WorldWideScience

Sample records for two-dimensional state subspaces

  1. OpenSubspace

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering and projected clustering are recent research areas for clustering in high dimensional spaces. As the field is rather young, there is a lack of comparative studies on the advantages and disadvantages of the different algorithms. Part of the underlying problem is the lack...... of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this paper, we discuss the requirements for open source evaluation software. We propose OpenSubspace, an open source framework that meets...... these requirements. OpenSubspace integrates state-of-the-art performance measures and visualization techniques to foster research in subspace and projected clustering....

  2. Central subspace dimensionality reduction using covariance operators.

    Science.gov (United States)

    Kim, Minyoung; Pavlovic, Vladimir

    2011-04-01

    We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.

  3. Engineering two-photon high-dimensional states through quantum interference

    CSIR Research Space (South Africa)

    Zhang, YI

    2016-02-01

    Full Text Available . ngled photon pairs (see p a nonlinear crystal to ersion (SPDC). At the tate (6) ℓ¼1 stat th , w from ℓ = 0. The subscripts A and B la R E S EARCH ART I C L E o n February 28, 2016 http://advances.sciencem ag.org/ D ow nloaded from stitute of Photonics... contribution from the ℓ = 1, 2, and 3 subspaces in this six-dimensional state (36 × 36 matrix). (B) The state after the filter, which in principle is given byd01jY � 1 〉 þ d 0 3jY � 3 〉; the contribution from the ℓ = 2 subspace is 3.8 ± 0.2% of its original...

  4. Gamow state vectors as functionals over subspaces of the nuclear space

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    Exponentially decaying Gamow state vectors are obtained from S-matrix poles in the lower half of the second sheet, and are defined as functionals over a subspace of the nuclear space, PHI. Exponentially growing Gamow state vectors are obtained from S-matrix poles in the upper half of the second sheet, and are defined as functionals over another subspace of PHI. On functionals over these two subspaces the dynamical group of time development splits into two semigroups

  5. Active Subspaces of Airfoil Shape Parameterizations

    Science.gov (United States)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  6. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  7. Subspace confinement: how good is your qubit?

    International Nuclear Information System (INIS)

    Devitt, Simon J; Schirmer, Sonia G; Oi, Daniel K L; Cole, Jared H; Hollenberg, Lloyd C L

    2007-01-01

    The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment

  8. Two-qubit quantum computing in a projected subspace

    International Nuclear Information System (INIS)

    Bi Qiao; Ruda, H.E.; Zhan, M.S.

    2002-01-01

    A formulation for performing quantum computing in a projected subspace is presented, based on the subdynamical kinetic equation (SKE) for an open quantum system. The eigenvectors of the kinetic equation are shown to remain invariant before and after interaction with the environment. However, the eigenvalues in the projected subspace exhibit a type of phase shift to the evolutionary states. This phase shift does not destroy the decoherence-free (DF) property of the subspace because the associated fidelity is 1. This permits a universal formalism to be presented--the eigenprojectors of the free part of the Hamiltonian for the system and bath may be used to construct a DF projected subspace based on the SKE. To eliminate possible phase or unitary errors induced by the change in the eigenvalues, a cancellation technique is proposed, using the adjustment of the coupling time, and applied to a two-qubit computing system. A general criteria for constructing a DF-projected subspace from the SKE is discussed. Finally, a proposal for using triangulation to realize a decoherence-free subsystem based on SKE is presented. The concrete formulation for a two-qubit model is given exactly. Our approach is general and appears to be applicable to any type of decoherence

  9. An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection

    International Nuclear Information System (INIS)

    Zhang, Liangwei; Lin, Jing; Karim, Ramin

    2015-01-01

    The accuracy of traditional anomaly detection techniques implemented on full-dimensional spaces degrades significantly as dimensionality increases, thereby hampering many real-world applications. This work proposes an approach to selecting meaningful feature subspace and conducting anomaly detection in the corresponding subspace projection. The aim is to maintain the detection accuracy in high-dimensional circumstances. The suggested approach assesses the angle between all pairs of two lines for one specific anomaly candidate: the first line is connected by the relevant data point and the center of its adjacent points; the other line is one of the axis-parallel lines. Those dimensions which have a relatively small angle with the first line are then chosen to constitute the axis-parallel subspace for the candidate. Next, a normalized Mahalanobis distance is introduced to measure the local outlier-ness of an object in the subspace projection. To comprehensively compare the proposed algorithm with several existing anomaly detection techniques, we constructed artificial datasets with various high-dimensional settings and found the algorithm displayed superior accuracy. A further experiment on an industrial dataset demonstrated the applicability of the proposed algorithm in fault detection tasks and highlighted another of its merits, namely, to provide preliminary interpretation of abnormality through feature ordering in relevant subspaces. - Highlights: • An anomaly detection approach for high-dimensional reliability data is proposed. • The approach selects relevant subspaces by assessing vectorial angles. • The novel ABSAD approach displays superior accuracy over other alternatives. • Numerical illustration approves its efficacy in fault detection applications

  10. Greedy subspace clustering.

    Science.gov (United States)

    2016-09-01

    We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets ...

  11. Subspace methods for pattern recognition in intelligent environment

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.

  12. Unsupervised spike sorting based on discriminative subspace learning.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  13. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  14. Quantum cloning of mixed states in symmetric subspaces

    International Nuclear Information System (INIS)

    Fan Heng

    2003-01-01

    Quantum-cloning machine for arbitrary mixed states in symmetric subspaces is proposed. This quantum-cloning machine can be used to copy part of the output state of another quantum-cloning machine and is useful in quantum computation and quantum information. The shrinking factor of this quantum cloning achieves the well-known upper bound. When the input is identical pure states, two different fidelities of this cloning machine are optimal

  15. On the dimension of subspaces with bounded Schmidt rank

    International Nuclear Information System (INIS)

    Cubitt, Toby; Montanaro, Ashley; Winter, Andreas

    2008-01-01

    We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden et al. [e-print arXiv:quant-ph/0407049; Commun. Math. Phys., 265, 95 (2006)], which show that in large dxd-dimensional systems there exist random subspaces of dimension almost d 2 , all of whose states have entropy of entanglement at least log d-O(1). It is also a generalization of results on the dimension of completely entangled subspaces, which have connections with the construction of unextendible product bases. Here we take as entanglement measure the Schmidt rank, and determine, for every pair of local dimensions d A and d B , and every r, the largest dimension of a subspace consisting only of entangled states of Schmidt rank r or larger. This exact answer is a significant improvement on the best bounds that can be obtained using the random subspace techniques in Hayden et al. We also determine the converse: the largest dimension of a subspace with an upper bound on the Schmidt rank. Finally, we discuss the question of subspaces containing only states with Schmidt equal to r

  16. Evaluating Clustering in Subspace Projections of High Dimensional Data

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Günnemann, Stephan; Assent, Ira

    2009-01-01

    Clustering high dimensional data is an emerging research field. Subspace clustering or projected clustering group similar objects in subspaces, i.e. projections, of the full space. In the past decade, several clustering paradigms have been developed in parallel, without thorough evaluation...... and comparison between these paradigms on a common basis. Conclusive evaluation and comparison is challenged by three major issues. First, there is no ground truth that describes the "true" clusters in real world data. Second, a large variety of evaluation measures have been used that reflect different aspects...... of the clustering result. Finally, in typical publications authors have limited their analysis to their favored paradigm only, while paying other paradigms little or no attention. In this paper, we take a systematic approach to evaluate the major paradigms in a common framework. We study representative clustering...

  17. BRST quantization of Polyakov's two-dimensional gravity

    International Nuclear Information System (INIS)

    Itoh, Katsumi

    1990-01-01

    Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)

  18. Geometric mean for subspace selection.

    Science.gov (United States)

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2009-02-01

    Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.

  19. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    For knowledge discovery in high dimensional databases, subspace clustering detects clusters in arbitrary subspace projections. Scalability is a crucial issue, as the number of possible projections is exponential in the number of dimensions. We propose a scalable density-based subspace clustering...... method that steers mining to few selected subspace clusters. Our novel steering technique reduces subspace processing by identifying and clustering promising subspaces and their combinations directly. Thereby, it narrows down the search space while maintaining accuracy. Thorough experiments on real...... and synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  20. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    Science.gov (United States)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  1. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional

  2. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    Science.gov (United States)

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  3. Geometric subspace updates with applications to online adaptive nonlinear model reduction

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Peherstorfer, Benjamin; Willcox, Karen

    2018-01-01

    In many scientific applications, including model reduction and image processing, subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of the state vectors of interest. We introduce a procedure for adapting an existing subspace based on information from...... Estimation (GROUSE). We establish for GROUSE a closed-form expression for the residual function along the geodesic descent direction. Specific applications of subspace adaptation are discussed in the context of image processing and model reduction of nonlinear partial differential equation systems....

  4. Similarity measurement method of high-dimensional data based on normalized net lattice subspace

    Institute of Scientific and Technical Information of China (English)

    Li Wenfa; Wang Gongming; Li Ke; Huang Su

    2017-01-01

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this meth-od, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the di-mensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

  5. Subspace Dimensionality: A Tool for Automated QC in Seismic Array Processing

    Science.gov (United States)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2013-12-01

    Because of the great resolving power of seismic arrays, the application of automated processing to array data is critically important in treaty verification work. A significant problem in array analysis is the inclusion of bad sensor channels in the beamforming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by node basis, so the dimensionality of the node traffic is instead monitoried for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. In the established template application, a detector functions in a manner analogous to waveform cross-correlation, applying a statistical test to assess the similarity of the incoming data stream to known templates for events of interest. In our approach, we seek not to detect matching signals, but instead, we examine the signal subspace dimensionality in much the same way that the method addresses node traffic anomalies in large computer systems. Signal anomalies recorded on seismic arrays affect the dimensional structure of the array-wide time-series. We have shown previously that this observation is useful in identifying real seismic events, either by looking at the raw signal or derivatives thereof (entropy, kurtosis), but here we explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for

  6. Subspace preservation, subspace locality, and gluing of completely positive maps

    International Nuclear Information System (INIS)

    Aaberg, Johan

    2004-01-01

    Three concepts concerning completely positive maps (CPMs) and trace preserving CPMs (channels) are introduced and investigated. These are named subspace preserving (SP) CPMs, subspace local (SL) channels, and gluing of CPMs. SP CPMs has, in the case of trace preserving CPMs, a simple interpretation as those which preserve probability weights on a given orthogonal sum decomposition of the Hilbert space of a quantum system. The proposed definition of subspace locality of quantum channels is an attempt to answer the question of what kind of restriction should be put on a channel, if it is to act 'locally' with respect to two 'locations', when these naturally correspond to a separation of the total Hilbert space in an orthogonal sum of subspaces, rather than a tensor product decomposition. As a description of the concept of gluings of quantum channels, consider a pair of 'evolution machines', each with the ability to evolve the internal state of a 'particle' inserted into its input. Each of these machines is characterized by a channel describing the operation the internal state has experienced when the particle is returned at the output. Suppose a particle is put in a superposition between the input of the first and the second machine. Here it is shown that the total evolution caused by a pair of such devices is not uniquely determined by the channels of the two machines. Such 'global' channels describing the machine pair are examples of gluings of the two single machine channels. Various expressions to generate the set of SP and SL channels, as well as expressions to generate the set of gluings of given channels, are deduced. We discuss conceptual aspects of the nature of these channels and the nature of the non-uniqueness of gluings

  7. Active Subspaces for Wind Plant Surrogate Modeling

    Energy Technology Data Exchange (ETDEWEB)

    King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Adcock, Christiane [Massachusetts Institute of Technology

    2018-01-12

    Understanding the uncertainty in wind plant performance is crucial to their cost-effective design and operation. However, conventional approaches to uncertainty quantification (UQ), such as Monte Carlo techniques or surrogate modeling, are often computationally intractable for utility-scale wind plants because of poor congergence rates or the curse of dimensionality. In this paper we demonstrate that wind plant power uncertainty can be well represented with a low-dimensional active subspace, thereby achieving a significant reduction in the dimension of the surrogate modeling problem. We apply the active sub-spaces technique to UQ of plant power output with respect to uncertainty in turbine axial induction factors, and find a single active subspace direction dominates the sensitivity in power output. When this single active subspace direction is used to construct a quadratic surrogate model, the number of model unknowns can be reduced by up to 3 orders of magnitude without compromising performance on unseen test data. We conclude that the dimension reduction achieved with active subspaces makes surrogate-based UQ approaches tractable for utility-scale wind plants.

  8. LBAS: Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Abe, Kyniyoshi

    The regularizing properties of Lanczos bidiagonalization are powerful when the underlying Krylov subspace captures the dominating components of the solution. In some applications the regularized solution can be further improved by augmenting the Krylov subspace with a low-dimensional subspace tha...

  9. An alternative subspace approach to EEG dipole source localization

    Science.gov (United States)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  10. An alternative subspace approach to EEG dipole source localization

    International Nuclear Information System (INIS)

    Xu Xiaoliang; Xu, Bobby; He Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist

  11. Mass spectrum of the two dimensional lambdaphi4-1/4phi2-μphi quantum field model

    International Nuclear Information System (INIS)

    Imbrie, J.Z.

    1980-01-01

    It is shown that r-particle irreducible kernels in the two-dimensional lambdaphi 4 -1/4phi 2 -μphi quantum field theory have (r+1)-particle decay for vertical stroke μ vertical stroke 2 << 1. As a consequence there is an upper mass gap and, in the subspace of two-particle states, a bound state. The proof extends Spencer's expansion to handle fluctuations between the two wells of the classical potential. A new method for resumming the low temperature cluster expansion is introduced. (orig.)

  12. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  13. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  14. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    Science.gov (United States)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  15. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    OpenAIRE

    Bi, Qiao; Guo, Liu; Ruda, H. E.

    2010-01-01

    A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  16. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  17. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    Directory of Open Access Journals (Sweden)

    Qiao Bi

    2010-01-01

    Full Text Available A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  18. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.

    Science.gov (United States)

    Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E

    2018-06-12

    We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).

  19. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of size O(1). Our first result concerns the optimal scaling of the distance d with the linear size of the lattice L. We prove an upper bound d=O(L D-1 ) which is tight for D=1, 2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1, 2, different logical states can be mapped into each other by a sequence of single-qubit Pauli errors such that the energy of all intermediate states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as 'gauge qubits'. It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1, 2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional (2D) ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.

  20. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  1. Engineering two-photon high-dimensional states through quantum interference

    Science.gov (United States)

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  2. Invariant subspaces

    CERN Document Server

    Radjavi, Heydar

    2003-01-01

    This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,

  3. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  4. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  5. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  6. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  7. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  8. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  9. On final states of two-dimensional decaying turbulence

    NARCIS (Netherlands)

    Yin, Z.

    2004-01-01

    Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of

  10. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Alnaffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  11. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail

    2016-05-27

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  12. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  13. Subspace System Identification of the Kalman Filter

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2003-07-01

    Full Text Available Some proofs concerning a subspace identification algorithm are presented. It is proved that the Kalman filter gain and the noise innovations process can be identified directly from known input and output data without explicitly solving the Riccati equation. Furthermore, it is in general and for colored inputs, proved that the subspace identification of the states only is possible if the deterministic part of the system is known or identified beforehand. However, if the inputs are white, then, it is proved that the states can be identified directly. Some alternative projection matrices which can be used to compute the extended observability matrix directly from the data are presented. Furthermore, an efficient method for computing the deterministic part of the system is presented. The closed loop subspace identification problem is also addressed and it is shown that this problem is solved and unbiased estimates are obtained by simply including a filter in the feedback. Furthermore, an algorithm for consistent closed loop subspace estimation is presented. This algorithm is using the controller parameters in order to overcome the bias problem.

  14. Gene selection for microarray data classification via subspace learning and manifold regularization.

    Science.gov (United States)

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  15. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  16. Lyapunov vectors and assimilation in the unstable subspace: theory and applications

    International Nuclear Information System (INIS)

    Palatella, Luigi; Carrassi, Alberto; Trevisan, Anna

    2013-01-01

    Based on a limited number of noisy observations, estimation algorithms provide a complete description of the state of a system at current time. Estimation algorithms that go under the name of assimilation in the unstable subspace (AUS) exploit the nonlinear stability properties of the forecasting model in their formulation. Errors that grow due to sensitivity to initial conditions are efficiently removed by confining the analysis solution in the unstable and neutral subspace of the system, the subspace spanned by Lyapunov vectors with positive and zero exponents, while the observational noise does not disturb the system along the stable directions. The formulation of the AUS approach in the context of four-dimensional variational assimilation (4DVar-AUS) and the extended Kalman filter (EKF-AUS) and its application to chaotic models is reviewed. In both instances, the AUS algorithms are at least as efficient but simpler to implement and computationally less demanding than their original counterparts. As predicted by the theory when error dynamics is linear, the optimal subspace dimension for 4DVar-AUS is given by the number of positive and null Lyapunov exponents, while the EKF-AUS algorithm, using the same unstable and neutral subspace, recovers the solution of the full EKF algorithm, but dealing with error covariance matrices of a much smaller dimension and significantly reducing the computational burden. Examples of the application to a simplified model of the atmospheric circulation and to the optimal velocity model for traffic dynamics are given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  17. Face recognition based on two-dimensional discriminant sparse preserving projection

    Science.gov (United States)

    Zhang, Dawei; Zhu, Shanan

    2018-04-01

    In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.

  18. Bi Sparsity Pursuit: A Paradigm for Robust Subspace Recovery

    Science.gov (United States)

    2016-09-27

    Bian, Student Member, IEEE, and Hamid Krim, Fellow, IEEE Abstract The success of sparse models in computer vision and machine learning is due to the...16. SECURITY CLASSIFICATION OF: The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data...vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world

  19. Constitutive relations in multidimensional isotropic elasticity and their restrictions to subspaces of lower dimensions

    Science.gov (United States)

    Georgievskii, D. V.

