shown, in particular, that this operation scenario generates stable stationary plasmas with improved confinement, so that the so-called `LHEP` regime can be extrapolated to continuous operation. (K.A.). 19 refs.

  15. Full steady state LH scenarios in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1995-12-31

    Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs.

  16. Steady-state models of glucose-perturbed Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Wright, B.E.; Reimers, J.M.

    1988-10-15

    Young sorocarps of Dictyostelium discoideum were incubated in the presence of 50 mM (/sup 14/C)glucose, and nine metabolites were isolated over a period of 60 min to determine their specific radioactivity. The program TFLUX was used to construct models consisting of 17 metabolite pools and 40 reactions (excluding external pools). Net glucose uptake was 10% or less in the two experiments chosen for extensive analysis, and a single steady-state model was adequate to describe the data in both cases. Despite differences in metabolite levels, flux, and labeling kinetics, the models of glucose-perturbed metabolism confirm earlier conclusions regarding metabolic compartments.

  17. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    Science.gov (United States)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  18. Steady-state grain growth in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galinari, C.M.; Lameiras, F.S. [CDTN/CNEN, Belo Horizonte (Brazil)

    1998-06-05

    The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.

  19. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  20. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...... is shown to predominantly be influenced by the suction pressure. Employing appropriate performance function leads to conclusions on the choice of set-point for the suction pressure that are contrary to the existing practice. Analysis of the resulting data leads to a simple method for finding optimal...

  1. Dendritic cell-development in steady-state and inflammation

    OpenAIRE

    Schmid, Michael Alexander

    2010-01-01

    Dendritic cells (DC), the major antigen-presenting cells, continuously need to be regenerated from bone marrow (BM) hematopoietic stem and progenitor cells (HSPC). What intermediate progenitors exist on the way to DC generation and what external factors act on these in steady-state and during inflammation, has not been addressed in detail. Flt3L is a non-redundant cytokine in DC development and the generation of DCs was shown to proceed along both Flt3+ common lymphoid and common myeloid prog...

  2. Typical pure nonequilibrium steady states and irreversibility for quantum transport

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  3. A Novel Wireless TCP and its Steady State Throughput Model

    Institute of Scientific and Technical Information of China (English)

    YAO Ling; JI Hong; YUE Guang-xin

    2004-01-01

    Unlike wired networks, random packet loss due to bit errors may cause significant performance degradation of Transmission Control Protocol (TCP). We propose and study a novel end-to-end congestion control mechanism called TCP-LD (Loss Detection) that is simple and effective for dealing with random packet loss. We also give its steady state throughput model. Both the ns2 and numerical simulation results show that our scheme can achieve significant throughput improvements without adversely affecting other concurrent TCP connections, including other concurrent Reno connections both in wired and wireless environment.

  4. Non-steady-state aerosol filtration in nanostructured fibrous media.

    Science.gov (United States)

    Przekop, Rafal; Gradoń, Leon

    2011-06-28

    The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.

  5. Stabilizing unstable steady states using multiple delay feedback control.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2004-12-31

    Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.

  6. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Science.gov (United States)

    Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.

    2016-02-01

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  7. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  8. Steady-state flow properties of amorphous materials

    Science.gov (United States)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  9. Transient and steady-state selection in the striatal microcircuit.

    Science.gov (United States)

    Tomkins, Adam; Vasilaki, Eleni; Beste, Christian; Gurney, Kevin; Humphries, Mark D

    2013-01-01

    Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  10. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  11. Steady states of the parametric rotator and pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O, E-mail: abouzas@fis.mda.cinvestav.m [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)

    2010-11-15

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.

  12. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande; N. Kumar

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo–Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr–van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  13. Steady States and Universal Conductance in a Quenched Luttinger Model

    Science.gov (United States)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2016-05-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to &infty}; , after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'} . Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)} , has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  14. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    Science.gov (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-07

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.

  15. Steady-State ALPS for Real-Valued Problems

    Science.gov (United States)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  16. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Science.gov (United States)

    Deshpande, Avinash A.; Kumar, N.

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  17. Steady States and Universal Conductance in a Quenched Luttinger Model

    Science.gov (United States)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2017-01-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to ∞}, after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'}. Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)}, has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  18. Nonequilibrium many-body steady states via Keldysh formalism

    Science.gov (United States)

    Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2016-01-01

    Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.

  19. Quasi-steady-state Model of Subsurface Ice on Mars through Obliquity Variation

    Science.gov (United States)

    Bapst, Jonathan; Wood, S.

    2010-10-01

    Stability and evolution of subsurface ice is relevant to the understanding of past and current Mars geology and climatology. The effect of subsurface water vapor reaching a diffusive steady-state is considered here. As long as deep water is present (as ancient ice, groundwater, or dehydrating minerals), water vapor will diffuse from the subsurface towards the atmosphere (i.e. the spatial location of lower vapor density) and recondense as ice as it experiences colder temperatures near the surface. This process allows the occurrence of stable subsurface ice at lower latitudes and greater depths than the near-surface ice in equilibrium with atmospheric water vapor. One aspect of our investigation is updating a previous steady-state model from Mellon and Jakosky [1993, 1995] and Mellon et al. [1997] with newer expressions for thermal conductivity and tortuosity. Also considered are the effects of latent heat (i.e. heat of vaporization and condensation) which may have a significant role in this process. Theoretical models of thermal conductivity are especially important as variation in conductivity is based on the ice content in the porous media (e.g. Martian regolith). The model is then applied to a larger scale in determining ice allocation for a hypothetical Martian hemisphere. By changing orbital parameters, such as obliquity, we can see the effects made on the location, depth, and density of ice beneath the Martian surface.

  20. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  1. Tracking Control for an Overactuated Hypersonic Air-Breathing Vehicle with Steady State Constraints (PREPRINT)

    Science.gov (United States)

    2005-12-01

    choice of a steady state control is completely independent from the choice of a stabilizing control law. This separation is key for the methods we will...develop for steady state optimization in later sections. Combining the steady state with the stabilizing control , we can express the control law as u...for stabilizing control and optimization methods for steady state control, both unconstrained and constrained, we were able to produce promising results

  2. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  3. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  4. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  5. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.

    1998-01-01

    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  6. Steady States in SIRS Epidemical Model of Mobile Individuals

    Science.gov (United States)

    Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan

    2006-01-01

    We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.

  7. Relativistic Hydrodynamics and Non-Equilibrium Steady States

    CERN Document Server

    Spillane, Michael

    2015-01-01

    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  8. Steady-State Density Functional Theory for Finite Bias Conductances.

    Science.gov (United States)

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  9. Steady State Rheological Characteristic of Semisolid Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Isothermal compressive experiments at different temperatures, strain rates and holding time for semisolid AZ91D, Zr modified AZ91D and MB15 alloy with higher solid volume fraction were carried out by using Gleeble-15000 simulator and the true stress-strain curves were given directly. The relationship of apparent viscosity vs temperature, shear rate and holding time of the three kinds of semi-solid magnesium alloys, as well as isothermal steady state rheological characteristic and mechanical behavior were studied. The results show that the three magnesium alloys had the characteristic of shear-thinning. The rheological characteristic of the semi-solid MB15 is different from that of semi-solid AZ91D. The semi-solid MB15 has higher apparent viscosity and deformation resistance.

  10. Quantally fed steady-state domain distributions in Stochastic Inflation

    CERN Document Server

    Bellini, M; Deza, R R; Bellini, Mauricio; Sisterna, Pablo D.; Deza, Roberto R.

    2000-01-01

    Within the framework of stochastic inflationary cosmology we derive esteady-state distributions P_c(V) of domains in comoving coordinates, under the assumption of slow-rolling and for two specific choices of the coarse-grained inflaton potential $V(\\Phi)$. We model the process as a Starobinsky-like equation in V-space plus a time-independent source term P_w(V) which carries (phenomenologically) quantum-mechanical information drawn from either of two known solutions of the Wheeler-De Witt equation: Hartle-Hawking's and Vilenkin's wave functions. The presence of the source term leads to the existence of nontrivial steady-state distributions P^w_c(V). The relative efficiencies of both mechanisms at different scales are compared for the proposed potentials.

  11. Factorised steady states and condensation transitions in nonequilibrium systems

    Indian Academy of Sciences (India)

    M R Evans

    2005-06-01

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several `condensation' transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.

  12. Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States

    CERN Document Server

    Zia, R K P; Mandal, Dibyendu; Fox-Kemper, Baylor

    2016-01-01

    Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of "probability angular momentum" and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: var...

  13. Dust remobilization in fusion plasmas under steady state conditions

    Science.gov (United States)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  14. Entanglement structure of non-equilibrium steady states

    CERN Document Server

    Mahajan, Raghu; Mumford, Sam; Tubman, Norm; Swingle, Brian

    2016-01-01

    We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a di...

  15. Steady-State Chemotactic Response in E. coli

    CERN Document Server

    Kafri, Yariv

    2007-01-01

    The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: `runs', in which it moves in near straight lines, and `tumbles', in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors obtains, that depends subtly upon several aspects of the system - memory, correlation, and tumbling stochasticity in particular.

  16. Optimal operation of Petlyuk distillation: Steady-state behavior

    Directory of Open Access Journals (Sweden)

    Ivar J. Halvorsen

    2001-07-01

    Full Text Available The "Petlyuk" or "dividing-wall" or "fully thermally coupled" distillation column is an interesting alternative to the conventional cascaded binary columns for separation of multi-component mixtures. However, the industrial use has been limited, and difficulties in operation have been reported as one reason. With three product compositions controlled, the system has two degrees of freedom left for on-line optimization. We show that the steady-state optimal solution surface is quite narrow, and depends strongly on disturbances and design parameters. Thus it seems difficult to achieve the potential energy savings compared to conventional approaches without a good control strategy. We discuss candidate variables which may be used as feedback variables in order to keep the column operation close to optimal in a "self-optimizing" control scheme.