    2017-07-01

    The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.

  20. Independence and totalness of subspaces in phase space methods

    Science.gov (United States)

    Vourdas, A.

    2018-04-01

    The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.

  1. Sequentially generated states for the study of two dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari-Carmen; Cirac, J. Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Perez-Garcia, David [Depto. Analisis Matematico, Universidad Complutense de Madrid (Spain); Wolf, Michael M. [Niels Bohr Institut, Copenhagen (Denmark); Verstraete, Frank [Fakultaet fuer Physik, Universitaet Wien (Austria)

    2009-07-01

    The family of Matrix Product States represents a powerful tool for the study of physical one-dimensional quantum many-body systems, such as spin chains. Besides, Matrix Product States can be defined as the family of quantum states that can be sequentially generated in a one-dimensional system. We have introduced a new family of states which extends this sequential definition to two dimensions. Like in Matrix Product States, expectation values of few body observables can be efficiently evaluated and, for the case of translationally invariant systems, the correlation functions decay exponentially with the distance. We show that such states are a subclass of Projected Entangled Pair States and investigate their suitability for approximating the ground states of local Hamiltonians.

  2. Efficient construction of two-dimensional cluster states with probabilistic quantum gates

    International Nuclear Information System (INIS)

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-01-01

    We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers

  3. Experimental fault-tolerant quantum cryptography in a decoherence-free subspace

    International Nuclear Information System (INIS)

    Zhang Qiang; Pan Jianwei; Yin Juan; Chen Tengyun; Lu Shan; Zhang Jun; Li Xiaoqiang; Yang Tao; Wang Xiangbin

    2006-01-01

    We experimentally implement a fault-tolerant quantum key distribution protocol with two photons in a decoherence-free subspace [Phys. Rev. A 72, 050304(R) (2005)]. It is demonstrated that our protocol can yield a good key rate even with a large bit-flip error rate caused by collective rotation, while the usual realization of the Bennett-Brassard 1984 protocol cannot produce any secure final key given the same channel. Since the experiment is performed in polarization space and does not need the calibration of a reference frame, important applications in free-space quantum communication are expected. Moreover, our method can also be used to robustly transmit an arbitrary two-level quantum state in a type of decoherence-free subspace

  4. Two-Dimensional DOA Estimation in Compressed Sensing with Compressive-Reduced Dimension-lp-MUSIC

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2015-01-01

    Full Text Available This paper presents a novel two-dimensional (2D direction of arrival (DOA estimation method in compressed sensing (CS to remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles, arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can avoid estimation failure occurrence and has superior performance as compared to existing methods.

  5. Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods

    International Nuclear Information System (INIS)

    Men, H.; Nguyen, N.C.; Freund, R.M.; Parrilo, P.A.; Peraire, J.

    2010-01-01

    In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the bandgap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.

  6. Linear Subspace Ranking Hashing for Cross-Modal Retrieval.

    Science.gov (United States)

    Li, Kai; Qi, Guo-Jun; Ye, Jun; Hua, Kien A

    2017-09-01

    Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance. Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two groups of linear subspaces, one for each modality, so that features' ranking orders in different linear subspaces maximally preserve the cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with only moderate training and testing time.

  7. DETECTION OF CHANGES OF THE SYSTEM TECHNICAL STATE USING STOCHASTIC SUBSPACE OBSERVATION METHOD

    Directory of Open Access Journals (Sweden)

    Andrzej Puchalski

    2014-03-01

    Full Text Available System diagnostics based on vibroacoustics signals, carried out by means of stochastic subspace methods was undertaken in the hereby paper. Subspace methods are the ones based on numerical linear algebra tools. The considered solutions belong to diagnostic methods according to data, leading to the generation of residuals allowing failure recognition of elements and assemblies in machines and devices. The algorithm of diagnostics according to the subspace observation method was applied – in the paper – for the estimation of the valve system of the spark ignition engine.

  8. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... tracking interfaces, active contour based segmentation methods and others. It can also be used to study shape spaces, as deforming a shape can be thought of as evolving its boundary curve. During curve evolution a curve traces out a path in the infinite dimensional space of curves. Due to application...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...

  9. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  10. Numerical evidence for two types of localized states in a two-dimensional disordered lattice

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.

    1992-06-01

    We report results of our numerical calculations, based on the equation of motion method, of dc-electrical conductivity and of density of states up to 40x40 two-dimensional square lattices modelling a right-binding Hamiltonian for a binary (AB) compound, disordered by randomly distributed B vacancies up to 10%. Our results indicate strongly localized states away from band centers separated from the relatively weakly localized states toward midband. This is in qualitative agreement with the idea of a ''mobility edge'' separating exponentially localized states from the power-law localized states as suggested by the two-parameter scaling theory of Kaevh in two dimensions. (author). 7 refs, 4 figs

  11. Extending the subspace hybrid method for eigenvalue problems in reactor physics calculation

    International Nuclear Information System (INIS)

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-01-01

    This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and extended to address core wide level k-eigenvalue problems. The method's efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future. (authors)

  12. Subspace K-means clustering.

    Science.gov (United States)

    Timmerman, Marieke E; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-12-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning approaches. To evaluate subspace K-means, we performed a comparative simulation study, in which we manipulated the overlap of subspaces, the between-cluster variance, and the error variance. The study shows that the subspace K-means algorithm is sensitive to local minima but that the problem can be reasonably dealt with by using partitions of various cluster procedures as a starting point for the algorithm. Subspace K-means performs very well in recovering the true clustering across all conditions considered and appears to be superior to its competitor methods: K-means, reduced K-means, factorial K-means, mixtures of factor analyzers (MFA), and MCLUST. The best competitor method, MFA, showed a performance similar to that of subspace K-means in easy conditions but deteriorated in more difficult ones. Using data from a study on parental behavior, we show that subspace K-means analysis provides a rich insight into the cluster characteristics, in terms of both the relative positions of the clusters (via the centroids) and the shape of the clusters (via the within-cluster residuals).

  13. Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning

    DEFF Research Database (Denmark)

    Chakraborty, Rudrasis; Hauberg, Søren; Vemuri, Baba C.

    2017-01-01

    Principal Component Analysis (PCA) is a fundamental method for estimating a linear subspace approximation to high-dimensional data. Many algorithms exist in literature to achieve a statistically robust version of PCA called RPCA. In this paper, we present a geometric framework for computing the p...

  14. Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality

    Directory of Open Access Journals (Sweden)

    Carlos A. L. Pires

    2017-01-01

    Full Text Available We propose an expansion of multivariate time-series data into maximally independent source subspaces. The search is made among rotations of prewhitened data which maximize non-Gaussianity of candidate sources. We use a tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of squared coskewness and cokurtosis. By solving a high-order singular value decomposition problem, we extract the axes associated with most non-Gaussianity. Moreover, an estimate of the Gaussian subspace is provided by the trailing singular vectors. The independent subspaces are obtained through the search of “quasi-independent” components within the estimated non-Gaussian subspace, followed by the identification of groups with significant joint negentropies. Sources result essentially from the coherency of extremes of the data components. The method is then applied to the global sea surface temperature anomalies, equatorward of 65°, after being tested with non-Gaussian surrogates consistent with the data anomalies. The main emerging independent components and subspaces, supposedly generated by independent forcing, include different variability modes, namely, The East-Pacific, the Central Pacific, and the Atlantic Niños, the Atlantic Multidecadal Oscillation, along with the subtropical dipoles in the Indian, South Pacific, and South-Atlantic oceans. Benefits and usefulness of independent subspaces are then discussed.

  15. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  16. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  17. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  18. On spectral subspaces and their applications to automorphism groups

    International Nuclear Information System (INIS)

    Olesen, Dorte

    1974-03-01

    An attempt is made to give a survey of the theory of spectra and spectral subspaces of group representations in an abstract Banach space setting. The theory is applied to the groups of automorphisms of operator algebras (mostly C*-algebras) and some important results of interest for mathematical physicists are proved (restrictions of the bitransposed action, spectral subspaces for the transposed action on a C*-algebra, and positive states and representations of Rsup(n)) [fr

  19. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  20. Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity

    Science.gov (United States)

    Kyaw, Thi Ha; Kwek, Leong-Chuan

    2018-04-01

    We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.

  1. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    International Nuclear Information System (INIS)

    Vourdas, A.

    2014-01-01

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H 1 ,H 2 ), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H 1 ),P(H 2 ), to the subspaces H 1 , H 2 . As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities

  2. Two dimensional electron systems for solid state quantum computation

    Science.gov (United States)

    Mondal, Sumit

    Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional

  3. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  4. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  5. Enhancing Low-Rank Subspace Clustering by Manifold Regularization.

    Science.gov (United States)

    Liu, Junmin; Chen, Yijun; Zhang, JiangShe; Xu, Zongben

    2014-07-25

    Recently, low-rank representation (LRR) method has achieved great success in subspace clustering (SC), which aims to cluster the data points that lie in a union of low-dimensional subspace. Given a set of data points, LRR seeks the lowest rank representation among the many possible linear combinations of the bases in a given dictionary or in terms of the data itself. However, LRR only considers the global Euclidean structure, while the local manifold structure, which is often important for many real applications, is ignored. In this paper, to exploit the local manifold structure of the data, a manifold regularization characterized by a Laplacian graph has been incorporated into LRR, leading to our proposed Laplacian regularized LRR (LapLRR). An efficient optimization procedure, which is based on alternating direction method of multipliers (ADMM), is developed for LapLRR. Experimental results on synthetic and real data sets are presented to demonstrate that the performance of LRR has been enhanced by using the manifold regularization.

  6. Determination of structure of oriented samples using two-dimensional solid state NMR techniques

    International Nuclear Information System (INIS)

    Jin Hong; Harbison, G.S.

    1990-01-01

    One dimensional and two-dimensional MAS techniques can give detailed information about the structure and dynamics of oriented systems. We describe the application of such techniques to the liquid-crystalline polymer poly(p-phenyleneterphtalimide) (PPTA), and thence deduce the solid-state structure of the material. (author). 9 refs.; 6 figs

  7. INDOOR SUBSPACING TO IMPLEMENT INDOORGML FOR INDOOR NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. Jung

    2015-10-01

    Full Text Available According to an increasing demand for indoor navigation, there are great attempts to develop applicable indoor network. Representation for a room as a node is not sufficient to apply complex and large buildings. As OGC established IndoorGML, subspacing to partition the space for constructing logical network is introduced. Concerning subspacing for indoor network, transition space like halls or corridors also have to be considered. This study presents the subspacing process for creating an indoor network in shopping mall. Furthermore, categorization of transition space is performed and subspacing of this space is considered. Hall and squares in mall is especially defined for subspacing. Finally, implementation of subspacing process for indoor network is presented.

  8. Indoor Subspacing to Implement Indoorgml for Indoor Navigation

    Science.gov (United States)

    Jung, H.; Lee, J.

    2015-10-01

    According to an increasing demand for indoor navigation, there are great attempts to develop applicable indoor network. Representation for a room as a node is not sufficient to apply complex and large buildings. As OGC established IndoorGML, subspacing to partition the space for constructing logical network is introduced. Concerning subspacing for indoor network, transition space like halls or corridors also have to be considered. This study presents the subspacing process for creating an indoor network in shopping mall. Furthermore, categorization of transition space is performed and subspacing of this space is considered. Hall and squares in mall is especially defined for subspacing. Finally, implementation of subspacing process for indoor network is presented.

  9. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  10. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  11. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  12. Consistency Analysis of Nearest Subspace Classifier

    OpenAIRE

    Wang, Yi

    2015-01-01

    The Nearest subspace classifier (NSS) finds an estimation of the underlying subspace within each class and assigns data points to the class that corresponds to its nearest subspace. This paper mainly studies how well NSS can be generalized to new samples. It is proved that NSS is strongly consistent under certain assumptions. For completeness, NSS is evaluated through experiments on various simulated and real data sets, in comparison with some other linear model based classifiers. It is also ...

  13. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  14. Vapour-liquid equilibrium properties for two- and three-dimensional Lennard-Jones fluids from equations of state

    International Nuclear Information System (INIS)

    Mulero, A.; Cuadros, F; Faundez, C.A.

    1999-01-01

    Vapour-liquid equilibrium properties for both three- and two-dimensional Lennard-Jones fluids were obtained using simple cubic-in-density equations of state proposed by the authors. Results were compared with those obtained by other workers from computer simulations and also with results given by other more complex semi-theoretical or semi-empirical equations of state. In the three-dimensional case good agreement is found for all properties and all temperatures. In the two-dimensional case only the coexistence densities were compared, producing good agreement for low temperatures only. The present work is the first to give numerical data for the vapour-liquid equilibrium properties of Lennard-Jones fluids calculated from equations of state. Copyright (1999) CSIRO Australia

  15. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-01-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  16. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-06-14

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  17. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2016-01-01

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  18. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  19. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  20. Outlier Ranking via Subspace Analysis in Multiple Views of the Data

    DEFF Research Database (Denmark)

    Muller, Emmanuel; Assent, Ira; Iglesias, Patricia

    2012-01-01

    , a novel outlier ranking concept. Outrank exploits subspace analysis to determine the degree of outlierness. It considers different subsets of the attributes as individual outlier properties. It compares clustered regions in arbitrary subspaces and derives an outlierness score for each object. Its...... principled integration of multiple views into an outlierness measure uncovers outliers that are not detectable in the full attribute space. Our experimental evaluation demonstrates that Outrank successfully determines a high quality outlier ranking, and outperforms state-of-the-art outlierness measures....

  1. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  2. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  3. External Evaluation Measures for Subspace Clustering

    DEFF Research Database (Denmark)

    Günnemann, Stephan; Färber, Ines; Müller, Emmanuel

    2011-01-01

    research area of subspace clustering. We formalize general quality criteria for subspace clustering measures not yet addressed in the literature. We compare the existing external evaluation methods based on these criteria and pinpoint limitations. We propose a novel external evaluation measure which meets...

  4. Subspace learning from image gradient orientations

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails very often to estimate reliably the

  5. Engineering the Kondo state in two-dimensional semiconducting phosphorene

    Science.gov (United States)

    Babar, Rohit; Kabir, Mukul

    2018-01-01

    Correlated interaction between dilute localized impurity electrons and the itinerant host conduction electrons in metals gives rise to the conventional many-body Kondo effect below sufficiently low temperature. In sharp contrast to these conventional Kondo systems, we report an intrinsic, robust, and high-temperature Kondo state in two-dimensional semiconducting phosphorene. While absorbed at a thermodynamically stable lattice defect, Cr impurity triggers an electronic phase transition in phosphorene to provide conduction electrons, which strongly interact with the localized moment generated at the Cr site. These manifest into the intrinsic Kondo state, where the impurity moment is quenched in multiple stages and at temperatures in the 40-200 K range. Further, along with a much smaller extension of the Kondo cloud, the predicted Kondo state is shown to be robust under uniaxial strain and layer thickness, which greatly simplifies its future experimental realization. We predict the present study will open up new avenues in Kondo physics and trigger further theoretical and experimental studies.

  6. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  7. Equilibrium states and ground state of two-dimensional fluid foams

    International Nuclear Information System (INIS)

    Graner, F.; Jiang, Y.; Janiaud, E.; Flament, C.

    2001-01-01

    We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs ''repel'' while charges of the opposite signs ''attract;'' (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams

  8. Subspace Based Blind Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki

    2012-01-01

    The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...

  9. Subspace exclusion zones for damage localization

    DEFF Research Database (Denmark)

    Bernal, Dionisio; Ulriksen, Martin Dalgaard

    2018-01-01

    , this is exploited in the context of structural damage localization to cast the Subspace Exclusion Zone (SEZ) scheme, which locates damage by reconstructing the captured field quantity shifts from analytical subspaces indexed by postulated boundaries, the so-called exclusion zones (EZs), in a model of the structure...

  10. Subspace orthogonalization for substructuring preconditioners for nonsymmetric systems of linear equations

    Energy Technology Data Exchange (ETDEWEB)

    Starke, G. [Universitaet Karlsruhe (Germany)

    1994-12-31

    For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.

  11. Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals

    NARCIS (Netherlands)

    Miert, Guido van|info:eu-repo/dai/nl/413490378; Ortix, Carmine|info:eu-repo/dai/nl/413315304; de Morais Smith, C.|info:eu-repo/dai/nl/304836346

    2017-01-01

    Symmetries play an essential role in identifying and characterizing topological states of matter. Here, we classify topologically two-dimensional (2D) insulators and semimetals with vanishing spin-orbit coupling using time-reversal ($\\mathcal{T}$) and inversion ($\\mathcal{I}$) symmetry. This allows

  12. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  13. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  14. Two-Dimensional Steady-State Boundary Shape Inversion of CGM-SPSO Algorithm on Temperature Information

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient method and social particle swarm optimization (CGM-SPSO algorithm is proposed. The global search ability of particle swarm optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in solving the problem of two-dimensional steady-state thermal boundary shape.

  15. State-space representation of instationary two-dimensional airfoil aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)

    2004-03-01

    In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.

  16. A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    comparative studies on the advantages and disadvantages of the different algorithms exist. Part of the underlying problem is the lack of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this work, we...

  17. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-20

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  18. Efficient Basis Formulation for (1+1-Dimensional SU(2 Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Directory of Open Access Journals (Sweden)

    Mari Carmen Bañuls

    2017-11-01

    Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  19. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    Science.gov (United States)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  20. Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory. Spectral calculations with matrix product states

    International Nuclear Information System (INIS)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl

    2017-01-01

    We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  1. Banach C*-algebras not containing a subspace isomorphic to C0

    International Nuclear Information System (INIS)

    Basit, B.

    1989-09-01

    If X is a locally Hausdorff space and C 0 (X) the Banach algebra of continuous functions defined on X vanishing at infinity, we showed that a subalgebra A of C 0 (X) is finite dimensional if it does not contain a subspace isomorphic to the Banach space C 0 of convergent to zero complex sequences. In this paper we extend this result to noncommutative Banach C*-algebras and Banach* algebras. 10 refs

  2. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  3. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI.

    Science.gov (United States)

    Remes, Jukka J; Abou Elseoud, Ahmed; Ollila, Esa; Haapea, Marianne; Starck, Tuomo; Nikkinen, Juha; Tervonen, Osmo; Silven, Olli

    2013-10-01

    Subject-level resting-state fMRI (RS-fMRI) spatial independent component analysis (sICA) may provide new ways to analyze the data when performed in the sliding time window. However, whether principal component analysis (PCA) and voxel-wise variance normalization (VN) are applicable pre-processing procedures in the sliding-window context, as they are for regular sICA, has not been addressed so far. Also model order selection requires further studies concerning sliding-window sICA. In this paper we have addressed these concerns. First, we compared PCA-retained subspaces concerning overlapping parts of consecutive temporal windows to answer whether in-window PCA and VN can confound comparisons between sICA analyses in consecutive windows. Second, we compared the PCA subspaces between windowed and full data to assess expected comparability between windowed and full-data sICA results. Third, temporal evolution of dimensionality estimates in RS-fMRI data sets was monitored to identify potential challenges in model order selection in a sliding-window sICA context. Our results illustrate that in-window VN can be safely used, in-window PCA is applicable with most window widths and that comparisons between windowed and full data should not be performed from a subspace similarity point of view. In addition, our studies on dimensionality estimates demonstrated that there are sustained, periodic and very case-specific changes in signal-to-noise ratio within RS-fMRI data sets. Consequently, dimensionality estimation is needed for well-founded model order determination in the sliding-window case. The observed periodic changes correspond to a frequency band of ≤0.1 Hz, which is commonly associated with brain activity in RS-fMRI and become on average most pronounced at window widths of 80 and 60 time points (144 and 108 s, respectively). Wider windows provided only slightly better comparability between consecutive windows, and 60 time point or shorter windows also provided the

  4. Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.

    2013-01-01

    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

  5. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...

  6. Sinusoidal Order Estimation Using Angles between Subspaces

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  7. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, Troels F; Pedersen, Thomas G [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, 9220 Aalborg Oest (Denmark); Cornean, Horia D, E-mail: tfr@nanophysics.d [Department of Mathematical Sciences, Aalborg University, Frederik Bajers Vej 7G, 9220 Aalborg (Denmark)

    2010-11-26

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m{sub e}/m{sub h} = {sigma} in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  8. Dimensional and correlation effects of charged excitons in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Roennow, Troels F; Pedersen, Thomas G; Cornean, Horia D

    2010-01-01

    In this paper, we investigate the existence of bound trion states in fractional dimensional nanostructures, in terms of variational calculus. We start with trial states, then we refine the result with the help of the Hartree-Fock approximation and finally we use a partial basis expansion. We show that Hartree-Fock significantly underestimates the trion binding energy and that the correlation energy is comparable with the trion binding energy. Furthermore we calculate the binding energies of positive and negative trions restricted to a large subspace of functions, which we expect to span the low-lying eigenstates of the full Hamiltonian. We find that the difference between the positive and negative trion binding energies varies very little for the electron-hole mass fractions m e /m h = σ in [0.8; 1.0] and that the difference between the positive and negative trion energies grows as the dimension decreases. Finally, we compare a cylindrical effective-mass model of a typical carbon nanotube, with a fractional dimensional model with D = 1.71. We find very good agreement between the trion binding energies predicted by the two models.

  9. Subspace-based interference removal methods for a multichannel biomagnetic sensor array

    Science.gov (United States)

    Sekihara, Kensuke; Nagarajan, Srikantan S.

    2017-10-01

    Objective. In biomagnetic signal processing, the theory of the signal subspace has been applied to removing interfering magnetic fields, and a representative algorithm is the signal space projection algorithm, in which the signal/interference subspace is defined in the spatial domain as the span of signal/interference-source lead field vectors. This paper extends the notion of this conventional (spatial domain) signal subspace by introducing a new definition of signal subspace in the time domain. Approach. It defines the time-domain signal subspace as the span of row vectors that contain the source time course values. This definition leads to symmetric relationships between the time-domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows that the notion of the time-domain signal subspace provides useful insights over existing interference removal methods from a unified perspective. Main results and significance. Using the time-domain signal subspace, it is possible to interpret a number of interference removal methods as the time domain signal space projection. Such methods include adaptive noise canceling, sensor noise suppression, the common temporal subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual signal subspace projection. Our analysis using the notion of the time domain signal space projection reveals implicit assumptions these methods rely on, and shows that the difference between these methods results only from the manner of deriving the interference subspace. Numerical examples that illustrate the results of our arguments are provided.

  10. Different structures on subspaces of OsckM

    Directory of Open Access Journals (Sweden)

    Čomić Irena

    2013-01-01

    Full Text Available The geometry of OsckM spaces was introduced by R. Miron and Gh. Atanasiu in [6] and [7]. The theory of these spaces was developed by R. Miron and his cooperators from Romania, Japan and other countries in several books and many papers. Only some of them are mentioned in references. Here we recall the construction of adapted bases in T(OsckM and T*(OsckM, which are comprehensive with the J structure. The theory of two complementary family of subspaces is presented as it was done in [2] and [4]. The operators J,J, θ,θ, p, p* are introduced in the ambient space and subspaces. Some new relations between them are established. The action of these operators on Liouville vector fields are examined.

  11. Comparison Study of Subspace Identification Methods Applied to Flexible Structures

    Science.gov (United States)

    Abdelghani, M.; Verhaegen, M.; Van Overschee, P.; De Moor, B.

    1998-09-01

    In the past few years, various time domain methods for identifying dynamic models of mechanical structures from modal experimental data have appeared. Much attention has been given recently to so-called subspace methods for identifying state space models. This paper presents a detailed comparison study of these subspace identification methods: the eigensystem realisation algorithm with observer/Kalman filter Markov parameters computed from input/output data (ERA/OM), the robust version of the numerical algorithm for subspace system identification (N4SID), and a refined version of the past outputs scheme of the multiple-output error state space (MOESP) family of algorithms. The comparison is performed by simulating experimental data using the five mode reduced model of the NASA Mini-Mast structure. The general conclusion is that for the case of white noise excitations as well as coloured noise excitations, the N4SID/MOESP algorithms perform equally well but give better results (improved transfer function estimates, improved estimates of the output) compared to the ERA/OM algorithm. The key computational step in the three algorithms is the approximation of the extended observability matrix of the system to be identified, for N4SID/MOESP, or of the observer for the system to be identified, for the ERA/OM. Furthermore, the three algorithms only require the specification of one dimensioning parameter.

  12. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    International Nuclear Information System (INIS)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-01

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the Euler–Lagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrödinger equation for the “pair amplitude” √(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow–Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree–Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation–dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density–density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: •We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. •We have calculated the effective inter-particle interaction and the dynamical density–density response function. •We have shown that an undamped zero sound mode exists at any value of the interaction strength

  13. Thermality and excited state Rényi entropy in two-dimensional CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-11-21

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  14. Multifractal character of the electronic states in disordered two-dimensional systems

    International Nuclear Information System (INIS)

    Tit, N.; Schreiber, M.

    1994-08-01

    The nature of electronic states in disordered two-dimensional (2D) systems is investigated. To this aim, we present our calculations of both density of states and dc-conductivity for square lattices modelling the Anderson Hamiltonian with on-site energies randomly chosen from a box distribution of width W. For weak disorder (W), the eigenfunctions calculated by means of the Lanczos diagonalization algorithm display spatial fluctuations reflecting their (multi)fractal behaviour. For increasing disorder or energy the observed increase of the curdling of the wavefunction reflects its stronger localization. Our dc-conductivity results suggest a critical fractal dimension d * c =1.48±0.05 to discriminate between the exponentially and the power-law localized states. Consequences of the localization on transport properties are also discussed. (author). 30 refs, 10 figs, 1 tab

  15. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  16. Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along

  17. Method of solving conformal models in D-dimensional space I

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Y.

    1996-01-01

    We study the Hilbert space of conformal field theory in D-dimensional space. The latter is shown to have model-independent structure. The states of matter fields and gauge fields form orthogonal subspaces. The dynamical principle fixing the choice of model may be formulated either in each of these subspaces or in their direct sum. In the latter case, gauge interactions are necessarily present in the model. We formulate the conditions specifying the class of models where gauge interactions are being neglected. The anomalous Ward identities are derived. Different values of anomalous parameters (D-dimensional analogs of a central charge, including operator ones) correspond to different models. The structure of these models is analogous to that of 2-dimensional conformal theories. Each model is specified by D-dimensional analog of null vector. The exact solutions of the simplest models of this type are examined. It is shown that these models are equivalent to Lagrangian models of scalar fields with a triple interaction. The values of dimensions of such fields are calculated, and the closed sets of differential equations for higher Green functions are derived. Copyright copyright 1996 Academic Press, Inc

  18. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.

    Science.gov (United States)

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-04-29

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.

  19. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system

    Science.gov (United States)

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-01-01

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  20. Code subspaces for LLM geometries

    Science.gov (United States)

    Berenstein, David; Miller, Alexandra

    2018-03-01

    We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.

  1. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  2. Disorder effects in two-dimensional Fermi systems with conical spectrum: exact results for the density of states

    International Nuclear Information System (INIS)

    Nersesyan, A.A.; Tsvelik, A.M.; Wenger, F.

    1995-01-01

    The influence of weak non-magnetic disorder on the single-particle density of states ρ(ω) of two-dimensional electron systems with a conical spectrum is studied. We use a non-perturbative approach, based on the replica trick with subsequent mapping of the effective action onto a one-dimensional model of interacting fermions, the latter being treated by abelian and non-abelian bosonization methods. Specifically, we consider a weakly disordered p- or d-wave superconductor, in which case the problem reduces to a model of (2+1)-dimensional massless Dirac fermions coupled to random, static, generally non-abelian gauge fields. It is shown that the density of states of a two-dimensional p- or d-wave superconductor, averaged over randomness, follows a non-trivial power-law behavior near the Fermi energy: ρ(ω) similar vertical stroke ωvertical stroke α . The exponent α>0 is exactly calculated for several types of disorder. We demonstrate that the property ρ(0) = 0 is a direct consequence of a continuous symmetry of the effective fermionic model, whose breakdown is forbidden in two dimensions. As a counter example, we also discuss another model with a conical spectrum - a two-dimensional orbital antiferromagnet, where static disorder leads to a finite ρ(0) due to the breakdown of a discrete (particle-hole) symmetry. ((orig.))

  3. CLAss-Specific Subspace Kernel Representations and Adaptive Margin Slack Minimization for Large Scale Classification.

    Science.gov (United States)

    Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan

    2018-02-01

    In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.

  4. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    Science.gov (United States)

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  5. Reduced-Rank Adaptive Filtering Using Krylov Subspace

    Directory of Open Access Journals (Sweden)

    Sergueï Burykh

    2003-01-01

    Full Text Available A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.

  6. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  7. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  8. Subspace methods for identification of human ankle joint stiffness.

    Science.gov (United States)

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  9. Entanglement properties of the two-dimensional SU(3) Affleck-Kennedy-Lieb-Tasaki state

    Science.gov (United States)

    Gauthé, Olivier; Poilblanc, Didier

    2017-09-01

    Two-dimensional (spin-2) Affleck-Kennedy-Lieb-Tasaki (AKLT) type valence bond solids on a square lattice are known to be symmetry-protected topological (SPT) gapped spin liquids [S. Takayoshi, P. Pujol, and A. Tanaka Phys. Rev. B 94, 235159 (2016), 10.1103/PhysRevB.94.235159]. Using the projected entangled pair state framework, we extend the construction of the AKLT state to the case of SU(3 ) , relevant for cold atom systems. The entanglement spectrum is shown to be described by an alternating SU(3 ) chain of "quarks" and "antiquarks", subject to exponentially decaying (with distance) Heisenberg interactions, in close similarity with its SU(2 ) analog. We discuss the SPT feature of the state.

  10. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  11. Monomial codes seen as invariant subspaces

    Directory of Open Access Journals (Sweden)

    García-Planas María Isabel

    2017-08-01

    Full Text Available It is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship is presented between monomial codes over a finite field and hyperinvariant subspaces of n under an appropriate linear transformation. Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes, generalizing known results on cyclic codes.

  12. Subspace-Based Holistic Registration for Low-Resolution Facial Images

    Directory of Open Access Journals (Sweden)

    Boom BJ

    2010-01-01

    Full Text Available Subspace-based holistic registration is introduced as an alternative to landmark-based face registration, which has a poor performance on low-resolution images, as obtained in camera surveillance applications. The proposed registration method finds the alignment by maximizing the similarity score between a probe and a gallery image. We use a novel probabilistic framework for both user-independent as well as user-specific face registration. The similarity is calculated using the probability that the face image is correctly aligned in a face subspace, but additionally we take the probability into account that the face is misaligned based on the residual error in the dimensions perpendicular to the face subspace. We perform extensive experiments on the FRGCv2 database to evaluate the impact that the face registration methods have on face recognition. Subspace-based holistic registration on low-resolution images can improve face recognition in comparison with landmark-based registration on high-resolution images. The performance of the tested face recognition methods after subspace-based holistic registration on a low-resolution version of the FRGC database is similar to that after manual registration.

  13. On the maximal dimension of a completely entangled subspace for ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    dim S = d1d2 ...dk − (d1 +···+ dk) + k − 1, where E is the collection of all completely entangled subspaces. When H1 = H2 and k = 2 an explicit orthonormal basis of a maximal completely entangled subspace of H1 ⊗ H2 is given. We also introduce a more delicate notion of a perfectly entangled subspace for a multipartite ...

  14. Seismic noise attenuation using an online subspace tracking algorithm

    NARCIS (Netherlands)

    Zhou, Yatong; Li, Shuhua; Zhang, D.; Chen, Yangkang

    2018-01-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient

  15. LogDet Rank Minimization with Application to Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Zhao Kang

    2015-01-01

    Full Text Available Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace clustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective function on potentially large-scale data. By making use of the angular information of principal directions of the resultant low-rank representation, an affinity graph matrix is constructed for spectral clustering. Experimental results on motion segmentation and face clustering data demonstrate that the proposed method often outperforms state-of-the-art subspace clustering algorithms.

  16. A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohammad

    2014-05-01

    Full Text Available In this paper‎, ‎we represent an inexact inverse‎ ‎subspace iteration method for computing a few eigenpairs of the‎ ‎generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang‎, ‎Inexact inverse subspace iteration for generalized eigenvalue‎ ‎problems‎, ‎Linear Algebra and its Application‎, ‎434 (2011 1697-1715‎‎]‎. ‎In particular‎, ‎the linear convergence property of the inverse‎ ‎subspace iteration is preserved‎.

  17. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  18. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  19. State operator, constants of the motion, and Wigner functions: The two-dimensional isotropic harmonic oscillator

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W. P.

    2009-01-01

    For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....

  20. A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems

    NARCIS (Netherlands)

    Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik

    2003-01-01

    The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method

  1. Semitransitive subspaces of operators

    Czech Academy of Sciences Publication Activity Database

    Bernik, J.; Drnovšek, R.; Hadwin, D.; Jafarian, A.; Bukovšek, D.K.; Košir, T.; Fijavž, M.K.; Laffey, T.; Livshits, L.; Mastnak, M.; Meshulam, R.; Müller, Vladimír; Nordgren, E.; Okniński, J.; Omladič, M.; Radjavi, H.; Sourour, A.; Timoney, R.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 225-238 E-ISSN 1081-3810 Institutional research plan: CEZ:AV0Z10190503 Keywords : semitransitive subspaces Subject RIV: BA - General Mathematics Impact factor: 0.322, year: 2006 http://www.math.technion.ac.il/iic/ ela

  2. Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

    Directory of Open Access Journals (Sweden)

    Alim Samat

    2016-03-01

    Full Text Available In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM. To show the superior performance of the proposed approach, conventional support vector machines (SVMs and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC, joint distribution adaptation (JDA, and joint transfer matching (JTM, are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA, randomized nonlinear principal component analysis (rPCA, factor analysis (FA and non-negative matrix factorization (NNMF are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images.

  3. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2017-06-01

    Full Text Available Considering an inverse Gamma prior distribution model for texture, the adaptive detection problems for both first order Gaussian and second order Gaussian subspace targets are researched in a compound Gaussian sea clutter. Test statistics are derived on the basis of the two-step generalized likelihood ratio test. From these tests, new adaptive detectors are proposed by substituting the covariance matrix with estimation results from the Sample Covariance Matrix (SCM, normalized SCM, and fixed point estimator. The proposed detectors consider the prior distribution model for sea clutter during the design stage, and they model parameters that match the working environment during the detection stage. Analysis and validation results indicate that the detection performance of the proposed detectors out performs existing AMF (Adaptive Matched Filter, AMF and ANMF (Adaptive Normalized Matched Filter, ANMF detectors.

  4. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  5. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  6. Controlled teleportation of a 3-dimensional bipartite quantum state

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state

  7. Theory of the one- and two-dimensional electron gas

    International Nuclear Information System (INIS)

    Emery, V.J.