  17. Full steady state LH scenarios in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vilbert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y. [Association EURATOM-CEA sur la fusion, Departement de Recherches sur la Fusion Controlee, Centre d`detudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    1996-02-01

    Lower hybrid discharges have been realised in Tore Supra using feed-back control of the primary circuit voltage (V{sub oh}) such that the loop voltage was maintained exactly zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new {open_quote}{open_quote}constant flux{close_quote}{close_quote} scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is in good agreement with theoretical expectations. A complete analysis of this scenario is presented. {copyright} {ital 1996 American Institute of Physics.}

  18. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  19. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone......The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  20. Thermodynamics and phase coexistence in nonequilibrium steady states

    Science.gov (United States)

    Dickman, Ronald

    2016-09-01

    I review recent work focussing on whether thermodynamics can be extended to nonequilibrium steady states (NESS), in particular, the possibility of consistent definitions of temperature T and chemical potential μ for NESS. The testing-grounds are simple lattice models with stochastic dynamics. Each model includes a drive that maintains the system far from equilibrium, provoking particle and/or energy flows; for zero drive the system relaxes to equilibrium. Analysis and numerical simulation show that for spatially uniform NESS, consistent definitions of T and μ are possible via coexistence with an appropriate reservoir, if (and in general only if) a particular kind of rate (that proposed by Sasa and Tasaki) is used for exchanges of particles and energy between systems. The program fails, however, for nonuniform systems. The functions T and μ describing isolated phases cannot be used to predict the properties of coexisting phases in a single, phase-separated system.

  1. Steady-state negative Wigner functions of nonlinear nanomechanical oscillators

    CERN Document Server

    Rips, Simon; Wilson-Rae, Ignacio; Hartmann, Michael J

    2011-01-01

    We propose a scheme to prepare nanomechanical oscillators in non-classical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser driven resonances of an optical cavity. By lowering the resonant frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables preparation of the nanomechanical oscillator in a single phonon Fock state. Our scheme can for example be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity.

  2. Computational complexity of nonequilibrium steady states of quantum spin chains

    Science.gov (United States)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  3. Petri nets for steady state analysis of metabolic systems.

    Science.gov (United States)

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2011-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  4. Steady state analysis of metabolic pathways using Petri nets.

    Science.gov (United States)

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2003-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  5. Steady-state solution methods for open quantum optical systems

    CERN Document Server

    Nation, P D

    2015-01-01

    We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterat...

  6. Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions

    CERN Document Server

    Wang, Lile

    2014-01-01

    Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...

  7. Dissipative production of a maximally entangled steady state

    CERN Document Server

    Lin, Y; Reiter, F; Tan, T R; Bowler, R; S\\orensen, A S; Leibfried, D; Wineland, D J

    2013-01-01

    Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called "quantum gates", have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that inevitably arises from coupling between the system and the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion qubits independent of their initial state. While previous works along this line involved the application of sequences of multiple time-dependent gates [3] or generated entanglement of atomic ensembles dissipatively but relied on a measurement record for steady-state entanglement [4], we implement the process in a continuous time-indepen...

  8. Steady-state, cavity-less, multimode superradiance

    CERN Document Server

    Greenberg, Joel A

    2012-01-01

    The study of collective light-matter interactions, where the dynamics of an individual scatterer depend on the state of the entire multi-scatterer system, has recently received much attention in the areas of fundamental research and photonic technologies. Cold atomic vapors represent an exciting system for studying such effects because light-based manipulation of internal and center-of-mass atomic states lead to reduced instability thresholds and new phonomena. Previous investigations required single-mode cavities to realize strong light mediated atom-atom interactions, though, which limits the observable phenomena. Here we demonstrate steady-state, mirrorless superradiance in a cold vapor pumped by weak optical fields. Beyond a critical pumping strength, the vapor spontaneously transforms into a spatially self-organized state: a density grating forms. Scattering of the pump beams off this grating generates new optical fields that act back on the vapor to enhance the atomic organization. This system has appli...

  9. Extending the definition of entropy to nonequilibrium steady states.

    Science.gov (United States)

    Ruelle, David P

    2003-03-18

    We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.

  10. Avoiding Rebound through a Steady-State Economy

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2008-01-01

    is considered to be limited primarily by productive capacity with little concern for ecological costs and limits. In such a development aiming at unlimited growth it would from a long term environmental perspective be close to irrelevant to reach for more efficient use of energy at the end-users, since it would...... only buy some time. From this perspective, the environmental problem with the rebound effect is not the higher energy efficiency, which pushes towards lower flows of resources through the economy, but rather the conventional economy which rebounds the savings, because of its quest for higher flows....... In this chapter, I shall take the rebound debate further by discussing the possible role of energy efficiency in a sustainable economy that is based on the notion of ‘sufficiency’. The assumption is that globally we need to achieve a ‘steady-state economy’. Considering the urgent need for better material...

  11. Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics

    Science.gov (United States)

    Borchers, Nick; Pleimling, Michel; Zia, R. K. P.

    2013-03-01

    From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666

  12. Molecular-dynamics simulation of two-dimensional thermophoresis

    Science.gov (United States)

    Paredes; Idler; Hasmy; Castells; Botet

    2000-11-01

    A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

  13. Laguna Verde BWRs operational experience: steady-state fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. F.; Bravo S, J. M. [Global Nuclear Fuel - Americas, 3901 Castle Hayne Road, Wilmington, 28401 North Carolina (United States); Casillas, J. L., E-mail: gabriel.cuevas-vivas@gnf.co [General Electric Hitachi Nuclear Energy, 1989 Little Orchard St. Romm 239, San Jose, 95125 California (United States)

    2010-10-15

    The two BWR at Laguna Verde nuclear power station are finishing 21 and 15 years of continuous successful operation as of 2010. During Unit 1 and 2 commercial operations only Ge/GNF fuel designs have been employed; fuel lattice designs 8 x 8 and 10 x 10 were used at the reactor, with an original licensed thermal power (OLTP: 1931 MWt) and the reactor's first power up-rates of 5%. GNF fuel will be also used for the second EPU to reach 120% of OLTP in the near future. Thermal and gamma traversing in-core probes (Tip) are used for power monitoring purposes along with the Ge (now GNF-A) core monitoring system, 3-dimensional Monicore{sup TM}. GNF-A has also participated by preparing the core management plan that is regularly fine-tuned in collaboration with Comision Federal de Electricidad (CFE owner of the Laguna Verde reactors). For determination of thermal margins and eigenvalue prediction, GNF-A employs the NRC-licensed steady-state core simulator PANAC11. Tip comparisons are routinely used to adapt power distributions for a better thermal margin calculation. Over the years, several challenges have appeared in the near and long term fuel management planning such as increasing cycle length, optimization of the thermal margins, rated power increase, etc. Each challenge has been successfully overcome via operational strategy, code improvements and better fuel designs. This paper summarizes Laguna Verde Unit 1 and 2 steady-state performance from initial commercial operation, with a discussion of the nuclear and thermal-hydraulic design features, as well as of the operational strategies that set and interesting benchmark for future fuel applications, code development and operation of the BWRs. (Author)

  14. A mathematical model of pan evaporation under steady state conditions

    Science.gov (United States)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  15. Interpolation of steady-state concentration data by inverse modeling.

    Science.gov (United States)

    Schwede, Ronnie L; Cirpka, Olaf A

    2010-01-01

    In most groundwater applications, measurements of concentration are limited in number and sparsely distributed within the domain of interest. Therefore, interpolation techniques are needed to obtain most likely values of concentration at locations where no measurements are available. For further processing, for example, in environmental risk analysis, interpolated values should be given with uncertainty bounds, so that a geostatistical framework is preferable. Linear interpolation of steady-state concentration measurements is problematic because the dependence of concentration on the primary uncertain material property, the hydraulic conductivity field, is highly nonlinear, suggesting that the statistical interrelationship between concentration values at different points is also nonlinear. We suggest interpolating steady-state concentration measurements by conditioning an ensemble of the underlying log-conductivity field on the available hydrological data in a conditional Monte Carlo approach. Flow and transport simulations for each conditional conductivity field must meet the measurements within their given uncertainty. The ensemble of transport simulations based on the conditional log-conductivity fields yields conditional statistical distributions of concentration at points between observation points. This method implicitly meets physical bounds of concentration values and non-Gaussianity of their statistical distributions and obeys the nonlinearity of the underlying processes. We validate our method by artificial test cases and compare the results to kriging estimates assuming different conditional statistical distributions of concentration. Assuming a beta distribution in kriging leads to estimates of concentration with zero probability of concentrations below zero or above the maximal possible value; however, the concentrations are not forced to meet the advection-dispersion equation.

  16. Steady-state spectroscopy of new biological probes

    Science.gov (United States)

    Abou-Zied, Osama K.

    2007-02-01

    The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.

  17. Adiabatic heating and convection in a porous medium filled with a near-critical fluid.

    Science.gov (United States)

    Soboleva, E B

    2009-04-01

    Dynamics and heat transfer in a porous medium filled with a fluid phase at parameters near the gas-liquid critical point are studied. A two-dimensional numerical solver based on the hydrodynamic model for a porous medium with a high compressible fluid phase including the van der Waals equation of state is used. In weightlessness, adiabatic heating of fluid phase under the step-temperature heat supply is investigated analytically and numerically. In terrestrial conditions, gravity-driven convection in vertical rectangular cells generated by lateral heating in unsteady and steady-state regimes is simulated. The effects of high compressibility of near-critical fluid phase on convection are studied. Convective motions and heat transfer in horizontal rectangular cells consisting of two porous layers at different porosity and permeability heated from below are simulated as well. Adiabatic heating subjected to hydrostatic compressibility effects, the onset and development of convection, and convective structures in a steady-state regime are analyzed.

  18. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  19. Chemostat-cultivated Escherichia coli at high dilution rate: multiple steady states and drift.

    Science.gov (United States)

    Majewski, R A; Domach, M M

    1990-06-20

    The representation of metabolic network reaction kinetics in a scaled, polynomial form can allow for the prediction of multiple steady states. The polynomial formalism is used to study chemostat-cultured Escherichia coli which has been observed to exhibit two multiple steady states under ammonium ion-limited growth conditions: a high cell density-low ammonium ion concentration steady state and a low cell density-high ammonium ion concentration steady state. Additionally, the low-cell-density steady state has been observed to drift to the high-cell-density steady state. Inspection of the steady-state rate expressions for the ammonium ion transport/assimilation network (in polynomial form) suggests that at low ammonium ion concentrations, two steady states are possible. One corresponds to heavy use of the glutamine synthetase-glutamate synthase (GLNS-GS) branch and the second to heavy use of the glutamate dehydrogenase (GDH) branch. Realization of the predicted intracellular steady states is also found to be dependent on the parameters of the transport process. Moreover, the two steady states differ in where their energy intensity lies. To explain the drift, GLNS, which is inducible under low ammonium ion concentrations, is suggested to be a "memory element." A chemostat-based model is developed to illustrate that perturbations in dilution rate can lead to drift between the two steady states provided that the disturbance in dilution rate is sufficiently large and/or long in duration.