    1987-01-01

    Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides

  8. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  9. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  10. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  11. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain; Kammoun, Abla

    2017-01-01

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show

  12. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  13. Application of Earthquake Subspace Detectors at Kilauea and Mauna Loa Volcanoes, Hawai`i

    Science.gov (United States)

    Okubo, P.; Benz, H.; Yeck, W.

    2016-12-01

    Recent studies have demonstrated the capabilities of earthquake subspace detectors for detailed cataloging and tracking of seismicity in a number of regions and settings. We are exploring the application of subspace detectors at the United States Geological Survey's Hawaiian Volcano Observatory (HVO) to analyze seismicity at Kilauea and Mauna Loa volcanoes. Elevated levels of microseismicity and occasional swarms of earthquakes associated with active volcanism here present cataloging challenges due the sheer numbers of earthquakes and an intrinsically low signal-to-noise environment featuring oceanic microseism and volcanic tremor in the ambient seismic background. With high-quality continuous recording of seismic data at HVO, we apply subspace detectors (Harris and Dodge, 2011, Bull. Seismol. Soc. Am., doi: 10.1785/0120100103) during intervals of noteworthy seismicity. Waveform templates are drawn from Magnitude 2 and larger earthquakes within clusters of earthquakes cataloged in the HVO seismic database. At Kilauea, we focus on seismic swarms in the summit caldera region where, despite continuing eruptions from vents in the summit region and in the east rift zone, geodetic measurements reflect a relatively inflated volcanic state. We also focus on seismicity beneath and adjacent to Mauna Loa's summit caldera that appears to be associated with geodetic expressions of gradual volcanic inflation, and where precursory seismicity clustered prior to both Mauna Loa's most recent eruptions in 1975 and 1984. We recover several times more earthquakes with the subspace detectors - down to roughly 2 magnitude units below the templates, based on relative amplitudes - compared to the numbers of cataloged earthquakes. The increased numbers of detected earthquakes in these clusters, and the ability to associate and locate them, allow us to infer details of the spatial and temporal distributions and possible variations in stresses within these key regions of the volcanoes.

  14. Breaking of separability condition for dynamical collective subspace; Onset of quantum chaos in large-amplitude collective motion

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Fumihiko [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Yamamoto, Yoshifumi; Marumori, Toshio; Iida, Shinji; Tsukuma, Hidehiko

    1989-11-01

    It is the purpose of the present paper to study 'global structure' of the state space of an N-body interacting fermion system, which exhibits regular, transient and stochastic phases depending on strength of the interaction. An optimum representation called a dynamical representation plays an essential role in this investigation. The concept of the dynamical representation has been introduced in the quantum theory of dynamical subspace in our previous paper, in order to determine self-consistently an optimum collective subspace as well as an optimum collective Hamiltonian. In the theory, furthermore, dynamical conditions called separability and stability conditions have been provided in order to identify the optimum collective subspace as an approximate invariant subspace of the Hamiltonian. Physical meaning of these conditions are clarified from a viewpoint to relate breaking of them with bifurcation of the collectivity and an onset of quantum chaos from the regular collective motion, by illustrating the general idea with numerical results obtained for a simple soluble model. It turns out that the onset of the stochastic phase is associated with dissolution of the quantum numbers to specify the collective subspace and this dissolution is induced by the breaking of the separability condition in the dynamical representation. (author).

  15. Subspace K-means clustering

    NARCIS (Netherlands)

    Timmerman, Marieke E.; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-01-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the

  16. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  17. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  18. The Detection of Subsynchronous Oscillation in HVDC Based on the Stochastic Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    Chen Shi

    2014-01-01

    Full Text Available Subsynchronous oscillation (SSO usually caused by series compensation, power system stabilizer (PSS, high voltage direct current transmission (HVDC and other power electronic equipment, which will affect the safe operation of generator shafting even the system. It is very important to identify the modal parameters of SSO to take effective control strategies as well. Since the identification accuracy of traditional methods are not high enough, the stochastic subspace identification (SSI method is proposed to improve the identification accuracy of subsynchronous oscillation modal. The stochastic subspace identification method was compared with the other two methods on subsynchronous oscillation IEEE benchmark model and Xiang-Shang HVDC system model, the simulation results show that the stochastic subspace identification method has the advantages of high identification precision, high operation efficiency and strong ability of anti-noise.

  19. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  20. Properties of Griffin-Hill-Wheeler spaces - 2. one-parameters and two-conjugate parameter families of generator states

    International Nuclear Information System (INIS)

    Passos, E.J.V. de; Toledo Piza, A.F.R. de.

    The properties of the subspaces of the many-body Hilbert space which are associated with the use of the Generator Coordinate Method (GCM) in connection with one parameter, and with two-conjugate parameter families of generator states are examined in detail. It is shown that natural orthonormal base vectors in each case are immediately related to Peierls-Voccoz and Peierls-Thouless projections respectively. Through the formal consideration of a canonical transformation to collective, P and Q, and intrinsic degrees of freedom, the properties of the GCM subspaces with respect to the kinematical separation of these degrees of freedom are discussed in detail. An application is made, using the ideas developed in this paper, a) to translation; b) to illustrate the qualitative understanting of the content of existing GCM calculations of giant ressonances in light nuclei and c) to the definition of appropriate asymptotic states in current GCM descriptions of scattering [pt

  1. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Bang, Youngsuk; Wang, Congjian

    2013-01-01

    Highlights: ► We overview the state-of-the-art in uncertainty quantification and sensitivity analysis. ► We overview new developments in above areas using hybrid methods. ► We give a tutorial introduction to above areas and the new developments. ► Hybrid methods address the explosion in dimensionality in nonlinear models. ► Representative numerical experiments are given. -- Abstract: The role of modeling and simulation has been heavily promoted in recent years to improve understanding of complex engineering systems. To realize the benefits of modeling and simulation, concerted efforts in the areas of uncertainty quantification and sensitivity analysis are required. The manuscript intends to serve as a pedagogical presentation of the material to young researchers and practitioners with little background on the subjects. We believe this is important as the role of these subjects is expected to be integral to the design, safety, and operation of existing as well as next generation reactors. In addition to covering the basics, an overview of the current state-of-the-art will be given with particular emphasis on the challenges pertaining to nuclear reactor modeling. The second objective will focus on presenting our own development of hybrid subspace methods intended to address the explosion in the computational overhead required when handling real-world complex engineering systems.

  2. Conjunctive patches subspace learning with side information for collaborative image retrieval.

    Science.gov (United States)

    Zhang, Lining; Wang, Lipo; Lin, Weisi

    2012-08-01

    Content-Based Image Retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of Relevance Feedback (RF) schemes have been designed to bridge the semantic gap between the low-level visual features and the high-level semantic concepts for an image retrieval task. Various Collaborative Image Retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task, although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., Conjunctive Patches Subspace Learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. The CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images and the weakly similar information of unlabeled images together to learn a reliable subspace. We formally formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic data sets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.

  3. The consensus in the two-feature two-state one-dimensional Axelrod model revisited

    International Nuclear Information System (INIS)

    Biral, Elias J P; Tilles, Paulo F C; Fontanari, José F

    2015-01-01

    The Axelrod model for the dissemination of culture exhibits a rich spatial distribution of cultural domains, which depends on the values of the two model parameters: F, the number of cultural features and q, the common number of states each feature can assume. In the one-dimensional model with F = q = 2, which is closely related to the constrained voter model, Monte Carlo simulations indicate the existence of multicultural absorbing configurations in which at least one macroscopic domain coexist with a multitude of microscopic ones in the thermodynamic limit. However, rigorous analytical results for the infinite system starting from the configuration where all cultures are equally likely show convergence to only monocultural or consensus configurations. Here we show that this disagreement is due simply to the order that the time-asymptotic limit and the thermodynamic limit are taken in the simulations. In addition, we show how the consensus-only result can be derived using Monte Carlo simulations of finite chains. (paper)

  4. The consensus in the two-feature two-state one-dimensional Axelrod model revisited

    Science.gov (United States)

    Biral, Elias J. P.; Tilles, Paulo F. C.; Fontanari, José F.

    2015-04-01

    The Axelrod model for the dissemination of culture exhibits a rich spatial distribution of cultural domains, which depends on the values of the two model parameters: F, the number of cultural features and q, the common number of states each feature can assume. In the one-dimensional model with F = q = 2, which is closely related to the constrained voter model, Monte Carlo simulations indicate the existence of multicultural absorbing configurations in which at least one macroscopic domain coexist with a multitude of microscopic ones in the thermodynamic limit. However, rigorous analytical results for the infinite system starting from the configuration where all cultures are equally likely show convergence to only monocultural or consensus configurations. Here we show that this disagreement is due simply to the order that the time-asymptotic limit and the thermodynamic limit are taken in the simulations. In addition, we show how the consensus-only result can be derived using Monte Carlo simulations of finite chains.

  5. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    Science.gov (United States)

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  6. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  7. HSM: Heterogeneous Subspace Mining in High Dimensional Data

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Seidl, Thomas

    2009-01-01

    Heterogeneous data, i.e. data with both categorical and continuous values, is common in many databases. However, most data mining algorithms assume either continuous or categorical attributes, but not both. In high dimensional data, phenomena due to the "curse of dimensionality" pose additional...... challenges. Usually, due to locally varying relevance of attributes, patterns do not show across the full set of attributes. In this paper we propose HSM, which defines a new pattern model for heterogeneous high dimensional data. It allows data mining in arbitrary subsets of the attributes that are relevant...... for the respective patterns. Based on this model we propose an efficient algorithm, which is aware of the heterogeneity of the attributes. We extend an indexing structure for continuous attributes such that HSM indexing adapts to different attribute types. In our experiments we show that HSM efficiently mines...

  8. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  9. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  10. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  11. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  12. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  13. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  14. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models

    KAUST Repository

    Ting, Chee-Ming

    2017-12-06

    We consider the challenges in estimating state-related changes in brain connectivity networks with a large number of nodes. Existing studies use sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms K-means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to resting-state fMRI data, our method successfully identifies modular organization in resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

  15. Microscopic theory of dynamical subspace for large amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-01-01

    A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  16. A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery

    Science.gov (United States)

    Sun, Weiwei; Ma, Jun; Yang, Gang; Du, Bo; Zhang, Liangpei

    2017-06-01

    A new Bayesian method named Poisson Nonnegative Matrix Factorization with Parameter Subspace Clustering Constraint (PNMF-PSCC) has been presented to extract endmembers from Hyperspectral Imagery (HSI). First, the method integrates the liner spectral mixture model with the Bayesian framework and it formulates endmember extraction into a Bayesian inference problem. Second, the Parameter Subspace Clustering Constraint (PSCC) is incorporated into the statistical program to consider the clustering of all pixels in the parameter subspace. The PSCC could enlarge differences among ground objects and helps finding endmembers with smaller spectrum divergences. Meanwhile, the PNMF-PSCC method utilizes the Poisson distribution as the prior knowledge of spectral signals to better explain the quantum nature of light in imaging spectrometer. Third, the optimization problem of PNMF-PSCC is formulated into maximizing the joint density via the Maximum A Posterior (MAP) estimator. The program is finally solved by iteratively optimizing two sub-problems via the Alternating Direction Method of Multipliers (ADMM) framework and the FURTHESTSUM initialization scheme. Five state-of-the art methods are implemented to make comparisons with the performance of PNMF-PSCC on both the synthetic and real HSI datasets. Experimental results show that the PNMF-PSCC outperforms all the five methods in Spectral Angle Distance (SAD) and Root-Mean-Square-Error (RMSE), and especially it could identify good endmembers for ground objects with smaller spectrum divergences.

  17. One-dimensional metallic edge states in MoS2

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Lauritsen, J.V.; Jacobsen, Karsten Wedel

    2001-01-01

    By the use of density functional calculations it is shown that the edges of a two-dimensional slab of insulating MoS2 exhibit several metallic states. These edge states can be viewed as one-dimensional conducting wires, and we show that they can be observed directly using scanning tunneling...

  18. Dimensionality Reduction and Information-Theoretic Divergence Between Sets of Ladar Images

    National Research Council Canada - National Science Library

    Gray, David M; Principe, Jose C

    2008-01-01

    ... can be exploited while circumventing many of the problems associated with the so-called "curse of dimensionality." In this study, PCA techniques are used to find a low-dimensional sub-space representation of LADAR image sets...

  19. Generation and control of electronic hybrid entanglement via a two-dimensional Rashba anisotropic nanodot

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, F.; Rastgoo, S.; Golshan, M.M., E-mail: golshan@susc.ac.ir

    2014-06-13

    In the present article we report the dynamics of electronic spin–subbands, as well as subband–subband, hybrid entanglements in a two-dimensional anisotropic quantum dot. The dot is under the influence of Rashba effect and an external magnetic field. To study the hybrid entanglements, we partition the system into two categories in which either spatial degrees of freedom, subbands, entangle with the spin or the subbands become entangled amongst themselves. For the first case we calculate the von Neumann entropy, while for the latter the negativity is calculated. Our calculations show that for both cases information is periodically distributed between the corresponding subspaces. Effects of Rashba parameter and magnetic field on the characteristics of such oscillatory behavior are also discussed. For spin–subband entanglement the oscillations include dips, surrounded by plateaus of maximal entanglement. The subband–subband entanglement shows vanishingly small plateaus. The duration of plateaus is controlled by Rashba coupling and the external field. - Highlights: • Dynamics of hybrid entanglements in a parabolic 2-dimensional electron gas is reported. • The electron gas is influenced by the Rashba spin–orbit coupling and a magnetic field. • Spin–subband entanglement exhibits oscillations with dips and maximal plateaus. • Subband–subband entanglement also oscillates, but with vanishingly small plateaus. • The vigilance of plateaus is controllable by the Rashba effect and/or the field.

  20. Density of states of two-dimensional systems with long-range logarithmic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, Andrés M.; Ortuño, Miguel; Baturina, Tatyana I.; Vinokur, Valerii M.

    2015-08-03

    We investigate a single-particle density of states (DOS) in strongly disordered two- dimensional high dielectric permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the Efros-Shklovskii approach.We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS and find the perfect agreement between the numerical and analytical results at zero temperature, observing, in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of the system.

  1. Visual tracking based on the sparse representation of the PCA subspace

    Science.gov (United States)

    Chen, Dian-bing; Zhu, Ming; Wang, Hui-li

    2017-09-01

    We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis (PCA) subspace, and then we employ an L 1 regularization to restrict the sparsity of the residual term, an L 2 regularization term to restrict the sparsity of the representation coefficients, and an L 2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods.

  2. On the Kalman Filter error covariance collapse into the unstable subspace

    Directory of Open Access Journals (Sweden)

    A. Trevisan

    2011-03-01

    Full Text Available When the Extended Kalman Filter is applied to a chaotic system, the rank of the error covariance matrices, after a sufficiently large number of iterations, reduces to N+ + N0 where N+ and N0 are the number of positive and null Lyapunov exponents. This is due to the collapse into the unstable and neutral tangent subspace of the solution of the full Extended Kalman Filter. Therefore the solution is the same as the solution obtained by confining the assimilation to the space spanned by the Lyapunov vectors with non-negative Lyapunov exponents. Theoretical arguments and numerical verification are provided to show that the asymptotic state and covariance estimates of the full EKF and of its reduced form, with assimilation in the unstable and neutral subspace (EKF-AUS are the same. The consequences of these findings on applications of Kalman type Filters to chaotic models are discussed.

  3. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  4. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  5. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  6. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  7. Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

    Science.gov (United States)

    Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.

    2018-05-01

    Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (| 0> ,| 2> ) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.

  8. Orbits of the n-dimensional Kepler-Coulomb problem and universality of the Kepler laws

    International Nuclear Information System (INIS)

    Oender, M; Vercin, A

    2006-01-01

    In the standard classical mechanics textbooks used at undergraduate and graduate levels, no attention is paid to the dimensional aspects of the Kepler-Coulomb problem. We have shown that the orbits of the n-dimensional classical Kepler-Coulomb problem are the usual conic sections in a fixed two-dimensional subspace and the Kepler laws with their well-known forms are valid independent of dimension. The basic characteristics of motion in a central force field are also established in an arbitrary dimension. The approach followed is easily accessible to late undergraduate and recent graduate students

  9. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  10. A multi-dimensional sampling method for locating small scatterers

    International Nuclear Information System (INIS)

    Song, Rencheng; Zhong, Yu; Chen, Xudong

    2012-01-01

    A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method. (paper)

  11. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  12. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  13. Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Serizawa, Shunsuke; Nakano, Akihiro; Takahashi, Toshiki; Van Dam, James W.

    2004-01-01

    The final self-similar state of decaying two-dimensional (2D) turbulence in 2D incompressible viscous flow is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical analysis and simulations that the sinh-Poisson state cω=-sinh(βψ) is not realized in the dynamical system of interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to the lowest eigenmode of {(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to the final decaying self-similar state

  14. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Science.gov (United States)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  15. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  16. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru; Ho, Tak-San; Rabitz, Herschel

    2014-01-01

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O 2 + O asymptote on the ground-state 1 A ′ potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excited electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization

  17. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    Science.gov (United States)

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  19. A generalized Schwinger boson mapping with a physical subspace

    International Nuclear Information System (INIS)

    Scholtz, F.G.; Geyer, H.B.