  20. Steady state, continuity, and the curious behavior of steep channels in layered rocks

    Science.gov (United States)

    Covington, M. D.; Perne, M.; Thaler, E.; Myre, J. M.

    2016-12-01

    Considerations of landscape steady state have substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. Topographic steady state, where topography is fixed in time, is a particularly important tool in the interpretation of landscape features, such as bedrock channel profiles, within a context of uplift patterns and rock strength. However, topographic steady state cannot strictly be attained in a landscape with layered rocks with non-vertical contacts. We show that an assumption of channel continuity, where channel retreat rates in the direction parallel to a contact are equal above and below the contact, provides a more general description of steady state landscapes in layered rocks, and that topographic steady state is a special case of the steady state derived from continuity. We demonstrate that modeled landscapes approach continuity steady state using 1D simulations and full landscape evolution models. Contrary to common conceptions, continuity predicts that channels will be steeper in weaker rocks in the case of subhorizontal rock layers when the stream power erosion exponent n<1. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than would be predicted by topographic steady state. Continuity steady state is a type of flux steady state, where uplift is balanced on average by erosion. The differences between topographic steady state and continuity steady state are most pronuced for steep channels in subhorizontal layered rocks. Consequently, cratonic and plateau settings are most likely to produce the effects predicted by continuity steady state. These settings remain relatively underexplored within the bedrock channel literature. Though examples illustrated here utilze the stream power erosion law, continuity steady state provides a general mathematical tool that can be used to explore the development of landscapes in layered rocks using any

  1. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  2. Effects of spatial diffusion on nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Intoy, B. F.; Wynveen, A.; Halley, J. W.

    2016-10-01

    Effects of spatial diffusion in a Kauffman-like model for prebiotic evolution previously studied in a "well-mixed" limit are reported. The previous model was parametrized by a parameter p defined as the probability that a possible reaction in a network of reactions characterizing the artificial chemistry actually appears in the chemical network. In the model reported here, we numerically study a grid of such well-mixed reactors on a two-dimensional spatial lattice in which the model chemical constituents can hop between neighboring reactors at a rate controlled by a second parameter η . We report the frequency of appearance of three distinct types of nonequilibrium steady states, characterized as "diffusively alive locally dead" (DALD), "diffusively dead locally alive" (DDLA) and "diffusively alive locally alive" (DALA). The types are defined according to whether they are chemically equilibrated at each site, diffusively equilibrated between sites, or neither, respectively. With our parametrization of the definitions of these nonequilibrium states, many of the DALA states are growing rapidly in population due to the explosive population growth of a few sites, while their entropy remains well below its equilibrium value. Sharp temporal transitions occur as exploding sites appear. DALD states occur less commonly than the other types and also usually harbor a few explosively growing sites but transitions are less sharp than in DALA systems.

  3. Influence of Carrier Transport on Diffraction Efficiency of Steady-State Photocarrier Grating

    Science.gov (United States)

    Sun, Q. M.; Wang, Y. F.; Gao, C. M.; Cui, H.

    2015-06-01

    A two-dimensional theoretical model of a diffractive steady-state photocarrier grating (SSPCG) has been developed. The carrier diffusion equation with a spatially periodic excitation source was solved, and an analytical expression of the carrier density distribution was obtained. Based on the band-filling theory and the Kramers-Kronig relation, the carrier-induced refractive index change of SSPCG was estimated, and the refractive index profile was determined. The diffraction efficiency of the SSPCG was calculated by multilevel rigorous coupled-wave analysis. Simulations were carried out to investigate the influence of the carrier transport properties on the diffraction efficiency of the SSPCG. The results show that a semiconductor material with a longer lifetime and a smaller diffusivity will have a higher diffraction efficiency. The spatial amplitude of the carrier density and the grating strength of the SSPCG are closely related to the grating period. For an InP-based SSPCG, the diffraction efficiency of the transmitted wave reaches its maximum value (25 %) when the grating provides a phase shift. The theoretical analysis and conclusions are helpful for material selection and experimental parameter determination of a diffractive SSPCG.

  4. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: divergences and resolution.

    Science.gov (United States)

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  5. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thingna, Juzar [Institute of Physics, University of Augsburg, Universitätsstrasse 1 D-86135 Augsburg (Germany); Nanosystems Initiative Munich, Schellingrstrasse 4, D-80799 München (Germany); Zhou, Hangbo [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Wang, Jian-Sheng, E-mail: phywjs@nus.edu.sg [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117551 (Singapore)

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  6. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady-state

  7. Mantle Sulfur Cycle: A Case for Non-Steady State ?

    Science.gov (United States)

    Cartigny, Pierre; Labidi, Jabrane

    2016-04-01

    Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient

  8. The Budyko functions under non-steady-state conditions

    Science.gov (United States)

    Moussa, Roger; Lhomme, Jean-Paul

    2016-12-01

    The Budyko functions relate the evaporation ratio E / P (E is evaporation and P precipitation) to the aridity index Φ = Ep / P (Ep is potential evaporation) and are valid on long timescales under steady-state conditions. A new physically based formulation (noted as Moussa-Lhomme, ML) is proposed to extend the Budyko framework under non-steady-state conditions taking into account the change in terrestrial water storage ΔS. The variation in storage amount ΔS is taken as negative when withdrawn from the area at stake and used for evaporation and positive otherwise, when removed from the precipitation and stored in the area. The ML formulation introduces a dimensionless parameter HE = -ΔS / Ep and can be applied with any Budyko function. It represents a generic framework, easy to use at various time steps (year, season or month), with the only data required being Ep, P and ΔS. For the particular case where the Fu-Zhang equation is used, the ML formulation with ΔS ≤ 0 is similar to the analytical solution of Greve et al. (2016) in the standard Budyko space (Ep / P, E / P), a simple relationship existing between their respective parameters. The ML formulation is extended to the space [Ep / (P - ΔS), E / (P - ΔS)] and compared to the formulations of Chen et al. (2013) and Du et al. (2016). The ML (or Greve et al., 2016) feasible domain has a similar upper limit to that of Chen et al. (2013) and Du et al. (2016), but its lower boundary is different. Moreover, the domain of variation of Ep / (P - ΔS) differs: for ΔS ≤ 0, it is bounded by an upper limit 1 / HE in the ML formulation, while it is only bounded by a lower limit in Chen et al.'s (2013) and Du et al.'s (2016) formulations. The ML formulation can also be conducted using the dimensionless parameter HP = -ΔS / P instead of HE, which yields another form of the equations.

  9. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  10. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  11. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  12. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.

  13. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  14. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-08-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  15. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  16. Quasi-steady state aerodynamics of the cheetah tail

    Science.gov (United States)

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  17. The Path of Carbon in Photosynthesis XX. The Steady State

    Science.gov (United States)

    Calvin, M.; Massini, Peter

    1952-09-01

    The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.

  18. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  19. Stable Gene Regulatory Network Modeling From Steady-State Data

    Directory of Open Access Journals (Sweden)

    Joy Edward Larvie

    2016-04-01

    Full Text Available Gene regulatory networks represent an abstract mapping of gene regulations in living cells. They aim to capture dependencies among molecular entities such as transcription factors, proteins and metabolites. In most applications, the regulatory network structure is unknown, and has to be reverse engineered from experimental data consisting of expression levels of the genes usually measured as messenger RNA concentrations in microarray experiments. Steady-state gene expression data are obtained from measurements of the variations in expression activity following the application of small perturbations to equilibrium states in genetic perturbation experiments. In this paper, the least absolute shrinkage and selection operator-vector autoregressive (LASSO-VAR originally proposed for the analysis of economic time series data is adapted to include a stability constraint for the recovery of a sparse and stable regulatory network that describes data obtained from noisy perturbation experiments. The approach is applied to real experimental data obtained for the SOS pathway in Escherichia coli and the cell cycle pathway for yeast Saccharomyces cerevisiae. Significant features of this method are the ability to recover networks without inputting prior knowledge of the network topology, and the ability to be efficiently applied to large scale networks due to the convex nature of the method.

  20. Regulation of steady-state neutrophil homeostasis by macrophages

    Science.gov (United States)

    Gordy, Claire; Pua, Heather; Sempowski, Gregory D.

    2011-01-01

    The timely clearance of apoptotic neutrophils from inflammation sites is an important function of macrophages; however, the role of macrophages in maintaining neutrophil homeostasis under steady-state conditions is less well understood. By conditionally deleting the antiapoptotic gene cellular FLICE-like inhibitory protein (C-FLIP) in myeloid cells, we have generated a novel mouse model deficient in marginal zone and bone marrow stromal macrophages. These mice develop severe neutrophilia, splenomegaly, extramedullary hematopoiesis, decreased body weight, and increased production of granulocyte colony-stimulating factor (G-CSF) and IL-1β, but not IL-17. c-FLIPf/f LysM-Cre mice exhibit delayed clearance of circulating neutrophils, suggesting that failure of macrophages to efficiently clear apoptotic neutrophils causes production of cytokines that drive excess granulopoiesis. Further, blocking G-CSF but not IL-1R signaling in vivo rescues this neutrophilia, suggesting that a G-CSF–dependent, IL-1β–independent pathway plays a role in promoting neutrophil production in mice with defective clearance of apoptotic cells. PMID:20980680

  1. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  2. Steady-state and dynamic network modes for perceptual expectation.

    Science.gov (United States)

    Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji

    2017-01-12

    Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing.

  3. Glaucoma affects steady state VEP contrast thresholds before psychophysics.

    Science.gov (United States)

    Vaegan; Rahman, Anmar M A; Sanderson, Gordon F

    2008-07-01

    Frequency doubling technology (FDT) is a recent psychophysical test for glaucoma. It measures the contrast threshold to low spatial frequency, high temporal frequency sinusoidal luminance profile bars. We wanted to confirm, with stricter controls, Vaegan and Hollow's report that contrast thresholds of steady state visual evoked potentials (ssVEPs) to a stimulus resembling the central field of the FDT test was more sensitive to glaucoma than the subjective threshold to the same stimulus and to start to optimize the technique. A double masked trial using 57 eyes of 42 subjects. Both thresholds were estimated by modified binary search. In psychophysical testing, subjects were given a two alternative forced choice task. In ssVEP testing a significant signal in any one of eight channels was deemed to be a detection. In some subjects electrode positions were compared, both eyes were tested, tests were repeated to estimate reliability, stimulus frequencies were varied or full contrast functions were obtained. Thresholds and percent abnormal increased as a function of glaucoma severity for ssVEPs but not for psychophysics. Both threshold measures were reliable. Interocular correlations were low. SsVEP amplitude against contrast functions had similar thresholds to those found by modified binary search. The data was too irregular for individual thresholds to be estimated from a fitted exponential. Amplitudes were greatest at 7 to 10 Hz, psychophysical thresholds at 18.29 Hz, when formal controls were used, as they had in a less controlled previous study at 7.14 Hz.

  4. ADI type preconditioners for the steady state inhomogeneous Vlasov equation

    CERN Document Server

    Gasteiger, Markus; Ostermann, Alexander; Tskhakaya, David

    2016-01-01

    The purpose of the current work is to find numerical solutions of the steady state inhomogeneous Vlasov equation. This problem has a wide range of applications in the kinetic simulation of non-thermal plasmas. However, the direct application of either time stepping schemes or iterative methods (such as Krylov based methods like GMRES or relexation schemes) is computationally expensive. In the former case the slowest timescale in the system forces us to perform a long time integration while in the latter case a large number of iterations is required. In this paper we propose a preconditioner based on an ADI type splitting method. This preconditioner is then combined with both GMRES and Richardson iteration. The resulting numerical schemes scale almost ideally (i.e. the computational effort is proportional to the number of grid points). Numerical simulations conducted show that this can result in a speedup of close to two orders of magnitude (even for intermediate grid sizes) with respect to the not preconditio...

  5. Full steady-state operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Peysson, Y. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1996-12-01

    In order to produce fully non-inductive, lower hybrid (LH) driven discharges in a systematic and reproducible manner, new operation modes have been studied on the superconducting Tore Supra tokamak. To cope with some uncertainties in the LH current drive efficiency (e.g. profile dependences), the plasma current is not imposed a priori, but evolves freely until the equilibrium (which depends on the LH power level) is reached. The voltage applied on the primary circuit no longer controls the plasma current. In an `open loop` scenario in which this voltage is present and constant, the timescale required to attain the equilibrium is the longest characteristic time of the coupled plasma-poloidal field coils system ({approx} 60 s). In order to obtain a stationary state faster, a new feedback scheme has been implemented in which the primary circuit voltage is controlled in such a way that the flux consumption vanishes. It is shown that this operation mode allows full steady-state to be reached within a characteristic time of a few seconds. The underlying physics is described and a detailed analysis of the experiments is made. It is shown, in particular, that this operation scenario generates stable stationary plasmas with improved confinement, so that the so-called `LHEP` regime can be extrapolated to continuous operation. (Author).

  6. Grand canonical steady-state simulation of nucleation

    CERN Document Server

    Horsch, Martin

    2009-01-01

    Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31: 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary timespan and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct non-equilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by t...

  7. Steady State Response Analysis of a Tubular Piezoelectric Print Head.

    Science.gov (United States)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2016-01-12

    In recent years, inkjet technology has played an important role in industrial materials printing and various sensors fabrication, but the mechanisms of the inkjet print head should be researched more elaborately. The steady state deformation analysis of a tubular piezoelectric print head, which can be classified as a plane strain problem because the radii of the tubes are considerably smaller than the lengths, is discussed in this paper. The geometric structure and the boundary conditions are all axisymmetric, so a one-dimensional mathematical model is constructed. By solving the model, the deformation field and stress field, as well as the electric potential distribution of the piezoelectric tube and glass tube, are obtained. The results show that the deformations are on the nanometer scale, the hoop stress is larger than the radial stress on the whole, and the potential is not linearly distributed along the radial direction. An experiment is designed to validate these computations. A discussion of the effect of the tubes' thicknesses on the system deformation status is provided.

  8. A theory of nonequilibrium steady states in quantum chaotic systems

    Science.gov (United States)

    Wang, Pei

    2017-09-01

    Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.

  9. Steady-state evolution of debris disks around A stars

    CERN Document Server

    Wyatt, M C; Su, K Y L; Rieke, G H; Greaves, J S; Beichman, C A; Bryden, G

    2007-01-01

    In this paper a simple analytical model for the steady-state evolution of debris disks due to collisions is confronted with Spitzer observations of main sequence A stars. All stars are assumed to have planetesimal belts with a distribution of initial masses and radii. In the model disk mass is constant until the largest planetesimals reach collisional equilibrium whereupon the mass falls off oc 1/t. We find that the detection statistics and trends seen at both 24 and 70um can be fitted well by the model. While there is no need to invoke stochastic evolution or delayed stirring to explain the statistics, a moderate rate of stochastic events is not ruled out. Potentially anomalous systems are identified by a high dust luminosity compared with the maximum permissible in the model (HD3003, HD38678, HD115892, HD172555). Their planetesimals may have unusual properties (high strength or low eccentricity) or this dust could be transient. While transient phenomena are also favored for a few systems in the literature, ...

  10. Classical quasi-steady state reduction-A mathematical characterization

    Science.gov (United States)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2017-04-01

    We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar (heuristically motivated) mathematical procedure: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. The QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A defining characteristic of a QSS parameter value is that the algebraic variety defined by the QSS relations is invariant for the differential equation. A closer investigation of the associated systems shows the existence of further invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.

  11. Visual steady state in relation to age and cognitive function

    Science.gov (United States)

    Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age. PMID:28245274

  12. Non-steady state population kinetics of intravenous phenytoin.

    Science.gov (United States)

    Frame, B; Beal, S L

    1998-08-01

    This observational study explored the effects of demographics, sickness, and polypharmacy on the non-steady state population pharmacokinetics of intravenous phenytoin. One hundred fifteen patients were studied. Models were developed using the NONMEM program with hybrid first-order conditional estimation. A Michaelis-Menten model with delayed induction was preferred over a Michaelis-Menten model without induction, a Michaelis-Menten model with immediate induction, or a linear model with delayed induction. When the data were fit to a Michaelis-Menten model with delayed induction, the volume of distribution (Vd) was found to depend on weight and serum albumin. The Vd was estimated to be 0.95 l/kg, assuming an albumin level of 3 g/dl. The Michaelis-Menten constant (km) was estimated to be 7.9 mg/l. The baseline maximum metabolic rate was 580 mg/day for a 70-kg patient. The average time to onset of induction was 59.5 hours. If a fever developed after induction began, it increased the extent of induction. This model was evaluated retrospectively in 26 additional patients, yielding a mean prediction error of -0.4 mg/l (-3.0-2.2 mg/l) and a mean absolute prediction error of 4.7 mg/l (3.2-6.2 mg/l) based on two-level feedback. Given the large interindividual variances in maximum metabolic rate, phenytoin levels should be measured frequently.

  13. Dynamic steady-state of periodically-driven quantum systems

    CERN Document Server

    Yudin, V I; Basalaev, M Yu; Kovalenko, D

    2015-01-01

    Using the density matrix formalism, we prove an existence theorem of the periodic steady-state for an arbitrary periodically-driven system. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution ($t$$\\to$$+\\infty$) due to relaxation processes. The presented derivation simultaneously contains a simple computational algorithm non-using both Floquet and Fourier theories, i.e. our method automatically guarantees a full account of all frequency components. The description is accompanied by the examples demonstrating a simplicity and high efficiency of our method. In particular, for three-level $\\Lambda$-system we calculate the lineshape and field-induced shift of the dark resonance formed by the field with periodically modulated phase. For two-level atom we obtain the analytical expressions for signal of the direct frequency comb spectroscopy with rectangular light pulses. In this case it was shown the radical dependence of the spectroscopy lineshape on pul...

  14. Models of steady state cooling flows in elliptical galaxies

    Science.gov (United States)

    Vedder, Peter W.; Trester, Jeffrey J.; Canizares, Claude R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount.

  15. Multiple repetition time balanced steady-state free precession imaging.

    Science.gov (United States)

    Cukur, Tolga; Nishimura, Dwight G

    2009-07-01

    Although balanced steady-state free precession (bSSFP) imaging yields high signal-to-noise ratio (SNR) efficiency, the bright lipid signal is often undesirable. The bSSFP spectrum can be shaped to suppress the fat signal with scan-efficient alternating repetition time (ATR) bSSFP. However, the level of suppression is limited, and the pass-band is narrow due to its nonuniform shape. A multiple repetition time (TR) bSSFP scheme is proposed that creates a broad stop-band with a scan efficiency comparable with ATR-SSFP. Furthermore, the pass-band signal uniformity is improved, resulting in fewer shading/banding artifacts. When data acquisition occurs in more than a single TR within the multiple-TR period, the echoes can be combined to significantly improve the level of suppression. The signal characteristics of the proposed technique were compared with bSSFP and ATR-SSFP. The multiple-TR method generates identical contrast to bSSFP, and achieves up to an order of magnitude higher stop-band suppression than ATR-SSFP. In vivo studies at 1.5 T and 3 T demonstrate the superior fat-suppression performance of multiple-TR bSSFP.

  16. Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity

    Directory of Open Access Journals (Sweden)

    Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes

    2014-09-01

    Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.

  17. The inductive, steady-state sustainment of stable spheromaks

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  18. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  19. The Path of Carbon in Photosynthesis. XX. The Steady State

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.; Massini, Peter

    1952-09-01

    The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.

  20. Measurement of the in-plane thermal conductivity by steady-state infrared thermography

    CERN Document Server

    Greppmair, Anton; Saxena, Nitin; Gerstberger, Caroline; Müller-Buschbaum, Peter; Stutzmann, Martin; Brandt, Martin S

    2016-01-01

    We demonstrate a simple and quick method for the measurement of the in-plane thermal conductance of thin films via steady-state IR thermography. The films are suspended above a hole in an opaque substrate and heated by a homogeneous visible light source. The temperature distribution of the thin films is captured via infrared microscopy and fitted to the analytical expression obtained for the specific hole geometry in order to obtain the in-plane thermal conductivity. For thin films of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate post-treated with ethylene glycol and of polyimide we find conductivities of 1.0 W/mK and 0.4 W/mK at room temperature, respectively. These results are in very good agreement with literature values, validating the method developed.

  1. Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    COLTRIN,MICHAEL E.; WIXOM,RYAN R.; DANDY,DAVID S.

    2000-05-01

    Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

  2. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S. [NSC KIPT, Kharkov (Ukraine). Inst. of Plasma Physics

    2006-04-15

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented.

  3. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    by estimating the fracture mechanics parameters that includes the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the interface crack front. A numerical approach was then applied for coupling the far field solutions based on the Finite Element Method to the near...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based...