    1988-01-01

    We investigate the existence of a physical subspace for generalized Schwinger boson mappings of SO(2n+1) contains SO(2n) in view of previous observations by Marshalek and the recent construction of such a mapping and subspace for SO(8) by Kaup. It is shown that Kaup's construction can be attributed to the existence of a unique SO(8) automorphism. We proceed to construct a generalized Schwinger-type mapping for SO(2n+1) contains SO(2n) which, in contrast to a similar attempt by Yamamura and Nishiyama, indeed has a corresponding physical subspace. This new mapping includes in the special case of SO(8) the mapping by Kaup which is equivalent to the one given by Yamamura and Nishiyama for n=4. Nevertheless, we indicate the limitations of the generalized Schwinger mapping regarding its applicability to situations where one seeks to establish a direct link between phenomenological boson models and an underlying fermion microscopy. (orig.)

  20. Two-Stage Regularized Linear Discriminant Analysis for 2-D Data.

    Science.gov (United States)

    Zhao, Jianhua; Shi, Lei; Zhu, Ji

    2015-08-01

    Fisher linear discriminant analysis (LDA) involves within-class and between-class covariance matrices. For 2-D data such as images, regularized LDA (RLDA) can improve LDA due to the regularized eigenvalues of the estimated within-class matrix. However, it fails to consider the eigenvectors and the estimated between-class matrix. To improve these two matrices simultaneously, we propose in this paper a new two-stage method for 2-D data, namely a bidirectional LDA (BLDA) in the first stage and the RLDA in the second stage, where both BLDA and RLDA are based on the Fisher criterion that tackles correlation. BLDA performs the LDA under special separable covariance constraints that incorporate the row and column correlations inherent in 2-D data. The main novelty is that we propose a simple but effective statistical test to determine the subspace dimensionality in the first stage. As a result, the first stage reduces the dimensionality substantially while keeping the significant discriminant information in the data. This enables the second stage to perform RLDA in a much lower dimensional subspace, and thus improves the two estimated matrices simultaneously. Experiments on a number of 2-D synthetic and real-world data sets show that BLDA+RLDA outperforms several closely related competitors.

  1. Primary decomposition of zero-dimensional ideals over finite fields

    Science.gov (United States)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  2. Chimera patterns in two-dimensional networks of coupled neurons

    Science.gov (United States)

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  3. Perturbation for Frames for a Subspace of a Hilbert Space

    DEFF Research Database (Denmark)

    Christensen, Ole; deFlicht, C.; Lennard, C.

    1997-01-01

    We extend a classical result stating that a sufficiently small perturbation$\\{ g_i \\}$ of a Riesz sequence $\\{ f_i \\}$ in a Hilbert space $H$ is again a Riesz sequence. It turns out that the analog result for a frame does not holdunless the frame is complete. However, we are able to prove a very...... similarresult for frames in the case where the gap between the subspaces$\\overline{span} \\{f_i \\}$ and $\\overline{span} \\{ g_i \\}$ is small enough. We give a geometric interpretation of the result....

  4. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  5. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  6. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.

  7. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit more descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction

  8. A subspace preconditioning algorithm for eigenvector/eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Bramble, J.H.; Knyazev, A.V.; Pasciak, J.E.

    1996-12-31

    We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigen-spaces of a symmetric positive definite matrix. In our applications, the dimension of a matrix is large and the cost of its inverting is prohibitive. In this paper, we shall develop an effective parallelizable technique for computing these eigenvalues and eigenvectors utilizing subspace iteration and preconditioning. Estimates will be provided which show that the preconditioned method converges linearly and uniformly in the matrix dimension when used with a uniform preconditioner under the assumption that the approximating subspace is close enough to the span of desired eigenvectors.

  9. Two-dimensional Dirac fermions in thin films of C d3A s2

    Science.gov (United States)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  10. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  11. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  12. The influence of different PAST-based subspace trackers on DaPT parameter estimation

    Science.gov (United States)

    Lechtenberg, M.; Götze, J.

    2012-09-01

    In the context of parameter estimation, subspace-based methods like ESPRIT have become common. They require a subspace separation e.g. based on eigenvalue/-vector decomposition. In time-varying environments, this can be done by subspace trackers. One class of these is based on the PAST algorithm. Our non-linear parameter estimation algorithm DaPT builds on-top of the ESPRIT algorithm. Evaluation of the different variants of the PAST algorithm shows which variant of the PAST algorithm is worthwhile in the context of frequency estimation.

  13. A scaling analysis of electronic localization in two-dimensional random media

    International Nuclear Information System (INIS)

    Ye Zhen

    2003-01-01

    By an improved scaling analysis, we suggest that there may appear two possibilities concerning the electronic localization in two-dimensional random media. The first is that all electronic states are localized in two dimensions, as conjectured previously. The second possibility is that electronic behaviors in two- and three-dimensional random systems are similar, in agreement with a recent calculation based on a direct calculation of the conductance with the use of the Kubo formula. In this case, non-localized states are possible in two dimensions, and have some peculiar properties. A few predictions are proposed. Moreover, the present analysis accommodates results from the previous scaling analysis

  14. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    DEFF Research Database (Denmark)

    Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian

    2017-01-01

    to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario...

  15. Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value Decomposition (SVD)

    Science.gov (United States)

    2017-09-27

    100 times larger for the minimal Krylov subspace. 0 5 10 15 20 25 Krylov subspace dimension 10-2 10-1 100 101 102 103 104 jjĜ ¡ 1 jj F SVD...approximation Kn (G;u(0) ) 0 5 10 15 20 25 Krylov subspace dimension 10-2 10-1 100 101 102 103 104 jjx jj fo r m in x jjĜ x ¡ bjj SVD approximation Kn (G;u(0

  16. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    Science.gov (United States)

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  17. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  18. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  19. Closed and Open Loop Subspace System Identification of the Kalman Filter

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2009-04-01

    Full Text Available Some methods for consistent closed loop subspace system identification presented in the literature are analyzed and compared to a recently published subspace algorithm for both open as well as for closed loop data, the DSR_e algorithm. Some new variants of this algorithm are presented and discussed. Simulation experiments are included in order to illustrate if the algorithms are variance efficient or not.

  20. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  1. An adaptation of Krylov subspace methods to path following

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  2. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  3. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  4. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  5. Subspace Arrangement Codes and Cryptosystems

    Science.gov (United States)

    2011-05-09

    Signature Date Acceptance for the Trident Scholar Committee Professor Carl E. Wick Associate Director of Midshipmen Research Signature Date SUBSPACE...Professor William Traves. I also thank Professor Carl Wick and the Trident Scholar Committee for providing me with the opportunity to conduct this... Sagan . Why the characteristic polynomial factors. Bulletin of the American Mathematical Society, 36(2):113–133, February 1999. [16] Karen E. Smith

  6. Krylov subspace methods for solving large unsymmetric linear systems

    International Nuclear Information System (INIS)

    Saad, Y.

    1981-01-01

    Some algorithms based upon a projection process onto the Krylov subspace K/sub m/ = Span(r 0 , Ar 0 ,...,A/sup m/-1r 0 ) are developed, generalizing the method of conjugate gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for solving eigenvalue problems. The convergence is analyzed in terms of the distance of the solution to the subspace K/sub m/ and some error bounds are established showing, in particular, a similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues are real. Several numerical experiments are described and discussed

  7. Detecting anomalies in crowded scenes via locality-constrained affine subspace coding

    Science.gov (United States)

    Fan, Yaxiang; Wen, Gongjian; Qiu, Shaohua; Li, Deren

    2017-07-01

    Video anomaly event detection is the process of finding an abnormal event deviation compared with the majority of normal or usual events. The main challenges are the high structure redundancy and the dynamic changes in the scenes that are in surveillance videos. To address these problems, we present a framework for anomaly detection and localization in videos that is based on locality-constrained affine subspace coding (LASC) and a model updating procedure. In our algorithm, LASC attempts to reconstruct the test sample by its top-k nearest subspaces, which are obtained by segmenting the normal samples space using a clustering method. A sample with a large reconstruction cost is detected as abnormal by setting a threshold. To adapt to the scene changes over time, a model updating strategy is proposed. We experiment on two public datasets: the UCSD dataset and the Avenue dataset. The results demonstrate that our method achieves competitive performance at a 700 fps on a single desktop PC.

  8. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  9. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  10. Krylov subspace method with communication avoiding technique for linear system obtained from electromagnetic analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Chen, Gong; Yamamoto, Susumu; Itoh, Taku; Abe, Kuniyoshi; Nakamura, Hiroaki

    2016-01-01

    Krylov subspace method and the variable preconditioned Krylov subspace method with communication avoiding technique for a linear system obtained from electromagnetic analysis are numerically investigated. In the k−skip Krylov method, the inner product calculations are expanded by Krylov basis, and the inner product calculations are transformed to the scholar operations. k−skip CG method is applied for the inner-loop solver of Variable Preconditioned Krylov subspace methods, and the converged solution of electromagnetic problem is obtained using the method. (author)

  11. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  12. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    Science.gov (United States)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  13. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    Science.gov (United States)

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.

  14. Effects of Rashba and Dresselhaus spin–orbit interactions on the ground state of two-dimensional localized spins

    International Nuclear Information System (INIS)

    Oh, J H; Shin, M; Lee, K-J; Lee, Hyun-Woo

    2014-01-01

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin–orbit interactions, we derive the Dzyaloshinskii–Moriya interaction of localized spins. The strength of the Dzyaloshinskii–Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field–temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system. (paper)

  15. Robust subspace estimation using low-rank optimization theory and applications

    CERN Document Server

    Oreifej, Omar

    2014-01-01

    Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundame

  16. Rank-defective millimeter-wave channel estimation based on subspace-compressive sensing

    Directory of Open Access Journals (Sweden)

    Majid Shakhsi Dastgahian

    2016-11-01

    Full Text Available Millimeter-wave communication (mmWC is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS and mobile sets (MS. Unlike the conventional MIMO systems, Millimeter-wave (mmW systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.

  17. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain

    2017-03-06

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  18. Electromagnetic radiation reaction force and radiation potential in general five-dimensional relativity

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1989-01-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace

  19. Subspace-based Inverse Uncertainty Quantification for Nuclear Data Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Khuwaileh, B.A., E-mail: bakhuwai@ncsu.edu; Abdel-Khalik, H.S.

    2015-01-15

    Safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. An inverse problem can be defined and solved to assess the sources of uncertainty, and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this work a subspace-based algorithm for inverse sensitivity/uncertainty quantification (IS/UQ) has been developed to enable analysts account for all sources of nuclear data uncertainties in support of target accuracy assessment-type analysis. An approximate analytical solution of the optimization problem is used to guide the search for the dominant uncertainty subspace. By limiting the search to a subspace, the degrees of freedom available for the optimization search are significantly reduced. A quarter PWR fuel assembly is modeled and the accuracy of the multiplication factor and the fission reaction rate are used as reactor attributes whose uncertainties are to be reduced. Numerical experiments are used to demonstrate the computational efficiency of the proposed algorithm. Our ongoing work is focusing on extending the proposed algorithm to account for various forms of feedback, e.g., thermal-hydraulics and depletion effects.

  20. Counting Subspaces of a Finite Vector Space

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 11. Counting Subspaces of a Finite Vector Space – 1. Amritanshu Prasad. General Article Volume 15 Issue 11 November 2010 pp 977-987. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. NCEL: two dimensional finite element code for steady-state temperature distribution in seven rod-bundle

    International Nuclear Information System (INIS)

    Hrehor, M.

    1979-01-01

    The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation

  2. Roller Bearing Monitoring by New Subspace-Based Damage Indicator

    Directory of Open Access Journals (Sweden)

    G. Gautier

    2015-01-01

    Full Text Available A frequency-band subspace-based damage identification method for fault diagnosis in roller bearings is presented. Subspace-based damage indicators are obtained by filtering the vibration data in the frequency range where damage is likely to occur, that is, around the bearing characteristic frequencies. The proposed method is validated by considering simulated data of a damaged bearing. Also, an experimental case is considered which focuses on collecting the vibration data issued from a run-to-failure test. It is shown that the proposed method can detect bearing defects and, as such, it appears to be an efficient tool for diagnosis purpose.

  3. Computational study of energy transfer in two-dimensional J-aggregates

    International Nuclear Information System (INIS)

    Gallos, Lazaros K.; Argyrakis, Panos; Lobanov, A.; Vitukhnovsky, A.

    2004-01-01

    We perform a computational analysis of the intra- and interband energy transfer in two-dimensional J-aggregates. Each aggregate is represented as a two-dimensional array (LB-film or self-assembled film) of two kinds of cyanine dyes. We consider the J-aggregate whose J-band is located at a shorter wavelength to be a donor and an aggregate or a small impurity with longer wavelength to be an acceptor. Light absorption in the blue wing of the donor aggregate gives rise to the population of its excitonic states. The depopulation of these states is possible by (a) radiative transfer to the ground state (b) intraband energy transfer, and (c) interband energy transfer to the acceptor. We study the dependence of energy transfer on properties such as the energy gap, the diagonal disorder, and the exciton-phonon interaction strength. Experimentally observable parameters, such as the position and form of luminescence spectrum, and results of the kinetic spectroscopy measurements strongly depend upon the density of states in excitonic bands, rates of energy exchange between states and oscillator strengths for luminescent transitions originating from these states

  4. Effect of disorder on the density of states of a two-dimensional electron gas under magnetic field

    International Nuclear Information System (INIS)

    Bonifacie, S.; Meziani, Y.M.; Chaubet, C.; Jouault, B.; Raymond, A.

    2004-01-01

    We have calculated the density of states (DOS) of a two-dimensional electron gas in a perpendicular magnetic field, using a multiple scattering method, in the ultraquantum limit. We have considered doped and disordered 2D systems. The results of the scattering method are compared with direct simulations of disordered samples. Using the DOS, we have studied the metal-insulator transition and the magnetic freeze-out including a comparison with experimental results

  5. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  6. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  7. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  8. Supervised orthogonal discriminant subspace projects learning for face recognition.

    Science.gov (United States)

    Chen, Yu; Xu, Xiao-Hong

    2014-02-01

    In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Two-dimensional systems from introduction to state of the art

    CERN Document Server

    Benzaouia, Abdellah; Tadeo, Fernando

    2016-01-01

    A solution permitting the stabilization of 2-dimensional (2-D) continuous-time saturated system under state feedback control is presented in this book. The problems of delay and saturation are treated at the same time. The authors obtain novel results on continuous 2-D systems using the unidirectional Lyapunov function. The control synthesis and the saturation and delay conditions are presented as linear matrix inequalities. Illustrative examples are worked through to show the effectiveness of the approach and many comparisons are made with existing results. The second half of the book moves on to consider robust stabilization and filtering of 2-D systems with particular consideration being given to 2-D fuzzy systems. Solutions for the filter-design problems are demonstrated by computer simulation. The text builds up to the development of state feedback control for 2-D Takagi–Sugeno systems with stochastic perturbation. Conservatism is reduced by using slack matrices and the coupling between the Lyapunov ma...

  10. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    Science.gov (United States)

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  11. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  12. Cooperative single-photon subradiant states in a three-dimensional atomic array

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.

  13. Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data.

    Science.gov (United States)

    Veganzones, Miguel A; Simoes, Miguel; Licciardi, Giorgio; Yokoya, Naoto; Bioucas-Dias, Jose M; Chanussot, Jocelyn

    2016-01-01

    Remote sensing hyperspectral images (HSIs) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low-dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods mainly decreases because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSIs are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low-dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough, such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution through local dictionary learning using endmember induction algorithms. We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data.

  14. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  15. Integrated Phoneme Subspace Method for Speech Feature Extraction

    Directory of Open Access Journals (Sweden)

    Park Hyunsin

    2009-01-01

    Full Text Available Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA, independent component analysis (ICA, and linear discriminant analysis (LDA. Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is generated by projecting an observed vector onto an integrated phoneme subspace (IPS based on PCA or ICA. The performance of the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy than conventional methods in clean and reverberant environments.

  16. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  17. A heralded two-qutrit entangled state

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Sanders, Barry C; Rudolph, Terry

    2009-01-01

    We propose a scheme for building a heralded two-qutrit entangled state from polarized photons. An optical circuit is presented to build the maximally entangled two-qutrit state from two heralded Bell pairs and ideal threshold detectors. Several schemes are discussed for constructing the two Bell pairs. We also show how one can produce an unbalanced two-qutrit state that could be of general purpose use in some protocols. In terms of the applications of the maximally entangled qutrit state, we mainly focus on how to use the state to demonstrate a violation of the Collins-Gisin-Linden-Massar-Popescu inequality under the restriction of measurements which can be performed using linear optical elements and photon counting. Other possible applications of the state, such as for higher dimensional quantum cryptography, teleportation and generation of heralded two-qudit states, are also briefly discussed.

  18. Establishing state of motion through two-dimensional foot and shoe print analysis: A pilot study.

    Science.gov (United States)

    Neves, Fernando Bueno; Arnold, Graham P; Nasir, Sadiq; Wang, Weijie; MacDonald, Calum; Christie, Ian; Abboud, Rami J

    2018-03-01

    According to the College of Podiatry, footprints rank among the most frequent forms of evidence found at crime scenes, and the recent ascension of forensic podiatry reflects the importance of footwear and barefoot traces in contemporary forensic practice. In this context, this pilot study focused on whether it is possible to distinguish between walking and running states using parameters derived from two-dimensional foot or shoe prints. Eleven subjects moved along four tracks (barefoot walking; barefoot running; footwear walking; footwear running) while having their bare feet or footwear stained with artificial blood and their footstep patterns recorded. Contact stains and associated bloodstain patterns were collected, and body movements were recorded through three-dimensional motion capture. Barefoot walking prints were found to be larger than barefoot static prints (1.789±0.481cm; pprints (0.635±0.405cm; p=0.006). No correlation was observed for footwear prints. Running trials were more associated with the presence of both passive and cast off stains than walking trials, and the quantity of additional associated stains surrounding individual foot and shoe prints was also higher in running states. Furthermore, a previously proposed equation predicted speed with a high degree of accuracy (within 6%) and may be used for clinical assessment of walking speed. Contact stains, associated bloodstain patterns and stride length measurements may serve to ascertain state of motion in real crime scene scenarios, and future studies may be capable of designing statistical frameworks which could be used in courts of law. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems.