  4. Two-Dimensional turbulence in the inverse cascade range

    CERN Document Server

    Yakhot, V

    1999-01-01

    A theory of two-dimensional turbulence in the inverse energy cascade range is presented. Strong time-dependence of the large-scale features of the flow ($\\bar{u^{2}}\\propto t$) results in decoupling of the large-scale dynamics from statistically steady-state small-scale random processes. This time-dependence is also a reason for the localness of the pressure-gradient terms in the equations governing the small-scale velocity difference PDF's. The derived expressions for the pressure gradient contributions lead to a gaussian statistics of transverse velocity differences. The solution for the PDF of longitudinal velocity differences is based on a smallness of the energy flux in two-dimensional turbulence. The theory makes a few quantitative predictions which can be tested experimentally. One of the most surprising results, derived in this paper, is that the small-scale transverse velocity differences are governed by a linear Langevin-like equation, strirred by a non-local universal gaussian random force. This ex...

  5. Instability and Existence of Spatial Nonhomogenuos Steady State of the Classical Contiunuum Heisenberg Spain Chin

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The Landau-Lifshitz equation of the ferromagnetic spin chain with Gilbert damping term is considered.which is described by δS/δt=S×ΔS-λS×(S×ΔS),All spatial nonhomogenuos steady-state solutions.which are the form S=R1 cos(lr)+ R2 sin(lr)Al∈R,wherer |R1|=|R2|=1 and R1⊥R2,are proposed,Moreover the instability of the spatial nonhomogenuos steady-state solutions Sl(r)(l≠0) is investigated.Every perturbation of the spatial nonhomogenuos steady-state tends to a spatial homogeneous steady-state as t→∞.Thus the hetercolinic orbits,which connect the spatial nonhomogenuos steady-state and the spatial homogeneous steady-state,are exist.Filially numerical experiments are provided.

  6. Age-Related Disruption of Steady-State Thymic Medulla Provokes Autoimmune Phenotype via Perturbing Negative Selection.

    Science.gov (United States)

    Xia, Jiangyan; Wang, Hongjun; Guo, Jianfei; Zhang, Zhijie; Coder, Brandon; Su, Dong-Ming

    2012-06-01

    The hymic medulla plays an essential role in the generation of central tolerance by eliminating self-reactive T-cell clones through thymic negative selection and developing natural regulatory T cells. Age-related FoxN1 decline induces disruption of medullary thymic epithelial cells (mTECs). However, it is unknown whether this perturbs central tolerance to increase autoimmune predisposition in the elderly. Using a loxP-floxed-FoxN1 (FoxN1(flox)) mouse model, which exhibits a spontaneous ubiquitous deletion of FoxN1 with age to accelerate thymic aging, we investigated whether disruption of steady-state thymic medulla results in an increase of autoimmune-prone associated with age. We demonstrated age-associated ubiquitous loss of FoxN1(flox)-formed two-dimensional thymic epithelial cysts were primarily located in the medulla. This resulted in disruption of thymic medullary steady state, with evidence of perturbed negative selection, including reduced expression of the autoimmune regulator (Aire) gene and disrupted accumulation of thymic dendritic cells in the medulla, which are required for negative selection. These provoke autoimmune phenotypes, including increased inflammatory cell infiltration in multiple organs in these mice. This finding in an animal model provides a mechanistic explanation of increased susceptibility to autoimmunity in aged humans, although they may not show clinic manifestations without induction.

  7. Qualitative Analysis on a Reaction-Diffusion Prey Predator Model and the Corresponding Steady-States

    Institute of Scientific and Technical Information of China (English)

    Qunyi BIE; Rui PENG

    2009-01-01

    The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem.The local and global stability of the positive constant steady-state are discussed,and then some results for nonexistence of positive non-constant steady-states are derived.

  8. Steady-state probability density function in wave turbulence under large volume limit

    Institute of Scientific and Technical Information of China (English)

    Yeontaek Choia; Sang Gyu Job

    2011-01-01

    We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state two- or higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.

  9. NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL

    Institute of Scientific and Technical Information of China (English)

    CHEN WENYAN; WANG MINGXIN

    2004-01-01

    In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.

  10. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  11. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  12. Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model

    Science.gov (United States)

    Zhang, Lai; Liu, Jia; Banerjee, Malay

    2017-03-01

    In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent predator-prey model and derive explicit conditions for the existence of non-constant steady states that emerge through steady state bifurcation from related constant steady states. These explicit conditions are numerically verified in details and further compared to those conditions ensuring Turing instability. We find that (1) Turing domain is identical to the parametric domain where there exists only steady state bifurcation, which implies that Turing patterns are stable non-constant steady states, but the opposite is not necessarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act in concert to determine the emergent spatial patterns, that is, non-constant steady state emerges through steady state bifurcation but it may be unstable if the destabilising effect of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich population dynamics by inducing alternative non-constant steady states (four different states are observed, two stable and two unstable), in particular when diffusion interacts with different types of bifurcation; (4) Diffusion can promote species coexistence by saving species which otherwise goes to extinction in the absence of diffusion.

  13. A new perspective on steady-state cosmology: from Einstein to Hoyle

    CERN Document Server

    O'Raifeartaigh, Cormac

    2015-01-01

    We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein's steady-state cosmology with that of Hoyle, Bondi and Gold and consider the reasons Einstein abandoned his model. The relevance of steady-state models for today's cosmology is briefly reviewed.

  14. On the number of steady states in a multiple futile cycle.

    Science.gov (United States)

    Wang, Liming; Sontag, Eduardo D

    2008-07-01

    The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper, we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady states varies by changing the biological parameters. We show analytically that (1) for some parameter ranges, there are at least n + 1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n - 1 steady states (in particular, this implies that for n = 2, including single levels of MAPK cascades, there are at most three steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n + 1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.

  15. Simulation and Analysis on Multiple Steady States of an Industrial Acetic Acid Dehydration System

    Institute of Scientific and Technical Information of China (English)

    李绍军; 黄定伟

    2011-01-01

    In this work, an industrial acetic acid dehydration system via heterogeneous azeotropic distillation is simulated by Aspen Plus software. Residue curves are used to analyze the distillating behavior, and appropriate operating region of the system is determined. Based on steady states simulation, a sensitivity analysis is carried out to detect the output multiple steady states in the system. Different solution branches are observered when the flow rates of the feed stream and the organic reflux stream are selected as manipulated variables. The performance of the column under different steady states is different. A method is oroposed to achieve the desired steady state.

  16. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  17. Impact of aquifer desaturation on steady-state river seepage

    Science.gov (United States)

    Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen

    2016-02-01

    Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.

  18. Auditory steady-state responses for estimating moderate hearing loss.

    Science.gov (United States)

    Swanepoel, DeWet; Erasmus, Hettie

    2007-07-01

    The auditory steady-state response (ASSR) has gained popularity as an alternative technique for objective audiometry but its use in less severe degrees of hearing loss has been questioned. The aim of this study was to investigate the usefulness of the ASSR in estimating moderate degrees of hearing loss. Seven subjects (12 ears) with moderate sensorineural hearing loss between 15 and 18 years of age were enrolled in the study. Forty-eight behavioural and ASSR thresholds were obtained across the frequencies of 0.5, 1, 2, and 4 kHz. ASSR thresholds were determined using a dichotic multiple frequency recording technique. Mean threshold differences varied between 2 and 8 dB (+/-7-10 dB SD) across frequencies. The highest difference and variability was recorded at 0.5 kHz. The frequencies 1-4 kHz also revealed significantly better correlations (0.74-0.88) compared to 0.5 kHz (0.31). Comparing correlation coefficients for behavioural thresholds less than 60 and 60 dB and higher revealed a significant difference. Eighty-six percent of ASSR thresholds corresponded within 5 dB of moderate to severe behavioural thresholds compared to only 29% for mild to moderate thresholds in this study. The results confirm that the ASSR can reliably estimate behavioural thresholds of 60 dB and higher, but due to increased variability, caution is recommended when estimating behavioural thresholds of less than 60 dB, especially at 0.5 kHz.

  19. Nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Wynveen, A.; Fedorov, I.; Halley, J. W.

    2014-02-01

    Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.

  20. Steady state growth of E. Coli in low ammonium environment

    Science.gov (United States)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  1. Human auditory steady state responses to binaural and monaural beats.

    Science.gov (United States)

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  2. A Simulation Tool for Steady State Thermal Performance Applied to the SPL Double-Walled Tube RF Power Coupler

    CERN Document Server

    Bonomi, R

    2014-01-01

    This note reports on the study carried out to design a tool for steady-state thermal performance of the RF power coupler inside the SPL cryostat. To reduce the amount of heat penetrating into the helium bath where the cavity is placed, the main coupler is actively cooled by means of an adequate flow rate of helium gas. The knowledge of the temperature profiles and the overall thermal performance of the power coupler are fundamental for the estimation of the total heat load budget of the cryostat.

  3. Thermal diode from two-dimensional asymmetrical Ising lattices.

    Science.gov (United States)

    Wang, Lei; Li, Baowen

    2011-06-01

    Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.

  4. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  5. Modelling The Energy Performance Of Night-Time Ventilation Using The Quasi-Steady state Calculation Method

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    the convective heat transfer by ventilation using the factor Cve (method proposed in the standard), and the other one introduces an adjustment factor Cy on the relative heat gains. 288 simulations of a typical Danish office building have been performed using different boundary conditions: level of thermal mass......Many European countries assess the heating and cooling needs of buildings using the quasi-steady state calculation method described in EN ISO 13790. The energy need is calculated by establishing the monthly balance of heat losses and heat gains, and the dynamic effects are taken into consideration......, level of insulation, orientation, internal heat loads, duration and air change rate of night-time ventilation. For both methods, the derived correction factors are highly dependent on the thermal mass of the building. An influence of the period of activation of night-time ventilation has also been...

  6. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  7. A Novel ARX-Based Approach for the Steady-State Identification Analysis of Industrial Depropanizer Column Datasets

    Directory of Open Access Journals (Sweden)

    Franklin D. Rincón

    2015-04-01

    Full Text Available This paper introduces a novel steady-state identification (SSI method based on the auto-regressive model with exogenous inputs (ARX. This method allows the SSI with reduced tuning by analyzing the identifiability properties of the system. In particular, the singularity of the model matrices is used as an index for steady-state determination. In this contribution, the novel SSI method is compared to other available techniques, namely the F-like test, wavelet transform and a polynomial-based approach. These methods are implemented for SSI of three different case studies. In the first case, a simulated dataset is used for calibrating the output-based SSI methods. The second case corresponds to a literature nonlinear continuous stirred-tank reactor (CSTR example running at different steady states in which the ARX-based approach is tuned with the available input-output data. Finally, an industrial case with real data of a depropanizer column from PETROBRAS S.A. considering different pieces of equipment is analyzed. The results for a reflux drum case indicate that the wavelet and the F-like test can satisfactorily detect the steady-state periods after careful tuning and when respecting their hypothesis, i.e., smooth data for the wavelet method and the presence of variance in the data for the F-like test. Through a heat exchanger case with different measurement frequencies, we demonstrate the advantages of using the ARX-based method over the other techniques, which include the aspect of online implementation.

  8. Oxygen consumption dynamics in steady-state tumour models.

    Science.gov (United States)

    Grimes, David Robert; Fletcher, Alexander G; Partridge, Mike

    2014-09-01

    Oxygen levels in cancerous tissue can have a significant effect on treatment response: hypoxic tissue is both more radioresistant and more chemoresistant than well-oxygenated tissue. While recent advances in medical imaging have facilitated real-time observation of macroscopic oxygenation, the underlying physics limits the resolution to the millimetre domain, whereas oxygen tension varies over a micrometre scale. If the distribution of oxygen in the tumour micro-environment can be accurately estimated, then the effect of potential dose escalation to these hypoxic regions could be better modelled, allowing more realistic simulation of biologically adaptive treatments. Reaction-diffusion models are commonly used for modelling oxygen dynamics, with a variety of functional forms assumed for the dependence of oxygen consumption rate (OCR) on cellular status and local oxygen availability. In this work, we examine reaction-diffusion models of oxygen consumption in spherically and cylindrically symmetric geometries. We consider two different descriptions of oxygen consumption: one in which the rate of consumption is constant and one in which it varies with oxygen tension in a hyperbolic manner. In each case, we derive analytic approximations to the steady-state oxygen distribution, which are shown to closely match the numerical solutions of the equations and accurately predict the extent to which oxygen can diffuse. The derived expressions relate the limit to which oxygen can diffuse into a tissue to the OCR of that tissue. We also demonstrate that differences between these functional forms are likely to be negligible within the range of literature estimates of the hyperbolic oxygen constant, suggesting that the constant consumption rate approximation suffices for modelling oxygen dynamics for most values of OCR. These approximations also allow the rapid identification of situations where hyperbolic consumption forms can result in significant differences from constant

  9. Thermal-hydraulic modeling of the steady-state operating conditions of a fire-tube boiler

    Directory of Open Access Journals (Sweden)

    Rahmani Ahmed

    2009-01-01

    Full Text Available In this work, we are interested to simulate the thermal-hydraulic behavior of three-pass type fire-tube boiler. The plant is designed to produce 4.5 tons per hour of saturated steam at 8 bar destined principally for heating applications. A calculation program is developed in order to simulate the boiler operation under several steady-state operating conditions. This program is based upon heat transfer laws between hot gases and the fire-tube internal walls. In the boiler combustion chamber, the heat transfer has been simulated using the well-stirred furnace model. In the convection section, heat balance has been carried out to estimate the heat exchanges between the hot gases and the tube banks. The obtained results are compared to the steady-state operating data of the considered plant. A comparative analysis shows that the calculation results are in good agreement with the boiler operating data. Furthermore, a sensitivity study has been carried out to assess the effects of input parameters, namely the fuel flow rate, air excess, ambient temperature, and operating pressure, upon the boiler thermal performances.

  10. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  11. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  12. Unenhanced steady state free precession versus traditional MR imaging for congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dandan, E-mail: chchsister@163.com [Department of Diagnostic Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong (China); Kong, Xiangquan, E-mail: kxq0525@126.com [Department of Radiology, the Affiliated Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Xuhui, E-mail: xiaolintongqq@126.com [Department of Diagnostic Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong (China); Li, Shurong, E-mail: 80917333@qq.com [Department of Diagnostic Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong (China); Wang, Huanjun, E-mail: 463822507@qq.com [Department of Diagnostic Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong (China)

    2013-10-01

    Purpose: To assess potential benefits of three dimensional (3D) steady state free precession (SSFP) magnetic resonance sequence for congenital heart disease (CHD). Materials and methods: Twenty consecutive patients with CHD (male:female ratio,14:6, mean age, 27.5 ± 8.5 years) underwent both 3D SSFP and traditional MR imaging (TMRI) [including two dimensional (2D) SSFP and contrast enhanced magnetic resonance angiography (CEMRA)]. Image quality and diagnosis were compared, and Bland–Altman analysis was used to evaluate consistency of 3D SSFP and CEMRA for diameter measurements. Results: A total of 35 intra and 81 extra cardiac anomalies were identified in all patients. The image quality of 3D SSFP and TMRI for either intra or extra cardiac anomalies of all patients scored ≥3, which allowed an establishment of diagnosis for all cases. The diagnostic sensitivity, specificity, and accuracy of 3D SSFP for the detection of intra cardiac anomalies were all 100%, whereas for extra cardiac anomalies they were 93.8%, 93.8%, 100%, respectively. Mean differences (3D SSFP minus CEMRA) for aorta and pulmonary arteries were 0.5 ± 1.2 mm and 0.0 ± 1.7 mm, respectively, showing good consistency of 3D SSFP and CEMRA for diameter measurements. Conclusion: 3D SSFP MRI can be an alternative image modality to TMRI for patients with congenital heart disease, especially for those who have renal insufficiency, breath-hold difficulty or who are allergic to contrast agent. It can also provide powerful complementary information for patients who undergo TMRI, especially at ventriculoarterial connection site.

  13. Nonequilibrium steady states and transient dynamics of conventional superconductors under phonon driving

    Science.gov (United States)

    Murakami, Yuta; Tsuji, Naoto; Eckstein, Martin; Werner, Philipp

    2017-07-01

    We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter, and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external driving, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.

  14. Steady state simulation of a double-effect steam absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.S.A.M.S.; Gilani, S.I.U.H. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    Absorption cooling systems have become increasingly popular in recent years from the viewpoint of energy and environment. Despite a lower coefficient of performance (COP) as compared to the vapor compression, absorption refrigeration systems are attractive for using inexpensive waste heat, solar, geothermal or biomass energy sources for which the cost of supply is negligible in many cases. In addition absorption refrigeration uses natural substances which do not contribute towards ozone depletion and global warming. Owing to the serious environmental problems and the price of the traditional energy resources, the use of industrial waste heat or renewable energy as the driving force for vapor absorption cooling systems is continuously increasing. A steady-state model is developed to predict the performance of an absorption refrigeration system using LiBr-water as working pair. Each component of the cycle is modelled based on mass and energy balances. The design point parameters are determined. The refrigeration effect, coefficient of performance and load factor are analyzed for different heat input. Simulation is carried out and the results are compared with actual data and showed good agreement.

  15. Comparison of Models for the Steady-State Analysis of Tilting-Pad Thrust Bearings

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2005-01-01

    model requires different levels of detail. The two dimensional Reynolds equation for pressure in the oil film can be solved isothermally or considering viscosity variations in two or three dimensions, requiring solution of the equations for thermal equilibrium in oil and pad. Knowing the temperature......-state operation of a 228 mm outer diameter bearing. It is found that for the given bearing a two dimensional model is sufficient to estimate the minimum oil film thickness and the maximum temperature on the pad surface. Three dimensional modelling does not improve the quality of the results....... distribution the deflection of the pad due to pressure and thermal bending can be calculated using a flat plate approximation. At the five free sides of the pad heat transfer can be modelled. The temperature distribution at the inlet to the pad can be calculated through equilibrium of thermal energy...

  16. Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

    DEFF Research Database (Denmark)

    Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg

    This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations....

  17. Distance to achieve steady state walking speed in frail elderly persons

    NARCIS (Netherlands)

    Lindemann, U.; Najafi, B.; Zijlstra, W.; Hauer, K.; Muche, R.; Becker, C.; Aminian, K.

    2008-01-01

    This study aims to determine the length of the gait initiation phase before achieving steady state walking in frail older people. Based on body fixed sensors, habitual walking was analysed in 116 community-dwelling older persons (mean age 83.1 years, 84% women). The start of steady state walking was

  18. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Science.gov (United States)

    2010-07-01

    .... Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... Short Test Equipment (I) Steady-State Test Exhaust Analysis System (a) Sampling system—(1) General requirements. The sampling system for steady-state short tests shall, at a minimum, consist of a tailpipe...

  19. A steady-state analytical slope stability model for complex hillslopes

    NARCIS (Netherlands)

    Talebi, A.; Troch, P.A.; Uijlenhoet, R.

    2008-01-01

    This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, and the infinite slope

  20. A steady-state analytical slope stability model for complex hillslopes

    NARCIS (Netherlands)

    Talebi, A.; Troch, P.A.; Uijlenhoet, R.

    2008-01-01

    This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, and the infinite slope

  1. Highly enhanced steady-state optomechanical entanglement via cross-Kerr nonlinearity

    CERN Document Server

    Chakraborty, Subhadeep

    2016-01-01

    We study steady-state optomechanical entanglement in presence of an additional cross-Kerr coupling between the optical and mechanical mode. We find that a significant enhancement of the steady-state entanglement can be achieved at a considerably lower driving power, which is also extremely robust with respect to system parameters and environmental temperature.

  2. Steady State Solution for the Weakly Damped Forced Korteweg—de Vries Equation

    Institute of Scientific and Technical Information of China (English)

    BolingGUO; GuoguangLIN

    1998-01-01

    The existence and uniqueness of steady state solution for the weakly damped forced KdV equation with a periodic boundary value problems are proved.It is obtained that the every solution of the weakly damped forced KdV equations converges to the steady state soluton as time t→∞。

  3. Stream-power incision model in non-steady-state mountain ranges: An empirical approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Yen-Chieh; SUNG Quocheng; CHEN Chao-Nan

    2006-01-01

    Stream-power incision model has always been applied to detecting the steady-state situation of ranges. Oblique arc-continent collision occurring during the period of Penglai Orogeny caused the Taiwan mountain belt to develop landscape of three evolution stages, namely stages of pre-steady-state (growing ranges in southern Taiwan), steady-state (ranges in central Taiwan) and post-steady-state (decaying ranges in northern Taiwan). In the analysis on streams of the Taiwan mountain belt made by exploring the relationship between the slope of bedrock channel (S) and the catchment area (A), the topographic features of the ranges at these three stages are acquired. The S-A plot of the steady-state ranges is in a linear form, revealing that the riverbed height of bedrock channel does not change over time (dz/dt =0). The slope and intercept of the straight line S-A are related to evolution time of steady-state topography and tectonic uplift rate respectively. The S-A plots of the southern and northern ranges of Taiwan mountain belt appear to be in convex and concave forms respectively, implying that the riverbed height of bedrock channel at the two ranges rises (dz/dt>0)and falls (dz/dt<0) over time respectively. Their tangent intercept can still reflect the tectonic uplift rate.This study develops an empirical stream-power eresion model of pre-steady-state and post-steady-state topography.