    Science.gov (United States)

    Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K

    2015-11-13

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  20. Krylov subspace methods for the solution of large systems of ODE's

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Bjurstrøm, Nils Henrik

    1998-01-01

    In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....

  1. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  2. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  3. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    Science.gov (United States)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  4. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2017-03-01

    Full Text Available Tool fault diagnosis in numerical control (NC machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA and least squares support vector machine (LS-SVM using only a single sensor. First, SSA was used to extract stationary and non-stationary sources from multi-dimensional signals without the need for independency and without prior information of the source signals, after the dimensionality of the vibration signal observed by a single sensor was expanded by phase space reconstruction technique. Subsequently, 10 dimensionless parameters in the time-frequency domain for non-stationary sources were calculated to generate samples to train the LS-SVM. Finally, the measured vibration signals from tools of an unknown state and their non-stationary sources were separated by SSA to serve as test samples for the trained SVM. The experimental validation demonstrated that the proposed method has better diagnosis accuracy than three previous methods based on LS-SVM alone, Principal component analysis and LS-SVM or on SSA and Linear discriminant analysis.

  5. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  6. Mixed-symmetry superconductivity in two-dimensional Fermi liquids

    International Nuclear Information System (INIS)

    Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.

    1996-01-01

    We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society

  7. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  8. Subspace in Linear Algebra: Investigating Students' Concept Images and Interactions with the Formal Definition

    Science.gov (United States)

    Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.

    2011-01-01

    This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…

  9. Dynamical generation of maximally entangled states in two identical cavities

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2011-01-01

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  10. Entanglement of the valence-bond-solid state on an arbitrary graph

    International Nuclear Information System (INIS)

    Xu Ying; Korepin, Vladimir E

    2008-01-01

    The Affleck-Kennedy-Lieb-Tasaki (AKLT) spin interacting model can be defined on an arbitrary graph. We explain the construction of the AKLT Hamiltonian. Given certain conditions, the ground state is unique and known as the valence-bond-solid (VBS) state. It can be used in measurement-based quantum computation as a resource state instead of the cluster state. We study the VBS ground state on an arbitrary connected graph. The graph is cut into two disconnected parts: the block and the environment. We study the entanglement between these two parts and prove that many eigenvalues of the density matrix of the block are zero. We describe a subspace of eigenvectors of the density matrix corresponding to non-zero eigenvalues. The subspace is the degenerate ground states of some Hamiltonian which we call the block Hamiltonian

  11. Finite element solution of two dimensional time dependent heat equation

    International Nuclear Information System (INIS)

    Maaz

    1999-01-01

    A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)

  12. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces

    International Nuclear Information System (INIS)

    Baranov, Anton D; Fedorovskiy, Konstantin Yu

    2011-01-01

    In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K Θ =H 2 ominus ΘH 2 , where Θ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.

  13. Extended Krylov subspaces approximations of matrix functions. Application to computational electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Druskin, V.; Lee, Ping [Schlumberger-Doll Research, Ridgefield, CT (United States); Knizhnerman, L. [Central Geophysical Expedition, Moscow (Russian Federation)

    1996-12-31

    There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.

  14. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems.

    Science.gov (United States)

    Xu, Y; Li, N

    2014-09-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.

  15. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems

    International Nuclear Information System (INIS)

    Xu, Y; Li, N

    2014-01-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)

  16. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    Science.gov (United States)

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton–Vargas two-dimensional snowplow model

    International Nuclear Information System (INIS)

    Auluck, S K H

    2014-01-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton–Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance. (paper)

  18. Subspace identification of distributed clusters of homogeneous systems

    NARCIS (Netherlands)

    Yu, C.; Verhaegen, M.H.G.

    2017-01-01

    This note studies the identification of a network comprised of interconnected clusters of LTI systems. Each cluster consists of homogeneous dynamical systems, and its interconnections with the rest of the network are unmeasurable. A subspace identification method is proposed for identifying a single

  19. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  20. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  1. Pairing in a two-dimensional two-band very anisotropic model in the mean field approximation

    International Nuclear Information System (INIS)

    Fazakas, A.B.; Pitis, R.

    1993-09-01

    A two-dimensional model is proposed: there are two kinds of sites, with one electronic state per site; tunneling takes place only in one direction; the interaction involves only electrons on different sites. The existence of a phase transition involving interband pairing of electrons is discussed in the mean field approximation. (author)

  2. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  3. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  4. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  5. Subspace based adaptive denoising of surface EMG from neurological injury patients

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  6. Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.

    2010-01-01

    The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.

  7. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model

    International Nuclear Information System (INIS)

    Bajdich, M.; Hlubina, R.

    2001-01-01

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation

  8. Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

    Czech Academy of Sciences Publication Activity Database

    Huang, Y.; Chen, K.; Deng, Y.; Jacobsen, J. L.; Kotecký, R.; Salas, J.; Sokal, Alan D.; Swart, Jan M.

    2013-01-01

    Roč. 87, Č. 1 (2013), 12136-1-12136-5 ISSN 1539-3755 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Monte Carlo simulation * two-dimensional lattices * q-state Potts Subject RIV: BE - Theoretical Physics Impact factor: 2.326, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/swart-two-dimensional potts antiferromagnets with a phase transition at arbitrarily large q.pdf

  9. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  10. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  11. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  12. Rapidly converging bound state eigenenergies for the two dimensional quantum dipole

    International Nuclear Information System (INIS)

    Handy, C R; Vrinceanu, D

    2013-01-01

    We examine the effectiveness of a new spectral method in solving the two dimensional dipole problem (DP), as originally formulated by Dasbiswas et al (2010 Phys. Rev. B: At. Mol. Opt. Phys. 81 064516), and recently analysed by Amore and Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004), through a large, non-orthogonal basis, Rayleigh–Ritz (RR) analysis. This deceptively simple problem has a long history of poorly approximated energy values, particularly for the ground state, until the recent work by AF. In contrast to their approach, we implement an orthogonal polynomial projection quantization (OPPQ) analysis (Handy and Vrinceanu 2013 J. Phys. A: Math. Theor. 46 135202), involving expanding the wavefunction in terms of a complete basis, Ψ( r-vector )=∑ n Ω n P n ( r-vector )R( r-vector ), where P n are the orthogonal polynomials relative to the weight R. For systems transformable into a moment equation, such as DP, the projection coefficients are determinable in closed form, yielding an efficient quantization procedure, particularly when the weight assumes the asymptotic form of the physical solutions. There are several theoretical reasons why the OPPQ should be more effective than the above RR approach. Indeed, comparable results are achieved with significantly fewer OPPQ variational parameters as compared to RR-variational parameters. For instance, with regards to the delicate ground state energy, 130 OPPQ variables are required to achieve E gr = −0.137 7614 (E gr = −0.137 7514 after a Shanks transform) as opposed to the 821 required within the RR formulation: E gr = −0.137 7478. Despite this, the relative slow convergence for low lying even parity states, within both the OPPQ and RR formulations, suggests that significant logarithmic contributions to the wavefunction, at the origin, have been ignored by all previous investigators. Modifying the RR variational analysis to include log-dependent basis, affirms this through an

  13. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady-state

  14. High-dimensional orbital angular momentum entanglement concentration based on Laguerre–Gaussian mode selection

    International Nuclear Information System (INIS)

    Zhang, Wuhong; Su, Ming; Wu, Ziwen; Lu, Meng; Huang, Bingwei; Chen, Lixiang

    2013-01-01

    Twisted photons enable the definition of a Hilbert space beyond two dimensions by orbital angular momentum (OAM) eigenstates. Here we propose a feasible entanglement concentration experiment, to enhance the quality of high-dimensional entanglement shared by twisted photon pairs. Our approach is started from the full characterization of entangled spiral bandwidth, and is then based on the careful selection of the Laguerre–Gaussian (LG) modes with specific radial and azimuthal indices p and ℓ. In particular, we demonstrate the possibility of high-dimensional entanglement concentration residing in the OAM subspace of up to 21 dimensions. By means of LabVIEW simulations with spatial light modulators, we show that the Shannon dimensionality could be employed to quantify the quality of the present concentration. Our scheme holds promise in quantum information applications defined in high-dimensional Hilbert space. (letter)

  15. MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING MOHAMMAD SALIM AHMED, LATIFUR KHAN, NIKUNJ OZA, AND MANDAVA RAJESWARI Abstract....

  16. Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.

  17. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  18. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  19. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  20. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  1. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  2. Engineering Low Dimensional Materials with van der Waals Interaction

    Science.gov (United States)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  3. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  4. Coding/decoding two-dimensional images with orbital angular momentum of light.

    Science.gov (United States)

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  5. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.

    Science.gov (United States)

    Nguyen, Thanh-Tung; Huang, Joshua; Wu, Qingyao; Nguyen, Thuy; Li, Mark

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) selection and identification are the most important tasks in Genome-wide association data analysis. The problem is difficult because genome-wide association data is very high dimensional and a large portion of SNPs in the data is irrelevant to the disease. Advanced machine learning methods have been successfully used in Genome-wide association studies (GWAS) for identification of genetic variants that have relatively big effects in some common, complex diseases. Among them, the most successful one is Random Forests (RF). Despite of performing well in terms of prediction accuracy in some data sets with moderate size, RF still suffers from working in GWAS for selecting informative SNPs and building accurate prediction models. In this paper, we propose to use a new two-stage quality-based sampling method in random forests, named ts-RF, for SNP subspace selection for GWAS. The method first applies p-value assessment to find a cut-off point that separates informative and irrelevant SNPs in two groups. The informative SNPs group is further divided into two sub-groups: highly informative and weak informative SNPs. When sampling the SNP subspace for building trees for the forest, only those SNPs from the two sub-groups are taken into account. The feature subspaces always contain highly informative SNPs when used to split a node at a tree. This approach enables one to generate more accurate trees with a lower prediction error, meanwhile possibly avoiding overfitting. It allows one to detect interactions of multiple SNPs with the diseases, and to reduce the dimensionality and the amount of Genome-wide association data needed for learning the RF model. Extensive experiments on two genome-wide SNP data sets (Parkinson case-control data comprised of 408,803 SNPs and Alzheimer case-control data comprised of 380,157 SNPs) and 10 gene data sets have demonstrated that the proposed model significantly reduced prediction errors and outperformed

  6. Subspace-based analysis of the ERT inverse problem

    Science.gov (United States)

    Ben Hadj Miled, Mohamed Khames; Miller, Eric L.

    2004-05-01

    In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.

  7. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  8. Quantum key distribution session with 16-dimensional photonic states

    Science.gov (United States)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  9. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  10. Multiphonon states in even-even spherical nuclei. Pt. 2. Calculation of the matrix elements of one and two body operators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    Matrix elements of one and two body operators, which appear in a general hamiltonian and in electromagnetic transitions are derived in a subspace spanned by multiphonon states. The method is illustrated for a single j-shell, where phonons built with one type of particles are introduced. The eigenvalues obtained within the space spanned by the phonons of lowest angular momentum are compared to those of the full space. In such a method, the Pauli principle is fully and properly taken into account. ((orig.))

  11. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  12. Critical states and thermomagnetic instabilities in three-dimensional nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tamegai, T., E-mail: tamegai@ap.t.u-tokyo.ac.jp [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mine, A.; Tsuchiya, Y.; Miyano, S.; Pyon, S. [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mawatari, Y.; Nagasawa, S.; Hidaka, M. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2017-02-15

    Highlights: • Critical state field profiles and thermomagnetic instabilities are studied in three-dimensional nanostructured superconductors. • We find that the critical state field profiles in bi-layer systems are not simple superpositions of critical states in the two layers. • We also studied flux avalanches in shifted strip arrays with layer numbers up to six. • Various forms of avalanches either perpendicular or parallel to the strip are observed when the overlap between layers is large. • We find that introduction of asymmetry to shifted strip arrays affects the shape of flux avalanches sensitively. - Abstract: Critical state field profiles and thermomagnetic instabilities are studied in two kinds of three-dimensional nanostructured superconductors. We find that the critical state field profiles in some simple bi-layer systems are not simple superpositions of critical states in the two layers. Competition between the divergence of the local field at the edges of the film and the shielding by the neighboring layer makes novel critical state field profiles. We also studied flux avalanches in shifted strip arrays (SSAs) with layer numbers up to six. Various forms of avalanches either perpendicular or parallel to the strip are observed when the overlap between strips in neighboring layers is large. We also find that introduction of asymmetry in various forms to SSA affects the shape of flux avalanches sensitively.

  13. Analytic energies and wave functions of the two-dimensional Schrodinger equation: ground state of two-dimensional quartic potential and classification of solutions

    Czech Academy of Sciences Publication Activity Database

    Tichý, V.; Kuběna, Aleš Antonín; Skála, L.

    2012-01-01

    Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf

  14. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring

    Science.gov (United States)

    Shokravi, H.; Bakhary, NH

    2017-11-01

    Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.

  15. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  16. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  17. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  18. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  19. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  20. Active Subspace Methods for Data-Intensive Inverse Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiqi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-27

    The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.

  1. Two-dimensional simulations of magnetically-driven instabilities

    International Nuclear Information System (INIS)

    Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.

    1986-01-01

    A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program

  2. Dynamics of the two-dimensional directed Ising model in the paramagnetic phase

    Science.gov (United States)

    Godrèche, C.; Pleimling, M.

    2014-05-01

    We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.

  3. Estimating the number of components and detecting outliers using Angle Distribution of Loading Subspaces (ADLS) in PCA analysis.

    Science.gov (United States)

    Liu, Y J; Tran, T; Postma, G; Buydens, L M C; Jansen, J

    2018-08-22

    Principal Component Analysis (PCA) is widely used in analytical chemistry, to reduce the dimensionality of a multivariate data set in a few Principal Components (PCs) that summarize the predominant patterns in the data. An accurate estimate of the number of PCs is indispensable to provide meaningful interpretations and extract useful information. We show how existing estimates for the number of PCs may fall short for datasets with considerable coherence, noise or outlier presence. We present here how Angle Distribution of the Loading Subspaces (ADLS) can be used to estimate the number of PCs based on the variability of loading subspace across bootstrap resamples. Based on comprehensive comparisons with other well-known methods applied on simulated dataset, we show that ADLS (1) may quantify the stability of a PCA model with several numbers of PCs simultaneously; (2) better estimate the appropriate number of PCs when compared with the cross-validation and scree plot methods, specifically for coherent data, and (3) facilitate integrated outlier detection, which we introduce in this manuscript. We, in addition, demonstrate how the analysis of different types of real-life spectroscopic datasets may benefit from these advantages of ADLS. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Stationary states of the two-dimensional nonlinear Schrödinger model with disorder

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Hendriksen, D.; Christiansen, Peter Leth

    1998-01-01

    Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder...

  5. An efficient preconditioning technique using Krylov subspace methods for 3D characteristics solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Le Tellier, R.; Roy, R.; Hebert, A.

    2005-01-01

    The Generalized Minimal RESidual (GMRES) method, using a Krylov subspace projection, is adapted and implemented to accelerate a 3D iterative transport solver based on the characteristics method. Another acceleration technique called the self-collision rebalancing technique (SCR) can also be used to accelerate the solution or as a left preconditioner for GMRES. The GMRES method is usually used to solve a linear algebraic system (Ax=b). It uses K(r (o) ,A) as projection subspace and AK(r (o) ,A) for the orthogonalization of the residual. This paper compares the performance of these two combined methods on various problems. To implement the GMRES iterative method, the characteristics equations are derived in linear algebra formalism by using the equivalence between the method of characteristics and the method of collision probability to end up with a linear algebraic system involving fluxes and currents. Numerical results show good performance of the GMRES technique especially for the cases presenting large material heterogeneity with a scattering ratio close to 1. Similarly, the SCR preconditioning slightly increases the GMRES efficiency

  6. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Science.gov (United States)

    Páez, Carlos J; Pereira, Ana L C; Schulz, Peter A

    2016-01-01

    We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal. PMID:28144546

  7. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Directory of Open Access Journals (Sweden)

    Carlos. J. Páez

    2016-12-01

    Full Text Available We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal.

  8. Three-dimensional polarization states of monochromatic light fields.

    Science.gov (United States)

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  9. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. States with a great number of quasi-particles in even lead isotopes

    International Nuclear Information System (INIS)

    Auger, G.; Manfredi, V.R.

    1975-01-01

    The even lead isotopes have been studied by means of a spectral distribution calculation in the sub-spaces defined by their number of quasi-particles. The comparison with results obtained in the thin isotopes shows that the overlap of the various sub-spaces is strongly dependent on the residual interaction used; namely, states with a great number of quasi-particles do exist in the low energy part of the spectra. The problem of spurious states implied by this method, states responsible for an over-estimation of the sub-space coupling, is treated and various corrections are proposed for the dimensions as well as for the centroids and widths of the sub-spaces [fr

  11. Estimation of direction of arrival of a moving target using subspace based approaches

    Science.gov (United States)

    Ghosh, Ripul; Das, Utpal; Akula, Aparna; Kumar, Satish; Sardana, H. K.