  4. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  5. On the use of steady-state signal equations for 2D TrueFISP imaging.

    Science.gov (United States)

    Coolen, Bram F; Heijman, Edwin; Nicolay, Klaas; Strijkers, Gustav J

    2009-07-01

    To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.

  6. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  7. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  8. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    2016-08-29

    balance . Uzdin, Levy, and Kosloff [29] have established a thermodynamic equivalence between three types of quantum heat engines, in the limit of weak...decomposition and has the following properties: (1) If Ŵ satisfies the detailed balance condition , then so does W. This can be seen by using the...detailed balance . In contrast, recipro- cating heat engines (e.g., the Carnot, Otto, or Diesel cycles) are naturally modeled as SP [44]. Mapping the

  9. Modeling of steady-state convective cooling of cylindrical Li-ion cells

    Science.gov (United States)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-07-01

    While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it is important to accurately model the thermal response of Lithium-ion cells to convective cooling, particularly in high-rate discharge applications where significant heat generation is expected. This paper presents closed-form analytical solutions for the steady-state temperature profile in a convectively cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conductivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient may result in significant peak temperature reduction. Battery sizing optimization using the analytical model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect ratio. Results presented in this paper may aid in accurate thermal design and thermal management of Lithium-ion batteries.

  10. Techniques for Reducing Thermal Contact Resistance in Steady-State Thermal Conductivity Measurements on Polymer Composites

    Science.gov (United States)

    Stacey, C.; Simpkin, A. J.; Jarrett, R. N.

    2016-11-01

    The National Physical Laboratory (NPL) has developed a new variation on the established guarded hot plate technique for steady-state measurements of thermal conductivity. This new guarded hot plate has been specifically designed for making measurements on specimens with a thickness that is practical for advanced industrial composite materials and applications. During the development of this new guarded hot plate, NPL carried out an experimental investigation into methods for minimising the thermal contact resistance between the test specimen and the plates of the apparatus. This experimental investigation included tests on different thermal interface materials for use in another NPL facility based on a commercial guarded heat flow meter apparatus conforming to standard ASTM E1530-11. The results show the effect of applying different quantities of the type of heat transfer compound suggested in ASTM E1530-11 (clause 10.7.3) and also the effect on thermal resistance of alternative types of thermal interface products. The optimum quantities of two silicone greases were determined, and a silicone grease filled with copper was found to offer the best combination of repeatability, small hysteresis effect and a low thermal contact resistance. However, two products based on a textured indium foil and pyrolytic graphite sheet were found to offer similar or better reductions in thermal contact resistance, but with quicker, easier application and the advantages of protecting the apparatus plates from damage and being useable with specimen materials that would otherwise absorb silicone grease.

  11. The electrodynamic and hydrodynamic phenomena in magnetically-levitated molten droplets. I - Steady state behavior

    Science.gov (United States)

    Zong, Jin-Ho; Li, Benqiang; Szekely, Julian

    1992-06-01

    A mathematical formulation is given and computed results are presented describing the behavior of electromagnetically-levitated metal droplets under the conditions of microgravity. In the formulation the electromagnetic force field is calculated using a modification of the volume integral method and these results are then combined with the FIDAP code to calculate the steady state melt velocities. The specific computational results are presented for the conditions corresponding to the planned IML-2 Space Shuttle experiment, using the TEMPUS device, which has separate 'heating' and 'positioning' coils. While the computed results are necessarily specific to the input conditions, some general conclusions may be drawn from this work. These include the fact that for the planned TEMPUS experiments to positioning coils will produce only a weak melt circulation, while the heating coils are like to produce a mildly turbulent recirculating flow pattern within the samples. The computed results also allow us to assess the effect of sample size, material properties and the applied current on these phenomena.

  12. Steady-state sinusoidal thermal characterization at chip level by internal infrared-laser deflection

    Energy Technology Data Exchange (ETDEWEB)

    Perpina, Xavier; Jorda, Xavier; Vellvehi, Miquel [Centre Nacional de Microelectronica (IMB-CNM-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Altet, Josep [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Barcelona 08034 (Spain); Mestres, NarcIs [Institut de Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2008-08-07

    A new approach is reported for thermally characterizing microelectronic devices and integrated circuits under a steady-state sinusoidal regime by internal infrared-laser deflection (IIR-LD). It consists of extracting the amplitude and phase Bode plots of the temperature profile inside the chip (depth-resolved measurements in the frequency domain). As a consequence, not only are the IIR-LD performances significantly improved (accuracy, robustness to noise, control of boundary conditions and heat flux confinement) but also the direct temperature measurement is feasible when thin regions are inspected and thermal parameters can be easily extracted (thermal diffusivity). In order to show the efficiency of this technique, a thermal test chip (TTC) is used. The TTC is thermally excited by imposing a cosine-like voltage waveform. As a result, a vertical temperature profile inside the die is obtained depending on the heating frequency. Repeating this procedure at several frequencies, the frequency response of the chip internal temperature profile is derived. By comparing the experimental results with the model predictions, good agreement is achieved. This technique allows evaluation of the thermal behaviour at the chip level; also it could be useful for failure analysis.

  13. Impact of Central ECCD on Steady-State Hybrid Scenario in DIII-D

    Science.gov (United States)

    Petty, C. C.; van Zeeland, M. A.; Pace, D. C.; Chen, Xi; Prater, R.; Nazikian, R.; Grierson, B. A.; Kolemen, E.; McKee, G. R.; Turco, F.

    2015-11-01

    In steady-state hybrid plasmas with zero surface loop voltage, 3.4 MW of central ECCD drives ~ 0.2 MA out of ~ 1.0 MA plasma current with concurrent changes in sawteeth, Alfvén eigenmodes (AE) and thermal transport. While the hybrid scenario normally does not sawtooth because qmin > 1, localized ECCD (with calculated peak magnitudes of ~ 6 MA/m2) causes sawteeth to appear, indicating that the intense ECCD overwhelms the flux pumping mechanism. In hybrid plasmas with NBI heating only, strong AE activity leads to high beam ion transport coefficients of ~ 2 /m2/s. During central ECCD, this AE activity is suppressed, replaced by a bursty n=1 energetic particle mode with low beam ion transport coefficients of ~ 0.3 /m2/s. While central electron heating raises electron thermal transport, increasing χe by ~100% for 3.4 MW of ECCD, the confinement factor is little changed as the higher thermal transport is offset by the decreased fast ion transport resulting from AE suppression. Work supported by US DOE under DE-FC02-04ER54698, DE-FG03-97ER54415, DE-FG02-99ER54541 and W-7405-ENG-48.

  14. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions

    Science.gov (United States)

    Warzoha, Ronald J.; Donovan, Brian F.

    2017-09-01

    Thermal interface materials (TIMs) are meant to reduce the interfacial thermal resistance (RT) across bare metal contacts in commercial electronics packaging systems. However, there is little scientific consensus governing material design for optimized thermal performance. This is principally due to the inability to separate the effects of the intrinsic material thermal properties from the magnitude of heat flow crossing the TIM-substrate junction (RC). To date, efforts to isolate these effects using standard thermal interface material characterization techniques have not been successful. In this work, we develop an infrared thermography-based steady-state heat meter bar apparatus with a novel in situ thickness measurement system having 0.5 nm sensitivity. These in situ thickness measurements allow us to simultaneously determine RT and RC independently across current state-of-the-art TIMs with ±5% uncertainty. In this work, thermal pastes with bond line thicknesses ranging between 5 and 50 μ m are used to illustrate the capability of the apparatus to measure extremely thin materials that are expected to achieve relatively low values of RT. Results suggest that the contribution of the thermal contact resistance to the total thermal resistance can range from 5% to 80% for these materials. This finding highlights the need for appropriate metrology and independent measurements of RC and RT to better optimize thermal interface materials for a number of important electronics applications.

  15. Development of steady-state model for MSPT and detailed analyses of receiver

    Science.gov (United States)

    Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi

    2016-05-01

    Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.

  16. Self-induced steady-state magnetic field in the negative ion sources with localized rf power deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shivarova, A.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia-bg; Lishev, St. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    The study is in the scope of a recent activity on modeling of SPIDER (Source for Production of Ions of Deuterium Extracted from RF plasma) which is under development regarding the neutral beam injection heating system of ITER. The regime of non-ambipolarity in the source, established before, is completed here by introducing in the model the steady state magnetic field, self-induced in the discharge due to the dc current flowing in it. Strong changes in the discharge structure are reported.

  17. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development

    OpenAIRE

    2015-01-01

    A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...

  18. Development and experimental verification of SST-GRASS: a steady-state and transient fuel response and fission-product release code. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J.; Seitz, M.G.; Gehl, S.M.; Kelman, L.R.

    1976-01-01

    A comprehensive fission-product release model (GRASS), based on a mechanistic understanding of fuel behavior in LWR fuel elements for a wide range of accidental overheating conditions as well as steady-state irradiations, is being developed at Argonne National Laboratory. Experimental support for GRASS is provided by out-of-reactor transient heating of irradiated commercial LWR fuel using a direct-electrical-heating technique. The GRASS calculations are described, benchmarked against standard theoretical treatments, and verified for steady-state irradiations. In addition, preliminary results from the direct-electrical-heating experiments are reported. Possible mechanisms for fission-gas release during transient heating of LWR fuel are discussed based on comparisons of GRASS results with experimental observations.

  19. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, J.-T., E-mail: cosmology@gmail.com [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Hu, B.L. [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2015-11-15

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the

  20. Differences in Transient and Steady State Isobaric Counterdiffusion.

    Science.gov (United States)

    1982-07-19

    have had something to do with the sensation and "feel" of the gas to the animal rather than any airway restriction. Both the heat capacity and the...identical saturation period. This treament also appears essentially free of bubbles, with a calculated AP (Table 1) of 7.2 f.s.w. and pressure ratio (I/P...mask developed for imposing SSIC. The mask was fashioned from a nalgene beaker re-shaped with heat to conform more approximately to the animal’s

  1. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  2. Friction damping of two-dimensional motion and its application in vibration control

    Science.gov (United States)

    Menq, C.-H.; Chidamparam, P.; Griffin, J. H.