    2016-05-01

    In this work, array processing techniques based on subspace decomposition of signal have been evaluated for estimation of direction of arrival of moving targets using acoustic signatures. Three subspace based approaches - Incoherent Wideband Multiple Signal Classification (IWM), Least Square-Estimation of Signal Parameters via Rotation Invariance Techniques (LS-ESPRIT) and Total Least Square- ESPIRIT (TLS-ESPRIT) are considered. Their performance is compared with conventional time delay estimation (TDE) approaches such as Generalized Cross Correlation (GCC) and Average Square Difference Function (ASDF). Performance evaluation has been conducted on experimentally generated data consisting of acoustic signatures of four different types of civilian vehicles moving in defined geometrical trajectories. Mean absolute error and standard deviation of the DOA estimates w.r.t. ground truth are used as performance evaluation metrics. Lower statistical values of mean error confirm the superiority of subspace based approaches over TDE based techniques. Amongst the compared methods, LS-ESPRIT indicated better performance.

  12. Estimation of surface temperature by using inverse problem. Part 1. Steady state analyses of two-dimensional cylindrical system

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Terada, Atsuhiko

    2006-03-01

    In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)

  13. Subspace Barzilai-Borwein Gradient Method for Large-Scale Bound Constrained Optimization

    International Nuclear Information System (INIS)

    Xiao Yunhai; Hu Qingjie

    2008-01-01

    An active set subspace Barzilai-Borwein gradient algorithm for large-scale bound constrained optimization is proposed. The active sets are estimated by an identification technique. The search direction consists of two parts: some of the components are simply defined; the other components are determined by the Barzilai-Borwein gradient method. In this work, a nonmonotone line search strategy that guarantees global convergence is used. Preliminary numerical results show that the proposed method is promising, and competitive with the well-known method SPG on a subset of bound constrained problems from CUTEr collection

  14. Experimental Study of Generalized Subspace Filters for the Cocktail Party Situation

    DEFF Research Database (Denmark)

    Christensen, Knud Bank; Christensen, Mads Græsbøll; Boldt, Jesper B.

    2016-01-01

    This paper investigates the potential performance of generalized subspace filters for speech enhancement in cocktail party situations with very poor signal/noise ratio, e.g. down to -15 dB. Performance metrics output signal/noise ratio, signal/ distortion ratio, speech quality rating and speech...... intelligibility rating are mapped as functions of two algorithm parameters, revealing clear trade-off options between noise, distortion and subjective performances and a recommended choice of trade-off. Given sufficiently good noise statistics, SNR improvements around 20 dB as well as PESQ quality and STOI...

  15. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  16. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  17. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  18. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  19. Violating Bell inequalities maximally for two d-dimensional systems

    International Nuclear Information System (INIS)

    Chen Jingling; Wu Chunfeng; Oh, C. H.; Kwek, L. C.; Ge Molin

    2006-01-01

    We show the maximal violation of Bell inequalities for two d-dimensional systems by using the method of the Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states |Ψ> app that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information

  20. Two-dimensional photon-echo spectroscopy at a conical intersection: A two-mode pyrazine model with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sala, Matthieu; Egorova, Dassia

    2016-12-20

    The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.

  1. Buckled two-dimensional Xene sheets.

    Science.gov (United States)

    Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji

    2017-02-01

    Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

  2. Riddled Basins of Attraction for Synchronized Type-I Intermittency

    DEFF Research Database (Denmark)

    Mancher, Martin; Nordahn, Morten; Mosekilde, Erik

    1998-01-01

    Chaotic mortion resticted to an invariant subspace of total phase space may be associated with basins of attraction that are riddled with holes belonging to the basin of another limiting state. We study the emergence of such basins of two coupled one-dimensional maps, each exhibiting type...

  3. Experimental Comparison of Signal Subspace Based Noise Reduction Methods

    DEFF Research Database (Denmark)

    Hansen, Peter Søren Kirk; Hansen, Per Christian; Hansen, Steffen Duus

    1999-01-01

    The signal subspace approach for non-parametric speech enhancement is considered. Several algorithms have been proposed in the literature but only partly analyzed. Here, the different algorithms are compared, and the emphasis is put onto the limiting factors and practical behavior of the estimators...

  4. Quantum theory of dynamical collective subspace for large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-03-01

    By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  5. The one-particle scenario for the metal-insulator transition in two-dimensional systems at T = 0

    CERN Document Server

    Tarasov, Y V

    2003-01-01

    The conductance of bounded disordered electron systems is calculated by reducing the original dynamic problem of arbitrary dimensionality to a set of strictly one-dimensional problems for one-particle mode propagators. The metallic ground state of a two-dimensional conductor, which is considered as a limiting case of three-dimensional quantum waveguide, is shown to result from its multi-modeness. As the waveguide thickness is reduced, e.g., by applying a 'pressing' potential, the electron system undergoes a set of continuous phase transitions related to discrete variations of the number of extended modes. The closing of the last current carrying mode is regarded as a phase transition of the electron system from metallic to dielectric state. The obtained results agree qualitatively with the observed 'anomalies' of resistivity of different two-dimensional electron and hole systems.

  6. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations.

    Science.gov (United States)

    Schure, Mark R; Davis, Joe M

    2017-11-10

    Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions

  7. Analysis of low-dimensional radio-frequency impedance-based cardio-synchronous waveforms for biometric authentication.

    Science.gov (United States)

    Venugopalan, Shreyas; Savvides, Marios; Griofa, Marc O; Cohen, Ken

    2014-08-01

    Over the past two decades, there have been a lot of advances in the field of pattern analyses for biomedical signals, which have helped in both medical diagnoses and in furthering our understanding of the human body. A relatively recent area of interest is the utility of biomedical signals in the field of biometrics, i.e., for user identification. Seminal work in this domain has already been done using electrocardiograph (ECG) signals. In this paper, we discuss our ongoing work in using a relatively recent modality of biomedical signals-a cardio-synchronous waveform measured using a Radio-Frequency Impedance-Interrogation (RFII) device for the purpose of user identification. Compared to an ECG setup, this device is noninvasive and measurements can be obtained easily and quickly. Here, we discuss the feasibility of reducing the dimensions of these signals by projecting onto various subspaces while still preserving interuser discriminating information. We compare the classification performance using classical dimensionality reduction methods such as principal component analysis (PCA), independent component analysis (ICA), random projections, with more recent techniques such as K-SVD-based dictionary learning. We also report the reconstruction accuracies in these subspaces. Our results show that the dimensionality of the measured signals can be reduced by 60 fold while maintaining high user identification rates.

  8. Active ideal sedimentation: exact two-dimensional steady states.

    Science.gov (United States)

    Hermann, Sophie; Schmidt, Matthias

    2018-02-28

    We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.

  9. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo; Schö nlieb, Carola-Bibiane

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a

  10. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  11. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  12. Quasi-steady-state analysis of two-dimensional random intermittent search processes

    KAUST Repository

    Bressloff, Paul C.

    2011-06-01

    We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

  13. Quasi-steady-state analysis of two-dimensional random intermittent search processes

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2011-01-01

    We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

  14. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  15. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  16. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    Science.gov (United States)

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  17. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  18. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  19. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

    National Research Council Canada - National Science Library

    Du, Qian; Ren, Hsuan; Chang, Chein-I

    2003-01-01

    ...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...

  20. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  1. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  2. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  3. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  4. Basic problems and solution methods for two-dimensional continuous 3 × 3 order hidden Markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Tang, Gui-jin; Gan, Zong-liang; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model referred to as two-dimensional continuous 3 × 3 order hidden Markov model is put forward to avoid the disadvantages of the classical hypothesis of two-dimensional continuous hidden Markov model. This paper presents three equivalent definitions of the model, in which the state transition probability relies on not only immediate horizontal and vertical states but also immediate diagonal state, and in which the probability density of the observation relies on not only current state but also immediate horizontal and vertical states. The paper focuses on the three basic problems of the model, namely probability density calculation, parameters estimation and path backtracking. Some algorithms solving the questions are theoretically derived, by exploiting the idea that the sequences of states on rows or columns of the model can be viewed as states of a one-dimensional continuous 1 × 2 order hidden Markov model. Simulation results further demonstrate the performance of the algorithms. Because there are more statistical characteristics in the structure of the proposed new model, it can more accurately describe some practical problems, as compared to two-dimensional continuous hidden Markov model.

  5. Using CUDA Technology for Defining the Stiffness Matrix in the Subspace of Eigenvectors

    Directory of Open Access Journals (Sweden)

    Yu. V. Berchun

    2015-01-01

    Full Text Available The aim is to improve the performance of solving a problem of deformable solid mechanics through the use of GPGPU. The paper describes technologies for computing systems using both a central and a graphics processor and provides motivation for using CUDA technology as the efficient one.The paper also analyses methods to solve the problem of defining natural frequencies and design waveforms, i.e. an iteration method in the subspace. The method includes several stages. The paper considers the most resource-hungry stage, which defines the stiffness matrix in the subspace of eigenforms and gives the mathematical interpretation of this stage.The GPU choice as a computing device is justified. The paper presents an algorithm for calculating the stiffness matrix in the subspace of eigenforms taking into consideration the features of input data. The global stiffness matrix is very sparse, and its size can reach tens of millions. Therefore, it is represented as a set of the stiffness matrices of the single elements of a model. The paper analyses methods of data representation in the software and selects the best practices for GPU computing.It describes the software implementation using CUDA technology to calculate the stiffness matrix in the subspace of eigenforms. Due to the input data nature, it is impossible to use the universal libraries of matrix computations (cuSPARSE and cuBLAS for loading the GPU. For efficient use of GPU resources in the software implementation, the stiffness matrices of elements are built in the block matrices of a special form. The advantages of using shared memory in GPU calculations are described.The transfer to the GPU computations allowed a twentyfold increase in performance (as compared to the multithreaded CPU-implementation on the model of middle dimensions (degrees of freedom about 2 million. Such an acceleration of one stage speeds up defining the natural frequencies and waveforms by the iteration method in a subspace

  6. N-screen aware multicriteria hybrid recommender system using weight based subspace clustering.

    Science.gov (United States)

    Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements.

  7. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....

  8. Two-level method for unsteady Navier-Stokes equations based on a new projection

    International Nuclear Information System (INIS)

    Hou Yanren; Li Kaitai

    2004-12-01

    A two-level algorithm for the two dimensional unsteady Navier-Stokes equations based on a new projection is proposed and investigated. The approximate solution is solved as a sum of a large eddy component and a small eddy component, which are in the sense of the new projection, constructed in this paper. These two terms advance in time explicitly. Actually, the new algorithm proposed here can be regarded as a sort of postprocessing algorithm for the standard Galerkin method (SGM). The large eddy part is solved by SGM in the usual L 2 -based large eddy subspace while the small eddy part (the correction part) is obtained in its complement subspace in the sense of the new projection. The stability analysis indicates the improvement of the stability comparing with SGM of the same scale, and the L 2 -error estimate shows that the scheme can improve the accuracy of SGM approximation for half order. We also propose a numerical implementation based on Lagrange multiplier for this two-level algorithm. (author)

  9. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases

    Science.gov (United States)

    Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank

    2018-04-01

    Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.

  11. Fast regularizing sequential subspace optimization in Banach spaces

    International Nuclear Information System (INIS)

    Schöpfer, F; Schuster, T

    2009-01-01

    We are concerned with fast computations of regularized solutions of linear operator equations in Banach spaces in case only noisy data are available. To this end we modify recently developed sequential subspace optimization methods in such a way that the therein employed Bregman projections onto hyperplanes are replaced by Bregman projections onto stripes whose width is in the order of the noise level

  12. Lie n-derivations on 7 -subspace lattice algebras

    Indian Academy of Sciences (India)

    all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...

  13. Evolution of two-dimensional soap froth with a single defect

    International Nuclear Information System (INIS)

    Levitan, B.

    1994-01-01

    The temporal evolution of two-dimensional soap froth, starting from a particle initial state, is studied. The initial state is a hexagonal array of bubbles in which a single defect is introduced. A cluster of transformed bubbles grows; the time dependence of the number of bubbles in this cluster in investigated and the distribution of the topological classes in the evolving part of the system is calculated. The distribution appears to approach a fixed limiting one, which differs from that obtained for the usual scaling state of the froth

  14. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  15. Teleportation in an indivisible quantum system

    Directory of Open Access Journals (Sweden)

    Kiktenko E.O.

    2016-01-01

    Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.

  16. Alternate two-dimensional quantum walk with a single-qubit coin

    International Nuclear Information System (INIS)

    Di Franco, C.; Busch, Th.; Mc Gettrick, M.; Machida, T.

    2011-01-01

    We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the nonlocalized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of x-y spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.

  17. Theory of a Nearly Two-Dimensional Dipolar Bose Gas

    Science.gov (United States)

    2016-05-11

    order to be published, he sent the paper to Einstein to translate it. The other contributing scientist is world famous physicist Albert Einstein , maybe...mechanical state, a Bose- Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic...model in both three- and two-dimensional geometries. 15. SUBJECT TERMS Bose Einstein condensation, ultracold physics, condensed matter, dipoles 16

  18. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data

    Directory of Open Access Journals (Sweden)

    Hongchao Song

    2017-01-01

    Full Text Available Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE and an ensemble k-nearest neighbor graphs- (K-NNG- based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.

  19. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  20. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  1. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  2. High resolution through-the-wall radar image based on beamspace eigenstructure subspace methods

    Science.gov (United States)

    Yoon, Yeo-Sun; Amin, Moeness G.

    2008-04-01

    Through-the-wall imaging (TWI) is a challenging problem, even if the wall parameters and characteristics are known to the system operator. Proper target classification and correct imaging interpretation require the application of high resolution techniques using limited array size. In inverse synthetic aperture radar (ISAR), signal subspace methods such as Multiple Signal Classification (MUSIC) are used to obtain high resolution imaging. In this paper, we adopt signal subspace methods and apply them to the 2-D spectrum obtained from the delay-andsum beamforming image. This is in contrast to ISAR, where raw data, in frequency and angle, is directly used to form the estimate of the covariance matrix and array response vector. Using beams rather than raw data has two main advantages, namely, it improves the signal-to-noise ratio (SNR) and can correctly image typical indoor extended targets, such as tables and cabinets, as well as point targets. The paper presents both simulated and experimental results using synthesized and real data. It compares the performance of beam-space MUSIC and Capon beamformer. The experimental data is collected at the test facility in the Radar Imaging Laboratory, Villanova University.

  3. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  4. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  5. Recursive subspace identification for in flight modal analysis of airplanes

    OpenAIRE

    De Cock , Katrien; Mercère , Guillaume; De Moor , Bart

    2006-01-01

    International audience; In this paper recursive subspace identification algorithms are applied to track the modal parameters of airplanes on-line during test flights. The ability to track changes in the damping ratios and the influence of the forgetting factor are studied through simulations.

  6. Status for the two-dimensional Navier-Stokes solver EllipSys2D

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.

    2001-01-01

    This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...

  7. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  8. An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data.

    Science.gov (United States)

    Yu, Hualong; Ni, Jun

    2014-01-01

    Training classifiers on skewed data can be technically challenging tasks, especially if the data is high-dimensional simultaneously, the tasks can become more difficult. In biomedicine field, skewed data type often appears. In this study, we try to deal with this problem by combining asymmetric bagging ensemble classifier (asBagging) that has been presented in previous work and an improved random subspace (RS) generation strategy that is called feature subspace (FSS). Specifically, FSS is a novel method to promote the balance level between accuracy and diversity of base classifiers in asBagging. In view of the strong generalization capability of support vector machine (SVM), we adopt it to be base classifier. Extensive experiments on four benchmark biomedicine data sets indicate that the proposed ensemble learning method outperforms many baseline approaches in terms of Accuracy, F-measure, G-mean and AUC evaluation criterions, thus it can be regarded as an effective and efficient tool to deal with high-dimensional and imbalanced biomedical data.

  9. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  10. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  11. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  12. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  13. Recursive Subspace Identification of AUV Dynamic Model under General Noise Assumption

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs is proposed in this paper. Due to the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a Hammerstein model with nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration, the identification problem is concerned as an errors-in-variables (EIV one which means that the identification procedure is under general noise assumption. In order to make the algorithm recursively, propagator method (PM based subspace approach is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

  14. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  15. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic to a...

  16. Hall effect in the two-dimensional Luttinger liquid

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1991-01-01

    The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong

  17. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  18. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    Science.gov (United States)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  19. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  20. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  1. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  2. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2003-01-01

    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  3. Fixed Points in Grassmannians with Applications to Economic Equilibrium

    DEFF Research Database (Denmark)

    Keiding, Hans

    2017-01-01

    In some applications of equilibrium theory, the fixed point involves not only a state and a value of a parameter in the dual of the state space, but also a particular subspace of the state space. Since the set of all subspaces of a finite-dimensional Euclidean space has a structure which does...... not allow immediate application of fixed point theorems, the problem must be reformulated using a suitable parametrization of subspaces. One such parametrization, the Plücker coordinates, is used here to prove a general equilibrium existence theorem. Applications to economic problems involving hierarchies...... of consumers or incomplete markets with real assets are outlined....

  4. Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation

    Science.gov (United States)

    Cardoso, Wesley B.; Salasnich, Luca; Malomed, Boris A.

    2017-05-01

    We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  5. Quantum transport in d -dimensional lattices

    International Nuclear Information System (INIS)

    Manzano, Daniel; Chuang, Chern; Cao, Jianshu

    2016-01-01

    We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)

  6. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  7. Adiabatic graph-state quantum computation

    International Nuclear Information System (INIS)

    Antonio, B; Anders, J; Markham, D

    2014-01-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)

  8. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers

    KAUST Repository

    Pu, Jiang

    2016-07-27

    The carrier-density-dependent conductance and thermoelectric properties of large-area MoS2 and WSe2 monolayers are simultaneously investigated using the electrolyte gating method. The sign of the thermoelectric power changes across the transistor off-state in the ambipolar WSe2 transistor as the majority carrier density switches from electron to hole. The thermopower and thermoelectric power factor of monolayer samples are one order of magnitude larger than that of bulk materials, and their carrier-density dependences exhibit a quantitative agreement with the semiclassical Mott relation based on the two-dimensional energy band structure, concluding the thermoelectric properties are enhanced by the low-dimensional effect.