    1991-01-01

    This paper presents an approximate method for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces. The friction force at the joint is formulated based on the Coulomb model. The single-term harmonic balance scheme, together with the receptance approach of decoupling the effect of the friction force on the structure from those of the external forces has been utilized to obtain the steady state response. The computational efficiency and accuracy of the method are demonstrated by comparing the results with long-term time solutions.

  3. Status for the two-dimensional Navier-Stokes solver EllipSys2D

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.

    2001-01-01

    This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...... the linear to the stalled region. The computational data are compared to experimental data and numerical results from other computational codes. Several numerical aspects are studied, as mesh dependency,convective scheme, steady state versus unsteady computations, transition modelling. Some general...... conclusions intended to help in using this code for numerical simulations are given....

  4. Ultrashort light bullets described by the two-dimensional sine-Gordon equation

    CERN Document Server

    Leblond, Hervé; 10.1103/PHYSREVA.81.063815

    2011-01-01

    By using a reductive perturbation technique applied to a two-level model, this study puts forward a generic two-dimensional sine-Gordon evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in Kerr media beyond the slowly varying envelope approximation. Direct numerical simulations show that, in contrast to the long-wave approximation, no collapse occurs, and that robust (2+1)-dimensional ultrashort light bullets may form from adequately chosen few-cycle input spatiotemporal wave forms. In contrast to the case of quadratic nonlinearity, the light bullets oscillate in both space and time and are therefore not steady-state lumps.

  5. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  6. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  7. On the maximum conversion efficiency into the 13.5-nm extreme ultraviolet emission under a steady-state laser ablation of tin microspheres

    Science.gov (United States)

    Basko, M. M.

    2016-08-01

    Theoretical investigation has been performed on the conversion efficiency (CE) into the 13.5-nm extreme ultraviolet (EUV) radiation in a scheme where spherical microspheres of tin (Sn) are simultaneously irradiated by two laser pulses with substantially different wavelengths. The low-intensity short-wavelength pulse is used to control the rate of mass ablation and the size of the EUV source, while the high-intensity long-wavelength pulse provides efficient generation of the EUV light at λ=13.5 nm. The problem of full optimization for maximizing the CE is formulated and solved numerically by performing two-dimensional radiation-hydrodynamics simulations with the RALEF-2D code under the conditions of steady-state laser illumination. It is shown that, within the implemented theoretical model, steady-state CE values approaching 9% are feasible; in a transient peak, the maximum instantaneous CE of 11.5% was calculated for the optimized laser-target configuration. The physical factors, bringing down the fully optimized steady-state CE to about one half of the absolute theoretical maximum of CE≈20 % for the uniform static Sn plasma, are analyzed in detail.

  8. Evaluation of chondromalacia in the knee joint using three dimensional Fourier transformation constructive interference in steady state (CISS)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young [College of Medicine, Pochon CHA University, Sungnam (Korea, Republic of); Lee, Young Soo [Pundang CHA General Hospital, College of Medicine, Pochon CHA University, Seoul (Korea, Republic of)

    2000-10-01

    To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading.

  9. Experimental studies towards long pulse steady state operation in LHD

    NARCIS (Netherlands)

    Noda, N.; Nakamura, Y.; Takeiri, Y.; Mutoh, T.; Kumazawa, R.; Sato, M.; Kawahata, K.; Yamada, S.; Shimozuma, T.; Oka, Y.; Iiyoshi, A.; Sakamoto, R.; Kubota, Y.; Masuzaki, S.; Inagaki, S.; Morisaki, T.; Suzuki, H.; Ohyabu, N.; Adachi, K.; Akaishi, K.; Ashikawa, N.; Chikaraishi, H.; de Vries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Hamaguchi, S.; Ida, K.; Idei, H.; Ikeda, K.; Imagawa, S.; Inoue, N.; Isobe, M.; Iwamoto, A.; Kado, S.; Kaneko, O.; Kitagawa, S.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kubo, S.; Liang, Y.; Maekawa, R.; Minami, T.; Mito, T.; Miyazawa, J.; Morita, S.; Murai, K.; Murakami, S.; Muto, S.; Nagayama, Y.; Nakanishi, H.; Narihara, K.; Nishimura, A.; Nishimura, K.; Nishizawa, A.; Notake, T.; Ohdachi, S.; Okamoto, M.; Osakabe, M.; Ozaki, T.; Pavlichenko, R. O.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakakibara, S.; Sasao, H.; Sasao, M.; Sato, K.; Seki, T.; Shoji, M.; Sugama, H.; Takahata, K.; Takechi, M.; Tamura, H.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Torii, Y.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Yanagi, N.; Yamada, I.; Yamada, H.; Yamaguchi, S.; Yamamoto, S.; Yamamoto, T.; Yokoyama, M.; Yoshimura, Y.; Ohtake, I.; Akiyama, R.; Haba, K.; Iima, M.; Kodaira, J.; Tsuzuki, K.; Itoh, K.; Matsuoka, K.; Ohkubo, K.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.

    2001-01-01

    In the Large Helical Device, stable discharges lasting longer than one minute have been obtained using the complete heating scheme, including ECH. The plasma is sustained with NBI or ICRF of 0.5-1 MW. The central plasma temperature is higher than 1.5 keV with a density of (1-2) x 10(19) m(-3)

  10. Experimental studies towards long pulse steady state operation in LHD

    NARCIS (Netherlands)

    Noda, N.; Nakamura, Y.; Takeiri, Y.; Mutoh, T.; Kumazawa, R.; Sato, M.; Kawahata, K.; Yamada, S.; Shimozuma, T.; Oka, Y.; Iiyoshi, A.; Sakamoto, R.; Kubota, Y.; Masuzaki, S.; Inagaki, S.; Morisaki, T.; Suzuki, H.; Ohyabu, N.; Adachi, K.; Akaishi, K.; Ashikawa, N.; Chikaraishi, H.; de Vries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Hamaguchi, S.; Ida, K.; Idei, H.; Ikeda, K.; Imagawa, S.; Inoue, N.; Isobe, M.; Iwamoto, A.; Kado, S.; Kaneko, O.; Kitagawa, S.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kubo, S.; Liang, Y.; Maekawa, R.; Minami, T.; Mito, T.; Miyazawa, J.; Morita, S.; Murai, K.; Murakami, S.; Muto, S.; Nagayama, Y.; Nakanishi, H.; Narihara, K.; Nishimura, A.; Nishimura, K.; Nishizawa, A.; Notake, T.; Ohdachi, S.; Okamoto, M.; Osakabe, M.; Ozaki, T.; Pavlichenko, R. O.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakakibara, S.; Sasao, H.; Sasao, M.; Sato, K.; Seki, T.; Shoji, M.; Sugama, H.; Takahata, K.; Takechi, M.; Tamura, H.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Torii, Y.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Yanagi, N.; Yamada, I.; Yamada, H.; Yamaguchi, S.; Yamamoto, S.; Yamamoto, T.; Yokoyama, M.; Yoshimura, Y.; Ohtake, I.; Akiyama, R.; Haba, K.; Iima, M.; Kodaira, J.; Tsuzuki, K.; Itoh, K.; Matsuoka, K.; Ohkubo, K.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.

    2001-01-01

    In the Large Helical Device, stable discharges lasting longer than one minute have been obtained using the complete heating scheme, including ECH. The plasma is sustained with NBI or ICRF of 0.5-1 MW. The central plasma temperature is higher than 1.5 keV with a density of (1-2) x 10(19) m(-3) mainta

  11. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...

  12. Simulation of Multi-Steady States in Low Temperature Gas Discharge

    Institute of Scientific and Technical Information of China (English)

    李弘; 胡希伟

    2004-01-01

    This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions. The simulation results are in a good agreement with those of the experiments.

  13. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System

    OpenAIRE

    Roder, Hans M.; Perkins, Richard A.; Laesecke, Arno; Nieto de Castro, Carlos A.

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relat...

  14. Estimating time to steady state using the effective rate of drug accumulation.

    Science.gov (United States)

    Panebianco, Deborah L; Maes, Andrea

    2011-01-01

    Unless all of a drug is eliminated during each dosing interval, the plasma concentrations within a dosing interval will increase until the time course of change in plasma concentrations becomes invariant from one dosing interval to the next, resulting in steady state. A simple method for estimating drug concentration time to steady state based on multiple dose area under the plasma concentration-time curve and effective rate of drug accumulation is presented. Several point estimates and confidence intervals for time to 90% of steady state are compared, and a recommendation is made on how to summarize and present the results. Copyright © 2009 John Wiley & Sons, Ltd.

  15. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells.

    Science.gov (United States)

    Guardia, M J; Gambhir, A; Europa, A F; Ramkrishna, D; Hu, W S

    2000-01-01

    Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state.

  16. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  17. Steady-state thermal-hydraulic analysis of SCWR assembly

    Institute of Scientific and Technical Information of China (English)

    Xiaojing LIU; Xu CHENG

    2008-01-01

    Among the six gen-Ⅳ reactor concepts recom-mended by the gen-Ⅳ international forum (GIF), super-critical water-cooled reactor (SCWR), the only reactor with water as coolant, achieves a high thermal efficiency and, subsequently, has economic advantages over the existing reactors due to its high outlet temperature. A thermal-hydraulic analysis of the SCWR assembly is per-formed in this paper using the modified COBRA-Ⅳ code. Two approaches to reduce the hot channel factor are investigated: decreasing the moderator mass flow and increasing the thermal resistance between moderator channel and its adjacent sub-channels. It is shown that heat transfer deterioration cannot be avoided in SCWR fuel assembly. It is, therefore, highly required to calculate the cladding temperature accurately and to preserve the fuel rod cladding integrity under heat transfer deteriora-tion conditions.

  18. Analytical Results of Steady-State Populations in Multiphoton Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    YANGXiao-Xue; LUOJin-Ming

    2004-01-01

    We present the explicit analytical expressions of the steady-state probability amplitudes and populations of atom levels in N-photon electromagnetically induced transparency for an arbitrary positive integer N.

  19. Potential multiple steady-states in the long-term carbon cycle

    CERN Document Server

    Tennenbaum, Stephen; Schwartzman, David

    2013-01-01

    Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...

  20. Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model

    Science.gov (United States)

    Lou, Yuan; Tao, Youshan; Winkler, Michael

    2017-05-01

    In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.