  9. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  10. Muon studies of low-dimensional solid state systems

    International Nuclear Information System (INIS)

    Jestaedt, T.

    1999-04-01

    This thesis concerns the use of the technique of μSR, an abbreviation which stands for three separate types of experiments: muon spin rotation, muon spin relaxation and muon spin resonance. The experiments presented here were performed on beamlines at the ISIS facility at the Rutherford Appleton Laboratory (UK) and at the Paul Scherrer Institut (Villigen, Switzerland). The systems studied are linked by the common theme of reduced dimensionality. Results of μSR measurements on La 2-x Sr x NiO 4+δ (nickelates) are presented. In these systems the lattice constants are much smaller in two of the dimensions as compared to the third, leading to two dimensional magnetism. Earlier experiments using techniques other than μSR concentrated mainly on materials with x = 0 and δ ≠ 0. The work that I describe on La 2-x Sr x NiO 4+δ shows that, there are interesting magnetic features as a function of strontium doping, and the details of this dependence are examined. In each of the samples oscillations of the muon spin polarization were observed below a sample dependent temperature, showing that low temperature magnetic order occurs. μSR is also used to study Sr 2 LnMn 2 O 7 (the Ruddlesden- Popper phases), where Ln are various ions of the lanthanide series. These manganates have a layered structure, leading to a reduced dimensionality as compared to the related perovskite compounds of the MnO 3 series. Like the doped MnO 3 compounds, some of the Ruddlesden-Popper phases exhibit colossal magnetoresistance (CMR), all effect which initially stirred interest in the MnO 3 systems. In contrast to the MnO 3 systems, the relevant Mn 2 O 7 materials show this CMR effect over an extended temperature range. The μSR work is consistent with the existence of magnetic clusters in some of the Mn 2 O 7 materials and these clusters appear to be associated with the observation of CMR. The compound CaV 4 O 9 is the first known two-dimensional compound to exhibit a spin-gap and the effects

  11. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  12. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  13. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  14. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  15. Two-Dimensional Wetting Transition Modeling with the Potts Model

    Science.gov (United States)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  16. Quantum correlations support probabilistic pure state cloning

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)

    2014-02-01

    The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.

  17. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  18. Random unitary maps for quantum state reconstruction

    International Nuclear Information System (INIS)

    Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.

    2010-01-01

    We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.

  19. Mitigating Wind Induced Noise in Outdoor Microphone Signals Using a Singular Spectral Subspace Method

    Directory of Open Access Journals (Sweden)

    Omar Eldwaik

    2018-01-01

    Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.

  20. Von Neumann algebras as complemented subspaces of B(H)

    DEFF Research Database (Denmark)

    Christensen, Erik; Wang, Liguang

    2014-01-01

    Let M be a von Neumann algebra of type II1 which is also a complemented subspace of B( H). We establish an algebraic criterion, which ensures that M is an injective von Neumann algebra. As a corollary we show that if M is a complemented factor of type II1 on a Hilbert space H, then M is injective...

  1. Screening in two-dimensional gauge theories

    International Nuclear Information System (INIS)

    Korcyl, Piotr; Deutsches Elektronen-Synchrotron; Koren, Mateusz

    2012-12-01

    We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED 2 as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.

  2. Screening in two-dimensional gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Korcyl, Piotr [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koren, Mateusz [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    2012-12-15

    We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED{sub 2} as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.

  3. Embeddings of model subspaces of the Hardy space: compactness and Schatten-von Neumann ideals

    International Nuclear Information System (INIS)

    Baranov, Anton D

    2009-01-01

    We study properties of the embedding operators of model subspaces K p Θ (defined by inner functions) in the Hardy space H p (coinvariant subspaces of the shift operator). We find a criterion for the embedding of K p Θ in L p (μ) to be compact similar to the Volberg-Treil theorem on bounded embeddings, and give a positive answer to a question of Cima and Matheson. The proof is based on Bernstein-type inequalities for functions in K p Θ . We investigate measures μ such that the embedding operator belongs to some Schatten-von Neumann ideal.

  4. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  5. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO 6O 17

    Science.gov (United States)

    Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  6. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO6O17

    International Nuclear Information System (INIS)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-01-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations

  7. Two dimensional topological insulator in quantizing magnetic fields

    Science.gov (United States)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  8. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  9. Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-04-01

    We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  10. Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H

    2018-04-20

    We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  11. Dimensional scaling for quasistationary states

    International Nuclear Information System (INIS)

    Kais, S.; Herschbach, D.R.

    1993-01-01

    Complex energy eigenvalues which specify the location and width of quasibound or resonant states are computed to good approximation by a simple dimensional scaling method. As applied to bound states, the method involves minimizing an effective potential function in appropriately scaled coordinates to obtain exact energies in the D→∞ limit, then computing approximate results for D=3 by a perturbation expansion in 1/D about this limit. For resonant states, the same procedure is used, with the radial coordinate now allowed to be complex. Five examples are treated: the repulsive exponential potential (e - r); a squelched harmonic oscillator (r 2 e - r); the inverted Kratzer potential (r -1 repulsion plus r -2 attraction); the Lennard-Jones potential (r -12 repulsion, r -6 attraction); and quasibound states for the rotational spectrum of the hydrogen molecule (X 1 summation g + , v=0, J=0 to 50). Comparisons with numerical integrations and other methods show that the much simpler dimensional scaling method, carried to second-order (terms in 1/D 2 ), yields good results over an extremely wide range of the ratio of level widths to spacings. Other methods have not yet evaluated the very broad H 2 rotational resonances reported here (J>39), which lie far above the centrifugal barrier

  12. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  13. Introduction to two dimensional conformal and superconformal field theory

    International Nuclear Information System (INIS)

    Shenker, S.H.

    1986-01-01

    Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed

  14. Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Debesh Jha

    2017-01-01

    Full Text Available Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT for feature extraction, probabilistic principal component analysis (PPCA for dimensionality reduction, and a random subspace ensemble (RSE classifier along with the K-nearest neighbors (KNN algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV, the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.

  15. Energy of N two-dimensional bosons with zero-range interactions

    Science.gov (United States)

    Bazak, B.; Petrov, D. S.

    2018-02-01

    We derive an integral equation describing N two-dimensional bosons with zero-range interactions and solve it for the ground state energy B N by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling B N ∝ 8.567 N predicted by Hammer and Son (2004 Phys. Rev. Lett. 93 250408) in the large-N limit.

  16. N = 2 two dimensional Wess-Zumino model on the lattice

    International Nuclear Information System (INIS)

    Elitzur, S.; Schwimmer, A.

    1983-04-01

    A lattice version of the N = 2 SUSY two dimensional Wess-Zumino model was constructed and studied. The correct continuum limit is checked in perturbation theory. The strong coupling limit is defined and investigated. We find that the ground state of the model has zero energy and infinite degeneracy. The connection between this degeneracy and the properties of the Nicolai-Parisi-Sourlas transformation is discussed. (author)

  17. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  18. Edge states of a three-dimensional topological insulator

    International Nuclear Information System (INIS)

    Deb, Oindrila; Sen, Diptiman; Soori, Abhiram

    2014-01-01

    We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi 2 Se 3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states. (paper)

  19. Interbasis expansion and SO(3) symmetry in the two-dimensional hydrogen atom.

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F.; Lopez Villanueva, A. [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    Making use of the SO(3) symmetry of the two-dimensional hydrogen atom, each of the bases for the bound states formed by the separable solutions of the Schroedinger equation in polar and parabolic coordinates are expressed in terms of the other. [Spanish] Usando la simetria SO(3) del atomo de hidrogeno en dos dimensiones, cada una de las bases para los estados ligados formadas por las soluciones separables de la ecuacion de Schroedinger en coordenadas polares y parabolicas se expresan en terminos de la otra.

  20. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  1. Hankel Matrix Correlation Function-Based Subspace Identification Method for UAV Servo System

    Directory of Open Access Journals (Sweden)

    Minghong She

    2018-01-01

    Full Text Available For the identification problem of closed-loop subspace model, we propose a zero space projection method based on the estimation of correlation function to fill the block Hankel matrix of identification model by combining the linear algebra with geometry. By using the same projection of related data in time offset set and LQ decomposition, the multiplication operation of projection is achieved and dynamics estimation of the unknown equipment system model is obtained. Consequently, we have solved the problem of biased estimation caused when the open-loop subspace identification algorithm is applied to the closed-loop identification. A simulation example is given to show the effectiveness of the proposed approach. In final, the practicability of the identification algorithm is verified by hardware test of UAV servo system in real environment.

  2. Vector current scattering in two dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Fleishon, N.L.

    1979-04-01

    The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references

  3. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  4. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  5. Angular studies of the magnetoresistance in the density wave state of the quasi-two-dimensional purple bronze KMo6O17

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.

    2007-07-01

    The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.

  6. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  7. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun; Guo, Z. B.; Mi, W. B.; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number

  8. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  9. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  10. Index Formulae for Subspaces of Kreĭn Spaces

    NARCIS (Netherlands)

    Dijksma, Aad; Gheondea, Aurelian

    1996-01-01

    For a subspace S of a Kreĭn space K and an arbitrary fundamental decomposition K = K-[+]K+ of K, we prove the index formula κ-(S) + dim(S⊥ ∩ K+) = κ+(S⊥) + dim(S ∩ K-), where κ±(S) stands for the positive/negative signature of S. The difference dim(S ∩ K-) - dim(S⊥ ∩ K+), provided it is well

  11. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  12. Dynamics of a two-dimensional order-disorder transition

    International Nuclear Information System (INIS)

    Sahni, P.S.; Dee, G.; Gunton, J.D.; Phani, M.; Lebowitz, J.L.; Kalos, M.

    1981-01-01

    We present results of a Monte Carlo study of the time development of a two-dimensional order-disorder model binary alloy following a quench to low temperature from a disordered, high-temperature state. The behavior is qualitatively quite similar to that seen in a recent study of a three-dimensional system. The structure function exhibits a scaling of the form K 2 (t)S(k,t) = G(k/K(t)) where the moment K(t) decreases with time approximately like t/sup -1/2/. If one interprets this moment as being inversely proportional to the domain size, the characteristic domain growth rate is proportional to t/sup -1/2/. Additional insight into this time evolution is obtained from studying the development of the short-range order, as well as from monitoring the growth of a compact ordered domain embedded in a region of opposite order. All these results are consistent with the picture of domain growth as proposed by Lifshitz and by Cahn and Allen

  13. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  14. Long-range inverse two-spin correlations in one-dimensional Potts lattices

    International Nuclear Information System (INIS)

    Tejero, C.F.; Cuesta, J.A.; Brito, R.

    1989-01-01

    The inverse two-spin correlation function of a one-dimensional three-state Potts lattice with constant nearest-neighbor interactions in a uniform external field is derived exactly. It is shown that the external field induces long-range correlations. The inverse two-spin correlation function decays in a monotonic exponential fashion for a ferromagnetic lattice, while it decays in an oscillatory exponential fashion for an antiferromagnetic lattice. With no external field the inverse two-spin correlation function has a finite range equal to that of the interactions

  15. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities

    International Nuclear Information System (INIS)

    Barrett, S.D.; Kok, Pieter; Spiller, T.P.; Nemoto, Kae; Beausoleil, R.G.; Munro, W.J.

    2005-01-01

    We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr nonlinearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is nondestructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a nondestructive Bell-state detector

  16. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

    2007-01-01

    The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

  17. Fermion emission in a two-dimensional black hole space-time

    International Nuclear Information System (INIS)

    Wanders, G.

    1994-01-01

    We investigate massless fermion production by a two-dimensional dilatonic black hole. Our analysis is based on the Bogoliubov transformation relating the outgoing fermion field observed outside the black hole horizon to the incoming field present before the black hole creation. It takes full account of the fact that the transformation is neither invertible nor unitarily implementable. The particle content of the outgoing radiation is specified by means of inclusive probabilities for the detection of sets of outgoing fermions and antifermions in given states. For states localized near the horizon these probabilities characterize a thermal equilibrium state. The way the probabilities become thermal as one approaches the horizon is discussed in detail

  18. Few-body bound states on a three-dimensional and two-dimensional lattice and continuum limit for one-dimensional many-body system

    International Nuclear Information System (INIS)

    Rudin, S.I.

    1984-01-01

    The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/

  19. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  20. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  1. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  2. Cumulant-Based Coherent Signal Subspace Method for Bearing and Range Estimation

    Directory of Open Access Journals (Sweden)

    Bourennane Salah

    2007-01-01

    Full Text Available A new method for simultaneous range and bearing estimation for buried objects in the presence of an unknown Gaussian noise is proposed. This method uses the MUSIC algorithm with noise subspace estimated by using the slice fourth-order cumulant matrix of the received data. The higher-order statistics aim at the removal of the additive unknown Gaussian noise. The bilinear focusing operator is used to decorrelate the received signals and to estimate the coherent signal subspace. A new source steering vector is proposed including the acoustic scattering model at each sensor. Range and bearing of the objects at each sensor are expressed as a function of those at the first sensor. This leads to the improvement of object localization anywhere, in the near-field or in the far-field zone of the sensor array. Finally, the performances of the proposed method are validated on data recorded during experiments in a water tank.

  3. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods.......We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...

  4. The Penalty Cost Functional for the Two-Dimensional

    Directory of Open Access Journals (Sweden)

    Victor Onomza WAZIRI

    2006-07-01

    Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.

  5. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    Energy Technology Data Exchange (ETDEWEB)

    Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  6. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    Science.gov (United States)

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  7. ASCS online fault detection and isolation based on an improved MPCA

    Science.gov (United States)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  8. Massive quantum field theory in two-dimensional Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Bunch, T.S.; Christensen, S.M.; Fulling, S.A.

    1978-01-01

    The stress tensor of a massive scalar field, as an integral over normal modes (which are not mere plane waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormalization ansatz suggested by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees with the explicit results of Bernard and Duncan for a special model, and (3) has a nonzero vacuum expectation value in the two-dimensional ''Milne universe'' (flat space in hyperbolic coordinates). Following Wald, we prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the renormalization procedure. The general approach of this paper is applicable to four-dimensional models

  9. Necessary and sufficient condition for distillability with unit fidelity from finite copies of a mixed state: The most efficient purification protocol

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    It is well known that any entangled mixed state in 2x2 systems can be purified via infinite copies of the mixed state. But, can one distill a pure maximally entangled state from finite copies of a mixed state in any bipartite system by local operation and classical communication? This is more meaningful in practical application. We give a necessary and sufficient condition for this distillability. This condition requires that there exist distillable subspaces. According to this condition, one can judge easily whether a mixed state is distillable or not. We also analyze some properties of distillable subspaces, and discuss the most efficient purification protocol. Finally, we discuss the distillable enanglement of a two-qubit system for the case of finite copies

  10. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  11. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Boom, R.M.; Rinzema, A.

    2002-01-01

    A previously published two-dimensional discrete particle simulation model for radial mixing behavior of various slowly rotating drums for solid-state fermentation (SSF) has been extended to a three-dimensional model that also predicts axial mixing. Radial and axial mixing characteristics were

  13. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  14. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  15. Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    International Nuclear Information System (INIS)

    Reid, Ivan D; Lopes, Raul H C; Hobson, Peter R

    2012-01-01

    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.

  16. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  17. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  18. On the Aharonov-Casher system and the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.

    2012-01-01

    We study the quantum dynamics of a neutral particle in the Aharonov-Casher system and in the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring, a quantum dot, and a quantum anti-dot potentials described by the Tan-Inkson model [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)]. We show, in the Aharonov-Casher system, that bound states can be achieved when the neutral particle is confined to the two-dimensional quantum ring and the quantum dot and discuss the appearance of persistent currents. In the Landau-Aharonov-Casher system, we show that bound states can be achieved when the neutral particle is confined to the quantum anti-dot, quantum dot, and the two-dimensional quantum ring, but there are no persistent currents.

  19. Margin-Wide Earthquake Subspace Scanning Along the Cascadia Subduction Zone Using the Cascadia Initiative Amphibious Dataset

    Science.gov (United States)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2017-12-01

    Understanding the spatial extent and behavior of the interplate contact in the Cascadia Subduction Zone (CSZ) may prove pivotal to preparation for future great earthquakes, such as the M9 event of 1700. Current and historic seismic catalogs are limited in their integrity by their short duration, given the recurrence rate of great earthquakes, and by their rather high magnitude of completeness for the interplate seismic zone, due to its offshore distance from these land-based networks. This issue is addressed via the 2011-2015 Cascadia Initiative (CI) amphibious seismic array deployment, which combined coastal land seismometers with more than 60 ocean-bottom seismometers (OBS) situated directly above the presumed plate interface. We search the CI dataset for small, previously undetected interplate earthquakes to identify seismic patches on the megathrust. Using the automated subspace detection method, we search for previously undetected events. Our subspace comprises eigenvectors derived from CI OBS and on-land waveforms extracted for existing catalog events that appear to have occurred on the plate interface. Previous work focused on analysis of two repeating event clusters off the coast of Oregon spanning all 4 years of deployment. Here we expand earlier results to include detection and location analysis to the entire CSZ margin during the first year of CI deployment, with more than 200 new events detected for the central portion of the margin. Template events used for subspace scanning primarily occurred beneath the land surface along the coast, at the downdip edge of modeled high slip patches for the 1700 event, with most concentrated at the northwestern edge of the Olympic Peninsula.

  20. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Malkova, N; Kim, S; Gopalan, V

    2003-01-01

    In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides