WorldWideScience

Sample records for two-dimensional sodium dodecyl

  1. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    Science.gov (United States)

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines.

  2. Surface and thermodynamic properties of sodium dodecyl sulphate and sodium dodecyl sulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Janczuk, B. [Dept. de Fisica, Facultad de Ciencias, Univ. de Extremadura, Badajoz (Spain); Gonzalez-Martin, M.L. [Dept. de Fisica, Facultad de Ciencias, Univ. de Extremadura, Badajoz (Spain); Bruque, J.M. [Dept. de Fisica, Facultad de Ciencias, Univ. de Extremadura, Badajoz (Spain); Dorado-Calasanz, C. [Dept. de Fisica, Facultad de Ciencias, Univ. de Extremadura, Badajoz (Spain)

    1996-09-01

    Determinations of the surface tension of aqueous solutions of sodium dodecyl sulphate and sodium dodecyl sulphonate were made in the presence of a neutral salt (NaCl; 0.1 M) at 20 C. On the basis of these determinations the isotherms and the standard thermodynamic parameters of adsorption were determined. The equation of state for a monolayer film of the studied surfactants was also discussed. A linear dependence was found between log {Gamma} and log c in the range of low surfactant concentrations. The limiting value of {Pi} (A-A{sub 0}) was found to be 1 kT in contrary to the case in which the solutions were made in the absence of neutral salt. It has been suggested that there are not only attractive forces of the Lifshitz-van der Waals type but also acid-base forces which can affect the {Pi} parameter. (orig.) [Deutsch] Die Grenzflaechenspannung waessriger Loesungen von Natriumdodecylsulfat und Natriumdodecylsulfonat bei 20 C in Gegenwart eines Neutralsalzes (0,1 M NaCl) wurde bestimmt. Auf der Grundlage dieser Messungen wurden die Isothermen und die thermodynamischen Standardgroessen der Adsorption ermittelt. Die Zustandsgleichung fuer einen monomolekularen Film der untersuchten Tenside wird diskutiert. Es wurde eine lineare Beziehung zwischen log {Gamma} und log c fuer niedrige Tensidkonzentrationen gefunden. Ferner wurde festgestellt, dass der Grenzwert von {Pi} (A-A{sub 0}) in den Loesungen gleich 1 kT ist, anders als bei Abwesenheit eines Neutralsalzes. Daraus wurde geschlossen, dass nicht nur Anziehungskraefte des Lifshitz-van der Waals-Typs vorliegen, sondern auch Saeure-Base-Kraefte, die die {Pi}-Parameter beeinflussen koennen. (orig.)

  3. Phase Behavior and Structural Transitions in Sodium Dodecyl Sulfonate Microemulsions

    Institute of Scientific and Technical Information of China (English)

    杨根生; 施介华; 等

    2002-01-01

    The forming mechanism of microemulsion of sodium dodecyl sulfonate.alcohols,water and isooctane was studied,with particular emphasis on the effect of molecular weight and concentration of alocohols.Phase diagram of the four components,alcohol, sodium dodecyl sulfonate,water and isooctane,was used as a means of study,through which the microemulsion regions were determined.Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at km=2(km=Wn-pentanol/WSDS)is presented. The variation of conductivities of different microemulsion samples with water was measured.From the conductivities we investigated a change in structure from water droplets in oil(W/O)at low water content to liquid crystal at intermediate water content and a structure of oil droplets in water(O/W)at high water content.

  4. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to Pse

  5. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to

  6. Green synthesis of gold nanoparticles reduced and stabilized by sodium glutamate and sodium dodecyl sulfate.

    Science.gov (United States)

    Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2017-03-18

    The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    Arghya Dey; G Naresh Patwari

    2011-11-01

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of cationic (CTAB) or neutral (Trition X -100) surfactants. ESPT of C-102 was also observed in aqueous solutions but on addition of very high concentrations of hydrochloric acid. However, on comparing the ratio of the protonated species from the emission spectra in the presence and absence of SDS micelle, a conclusive estimation of the local proton concentration at the Stern layer of SDS micelles could be evaluated.

  8. Ionic quenching of naphthalene fluorescence in sodium dodecyl sulfate micelles.

    Science.gov (United States)

    Silva, Alessandra F; Fiedler, Haidi D; Nome, Faruk

    2011-03-31

    Micellar effects on luminescense of organic compounds or probes are well established, and here we show that quenching is highly favored in aqueous sodium dodecyl sulfate (SDS) micelles, which concentrate a naphthalene probe and cations of lanthanides, transition metals, and noble metals. Interactions have been studied by steady state and time-resolved fluorescence in examining the fluorescence suppression of naphthalene by metal ions in anionic SDS micelles. The quenching is collisional and correlated with the unit charge and the reduction potential of the metal ion. The rate constants, calculated in terms of local metal ion concentrations, are close to the diffusion control limit in the interior of SDS micelles, where the microscopic viscosity decreases the transfer rate, following the Stokes-Einstein relation.

  9. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.

    Science.gov (United States)

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2007-09-27

    The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.

  10. Location of ethanol in sodium dodecyl sulfate aggregates

    Institute of Scientific and Technical Information of China (English)

    LIU, Tian-Qing; YU, Wei-Li; GUO, Rong

    2000-01-01

    The hexagonal liquid crystalline phase of SDS ( Sodium dodecyl sulfate)/H2O system changes into lamellar liquid crystal and the effective length of surfactant molecule d0/2 in the lamellar liquid crystal decreases with the addition of ethanol.The micellar aggregation number N of SDS decreases and the micellar diffusion coefficient increases with the added ethanol.Under a constant concentration of SDS, the molecule number ratio of ethanol to SDS in the micelle increases with the concentration of ethanol and even exceeds 10 when ethanol concentration is 1.085 mol/L. All these results show that ethanol, even though a short chain alcohol and soluble in water, can partly exist in the interphase of the amphiphilic aggregates showing some properties of co-surfactant.

  11. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin.

    Science.gov (United States)

    Wu, Xilong; Hou, Jing; Li, Mingzhong; Wang, Jiangnan; Kaplan, David L; Lu, Shenzhou

    2012-07-01

    The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of β-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering.

  12. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions.

  13. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  14. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    Science.gov (United States)

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  15. The Electrooxidation of Tetracycline at Acetylene Black Electrode in the Presence of Sodium Dodecyl Sulfate

    Institute of Scientific and Technical Information of China (English)

    Xue Ping DANG; Cheng Guo HU; Ying Liang WEI; Sheng Shui HU

    2004-01-01

    The electrooxidation of tetracycline (TC) at acetylene black electrode has been studied in the presence of sodium dodecyl sulfate (SDS). Tetracycline (TC) exhibited very sensitive oxidation peak in this system. The peak current was proportional to TC concentration, and the detection limit was 1.2 × 10-8 mol/L. The system was used to the determination of TC in pharmaceuticals.

  16. CLONING AND SEQUENCING OF PSEUDOMONAS GENES DETERMINING SODIUM DODECYL-SULFATE BIODEGRADATION

    NARCIS (Netherlands)

    DAVISON, J; BRUNEL, F; PHANOPOULOS, A; PROZZI, D; TERPSTRA, P

    1992-01-01

    The nucleotide sequences of two genes involved in sodium dodecyl sulfate (SDS) degradation, by Pseudomonas, have been determined. One of these, sdsA, codes for an alkyl sulfatase (58 957 Da) and has similarity (31.8% identity over a 201-amino acid stretch) to the N terminus of a predicted protein of

  17. The effects of deoxycholate and sodium dodecyl sulphate on the serological reactivity of antigens isolated from six Bacteroides reference strains

    NARCIS (Netherlands)

    I. Beckmann (Ilse); F. Meisel-Mikolajczyk; H.C.S. Wallenburg (Henk)

    1990-01-01

    markdownabstractAbstract The detergents sodium dodecyl sulphate (SDS) and sodium deoxycholate (NaD) are frequently used as solvents for macromolecular polysaccharide complexes in immunochemical and serological techniques. The influence of the disaggregating surfactants on the serological reactivit

  18. The effects of deoxycholate and sodium dodecyl sulphate on the serological reactivity of antigens isolated from six Bacteroides reference strains

    NARCIS (Netherlands)

    I. Beckmann (Ilse); F. Meisel-Mikolajczyk; H.C.S. Wallenburg (Henk)

    1990-01-01

    markdownabstractAbstract The detergents sodium dodecyl sulphate (SDS) and sodium deoxycholate (NaD) are frequently used as solvents for macromolecular polysaccharide complexes in immunochemical and serological techniques. The influence of the disaggregating surfactants on the serological

  19. Phospholipid containing mixed micelles. Characterization of diheptanoyl phosphatidylcholine (DHPC) and sodium dodecyl sulfate and DHPC and dodecyl trimethylammonium bromide.

    Science.gov (United States)

    Ranganathan, Radha; Vautier-Giongo, Carolina; Bakshi, Mandeep Singh; Bales, Barney L; Hajdu, Joseph

    2005-05-01

    Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.

  20. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy.

    Science.gov (United States)

    Xiao, Qian; Gu, Xiaohong; Tan, Suo

    2014-12-01

    Drying process of aqueous sodium alginate solutions at 50°C was investigated by ATR-FTIR spectroscopy and two-dimensional correlation infrared spectroscopy. Two-dimensional asynchronous spectrum at 1,800-1,350 cm(-1) wavenumber could be resolved into five separate bands, which were assigned to O-H bending vibrations in water (around 1,645 cm(-1)), antisymmetric and symmetric stretching vibrations of free and hydrogen-bonded COO(-) groups of alginate (around 1,595, 1,412, 1,572 and 1,390 cm(-1), respectively). As the drying process progressed, absorbance bands at around 1,127 and 1,035 cm(-1) significantly shifted to lower wavenumbers (1120 and 1027cm(-1), respectively). Suggesting that oxygen atoms at the 2th and 3th position in the pyranose ring might have hydrogen bonded with water or alginate chains. Further analysis using 2D asynchronous correlation spectroscopy between 1800-1500 and 1200-960 cm(-1) wavenumber regions revealed the sequence of spectral changes during the drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of sodium carboxymethyl cellulose by comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Shakun, Maria; Heinze, Thomas; Radke, Wolfgang

    2015-10-05

    Two series of sodium carboxymethyl celluloses (NaCMC) with average degrees of substitution (DS) ranging from 0.45 to 1.55 were synthesized from low molecular mass Avicel cellulose (Avicel samples) and from high molecular mass cotton linters (BWL samples). The samples were characterized by online two-dimensional liquid chromatography using gradient liquid adsorption chromatography in the first and size exclusion chromatography (SEC) in the second dimension. This method allows the simultaneous determination of the chemical composition (DS) and the molar mass distribution within the individual samples. Moreover information was obtained on the dependence of the elution volume in gradient chromatography on molar mass. As expected, evidence for a stronger influence of molar mass on gradient elution volume was found for the low molecular mass NaCMC as compared to the high molecular mass BWL samples. Finally the applicability of the method for the simultaneous separation of blends heterogeneous with respect to chemical composition (DS) and molar mass was demonstrated. Such blends cannot be efficiently separated by either SEC or gradient chromatography alone, nor by simply combining the results of both methods. Only the complete two-dimensional chromatogram can reveal the complexity of such blends, since it reveals the correlations between molar mass and chemical composition.

  2. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  3. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-05-30

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode materials for SIBs to date has been mainly limited to some traditional anodes for LIBs, such as carbonaceous materials. SnSe2 is a member of two dimensional layered transition metal dichalcogenide (TMD) family, which has been predicted to have high theoretical capacity as anode material for sodium ion batteries (756 mAh g-1), thanks to its layered crystal structure. Yet, there have been no studies on using SnSe2 as Na ion battery anode. In this thesis, we developed a simple synthesis method to prepare pure SnSe2 nanosheets, employing N2 saturated NaHSe solution as a new selenium source. The SnSe2 2D sheets achieve theoretical capacity during the first cycle, and a stable and reversible specific capacity of 515 mAh g-1 at 0.1 A g-1 after 100 cycles, with excellent rate performance. Among all of the reported transition metal selenides, our SnSe2 sample has the highest reversible capacity and the best rate performances. A combination of ex-situ high resolution transmission electron microscopy (HRTEM) and X-ray diffraction was used to study the mechanism of sodiation and desodiation process in this SnSe2, and to understand the reason for the excellent results that we have obtained. The analysis indicate that a combination of conversion and alloying reactions take place with SnSe2 anodes during battery operation, which helps to explain the high capacity of SnSe2 anodes for SIBs compared to other binary selenides. Density functional theory was used to elucidate the volume changes taking place in this important 2D material.

  4. Electrochemical Oxidation of L-Cysteine in Sodium Dodecyl Sulfate Admicelles

    Institute of Scientific and Technical Information of China (English)

    李中春; 刘天晴; 郭荣

    2005-01-01

    The electrochemical oxidation of L-cysteine can be catalyzed by sodium dodecyl sulfate (SDS) admicelles. The catalytic efficiency increases hardly when SDS concentration is lower than the critical admicelle concentration (CAC) and increases rapidly when SDS concentration is between CAC and the critical micelle concentration (CMC), but decreases when SDS concentration is higher than CMC. Both results of rate constant k0 and Gibbs free energy ΔGck accord with that of catalytic efficiency.

  5. Preparation and Catalytic Properties of Iron-Cerium Phosphates with Sodium Dodecyl Sulfate

    OpenAIRE

    Hiroaki Onoda; Takeshi Sakumura

    2012-01-01

    Iron phosphate was prepared from iron nitrate and phosphoric acid with sodium dodecyl sulfate at various stirring hours. The chemical composition of the obtained samples was estimated from ICP and XRD measurements. Particle shape and size distribution were observed by SEM images and laser diffraction/scattering methods. Further, the catalytic activity was studied with the decomposition of the complex between formaldehyde, ammonium acetate, and acetylacetone. The peaks of FePO4 were observed i...

  6. Small angle neutron scattering studies of mixed micelles of sodium cumene sulphonate with cetyl trimethylammonium bromide and sodium dodecyl sulphate

    Indian Academy of Sciences (India)

    K V Padalkar; V G Gaikar; V K Aswal

    2008-11-01

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with a dramatic increase in the CTAB aggregation number. Its addition to SDS on the other hand results in the formation of smaller mixed micelles where part of SDS molecules in the micelle is replaced by NaCS molecules.

  7. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.ir [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shahabi, Somayyeh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Apparent molar volume against molality: o, {center_dot}, and {Delta}, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, {Delta}, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research Highlights: > C{sub 12}H{sub 25}SO{sub 3}Na(SDSn) was seen to interact with PEG more weakly than C{sub 12}H{sub 25}SO{sub 4}Na(SDS). > The constraints on molecular mobility of SDS micelles are larger than those of SDSn. > Entropy change on micellization for SDSn is larger than those for SDS. > Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. > Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C{sub 12}H{sub 25}SO{sub 4}Na) or sodium dodecyl sulfonate (C{sub 12}H{sub 25}SO{sub 3}Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C{sub 12}H{sub 25}SO{sub 4}Na and C{sub 12}H{sub 25}SO{sub 3}Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C{sub 12}H{sub 25}SO{sub 4}Na/C{sub 12}H{sub 25}SO{sub 3}Na and PEG were studied and it was found that sodium alkyl sulfonates were seen

  8. Polarized synchronous light scattering characterization of the interaction of proteins with sodium dodecyl sulfonate

    Institute of Scientific and Technical Information of China (English)

    ZHAO XiaoHui; HUANG ChengZhi

    2007-01-01

    In acid buffer solution, proteins with positive charge can react with anion surfactant and result in a great enhancement of synchronous light scattering (SLS) signals. In this contribution, the correlative experiment was made to compare the interaction of human serum albumin (HAS) and immunoglobulin G (IgG) with sodium dodecyl sulfonate (SDS). Based on the measurements of the polarization light scattering signals, a new method of scattering polarization was constituted to distinguish these two interaction systems with molecular weight difference (HAS 66 kDa; IgG 150 kDa). The results were consistent with the data measured by dynamic light scattering (DLS) technique.

  9. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... by aqueous 50% propan-2-ol containing a Tris-borate buffer, pH 8.6. The presence of the buffer facilitates the consecutive complete reduction of the extracted protein in the alcohol. Reduction and alkylation in the buffer containing propan-2-ol give sharper bands in the electrophoresis than reduction...

  10. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  11. Complexation between Sodium Poly(styrenesulfonate) and Alkyltrimethylammonium Bromides in the Presence of Dodecyl Maltoside.

    Science.gov (United States)

    Fegyver, Edit; Mészáros, Róbert

    2015-04-23

    In the present paper, the impact of dodecyl maltoside (C12G2) on the association of sodium poly(styrenesulfonate) (PSS) with dodecyl- and hexadecyltrimethylammonium bromides (DTAB and CTAB) was studied. A low amount of nonionic surfactant enhances the binding of the investigated cationic amphiphiles on PSS, reducing the cationic surfactant-to-polyanion ratio needed for charge neutralization and precipitation. This effect is more pronounced for DTAB than for CTAB due to the considerably higher free surfactant concentration of the former cationic amphiphile. The synergistic surfactant binding also affects the nonequilibrium features of PSS/CTAB association via enhancing the kinetically stable concentration range of overcharged polyion/surfactant nanoparticle dispersions. With increasing C12G2 concentration, however, an opposite effect of the uncharged additive dominates. Namely, the CTAB molecules are solubilized excessively into mixed surfactant micelles, which reduces the surface charge of the PSS/CTAB/C12G2 nanoparticles and thus destabilizes their dispersion. At appropriately large nonionic surfactant concentrations, the binding of CTAB is largely reduced, resulting in the redissolution of the precipitate. In contrast, neither the destabilization nor the resolubilization effects of the added dodecyl maltoside were observed for the PSS/DTAB system due to the much lower driving force of DTAB binding compared to CTAB. Our results clearly demonstrate that the alkyl chain length of the ionic amphiphile has a pronounced effect on both the equilibrium and nonequilibrium aspects of polyion/mixed surfactant complexation which might be further exploited in various next generation applications.

  12. Study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; Khoukh, Abdel; François, Jeanne

    2004-07-01

    Sodium dodecyl sulfate (SDS)-poly(propylene oxide) methacrylate (PPOMA) (of molecular weight M(w) = 434 g x mol(-1)) mixtures have been studied using conductimetry, static light scattering, fluorescence spectroscopy, and 1H NMR. It has been shown that SDS and PPOMA form mixed micelles, and SDS and PPOMA aggregation numbers, N(ag SDS) and N(ag PPOMA), have been determined. Total aggregation numbers of the micelles (N(ag SDS) + N(ag PPOMA)) and those of SDS decrease upon increasing the weight ratio R = PPOMA/SDS. Localization of PPOMA inside the mixed micelles is considered (i) using 1H NMR to localize the methacrylate function at the hydrophobic core-water interface and (ii) by studying the SDS-PPO micellar system (whose M(w) = 400 g x mol(-1)). Both methods have indicated that the PPO chain of the macromonomer is localized at the SDS micelle surface. Models based on the theorical prediction of the critical micellar concentration of mixed micelles and structural model of swollen micelles are used to confirm the particular structure proposed for the SDS-PPOMA system, i.e., the micelle hydrophobic core is primarily composed of the C12 chains of the sodium dodecyl sulfate, the hydrophobic core-water interface is made up of the SDS polar heads as well as methacrylate functions of the PPOMA, the PPO chains of the macromonomer are adsorbed preferentially on the surface, i.e., on the polar heads of the SDS.

  13. Effect of 1-Butyl-3-methylimidazolium Halide on the Relative Stability between Sodium Dodecyl Sulfate Micelles and Sodium Dodecyl Sulfate-Poly(ethylene oxide) Nanoaggregates.

    Science.gov (United States)

    Ferreira, Gabriel M Dias; Ferreira, Guilherme M Dias; Agudelo, Álvaro J Patiño; Hespanhol da Silva, Maria C; Rezende, Jaqueline de Paula; Pires, Ana Clarissa Dos Santos; da Silva, Luis Henrique Mendes

    2015-12-24

    It is well-known that ionic liquids (ILs) alter the properties of aqueous systems containing only surfactants. However, the effect of ILs on polymer-surfactant systems is still unknown. Here, the effect of 1-butyl-3-methylimidazolium bromide (bmimBr) and chloride (bmimCl) on the micellization of sodium dodecyl sulfate (SDS) and its interaction with poly(ethylene oxide) (PEO) was evaluated using conductimetry, fluorimetry, and isothermal titration calorimetry. The ILs decreased the critical micellar concentration (cmc) of the surfactant, stabilizing the SDS micelles. A second critical concentration (c2thc) was verified at high SDS concentrations, due to the micelle size decrease. The stability of PEO/SDS aggregates was also affected by ILs, and the critical aggregation concentration (cac) of SDS increased. Integral aggregation enthalpy changed from -0.72 in water to 2.16 kJ mol(-1) in 4.00 mM bmimBr. IL anions did not affect the SDS micellization or the beginning of PEO/SDS aggregation. Nevertheless, when chloride was replaced with bromide, the amount of SDS bound to the polymer increased. At 100.0 mM IL, the PEO-SDS interaction vanished. We suggest that the effect of ILs comes from participating in the structure of the formed aggregates, interacting with the SDS monomers at the core/interface of the micelles, and promoting preferential solvation of the polymer.

  14. Effect of Anionic Surfactant on the Thermo Acoustical Properties of Sodium Dodecyl Sulphate in Polyvinyl Alcohol Solution by Ultrasonic Method

    Directory of Open Access Journals (Sweden)

    S. Ravichandran

    2011-01-01

    Full Text Available The interaction of sodium dodecyl sulphate (SDS / poly(vinyl alcohol (PVA solution was studied by ultrasonic velocity measurements. Ultrasonic velocity, density, viscosity in mixtures of sodium dodecyl sulphate in polyvinyl alcohol was measured over the entire range of composition. From the experimental data, other related thermodynamic parameters, viz., adiabatic compressibility, intermolecular free length, surface tension, relative association, relaxation time, absorption coefficient and internal pressure were calculated. Formations of rods interfere with velocity of ultrasonic waves. Hence the ultrasonic velocity decreases with concentration. These results were interpreted in terms of polymer-surfactant complex reactions.

  15. Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions

    Indian Academy of Sciences (India)

    E Günıster; S İşçı; A Alemdar; N Güngör

    2004-06-01

    The present study reports the effect of anionic surfactant sodium dodecyl sulfate (SDS, C12H25 OSO3Na) upon the electrokinetic (electrophoretic mobility, zeta potential) and rheological (viscosity, yield value) properties of the Ca-bentonitic clay found in Turkey and its Na-activated form. The SDS dispersant was added in different concentrations in the range of 1 × 10-5-5 × 10-2 mol/l. The results show that the viscosity and zeta potential values of bentonite dispersion are affected by the addition of anionic surfactant. The obtained data are analysed by considering the kind of exchangeable cations. Thixotropic property effect was observed in bentonite dispersions.

  16. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  17. Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir

    Science.gov (United States)

    Ahmadi, Mohammad Ali

    2016-12-01

    One of the prominent enhanced oil recovery (EOR) methods in oil reservoirs is surfactant flooding. The purpose of this research is to study the effect of nanoparticles on the surfactant adsorption. Real reservoir sandstone rock samples were implemented in adsorption tests. The ranges of the initial surfactant and nano silica concentrations were from 500 to 5000 ppm and 500 ppm to 2000 ppm, respectively. The commercial surfactant used is sodium dodecyl sulfate (SDS) as an ionic surfactant and two different types of nano silica were employed. The rate of surfactant losses extremely depends on the concentration of surfactant in the system, and it was found that the adsorption of surfactant decreased with increasing the concentration of nano silica. Also, it was found that hydrophobic nano silica is more effective than hydrophilic nanoparticles.

  18. Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate.

    Science.gov (United States)

    Li, Zhaofeng; Wang, Jian; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Kowalczyk, Agnieszka

    2014-01-01

    Sodium dodecyl sulfate (SDS) was used to improve the performance of starch-based wood adhesive. The effects of SDS on shear strength, viscosity and storage stability were investigated. It was shown that, although the addition of 1.5-2% (dry starch basis) SDS resulted in a slight decrease in shear strength, the mobility and storage stability of adhesive were significantly enhanced. Possible mechanisms regarding specific action of SDS were discussed. It was proved, using blue value or differential scanning calorimetry (DSC) analysis, that the amylose-SDS complexes were formed in the adhesive. The complex formation or simple adsorption of SDS with starch molecules might hinder the aggregation of latex particles, as shown by scanning electron microscopy images, and inhibit starch retrogradation, as observed by DSC analysis. As a result, in the presence of SDS, the adhesive had higher mobility and storage stability, indicating that SDS could be used to prepare starch-based wood adhesives with high performance.

  19. Combined Quenching Mechanism of Anthracene Fluorescence by Cetylpyridinium Chloride in Sodium Dodecyl Sulfate Micelles.

    Science.gov (United States)

    Soemo, Angela R; Pemberton, Jeanne E

    2014-03-01

    The Stern-Volmer quenching constant (KSV) for quenching of anthracene fluorescence in sodium dodecyl sulfate (SDS) micelles by pyridinium chloride has been reported previously to be 520 M(-1) based on steady state fluorescence measurements. However, such measurements cannot distinguish static versus dynamic contributions to the overall quenching. In the work reported here, the quenching dynamics of anthracene in SDS micelles by cetylpyridinium chloride (CPC), an analogue of pyridinium chloride, were investigated using both steady state and time resolved fluorescence quenching. Concurrent measurement of the decrease in fluorescence intensity and lifetime of anthracene provide a quantitative evaluation of collision induced (i.e. dynamic) versus complex formation (i.e. static) quenching of the anthracene fluorophore. The results reveal that a combined quenching mechanism is operative with approximately equal constants of 249 ± 6 M(-1) and 225 ± 12 M(-1) for dynamic and static quenching, respectively.

  20. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  1. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    Science.gov (United States)

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  2. Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Bos, T.A.; Rutten, A.A.J.J.L.

    1995-01-01

    Epidermal cell proliferation and differentiation were investigated in vitro after exposure to the anionic surfactant sodium dodecyl sulfate (SDS). Human skin organ cultures were exposed topically to various concentrations of SDS for 22 h, after which the irritant was removed. Cell proliferation was

  3. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Science.gov (United States)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  4. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita;

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...

  5. Impact of sodium dodecyl sulphate on the dissolution of poorly soluble drug into biorelevant medium from drug-surfactant discs

    DEFF Research Database (Denmark)

    Madelung, Peter; Ostergaard, Jesper; Bertelsen, Poul

    2014-01-01

    The purpose was to elucidate the mechanism of action of sodium dodecyl sulphate (SDS) on drug dissolution from discs under physiologically relevant conditions. The effect of incorporating SDS (4-30%, w/w) and drug into discs on the dissolution constant and solubility were evaluated for the poorly...

  6. Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil.

    Science.gov (United States)

    Halmi, M I E; Hussin, W S W; Aqlima, A; Syed, M A; Ruberto, L; MacCormack, W P; Shukor, M Y

    2013-11-01

    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.

  7. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE of urinary protein in acute kidney injury

    Directory of Open Access Journals (Sweden)

    Sufi M Suhail

    2011-01-01

    Full Text Available Recent experimental and clinical studies have shown the importance of urinary proteomics in acute kidney injury (AKI. We analyzed the protein in urine of patients with clinical AKI using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE for its diagnostic value, and followed them up for 40 months to evaluate prognosis. Urine from 31 consecutive cases of AKI was analyzed with SDS-PAGE to determine the low, middle and high molecular weight proteins. Fractional excretion of sodium (FENa was estimated from serum and urine creatinine and sodium (Na. The cases were followed-up for 40 months from the end of the recruitment of study cases. Glomerular protein was higher in the hematuria group when compared with the non-hematuria group (P <0.04 and in the AKI group than in the acute on chronic renal failure (AKI-on-CRF group (P <0.002. Tubular protein was higher in the AKI-on-CRF group (P <0.003 than in the AKI group. Tubular protein correlated with FENa in groups with diabetes mellitus (DM, AKI-on-CRF, and without hematuria (P <0.03, P <0.02 and P <0.004, respectively. Pattern of protein did not differ between groups with and without DM and clinical acute tubular necrosis (ATN. At the end of 40 months follow-up, category with predominantly glomerular protein progressed to chronic renal failure (CRF or end-stage renal failure in higher proportion (P <0.05. In clinical AKI, we observed that glomerular protein dominated in cases with glomerular insult, as indicated by hematuria. Tubular protein was common in the study cases with CRF, DM and cases without hematuria. This indicates tubulo-interstitial injury for AKI in these cases. Patients with predominantly glomerular protein had an adverse outcome.

  8. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2012-08-15

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}·6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ► NiSe nanostructures were synthesized by hydrothermal method. ► A novel Se source was used to synthesize NiSe. ► SDBS as capping agent plays a crucial role on the morphology of products. ► A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ► A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}·6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were

  9. A new insight on the dynamics of sodium dodecyl sulfate aqueous micellar solutions by dielectric spectroscopy.

    Science.gov (United States)

    Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C

    2009-02-01

    Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.

  10. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    Science.gov (United States)

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  11. Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate.

    Science.gov (United States)

    Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo

    2011-07-28

    Several pieces of experimental evidence of condensation of soluble surfactant molecules, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), into the air/water surface region from the bulk solution are presented at different added salt concentrations in order to substantiate that the concentrated molecules do not locate just at the air/solution interface. The insoluble monolayer just at the air/subphase interface for the two surfactants could be studied by surface pressure (π) versus molecular surface area (A), surface potential (ΔV) versus the area (A), infrared absorption of the surface region, and BAM (Brewster angle microscope) image. From surface tension versus concentration curves for the two surfactant solutions, the apparent molecular surface area and the cmc values were determined at different added salt concentrations, and the degree of counterion binding to micelle was found to be 0.70 and 0.73 for CTAB and SDS, respectively. Further examination was made on infrared absorption from the surface region of the surfactant solutions and on BAM images of the surface planes in order to examine the difference between the insoluble monolayer and the condensation in the surface region. Finally, the new concept of bilayer or bilamellar aggregate for soluble surfactant solutions is presented together with the former experimental evidence, which is consistent with several interfacial phenomena of the surfactant solutions.

  12. Effect of Addition of Sodium Dodecyl Sulfite on Physical Properties of Wheat Gluten Films

    Institute of Scientific and Technical Information of China (English)

    ZENG Yuwei; ZHAO Mouming; WANG Jinshui

    2005-01-01

    Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addition of SDS in wheat glutens prior to forming films significantly increased the elongation at break(E) (P<0.05) and reduced notably the water vapor permeability(WVP) (P<0.05). In contrast,a decrease in the tensile strength(TS) of the films from gluten containing-SDS was found.Moreover,a significant decrease in PO2 and PCO2 of films from gluten treated with SDS was noticed. Although SDS-treated gluten film was slightly more yellow and darker than control one, it was not visually detrimental. It is indicated that the treatment with SDS prior to forming films greatly enhances the mechanical properties of wheat gluten films.The obivous improvement in water vapor permeability and extensibility of gluten films means that the use of SDS is a potential choice for improving properties of gluten films. The edible film was used to preserve tomatoes. The experimental results show that the shelf life of tomatoes coated with the edible film is extended, and the nutritional quality is kept well.

  13. An investigation of chitosan and sodium dodecyl sulfate interactions in acetic media

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2016-01-01

    Full Text Available Polymer/surfactant association is a cooperative phenomenon where surfactant binds to the polymer in the form of aggregates, usually through electrostatic or hydrophobic forces. As already known, polyelectrolytes may interact with oppositely charged surfactants through electrostatic attraction that results in polymer/surfactant complex formation. This behavior could be desirable in wide range of application of polymer/surfactant mixtures, such as improving colloid stability, gelling, emulsification and microencapsulation. In the present study surface tension, turbidity, viscosity and electrophoretic mobility measurements were used to investigate interactions of cationic polyelectrolyte chitosan (Ch and oppositely charged anionic surfactant, sodium dodecyl sulfate (SDS, in buffered water. Obtained results show the presence of interactions that lead to Ch/SDS complexes formation at all investigated pH and for all investigated polymer concentrations. Mechanisms of interaction, as well as characteristics of formed Ch/SDS complexes, are highly dependent on their mass ratio in the mixtures, while pH has no significant influence. [Projekat Ministarstva nauke Republike Srbije, br. II46010

  14. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7.

    Science.gov (United States)

    Yeldho, Deepthi; Rebello, Sharrel; Jisha, M S

    2011-01-01

    Sodium dodecyl sulphate (SDS), an anionic surfactant, has been used extensively due to its low cost and excellent foaming properties. Fifteen different bacterial isolates capable of degrading SDS were isolated from detergent contaminated soil by enrichment culture technique and the degradation efficiency was assessed by Methylene Blue Active Substances (MBAS) assay. The most efficient SDS degrading isolate was selected and identified as Pseudomonas aeruginosa S7. The selected isolate was found to harbor a single 6-kb plasmid. Acridine orange, ethidium bromide, SDS and elevated temperatures of incubation failed to cure the plasmid. The cured derivatives of SDS degrading Pseudomonas aeruginosa were obtained only when ethidium bromide and elevated temperature (40 °C) were used together. Transformation of E. coli DH5α with plasmid isolated from S7 resulted in subsequent growth of the transformants on minimal salt media with SDS (0.1%) as the sole source of carbon. The SDS degradation ability of S7 and the transformant was found to be similar as assessed by Methylene Blue Active Substance Assay. The antibiotic resistance profiles of S7, competent DH5α and transformant were analyzed and it was noted that the transfer of antibiotic resistance correlated with the transfer of plasmid as well as SDS degrading property.

  15. Microenvironment of tryptophan residues in beta-lactoglobulin derivative polypeptide-sodium dodecyl sulfate complexes.

    Science.gov (United States)

    Imamura, T; Konishi, K

    1992-06-01

    The changes of microenvironment of tryptophan residues in beta-lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) beta-lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing trytophan residue. The modification rates of Trp 19 in RCM beta-lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-L-trytophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.

  16. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    Science.gov (United States)

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  17. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311.

    Science.gov (United States)

    Ambily, P S; Jisha, M S

    2012-07-01

    The anionic surfactant sodium dodecyl sulphate (SDS), the core components of detergent and cosmetic product formulations, contributes significantly to the pollution profile of sewage and wastewater of all kinds. In this study, 44 SDS degrading strains were isolated by soil enrichment methods and the utilization efficiency was assessed by methylene blue active substances (MBAS) assay and High performance liquid chromatography (HPLC) method. Isolate S2 which showed maximum degradation was identified as Pseudomonas aeruginosa MTCC 10311 based on phenotypic features and 16 S rDNA typing. The isolate was found to harbor plasmid within the size range of 9-10 kb. The cured derivative of SDS degrading Pseudomonas aeruginosa was obtained at a frequency of 10.7% by incubation with ethidium bromide (500 mg ml(-1) at 40 degrees C. 96% of SDS degradation occurred at 1500 ppm level within 48 hr of incubation, whereas higher concentration of SDS (10000 ppm) showed only 20% degradation. The optimum temperature and pH was 30 degrees C and 7.5, respectively. The additional supplementation of carbon and nitrogen source increased the degradation capacity from 93 to 95% and 90 to 96% respectively within 36 hrs of incubation.

  18. Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate.

    Science.gov (United States)

    Reza, Dayer Mohammad; Akbar, Moosavi-Movahedi Ali; Parviz, Norouzi; Ghourchian; Hedayat-Olah; Shahrokh, Safarian

    2002-07-31

    The effect of sodium n-dodecyl sulphate (SDS) on hemoglobin autoxidation was studied in the presence of a 100 mM phosphate buffer (pH 7.0) by different methods. These included spectrophotometry, fluorescence technique, cyclic voltametry, differential scanning calorimetry, and densitometry. Spectroscopic studies showed that SDS concentrations up to 1 mM increased deoxy-, decreases oxy-, and had no significant effect on the met- conformation of hemoglobin. Therefore, a SDS concentration up to 1 mM increased the deoxy form of hemoglobin as the folded, compact state and decreases the oxy conformation. The turbidity measurements and differential scanning calorimetry techniques indicated a more stable conformation for hemoglobin in the presence of SDS up to 1 mM. Electrochemical studies also confirmed a more difficult oxidation under these conditions. The induction of the deoxy form in the presence of SDS was confirmed by densitometry techniques. The compact structure of deoxyhemoglobin blocks the formation of met-conformation in low SDS concentrations.

  19. Interaction of poly(N-isopropylacrylamide) with sodium dodecyl sulfate below the critical aggregation concentration.

    Science.gov (United States)

    Uehara, Nobuo; Ogawa, Minami

    2014-06-10

    Interaction between the thermoresponsive polymer poly(N-isopropylacrylamide) (P-NIP) and sodium dodecyl sulfate (SDS) both above and below its phase transition temperature was examined under dilute conditions. Above the lower critical solution temperature (LCST) of P-NIP (32 °C), 0.01 wt % P-NIP specifically interacted with 1.0 × 10(-5) mol/L SDS to form a precipitate. However, when SDS was added at concentrations above or below 1.0 × 10(-5) mol/L, the P-NIP solution remained clear above the LCST. A fluorometric probe, N-phenyl-naphthalene, indicated that the hydrophobicity of the aggregates composed of P-NIP and SDS changed at an SDS concentration of 1.0 × 10(-5) mol/L. Although the hydrophobicity of the precipitate was similar to that of P-NIP alone at less than 1.0 × 10(-5) mol/L, it approached that of SDS homomicelles as the SDS concentration increased above 1.0 × 10(-5) mol/L. Dynamic light scattering and turbidimetry studies showed no P-NIP phase transition above an SDS concentration of 1.0 × 10(-5) mol/L, which is much lower than the reported critical association concentration (CAC) of SDS with P-NIP. This indicates that P-NIP interacted with SDS above the LSCT at much lower SDS concentration than the reported CAC.

  20. Toxicity Biosensor for Sodium Dodecyl Sulfate Using Immobilized Green Fluorescent Protein Expressing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Green fluorescent protein (GFP is suitable as a toxicity sensor due to its ability to work alone without cofactors or substrates. Its reaction with toxicants can be determined with fluorometric approaches. GFP mutant gene (C48S/S147C/Q204C/S65T/Q80R is used because it has higher sensitivity compared to others GFP variants. A novel sodium dodecyl sulfate (SDS toxicity detection biosensor was built by immobilizing GFP expressing Escherichia coli in k-Carrageenan matrix. Cytotoxicity effect took place in the toxicity biosensor which leads to the decrease in the fluorescence intensity. The fabricated E. coli GFP toxicity biosensor has a wide dynamic range of 4–100 ppm, with LOD of 1.7 ppm. Besides, it possesses short response time (0.98, and long-term stability (46 days. E. coli GFP toxicity biosensor has been applied to detect toxicity induced by SDS in tap water, river water, and drinking water. High recovery levels of SDS indicated the applicability of E. coli GFP toxicity biosensor in real water samples toxicity evaluation.

  1. Nature of large aggregates in supercooled aqueous solutions of sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I. (Purdue Univ., West Lafayette, IN); Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1980-09-18

    Preparations of 2.0 and 5.5 wt % sodium dodecyl sulfate (SDS) in 3.5 wt % (0.6 M) aqueous NaCl are equilibrium micellar solutions above 28/sup 0/C, the Krafft point of the surfactant at this salinity. These systems can be supercooled and remain transparent for hours and days. At 25/sup 0/C at equilibrium they are biphasic, a hydrated crystal phase and an aqueous salt solution phase containing only 0.01/sub 2/ wt % SDS. Conductimetry and /sup 13/C NMR show that these transparent supercooled systems are indeed supersaturated solutions and not microdispersions of the hydrated crystal. The time lag for the onset of nucleation of the crystals depends strongly on stirring details and probably on presence of gas-liquid interface. The big nonequilibrium aggregates present in the supersaturated systems resemble micelles in conductivity and molecular motion, and are likely to be metastable micelles as is presumed by Mazer, Benedek, and Carey. 21 references, 6 figures, 1 table.

  2. Solvation dynamics of DCM in a polypeptide-surfactant aggregate: gelatin-sodium dodecyl sulfate.

    Science.gov (United States)

    Halder, Arnab; Sen, Pratik; Burman, Anupam Das; Bhattacharyya, Kankan

    2004-02-03

    Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to be 1780 ps, which is about 13 times slower than that in 15 mM SDS in KP buffer at the same temperature. The fluorescence anisotropy decay in gelatin-SDS aggregate is also different from that in SDS micelles in KP buffer. DCM displays negligible emission in the presence of gelatin in aqueous solution. Thus the solvation dynamics in the presence of gelatin and SDS is exclusively due to the probe (DCM) molecules at the gelatin-micelle interface. The slow solvation dynamics is ascribed to the restrictions imposed on the water molecules trapped between the polypeptide chain and micellar aggregates. The critical association concentration (cac) of SDS for gelatin is determined to be 0.5 +/- 0.1 mM.

  3. Atomistic Simulation of Solubilization of Polycyclic Aromatic Hydrocarbons in a Sodium Dodecyl Sulfate Micelle.

    Science.gov (United States)

    Liang, Xujun; Marchi, Massimo; Guo, Chuling; Dang, Zhi; Abel, Stéphane

    2016-04-19

    Solubilization of two polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAP, 2-benzene-ring PAH) and pyrene (PYR, 4-benzene-ring PAH), into a sodium dodecyl sulfate (SDS) micelle was studied through all-atom molecular dynamics (MD) simulations. We find that NAP as well as PYR could move between the micelle shell and core regions, contributing to their distribution in both regions of the micelle at any PAH concentration. Moreover, both NAP and PYR prefer to stay in the micelle shell region, which may arise from the greater volume of the micelle shell, the formation of hydrogen bonds between NAP and water, and the larger molecular volume of PYR. The PAHs are able to form occasional clusters (from dimer to octamer) inside the micelle during the simulation time depending on the PAH concentration in the solubilization systems. Furthermore, the micelle properties (i.e., size, shape, micelle internal structure, alkyl chain conformation and orientation, and micelle internal dynamics) are found to be nearly unaffected by the solubilized PAHs, which is irrespective of the properties and concentrations of PAHs.

  4. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS in Phosphate Beneficiation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-02-01

    Full Text Available Phosphate ore is a valuable strategic resource. Most phosphate ore in China is collophane. Utilization of mid-low grade collophane is necessary to maintain social sustainable development. The gravity-flotation combination separation process can be utilized to separate mid-low grade collophane, but the process consumes a large quantity of acid in the reverse stage. Sodium dodecyl sulfate (SDS was used as a dolomite collector in this study to reduce the acid consumption of collophane flotation. SDS effectively removed dolomite from the gravity concentrate when no other reagents were present. Flotation test results showed that, compared to the conventional gravity-flotation process, the proposed SDS-based process reduced phosphoric acid dosage from 6.1 kg/t to 3.9 kg/t with similar separation results. The SDS action mechanisms on dolomite were further investigated by zeta potential analysis, single mineral flotation tests, infrared spectrum detection, and theoretical analysis. The results indicate that the SDS adsorption on dolomite is mainly physical adsorption, and that favorable separation effects between collophane and dolomite may be attributed to physical adsorption and entrainment. In addition, it also indicates that the physical adsorption can be utilized to remove dolomite from phosphate on account of zeta potential differences when the separate feed is coarse.

  5. Two-dimensional radial acquisition technique with density adaption in sodium MRI.

    Science.gov (United States)

    Konstandin, Simon; Nagel, Armin M; Heiler, Patrick M; Schad, Lothar R

    2011-04-01

    Conventional 2D radial projections suffer from losses in signal-to-noise ratio efficiency because of the nonuniform k-space sampling. In this study, a 2D projection reconstruction method with variable gradient amplitudes is presented to cover the k-space uniformly. The gradient is designed to keep the average sampling density constant. By this, signal-to-noise ratio is increased, and the linear form of the radial trajectory is kept. The simple gradient design and low hardware requirements in respect of slew rate allow an easy implementation at MR scanners. Measurements with the density-adapted 2D radial trajectory were compared with the conventional projection reconstruction method. It is demonstrated that the density-adapted 2D radial trajectory technique provides higher signal-to-noise ratio (up to 28% in brain tissue), less blurring, and fewer artifacts in the presence of magnetic field inhomogeneities than imaging with the conventional 2D radial trajectory scheme. The presented sequence is well-suited for electrocardiographically gated sodium heart MRI and other applications with short relaxation times. Copyright © 2010 Wiley-Liss, Inc.

  6. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Ling; Wang, Jian [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai [Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Shih, Kaimin; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR (China); Lee, Po-Heng, E-mail: poheng76@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China)

    2016-11-15

    Highlights: • A thermodynamic approach to select a functional agent for adsorbent is proposed. • ITC and QCS were used to interpret the interaction between adsorbate and agent. • The interaction identifies the adsorption mechanism and performance. • This approach enables the manipulation of adsorption capacity optimization. - Abstract: This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C{sub 14}TAB and C{sub 14}HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  7. Micelles in mixtures of sodium dodecyl sulfate and a bolaform surfactant.

    Science.gov (United States)

    Muzzalupo, Rita; Gente, Giacomo; La Mesa, Camillo; Caponetti, Eugenio; Chillura-Martino, Delia; Pedone, Lucia; Saladino, Maria Luisa

    2006-07-04

    Mixtures composed of water, sodium dodecyl sulfate (SDS), and a bolaform surfactant with two aza-crown ethers as polar headgroups (termed Bola C-16) were investigated by modulating the mole ratios between the components. The two surfactants have ionic and nonionic, but ionizable, headgroups, respectively. The ionization is due to the complexation of alkali ions by the aza-crown ether unit(s). Structural, thermodynamic, and transport properties of the above mixtures were investigated. Results from surface tension, translational self-diffusion, and small angle neutron scattering (SANS) are reported and discussed. Interactions between the two surfactants to form mixed micelles result in a combination of electrostatic and hydrophobic contributions. These effects are reflected in the size and shape of the aggregates as well as in transport properties. The translational diffusion of the components in mixed micelles, in particular, depends on the Bola C-16/SDS mole ratio. Nonideality of mixing of the two components was inferred from the dependence of the critical micelle concentration, cmc, on the mole fraction of Bola C-16. This behavior is also reflected in surface adsorption and in the area per polar headgroup at the air-water interface. SANS data analysis for the pure components gives results in good agreement with previous findings. An analysis of data relative to mixed systems allows us to compute some structural parameters of the mixed aggregates. The dependence of aggregation numbers, nu(T), on the Bola C-16/SDS mole ratio displays a maximum that depends on the overall surfactant content and is rationalized in terms of the nonideality of mixing. Aggregates grow perpendicularly to the major rotation axis, as formerly observed in the Bola C-16 system, and become progressively ellipsoidal in shape.

  8. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS

    Directory of Open Access Journals (Sweden)

    A Kumar

    2011-05-01

    Full Text Available Background and objectives: Sodium Dodecyl Sulfate (SDS is one of the most widely used anionic detergents. The present study deals with isolation and identification of SDS-degrading bacteria from a detergent contaminated pond situated in Varanasi city, India."nMaterials and Methods: Employing enrichment technique in minimal medium (PBM, SDS-degrading bacteria were isolated from pond water sample. Rate of degradation of SDS was studied in liquid PBM and also degradation of different concentrations of SDS was also studied to find out maximum concentration of SDS degraded by the potent isolates. Alkyl sulfatase activity (key enzyme in SDS degradation was estimated in crude cell extracts and multiplicity of alkyl sulfatase was studied by Native PAGE Zymography. The potent isolate was identified by 16S rRNA sequence analysis."nResults: Using enrichment technique in minimal medium containing SDS as a sole carbon source, initially three SDS degrading isolates were recovered. However, only one isolate, SP3, was found to be an efficient degrader of SDS. It was observed that this strain could completely metabolize 0.1% SDS in 16 h, 0.2% SDS in 20 h and 0.3% SDS in 24 h of incubation. Specific activity of alkyl sulfatase was 0.087±0.004 μmol SDS/mg protein/min and Native PAGE Zymography showed presence of alkyl sulfatase of Rf value of 0.21. This isolate was identified as Pseudomonas putida strain SP3."nConclusion: This is the report of isolation of SDS-degrading strain of P. putida, which shows high rate of SDS degradation and can degrade up to 0.3% SDS. It appears that this isolate can be exploited for bioremediation of this detergent from water systems.

  9. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  10. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Matyushin, A. A. [Ministry of Public Health of the Russian Federation, First Moscow State Medical University (Russian Federation); Khotina, I. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Shtykova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  11. Extraction of plant proteins for two-dimensional electrophoresis

    OpenAIRE

    Granier, Fabienne

    1988-01-01

    Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.

  12. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  13. Optimal concentrations of N-decanoyl-N-methylglucamine and sodium dodecyl sulfate allow the extraction and analysis of membrane proteins.

    Science.gov (United States)

    Chuang, Jen-Hua; Kao, Yu-Jing; Ruderman, Neil B; Tung, Li-Chu; Lin, Yenshou

    2011-11-15

    We studied the extraction and analysis of integral membrane proteins possessing hydrophobic and hydrophilic domains and found that a nonionic detergent called MEGA-10, used in lysis buffers, had a superior extraction effect compared to most conventional detergents. A sodium dodecyl sulfate (SDS) concentration of >0.4% (w/v) in the sample buffer was crucial for those proteins to be clearly analyzed by electrophoresis and Western blotting. Furthermore, MEGA-10 had the tendency to maximally extract proteins around its critical micelle concentration (CMC) of 0.24% (w/v). These solutions can greatly assist functional investigations of membrane proteins in the proteomics era.

  14. Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulfate at the water/vapor interface: approaches from molecular dynamics simulations.

    Science.gov (United States)

    Chen, Meng; Lu, Xiancai; Liu, Xiandong; Hou, Qingfeng; Zhu, Youyi; Zhou, Huiqun

    2014-09-09

    Adsorption of surfactants at the water/vapor interface depends upon their chemical potential at the interface, which is generally temperature-dependent. Molecular dynamics simulations have been performed to reveal temperature influences on the microstructure of sodium dodecyl sulfate (SDS) molecule adsorption layer. At room temperature, SDS molecules aggregate at the interface, being in a liquid-expanded phase, whereas they tend to spread out and probably transit to a gaseous phase as the temperature increases to above 318 K. This phase transition has been confirmed by the temperature-dependent changes in two-dimensional array, tilt angles, and immersion depths to the aqueous phase of SDS molecules. The aggregation of SDS molecules accompanies with larger immersion depths, more coordination of Na(+) ions, and less coordination of water. Desorption free energy profiles show that higher desorption free energy appears for SDS molecules at the aggregate state at low temperatures, but no energy barrier is observed. The shapes of desorption free energy profiles depend upon the distribution of SDS at the interface, which, in turn, is related to the phase state of SDS. Our study sheds light on the development of adsorption thermodynamics and kinetics theories.

  15. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Rashid, Muhammad Abid [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Mansha, Asim [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-12-10

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔG{sub ads} and thermodynamic parameters like standard free energy of micellization, ΔG{sub m}, standard enthalpy of micellization, ΔH{sub m} and standard entropy of micellization, ΔS{sub m}. The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (K{sub x}), free energy of partition, ΔG{sub p}, binding constant, K{sub b}, free energy of binding, ΔG{sub b}, number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction.

  16. Quantitation of antihistamines in pharmaceutical preparations by liquid chromatography with a micellar mobile phase of sodium dodecyl sulfate and pentanol.

    Science.gov (United States)

    Gil-Agustí, M; Monferrer-Pons, L; Esteve-Romero, J; García-Alvarez-Coque, M C

    2001-01-01

    A reversed-phase liquid chromatographic procedure with a micellar mobile phase of sodium dodecyl sulfate (SDS), containing a small amount of pentanol, was developed for the control of 7 antihistamines of diverse action in pharmaceutical preparations (tablets, capsules, powders, solutions, and syrups): azatadine, carbinoxamine, cyclizine, cyproheptadine, diphenhydramine, doxylamine, and tripelennamine. The retention times of the drugs were <9 min with a mobile phase of 0.15M SDS-6% (v/v) pentanol. The recoveries with respect to the declared compositions were in the range of 93-110%, and the intra- and interday repeatabilities and interday reproducibility were <1.2%. The results were similar to those obtained with a conventional 60 + 40 (v/v) methanol-water mixture, with the advantage of reduced toxicity, flammability, environmental impact, and cost of the micellar-pentanol solutions. The lower risk of evaporation of the organic solvent dissolved in the micellar solutions also increased the stability of the mobile phase.

  17. Investigation on Molecular Non-covalent Interaction in the Sodium Dodecyl Benzene Sulfonatepolychrome Blue B-protein Replacement Reaction

    Institute of Scientific and Technical Information of China (English)

    GAO,Hong-Wen(郜洪文); WU,Ji-Rong(邬继荣); SHEN,Rong(沈荣)

    2004-01-01

    The molecular non-covalent interaction often originates from the electrostatic attraction and accords with the Langmuir isothermal adsorption. The sodium dodecyl benzene sulfonate (SDBS)-polychrome blue B (PCB)-protein [bovine serum albumin (BSA), ovalbumin (OVA) and myoglobin (MB)] ternary reaction has been investigated at Ph 3.88. Protein to replace PCB from the PCB-SDBS binding product was used to characterize the assembly of an invisible-spectral compound, SDBS, on proteins by measuring the variation of PCB light-absorption by the microsurface adsorption-spectral correction (MSASC) technique. The effect of ionic strength and temperature on the aggregation was studied. Results showed that the aggregates SDBS92·BSA, SDBS58·OVA and SDBS15·MB at 30 ℃ and SDBS83·BSA, SDBS39·OVA and SDBS10·MB at 50 ℃ are formed.

  18. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent.

    Science.gov (United States)

    El-Kosasy, Amira M; Hussein, Lobna A; Sedki, Nehal G; Salama, Nahla N

    2016-01-15

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at λ(ex) 257 nm and λ(em) 335 nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance.

  19. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    Science.gov (United States)

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (pstarch granules, leading to high water absorption and making granules sensitive to the freezing treatment.

  20. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    Science.gov (United States)

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays.

  1. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    Science.gov (United States)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  2. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    Science.gov (United States)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  3. Differential refractometric determination of binding of sodium dodecyl sulfate to protein using high-performance gel chromatography.

    Science.gov (United States)

    Rao, P F; Takagi, T

    1988-10-01

    When sodium dodecyl sulfate (SDS) is added to a high-performance gel chromatographic column equilibrated with a buffer solution containing SDS at a level above the critical micelle concentration, the surplus SDS migrates as micelles giving a sharp peak. The presence of an unfolded protein in the sample solution gives a polypeptide peak in advance of the SDS micelle peak. As the result of SDS binding to the polypeptide, the SDS micelle peak is attenuated in comparison to that in the absence of protein. Thus the amount of SDS bound to the polypeptide can be determined accurately and simply from the decrease in the area of the SDS micelle peak. This approach is particularly useful for precise determination of bound SDS, which is pertinent to understanding the state of the protein polypeptide-SDS complex under the conditions of SDS-polyacrylamide gel electrophoresis.

  4. Contribution of sodium dodecyl sulphate and sodium lauric acid in the one-pot synthesis of intercalated ZnAl-layered double hydroxides

    Indian Academy of Sciences (India)

    Fengzhu Lv; Zilin Meng; Penggang Li; Yihe Zhang; Guocheng Lv; Qian Zhang; Zhilei Zhang

    2015-08-01

    Anion surfactants, sodium dodecyl sulphate (SDS) and sodium lauric acid (SLA), with almost the same chain length but different anion groups were used together as intercalates to prepare intercalated ZnAl–layered double hydroxides (ZnAl–LDHs). Their composition, structure and morphology were characterized by Fourier transform infrared, X-ray fluorescence, thermogravimetric and X-ray diffraction (XRD). The results indicated SDS intended to maintain the lamellae structure of LDHs, but SLA was more likely to expand the basal spacings of LDHs in the present system. The arrangement of the surfactants in the interlayer of ZnAl–LDHs was also simulated by Materials Studio. The basal spacings of the LDHs calculated based on simulated structure consisted with that from XRD.

  5. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery.

  6. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of adde

  7. A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies.

    Science.gov (United States)

    Xu, Zhijun; Yang, Xiaoning; Yang, Zhen

    2010-03-10

    Here we report a larger-scale atomic-level molecular dynamics (MD) simulation for the self-assembly of sodium dodecyl sulfate (SDS) surfactant on single-walled carbon nanotube (SWNT) surfaces and the interaction between supramolecular SDS/SWNT aggregates. We make an effort to address several important problems in regard to carbon nanotube dispersion/separation. At first, the simulation provides comprehensive direct evidence for SDS self-assembly structures on carbon nanotube surfaces, which can help to clarify the relevant debate over the exact adsorption structure. We also, for the first time, simulated the potential of mean force (PMF) between two SWNTs embedded in SDS surfactant micelles. A novel unified PMF approach has been applied to reveal various cooperative interactions between the SDS/SWNT aggregates, which is different from the previous electrostatic repulsion explanation. The unique role of sodium ions revealed here provides a new microscopic understanding of the recent experiments in the electrolyte tuning of the interfacial forces on the selective fractionation of SDS surrounding SWNTs.

  8. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.

    Science.gov (United States)

    Xin, Fengxue; Geng, Anli; Chen, Ming Li; Gum, Ming Jun Marcus

    2010-10-01

    Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.05 M sodium citrate buffer (pH 4.8) with varying solid content, filter paper unit loading (FPU/g newspaper), and ratio of filter paper unit/beta-glucosidase unit (FPU/CBU). Newspaper pretreated with the anionic surfactant sodium dodecyl sulphate (SDS) demonstrated the highest sugar yield. The addition of Tween-80 in the enzymatic hydrolysis process enhanced the enzymatic digestibility of newspaper pretreated with all of the surfactants. Enzymatic hydrolysis of SDS-pretreated newspaper with 15% solid content, 15 FPU/g newspaper, and FPU/CBU of 1:4 resulted in a newspaper hydrolysate conditioning 29.07 g/L glucose and 4.08 g/L xylose after 72 h of incubation at 50 degrees C. The fermentation of the enzymatic hydrolysate with Saccharomyces cerevisiae, Pichia stipitis, and their co-culture produced 14.29, 13.45, and 14.03 g/L of ethanol, respectively. Their corresponding ethanol yields were 0.43, 0.41, and 0.42 g/g.

  9. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    Science.gov (United States)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  10. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  11. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  12. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    Science.gov (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  13. A conductometric investigation of hydroxypropylmethyl cellulose/sodium dodecyl sulfate/nonionic surfactant systems

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2014-01-01

    Full Text Available Surfactant mixtures are very often used in various cosmetic and pharmaceutical products because they commonly act in synergism and provide more favorable properties than the single surfactants. At the same time, the 9 presence of polymers in mixtures of surfactants may lead to molecular interactions thereby affecting product stability and activity. For these reasons it is very important to determine the surfactant interactions influence on 1micellization and mixed micellization, as well as polymer-surfactants mixed micelles interactions. In this work we examined self-aggregation of nonionic surfactants, polysorbate 20 (Tween 20, polyoxyethylene octylphenyl ether (Triton X100 and polyoxyethylene-polyoxypropylene block copolymer (Pluronic F68 with ionic surfactant, sodium dodecylsulfate, in aqueous solution at 40ºC using conductometric titration method. It was found that concentration region for mixed micelle formation depends on nonionic surfactant characteristics and its concentration. Formation of surfactants mixed micelles in the presence of nonionic polymer, hydroxypropylmethyl cellulose, and their binding to polymer hydrophobic sites, were investigated too. Analysis of obtained results points to different kinds of interactions in investigated systems, which are crucial for their application. [Projekat Ministarstva nauke Republike Srbije, br. III 46010

  14. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate

    Science.gov (United States)

    Feng, Jiayu; Jin, Weiwei; Huang, Pengcheng; Wu, Fangying

    2017-09-01

    We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal-ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples. [Figure not available: see fulltext.

  15. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    Science.gov (United States)

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest.

  16. Structural Studies on Nonequilibrium Microstructures of Dioctyl Sodium Dodecyl Sulfosuccinate (Aerosol-OT in p-Toluenesulfonic Acid and Phosphatidylcholine

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2012-01-01

    Full Text Available Several microstructures are evolved at the interface when sparingly soluble solid surfactants come in contact with water. One class of these microstructures is termed as “myelin figures”; these were observed when phosphatidylcholine came in contact with water. Although the myelins are initially simple rod-like, complex forms like helices, coils and so forth. appear in the later stage. Finally, the myelins fuse together to form a complex mosaic-like structure. When studied by taking a cross-section using cryoscanning electron microscopy, it revealed concentric circular pattern inside the myelin figures. The cross-sections of (dioctyl sodium dodecyl sulfosiccinate AOT/water system myelin internal structures were lost. When p-toluenesulfonic acid (PTS 2 wt% was present in the water phase, AOT myelins revealed the internal microstructures. It has annular concentric ring-like structure with a core axon at the centre. Further investigation revealed new microstructures for the first time having multiple axons in the single-myelin strand.

  17. A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; Borisov, Oleg; Lapp, Alain; François, Jeanne

    2006-03-15

    Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.

  18. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2013-01-01

    Full Text Available Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS- degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v, between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  19. ISOLATION OF EGG DROP SYNDROME VIRUS AND ITS MOLECULAR CHARACTERIZATION USING SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS

    Directory of Open Access Journals (Sweden)

    M. H. Rasool, S. U. Rahman and M. K. Mansoor

    2005-10-01

    Full Text Available Six isolates of egg drop syndrome (EDS virus were recovered from five different outbreaks of EDS in commercial laying hens in and around Faisalabad. The aberrant eggs were fed to the susceptible laying hens for experimental induction of infection. The samples from infected birds (egg washing, cloacal swabs, oviducts and spleens were collected, processed and inoculated into 11-day old duck embryos. The presence of virus in harvested allanto-amniotic fluid was monitored by spot and microhaemagglutination tests and confirmed by haemagglutination inhibition and agar gel precipitation tests. The EDS virus grew well in duck embryos and agglutinated only avian but not mammalian red blood cells. These isolates were purified through velocity density gradient centrifugation. Protein concentration was determined through Lowry method and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE was conducted by loading 300 µg protein concentration on 12.5% gel using discontinuous buffer system. All the six isolates showed 13 polypeptides, which were identical to those described in the referral EDS-76 virus (strain-127. The molecular weights of the polypeptides ranged from 6.5 KDa to 126 KDa.

  20. Silver nanoparticles synthesis in aqueous solutions using sulfite as reducing agent and sodium dodecyl sulfate as stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Miranda, A.; Lopez-Valdivieso, A., E-mail: alopez@uaslp.mx [Universidad Autonoma de San Luis Potosi, Instituto de Metalurgia (Mexico); Viramontes-Gamboa, G. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ciencia Fisico-Matematicas (Mexico)

    2012-09-15

    The synthesis of silver nanoparticles has been carried out in aqueous solutions in a stirred semibatch reactor through the reduction of silver ions (Ag{sup +}) by sulfite ions (SO{sub 3}{sup 2-}), which were added at a tightly controlled rate up to a final sulfite/silver molar ratio of 0.45. Sodium dodecyl sulfate (SDS) was used as the stabilizer at concentrations below its critical micelle concentration. The effects of temperature, sulfite addition rate, and SDS concentration have been assessed. Ag{sup +} turned to Ag{sup 0} in 5 min or less only when the synthesis was performed at 97 Degree-Sign C and not below. The sulfite addition rates studied were 0.5, 7.5, 15, and 90 {mu}mol/min. The size, shape, polydispersity, and stability of the nanoparticles were determined by the sulfite addition rate and SDS concentration. At low SDS concentration (4 mM), stable, spherical shape, small size nanoparticles were formed only at the two intermediate sulfite addition rates. At the highest sulfite addition rate, 9 nm mean size spherical nanoparticles having a low {+-}5 nm polydispersity were produced at a high SDS concentration of 10 mM. With the low SDS concentration, larger truncated and spherical shape nanoparticles were obtained. UV-Vis spectrophotometry and transmission electron microscopy were used to characterize the nanoparticles.

  1. Silver nanoparticles synthesis in aqueous solutions using sulfite as reducing agent and sodium dodecyl sulfate as stabilizer

    Science.gov (United States)

    López-Miranda, A.; López-Valdivieso, A.; Viramontes-Gamboa, G.

    2012-09-01

    The synthesis of silver nanoparticles has been carried out in aqueous solutions in a stirred semibatch reactor through the reduction of silver ions (Ag+) by sulfite ions (SO3 2-), which were added at a tightly controlled rate up to a final sulfite/silver molar ratio of 0.45. Sodium dodecyl sulfate (SDS) was used as the stabilizer at concentrations below its critical micelle concentration. The effects of temperature, sulfite addition rate, and SDS concentration have been assessed. Ag+ turned to Ag0 in 5 min or less only when the synthesis was performed at 97 °C and not below. The sulfite addition rates studied were 0.5, 7.5, 15, and 90 μmol/min. The size, shape, polydispersity, and stability of the nanoparticles were determined by the sulfite addition rate and SDS concentration. At low SDS concentration (4 mM), stable, spherical shape, small size nanoparticles were formed only at the two intermediate sulfite addition rates. At the highest sulfite addition rate, 9 nm mean size spherical nanoparticles having a low ±5 nm polydispersity were produced at a high SDS concentration of 10 mM. With the low SDS concentration, larger truncated and spherical shape nanoparticles were obtained. UV-Vis spectrophotometry and transmission electron microscopy were used to characterize the nanoparticles.

  2. Photochemistry of "end-only" oligo-p-phenylene ethynylenes: complexation with sodium dodecyl sulfate reduces solvent accessibility.

    Science.gov (United States)

    Hill, Eric H; Evans, Deborah G; Whitten, David G

    2013-08-06

    Cationic oligo-p-phenylene ethynylenes are very effective light-activated biocides and biosensors but degrade upon exposure to light. In this study, we explore the photochemistry of a class of "end-only" compounds from this series, which have cationic moieties on the ends of the backbone. Product characterization by mass spectrometry reveals that the photoreactivity of these molecules is higher than that of a previously studied oligomer and that the primary products of photolysis result from the addition of water or oxygen across the triple bond. In addition, a product suggesting the addition of peroxide or other reactive oxygen species across the triple bond was observed. To explore avenues by which the photodegradation of these compounds can be mitigated, the effects of complexation with sodium dodecyl sulfate micelles on their photochemistry was explored. Classical molecular dynamics simulations revealed that compounds that were protected from photolysis by SDS buried their phenylene ethynylene backbones into the interior of the micelle, protecting it from contact with water. This work has revealed a molecular basis for the protection of a novel class of light-activated biocides from irradiation that is consistent with the proposed photochemistry of these compounds. This information can be useful for developing photodegradation-resistant biocidal materials and applications for current compounds and leads to new molecular design.

  3. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample.

  4. Cytochrome P450 102A2 Catalyzes Efficient Oxidation of Sodium Dodecyl Sulphate: A Molecular Tool for Remediation

    Directory of Open Access Journals (Sweden)

    Irene Axarli

    2010-01-01

    Full Text Available Bacterial cytochrome P450s (CYPs constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. In the present work we report the characterization of CYP102A2 from B. subtilis with a focus on its substrate specificity. CYP102A2 is more active in oxidation of sodium dodecyl sulphate (SDS than any other characterized CYP. The effect of SDS and NADPH concentration on reaction rate showed nonhyperbolic and hyperbolic dependence, respectively. The enzyme was found to exhibit a bell-shaped curve for plots of activity versus pH, over pH values 5.9–8.5. The rate of SDS oxidation reached the maximum value approximately at pH 7.2 and the pH transition observed controlled by two pas in the acidic (pa=6.7±0.08 and basic (pa=7.3±0.06 pH range. The results are discussed in relation to the future biotechnology applications of CYPs.

  5. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    2016-07-01

    Full Text Available In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS and β-cyclodextrin (β-CD embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles–chitosan hydrogel (IVG improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution–chitosan hydrogel (ISG. In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  6. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.

    Science.gov (United States)

    Li, Zhuo; Li, Haiyan; Wang, Caifen; Xu, Jianghui; Singh, Vikramjeet; Chen, Dawei; Zhang, Jiwen

    2016-07-01

    In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles-chitosan hydrogel (IVG) improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution-chitosan hydrogel (ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  7. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  8. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  9. Nonlinear response of a batch BZ oscillator to the addition of the anionic surfactant sodium dodecyl sulfate.

    Science.gov (United States)

    Sciascia, Luciana; Lombardo, Renato; Turco Liveri, Maria Liria

    2007-02-15

    The response of the Belousov-Zhabotinsy (BZ) system to the addition of increasing amounts of the anionic surfactant sodium dodecyl sulfate (SDS) was monitored at 25.0 degrees C in stirred batch conditions. The presence of SDS in the reaction mixture influences the oscillatory parameters, i.e., induction period and oscillation period, to an extent that depends on the surfactant concentration. The experimental results have shown that the induction period increases slightly on increasing surfactant concentration and, then, a further increase in the [SDS] leads to an enhancement while the oscillation period increases monotonously on increasing SDS concentration. It has been proposed that the response of the oscillatory BZ system to the addition of SDS is due to the peculiar capability of the organized surfactant assemblies to affect the reactivity by selectively sequestering some key reacting species. Indeed, explanations of the experimental results have been given on the basis of the role played by the micellar shape, which in turn dictates the hydrophobic nature. The suggested perturbation effects have been supported by performing viscosity measurements on the aqueous SDS solutions and by the spectrophotometric estimation of the binding constant of the bromine species to the micellar aggregates. This study has indirectly corroborated the existence of two kind of micelles and unambiguously revealed that the bromine species show a different affinity toward the spherical and rod-like micelles.

  10. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Shin, Soojeong; Ahmed, Ishtiaq; Hwang, Jangsun; Seo, Youngmin; Lee, Eunwon; Choi, Jonghoon; Moon, Sangjun; Hong, Jong Wook

    2016-01-01

    In recent years, a microfluidic technology has contributed a significant role in biological research, specifically for the study of biofilms. Bacterial biofilms are a source of infections and contamination in the environment due to an extra polymeric matrix. Inadequate uses of antibiotics make the bacterial biofilms antibiotic resistant. Therefore, it is important to determine the effective concentration of antibiotics in order to eliminate bacterial biofilms. The present microfluidic study was carried out to analyze the activities of tobramycin and sodium dodecyl sulfate (SDS) against Pseudomonas aeruginosa biofilms with a continuous flow in order to achieve a greater delivery of the agents. The results show that a co-treatment of tobramycin and SDS significantly reduced the biomass of biofilms (by more than 99%) after 24 h. Tobramycin and SDS killed and detached bacteria in the cores of biofilms. Evidently, our data suggest that a microchannel would be effective for both quantitative and qualitative evaluations in order to test combinatorial effect of drugs and chemicals on a complexed biological system including biofilm.

  11. Evidence of β-sheet structure induced kinetic stability of papain upon thermal and sodium dodecyl sulphate denaturation

    Directory of Open Access Journals (Sweden)

    Rašković Brankica

    2015-01-01

    Full Text Available Papain is a protease that consists of α-helical and β-sheet domains which unfold almost independently. Both, papain considerable thermal stability and sodium dodecyl sulphate (SDS resistance have been shown. However, the ability of each domain to unfold upon thermal and SDS denaturation has never been studied. This work shows that fruit papain has slightly higher thermal inactivation resistance when it is compared to stem papain with rather high activation energy (Ea of 223 ± 16 kJmol-1 and Tm50 value of 79 ± 2 °C. SDS resistance of fruit papain was estimated by SDS-PAGE analysis and activity staining. It has been noted that, in the presence of SDS, unless heat energy was applied in order to unfold papain, the protein remained active. Furthermore, it has been proven via Fourier transform infrared spectroscopy (FT-IR that α-helical domain of fruit papain is more prone to unfolding at elevated temperatures and in the presence of SDS then β-sheet rich domain. Thermal denaturation of papain without detergent present led to accelerated formation of aggregation specific intermolecular β-sheets as compared to native protein. Presented results are both, of fundamental and application importance. [Projekat Ministarstva nauke Republike Srbije, br. 172049

  12. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin.

    Science.gov (United States)

    Bayer, E A; Ehrlich-Rogozinski, S; Wilchek, M

    1996-08-01

    Avidin, a positively charged egg-white protein, aggregates extensively when mixed at ambient temperatures with anionic detergents, such as sodium dodecyl sulfate (SDS). The resultant aggregates fail to penetrate the stacking gel during polyacrylamide gel electrophoresis (PAGE). To prevent the formation of such aggregates, avidin was acetylated and the pI was thus reduced. Acetylated avidin was found to behave in a manner similar to that of streptavidin; under nondenaturing conditions (i.e., incubation of samples at room temperature), both proteins normally migrated mainly as tetramers with a tendency to form oligomers of the tetramer. When samples were boiled, both proteins migrated mainly as the monomer. The comparative stability properties of avidin and streptavidin were also examined using SDS-PAGE by heating samples and determining the extent of dissociation of tetramers to monomers as a function of temperature. A distinctive transition temperature could be defined for individual samples. Using this assay, it was determined that, in the absence of biotin, the quaternary structure of streptavidin is more stable than that of avidin. Biotin appears to stabilize structures of both avidin and streptavidin to a similar degree. Acetylation of avidin thus provides a simple means to analyze the quaternary structure of the molecule using SDS-PAGE.

  13. Interfacial properties and fluorescence of a coagulating protein extracted from Moringa oleifera seeds and its interaction with sodium dodecyl sulphate.

    Science.gov (United States)

    Maikokera, R; Kwaambwa, H M

    2007-04-01

    The surfactant behaviour of aqueous coagulating protein extracted from Moringa oleifera seeds has been investigated by surface tension measurements. The interaction of the coagulant protein with an anionic surfactant sodium dodecyl sulphate (SDS) has been monitored by surface tension and intrinsic protein fluorescence measurements. The extracted protein shows some weak surface activity at low concentrations. To achieve maximum surface activity (i.e. maximum reduction in surface tension of water), substantially higher concentrations of protein are required. The coagulant protein-SDS interaction scheme did not exhibit the behaviour of weakly interacting polymer-surfactant systems and the SDS interacts in a monomeric form with the protein. The association process of SDS with the coagulant protein is supported by protein fluorescence measurements. SDS has an effect on the fluorescence of the coagulant protein indicating that the local environment of tryptophan in the protein changes as SDS concentration below its critical micelle concentration is increased. These results have led us to the conclusions that: (1) the protein extracted from M. oleifera seeds has significant surfactant behaviour; (2) the coagulant protein interacts strongly with SDS and the protein might have specific binding sites for SDS; (3) there is formation of protein-SDS complex.

  14. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    Science.gov (United States)

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  15. Small-angle neutron scattering from mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    Science.gov (United States)

    Hubbard, F Pierce; Santonicola, Gabriella; Kaler, Eric W; Abbott, Nicholas L

    2005-07-05

    This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.

  16. Sodium dodecyl sulfate coated poly (vinyl) chloride: an alternative support for solid phase extraction of some transition and heavy metals.

    Science.gov (United States)

    Marahel, Farzaneh; Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Montazerozohori, Morteza; Davoodi, Shahnaz

    2009-01-01

    A simple and relatively fast approach for developing a solid phase extraction has been described and used for determination of trace quantities of some heavy and transition metal ions with sodium dodecyl sulfate (SDS)-coated poly vinyl chloride (PVC) modified with bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) ligand. The adsorbed ions were stripped from the solid phase by 10 mL of 3M nitric acid as eluent. The eluting solution was analyzed for metals content (cadmium, chromium, cobalt, copper, lead and zinc) by flame atomic absorption spectrometry (FAAS). The main factors such as pH, amount of ligand and PVC, amount and type of surfactant, and condition of eluting solutions on the sorption recovery of metal ions have been investigated in detail. The relative standard deviation was found in the range of 1.0-3.2% for 0.2 microg mL(-1)of metals ions. After optimization of the extraction condition and the instrumental parameters, a detection limit was found to be in the range of 1.2-3.1 microg L(-1), with enrichment factor of 50 was achieved. The method was successfully applied for the determination of these metals contents in real samples with satisfactory results.

  17. Inactivation of salmonella in biofilms and on chicken cages and preharvest poultry by levulinic Acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; Cannon, Jennifer L; Doyle, Michael P

    2011-12-01

    Surface contamination (skin and feathers) of broilers with Salmonella occurs primarily during growth and transportation. Immediately after transporting chickens, chicken cage doors were sprayed with a foam containing 3% levulinic acid plus 2% sodium dodecyl sulfate (SDS). Samples were collected for Salmonella assay after 45 min. Salmonella on cage doors was reduced from 19% (19 of 100 doors) before treatment to 1% (1 of 100 doors) after treatment, coliform counts were reduced from 6 to 8 to 2 to 4 log CFU/9 cm(2), and aerobic plate counts were reduced from 7 to 9 to 4 to 6 log CFU/9 cm(2). Whole chicken carcasses with feathers were inoculated with 10(8) CFU of Salmonella Enteritidis, soaked for 5 min at 21°C in 72 liters of a treatment or control solution, and assayed for Salmonella. Salmonella counts on chickens treated with water were 6.8 to 8.5 log CFU/9 cm(2), those treated with 50 ppm of calcium hypochlorite were 7.6 to 8.9 log CFU/9 cm(2), and those treated with 3% levulinic acid plus 2% SDS were 4-log reduction). Results of biofilm studies on surfaces of various materials revealed that a 3% levulinic acid plus 2% SDS treatment used as either a foam or liquid for 10 min effectively reduced Salmonella populations by 5 and >6 log CFU/cm(2), respectively.

  18. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    Science.gov (United States)

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  19. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  20. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Directory of Open Access Journals (Sweden)

    Xu Jide

    2009-06-01

    Full Text Available Abstract Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS on the adsorption of the siderophores DFOB (cationic and DFOD (neutral and the ligand EDTA (anionic onto goethite (α-FeOOH at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition.

  1. Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity.

    Science.gov (United States)

    Ma, Jian-Guo; Boyd, Ben J; Drummond, Calum J

    2006-10-10

    Commercial linear alkyl benzene sulfonates (ABS) are a very important class of anionic surfactants that are employed in a wide variety of applications, especially those involving wetting and detergency. Linear ABS surfactants generally consist of a complex mixture of different chain lengths and positional isomers. This diversity and level of complexity makes it difficult to develop fundamental structure-property correlations for the commercial surfactants. In this work, six monodisperse headgroup positional isomers of sodium para-dodecyl benzene sulfonate (Na-x-DBS, x = 1-6) have been studied. The influence of headgroup position and added electrolyte (NaCl) on the solubility and self-assembly (micellar and vesicular aggregation and lyotropic liquid crystalline phase behavior) in the temperature range from 10 to 90 degrees C have been investigated. Additionally, the air-aqueous solution interfacial adsorption at 25 (no added NaCl) and 50 degrees C (from 0 to 1.0 M added NaCl) has been examined. The observed physicochemical behavior is interpreted in terms of local molecular packing constraints, and in the case of the lyotropic liquid crystalline behavior global aggregate packing constraints as well.

  2. Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella Typhimurium survival, shelf-life, and sensory characteristics of ground beef patties.

    Science.gov (United States)

    Stelzleni, Alexander M; Ponrajan, Amudhan; Harrison, Mark A

    2013-09-01

    The inclusion of two sources of buffered vinegar and sodium dodecyl sulfate plus levulinic acid were studied as interventions for Salmonella Typhimurium and for their effect on shelf-life and sensory characteristics of ground beef. For the Salmonella challenge, beef trimmings (80/20) were inoculated then treated with 2% (w/v) liquid buffered vinegar (LVIN), 2.5% (w/w) powdered buffered vinegar (PVIN), a solution containing 1.0% levulinic acid plus 0.1% sodium dodecyl sulfate (SDLA) at 10% (w/v), or had no intervention applied (CNT). The same trim source and production methods were followed during production of patties for shelf-life and sensory testing without inoculation. SDLA patties had the largest reduction (PSalmonella. However, LVIN and PVIN had the least (Pcharacteristics, except PVIN exhibited stronger off-flavor (P<0.05).

  3. Effect of NaCl on the spectral and kinetic properties of cresyl violet (CV)-sodium dodecyl sulphate (SDS) complex

    Indian Academy of Sciences (India)

    K I Priyadarsini; Hari Mohan

    2003-08-01

    Effect of added NaCl on the spectral and kinetic properties of cationically charged dye (cresyl violet) and anionically charged surfactant (sodium dodecyl sulphate) were studied in the pre-micellar and micellar regions. Addition of 0.2M NaCl to dye-surfactant solution decreased the critical micellar concentration for the micellization of the dye in sodium dodecyl sulphate to 1.2 × 10-3 M. Time-resolved studies using a stopped-flow spectrometer showed that NaCl influences the dynamics of micellisation. Addition of NaCl during the dye-surfactant complex formation converted the complex into micellized form at NaCl concentration of 0.01 to 0.05 M. In contrast, much higher concentration of NaCl (2 M) is required for the salting-out effect of the dye-surfactant complex for conversion to the micellized form.

  4. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Wang, Shijian; Kretschmer, Katja; Wang, Guoxiu

    2017-03-20

    Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components.

  5. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-18

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

  6. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution

    OpenAIRE

    Ćirin Dejan M; Poša Mihalj M.; Krstonošić Veljko S.; Milanović Maja Lj.

    2012-01-01

    The present study is concerned with the determination of the critical micelle concentration (cmc) of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail s...

  7. Identification of coagulase-negative staphylococci by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and rRNA restriction patterns.

    OpenAIRE

    Pennington, T. H.; Harker, C.; Thomson-Carter, F

    1991-01-01

    A total of 1,417 staphylococcal and micrococcal strains were collected from the beards and scalps of 10 subjects over a period of 8 months. Sixteen strains identified as Staphylococcus epidermidis with an API system had distinctive yellow colonies on nutrient agar plates and sodium dodecyl sulfate-polyacrylamide gel electrophoresis whole-cell polypeptide profiles similar to those of Staphylococcus capitis; this identification was confirmed by analysis of rRNA gene restriction patterns.

  8. The Catalysis of Sodium Dodecyl Sulfate/1-Pentanol/Water W/O Microemulsion on the Photoisomerization of trans-Stilbene

    Institute of Scientific and Technical Information of China (English)

    Xia GUO; Ling LIN; Rong GUO

    2004-01-01

    The photoisomerization of trans-stilbene was studied in the water in oil (W/O) micro- emulsion formed by SDS (sodium dodecyl sulfate), n-C5H11OH (1-pentanol) and H2O. The experimental results show that after 2-minute UV-irradiation, the yield of cis-stilbene is higher in W/O microemulsion than in homogeneous solvent-n-C5H11OH.

  9. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  10. Optical and Thermal Properties of Zn/Al-Layered Double Hydroxide Nanocomposite Intercalated with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Samaneh Babakhani

    2014-01-01

    Full Text Available Zn/Al-LDH-SDS nanocomposites have been prepared using a coprecipitation method in different molar ratio of Zn2+/Al3+ = 2, 3, and 4 at pH = 10 and different concentrations of sodium dodecyl sulfate solution (0.2 M, 0.4 M, and 0.8 M. The XRD and FTIR data show the successful intercalation of SDS into the LDH interlayer. The XRD diffractogram showed that the basal spacing for Zn/Al–NO3- is 0.89 nm compared to 2.54–2.61 nm for the Zn/Al-SDS nanocomposite. Optical band gap of the samples was calculated using Kubelka-Munk model. Due to the presence of LDH phase, two band gap energies (Eg1 and Eg2 were observed. The values of Eg1 and Eg2 were found around 4.8 eV and 3.75 eV for Zn/Al-LDH (r = 2, 3, and 4. The values of band gap of LDH-SDS nanocomposites were found to increase to around 4.2 eV and 5.2 eV. For Zn4Al-LDH-SDS with 0.4 M and 0.8 M of SDS, only one energy gap at around 3.23 eV was observed. The optical band gap of SO42- phase increased as the amount of SDS increases. Thermal diffusivity of the resulted nanocomposite was also investigated.

  11. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Reza Arjmand

    2015-01-01

    Full Text Available Background: Leishmania is a parasitic protozoan of trypanosomatidae family which causes a wide spectrum of diseases ranging from self-healing cutaneous lesions to deadly visceral forms. In endemic areas, field trials of different preparations of Leishmania total antigen were tested as leishmaniasis vaccine. Two preparations of killed Leishmania major were produced In Iran, which were heat-killed vaccine called autoclaved L. major (ALM and thimerosal-treated freeze-thawed vaccine called killed L. major (KLM. In this study, the protein content of both ALM and KLM were compared with that of freshly harvested intact L. major promastigotes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Materials and Methods: L. major (MRHO/IR/75/ER from pre-infected Balb/c mice was isolated with modified Novy-MacNeal-Nicolle (NNN medium and then subcultured in liquid RPMI 1640 medium supplemented with fetal calf serum (FCS 20% for mass production. Two preparations of KLM and ALM were produced by Razi Vaccine and Serum Research Institute, Iran, under WHO/TDR supervision. Electrophoresis was performed by SDS-PAGE method and the gel was stained by Coomassie brilliant blue dye. The resultant unit bands were compared using standard molecular proteins. Results: Electrophoresis of the two preparations produced many bands from 10 kDa to 100 kDa. KLM bands were much like those of freshly harvested intact L. major. Conclusion: It is concluded that although there are similar bands in the three forms of Leishmania antigens, there are some variations which might be considered for identification and purification of protective immunogens in a total crude antigen, and detection of their stability is essential for the production and marketing of a putative vaccine.

  12. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Pragya Pant

    2016-01-01

    Full Text Available Diagnosis of membranous nephropathy (MN and focal and segmental glomerulo- sclerosis (FSGS needs a renal biopsy, which is an invasive procedure with potentially serious complications. Proteomics may be applied for the development of a biomarker for these diseases which will obviate the need of biopsy. Serum sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE analysis gives an idea of the various proteins with different molecular weights (MWs in a given sample. This study was conducted to analyze proteins with different MWs in patients with MN and FSGS and to compare the two groups with regard to their protein profile. This was a comparative, experimental study performed from June 2013 to July 2014 in the Department of Nephrology, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi. Twenty-three histologically diagnosed cases of primary MN and 25 cases of FSGS were included in the study. Patients were categorized as having mild, moderate, and severe proteinuria with 24 h urinary protein levels of <4, 4- 8 and ≥8 g/24 h, respectively. SDS-PAGE analysis was performed by the method of Laemmli and revealed a significantly higher number of patients with FSGS (80% having a protein corresponding to 29 kDa MW, than those with MN (39.1% (P = 0.004. Protein of 5 kDa MW was present in a significantly higher number of patients with moderate (80% and severe (100% proteinuria than those with mild proteinuria (25% (P <0.001. Thus, protein of MW 29 kDa may be a marker for FSGS and needs further characterization. Similarly, 5 kDa protein, present in patients with moderate and severe proteinuria, might be either contributing to or be a marker of severe illness.

  13. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis.

    Science.gov (United States)

    Pant, Pragya; Singh, R G; Singh, Santosh K; Singh, Vijay P; Doley, Prodip K; Sivasankar, M

    2016-05-01

    Diagnosis of membranous nephropathy (MN) and focal and segmental glomerulo- sclerosis (FSGS) needs a renal biopsy, which is an invasive procedure with potentially serious complications. Proteomics may be applied for the development of a biomarker for these diseases which will obviate the need of biopsy. Serum sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) analysis gives an idea of the various proteins with different molecular weights (MWs) in a given sample. This study was conducted to analyze proteins with different MWs in patients with MN and FSGS and to compare the two groups with regard to their protein profile. This was a comparative, experimental study performed from June 2013 to July 2014 in the Department of Nephrology, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi. Twenty-three histologically diagnosed cases of primary MN and 25 cases of FSGS were included in the study. Patients were categorized as having mild, moderate, and severe proteinuria with 24 h urinary protein levels of <4, 4- 8 and ≥8 g/24 h, respectively. SDS-PAGE analysis was performed by the method of Laemmli and revealed a significantly higher number of patients with FSGS (80%) having a protein corresponding to 29 kDa MW, than those with MN (39.1%) (P = 0.004). Protein of 5 kDa MW was present in a significantly higher number of patients with moderate (80%) and severe (100%) proteinuria than those with mild proteinuria (25%) (P <0.001). Thus, protein of MW 29 kDa may be a marker for FSGS and needs further characterization. Similarly, 5 kDa protein, present in patients with moderate and severe proteinuria, might be either contributing to or be a marker of severe illness.

  14. Aplikasi Metode SDS-PAGE (Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis untuk Mengidentifikasi Sumber Asal Gelatin pada Kapsul Keras

    Directory of Open Access Journals (Sweden)

    Sandra Hermanto

    2016-08-01

    Full Text Available Gelatin as the main ingredient of capsules is still a problem for a moslem. Most of gelatin production remains largely derived from non-halal materials. One of gelatin source is came from collagen of the skin and bones of bovine or pork. The main of study is determine the source of gelatin used in hard capsules by using SDS-PAGE (Sodium Dodecyl Sulphate Gel electrophoresis Poly Acrylamide method. In the early stages, optimization of standards bovine and pork gelatin were hydrolyzed by pepsin at pH 4.5 and 60°C for 1 hour, 2 hours, and 3 hours. Gelatin hydrolyzateswere analyzed by SDS-PAGE to determine the optimal hydrolysis time. Identification of gelatin hydrolyzate fragments were carried by molecular weight. Hydrolysis time optimization throught applied to identify the source of hard gelatin capsules in the samples obtained from market and compared with the simulation of hard gelatin capsules. The results showed there were of specific bands of bovine gelatin with a molecular weight of 11,4 kDa; 34 kDa; 47kDa and specific bands of pork gelatin with a molecular weight of 24.7 kDa; 28 kDa; and 60 kDa. Similar results were obtained on a sample of hard capsules with bands of protein fragments that were identical to bovine gelatinstandard. Based on the results,each of the samples were tested contain of bovine gelatin respectively. DOI :http://dx.doi.org/10.15408/jkv.v0i0.3150

  15. Effect of Sodium Dodecyl Sulfate (SDS) and Tween 80 on Cell Viability in an Air-Cathode Microbial Fuel Cell

    KAUST Repository

    Fregoso, Luisa

    2011-07-01

    Microbial fuel cells (MFCs) generate current via electrochemical reactions produced by bacteria attached to the anode that oxidize organic matter. Due to their high volume use in household products, some concentration of surfactant will reach wastewater treatment plants. The average surfactant concentration in wastewater ranges from 10 to 20 mg L-1, and up to 300 mg L-1, for domestic and industrial wastewaters, respectively. This study aimed to demonstrate the feasibility of enhancing power production by adding Tween 80 and SDS surfactants to air-cathode MFCs, and their effect in cell viability at the anodic biofilm. In order to analyze the effect of anionic and nonionic surfactants in MFCs performance, eight MFCs were spiked with two types of surfactants, the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant Tween® 80 at two different concentrations 10 and 100 mg L-1. Cell viability at the anodic biofilms was examined using the LIVE/DEAD BacLight viability assay and images were visualized with a confocal laser scanning microscope. The electrochemical results demonstrate that, for an air-cathode MFC operating on 1 g L-1 acetate in a fed-batch mode, reactors where SDS was added show a lower overall performance, maximum PD of 544 mW m-2, CE of 12.3%, Rint of 322 Ω (10 mg L-1) and maximum PD of 265 mW m-2, CE of 9.4%, Rint of 758 Ω (100 mg L-1). Reactors where Tween 80 was added show quite stable performance, maximum PD of 623 mW m-2, CE of 15.4%, Rint of 216 Ω (10 mg L-1) and maximum PD of 591 mW m-2, CE of 10.8%, Rint of 279 Ω (100 mg L-1), compared with reactors operating at only acetate as a substrate, maximum PD of 574 mW m-2. Confocal microscopy images confirm this observation and biofilm viability appeared severely compromised in SDS reactors, especially at high concentrations. This study has opened up a whole new research area in determining which types of surfactants are toxic to the anodic biofilm and to further investigate the

  16. Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Li, Jianling, E-mail: lijianling@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Yan, Gang; Xu, Guofeng; Xue, Qingrui [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Kang, Feiyu [Lab of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-05

    Highlights: • The cactus-like porous MnO{sub 2} was synthesized by hydrothermal method assisted with SDS. • The MnO{sub 2} exhibits a max specific capacitance of 187.8 F g{sup −1} (0.2 A g{sup −1}, 1 M Na{sub 2}SO{sub 4}). • Excellent cycling stability: 92.9% capacitance retention after 1000 cycles. - Abstract: The cactus-like porous manganese dioxide (MnO{sub 2}) was synthesized by a simple hydrothermal method assisted with the surfactant sodium dodecyl sulfate (SDS). The morphology, composition, property of the prepared materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) measurements. It was found that the sample without surfactant was composed of nanoflakes which piling up together, whereas in the presence of the surfactant, the MnO{sub 2} samples with the max specific surface of 321.9 m{sup 2} g{sup −1} showed a porous cactus-like microstructure, consisted of uniform nanowires and porous nanoflakes. The electrochemical performances of the MnO{sub 2} with and without surfactant were analyzed using Cyclic Voltammetry (CV), Electrochemical Impedance Spectrometry (EIS) and Galvanostatic Charge–Discharge (GCD) tests. The results showed that the MnO{sub 2} assisted with 1 wt.% SDS displayed a higher specific capacitance of 187.8 F g{sup −1} at the current density of 0.2 A g{sup −1} compared with the MnO{sub 2} without surfactant (134.8 F g{sup −1}). And such MnO{sub 2} samples with higher specific capacitance also afford an excellent cyclic stability with the capacity retention of approximately 92.9% after 1000 cycles in 1 M Na{sub 2}SO{sub 4} solution at a current density of 1 A g{sup −1}. The superior capacitive performance of the as-prepared materials could be attributed to its unique cactus-like porous structure, which provided good electronic conductivity, large specific surface area as

  17. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants.

  18. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    DEFF Research Database (Denmark)

    Ploug, M; Jensen, A L; Barkholt, V.

    1989-01-01

    The combination of high-resolution Tricine-Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (H. Schägger and G. von Jagow (1987) Anal. Biochem. 166, 368-379) and electroblotting onto polyvinylidene difluoride (PVDF) membranes represents a powerful technique for the isolation of small...... amounts of peptides and protein fragments (Mr 1000-20,000) in a suitable form for amino acid sequencing, directly on the blotting membrane. Conditions for electrophoresis and electroblotting were optimized with respect to high transfer yield and suitability for both amino acid analysis and sequence...

  19. Isoelectric focusing of human hair keratins: correlation with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and effect of cosmetic treatments.

    Science.gov (United States)

    Rodriguez-Calvo, M S; Carracedo, A; Muñoz, I; Concheiro, L

    1992-03-01

    A new isoelectric focusing (IEF) technique in polyacrylamide gels with 6M urea and 1.5% Nonidet P40 has been developed to characterize human hair samples. The phenotypes demonstrated with this procedure has been correlated with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns described by other authors. The method described can be applied in the forensic science analysis of a single human hair. Using the same IEF technique we have studied the changes in electrophoretic patterns of cosmetically treated hair. The characteristics of the modifications observed and its utility in forensic science work are also discussed in this paper.

  20. Use of capillary electrophoresis-sodium dodecyl sulfate to monitor disulfide scrambled forms of an Fc fusion protein during purification process.

    Science.gov (United States)

    Hapuarachchi, Suminda; Fodor, Szilan; Apostol, Izydor; Huang, Gang

    2011-07-15

    Overexpression of recombinant Fc fusion proteins in Escherichia coli frequently results in the production of inclusion bodies that are subsequently used to produce fully functional protein by an in vitro refolding process. During the refolding step, misfolded proteins such as disulfide scrambled forms can be formed, and purification steps are used to remove these product-related impurities to produce highly purified therapeutic proteins. A variety of analytical methods are commonly used to monitor protein variants throughout the purification process. Capillary electrophoresis (CE)-based techniques are gaining popularity for such applications. In this work, we used a nonreduced capillary electrophoresis-sodium dodecyl sulfate (nrCE-SDS) method for the analysis of disulfide scrambled forms in a fusion protein. Under denatured nonreduced conditions, an extra post-shoulder peak was observed at all purification steps. Detailed characterization revealed that the peak was related to the disulfide scrambled forms and was isobaric with the correctly folded product. In addition, when sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used during the CE-SDS peak characterization, we observed that the migration order of scrambled forms is reversed on CE-SDS versus SDS-PAGE. This illustrates the importance of establishing proper correlation of these two techniques when they are used interchangeably to guide the purification process and to characterize proteins.

  1. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.

    Science.gov (United States)

    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2015-02-01

    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.

  2. Interactions between sodium dodecyl sulphate and non-ionic cellulose derivatives studied by size exclusion chromatography with online multi-angle light scattering and refractometric detection.

    Science.gov (United States)

    Wittgren, Bengt; Stefansson, Morgan; Porsch, Bedrich

    2005-08-05

    The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.

  3. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  4. Method development for cortisol and cortisone by micellar liquid chromatography using sodium dodecyl sulphate: application to urine samples of rugby players.

    Science.gov (United States)

    Izquierdo-Hornillos, R; Gonzalo-Lumbreras, R; Santos-Montes, A

    2005-01-01

    The chromatographic behavior of cortisol and cortisone using a micellar medium of sodium dodecyl sulphate (SDS) as surfactant, a Hypersil C18 (150- x 3.2-mm i.d., 5 microm) column, a flow rate of 0.5 mL/min, and UV absorbance detection at 245 nm is described. The effect of several organic modifiers and the surfactant concentration on the separation is studied. A mobile phase of 18 mM SDS and 8.3% tetrahydrofuran allows for the separation of cortisol and cortisone up to baseline. These results are also achieved by applying a bivariant optimization method. The proposed method is sensitive, reproducible, and selective. In addition, it is less expensive than conventional high-performance liquid chromatography methods for cortisol and cortisone. The method is applied to the determination of cortisol and cortisone in urine samples of rugby players before and after stress for doping control purposes.

  5. Micellar copolymerization of associative polymers: study of the effect of acrylamide on sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; François, Jeanne

    2005-09-15

    Mixed micelles of sodium dodecyl sulfate (SDS) and poly(propylene oxide) methacrylate (PPOMA) have been studied in the presence of acrylamide using conductimetry, fluorescence spectroscopy, and small-angle neutron scattering (SANS) under the following conditions: (i) the SDS-acrylamide binary system in water; (ii) the SDS-acrylamide-PPOMA ternary system in water. The addition of acrylamide in SDS solutions perturbs the micellization of the surfactant by decreasing the aggregation number of the micelles and increasing their ionization degree. The variations of the various micellar parameters versus the weight ratio R=PPOMA/SDS are different in the presence of acrylamide or in pure water. These differences are much more pronounced for the lower than for the higher PPOMA concentrations. There is competition between acrylamide and PPOMA and at higher PPOMA concentration, acrylamide tends to be released from SDS micelles and is completely replaced by PPOMA.

  6. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 mixed micelles in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M.

    2012-01-01

    Full Text Available The present study is concerned with the determination of the critical micelle concentration (cmc of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails makes it sterically rigid.

  7. Characterization of Sm14 related components in different helminths by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis

    Directory of Open Access Journals (Sweden)

    Nilton Thaumaturgo

    2002-10-01

    Full Text Available Sm14 was the first fatty acid-binding protein homologue identified in helminths. Thereafter, members of the same family were identified in several helminth species, with high aminoacid sequence homology between them. In addition, immune crossprotection was also reported against Fasciola hepatica infection, in animals previously immunized with the Schistosoma mansoni vaccine candidate, r-Sm14. In the present study, data on preliminary sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis of nine different helminth extracts focusing the identification of Sm14 related proteins, is reported. Out of these, three extracts - Ascaris suum (males and females, Echinostoma paraensei, and Taenia saginata - presented components that comigrated with Sm14 in SDS-PAGE, and that were recognized by anti-rSm14 policlonal serum, in Western blotting tests.

  8. Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Vararattanavech, Ardcharaporn; Plasencia, Inés;

    2011-01-01

    This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study...... of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both...... reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up...

  9. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties

    Indian Academy of Sciences (India)

    NAFISE PARHIZKAR; ABOLGHASEM DOLATI; ROYA AGHABABAZADEH; ZAHRA LALEGANI

    2016-08-01

    Ni–TiN nanocomposite coatings were prepared by using electrochemical deposition in a Watt’s bath containing TiN particles to increase the hardness of Ni. The effects of deposition current density, electrolyte agitation speed and the number of particles in the solution on the amount of incorporated particles in the coating process were investigated. The optimum deposition current density of 4 A dm$^{−2}$ and agitation speed of 450 rpm were obtained. The effect of sodium dodecyl sulphate (SDS) anionic surfactant on the amount of particles in the coatings was investigated. It was observed that the maximum amount of incorporated particles, with a value of 7.5% by volume, was created in the current density of 4 A dm$^{−2}$, stirring rate of 450 rpm, 30 g l$^{−1}$ TiN particles and in the presence of 0.6 g l$^{−1}$ SDS anionic surfactant.

  10. Synthesis of a new electrolyte by co-poly-esters doped with sodium dodecyl sulfate for application on PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M.; Bresciani, D. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    Proton exchange membrane fuel cells (PEMFCs) use polymer membranes as electrolytes and protons as conductors. This paper reported on a study in which co-polyesters were doped with sodium dodecyl sulfate. The co-polymers were synthesized by a copolymerization process that used terephthalic and adipic acids with glycerol. A reactor was used to process the material, which was then hot-pressed to produce homogenous and flexible plates. X-ray diffraction (XRD) scanning electron microscopy (SEM), thermogravimetric, direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) analyses were conducted. Results of the analyses demonstrated that the composite material was stable up to a temperature of 250 degrees C. A micrographics study showed that MDS was homogeneously dispersed in the polymeric matrix. It was concluded that with an electrical conductivity between 10-7 to 10-1 S per cm, the copolymers were suitable for use in PEMFC applications.

  11. Effect of sodium dodecyl sulfate on immuno-electrosyneresis between normal human erythrocyte membrane and sera of systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    Arimori,Shigeru

    1975-12-01

    Full Text Available An anti-membrane antibody was present in the sera of systemic lupus erythematosus patients in immunoelectrosyneresis with sodium dodecyl sulfate (SDS solubilized erythrocyte membrane as antigen. The SDS bound to protein was detected by chromatography at 10(-3M concentration under U.V. light, at 10(-5M concentration by the distilled water spray method and at 10(-6M concentration by using rosaniline hydrochloride colorimetry. SDS was removed from the membrane protein at a concentration of 10(-3M by the first gel filtration of Sephadex G-25 column and at a concentration of 10(-6M by rechromatography of the same column. More than 99% of SDS in the solubilized erythrocyte membrane was removed by gel filtration. The antigenicity was still positive in the refiltrated fractions of systemic lupus erythematosus patients. Therefore, all precipitates in the gels were antigen-antibody aggregates.

  12. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2014-02-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  13. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2013-04-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  14. The Effect of Sodium Dodecyl Sulfate (SDS and Cetyltrimethylammonium Bromide (CTAB on the Properties of ZnO Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yun Hin Taufiq-Yap

    2012-10-01

    Full Text Available ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB and Sodium dodecyl sulfate (SDS as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD, thermogravimetric and differential thermogravimetric analysis (TGA-DTG, FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.

  15. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    Science.gov (United States)

    Dutt, G B

    2005-11-08

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules.

  16. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    Science.gov (United States)

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H2O2) induced changes in the gene expression have been reported, but efforts to detect H2O2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H2O2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  17. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples.

    Science.gov (United States)

    Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni

    2015-01-01

    Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.

  18. Development of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis reference method for the analysis and identification of fish species in raw and heat-processed samples : A collaborative study

    DEFF Research Database (Denmark)

    Pineiro, C.; Barros-Velazquez, J.; Perez-Martin, R.I.;

    1999-01-01

    A collaborative study was carried out in seven European labs with the aim of achieving a sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) standard operation procedure to identify fish species in raw and cooked samples. Urea and SDS-containing solutions were evaluated as extra...

  19. Development of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis reference method for the analysis and identification of fish species in raw and heat-processed samples : A collaborative study

    DEFF Research Database (Denmark)

    Pineiro, C.; Barros-Velazquez, J.; Perez-Martin, R.I.

    1999-01-01

    A collaborative study was carried out in seven European labs with the aim of achieving a sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) standard operation procedure to identify fish species in raw and cooked samples. Urea and SDS-containing solutions were evaluated as extra...

  20. Evaluation of DLVO theory with disjoining-pressure and film-conductance measurements of common-black films stabilized with sodium dodecyl sulfate.

    Science.gov (United States)

    Yaros, Heather D; Newman, John; Radke, C J

    2003-06-15

    We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.

  1. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.

    Science.gov (United States)

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-09-09

    The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  2. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2016-09-01

    Full Text Available The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021. The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  3. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    Science.gov (United States)

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000μgL(-1) for ciprofloxacin (CIP) and 0.5-500μgL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05μgL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Minh D. Vo

    2016-04-01

    Full Text Available Dissipative particle dynamics (DPD simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT, as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm while water diffusivity was decreased.

  5. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  6. Sodium dodecyl sulfate coated γ-alumina support modified by a new Schiff base for solid phase extraction and flame-AAS determination of lead and copper ions

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS-coated γ-alumina modified with bis(2-hydroxy acetophenone-1,6-hexanediimine (BHAH ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS. The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

  7. Micellization, interaction and thermodynamic study of butylated hydroxyanisole (synthetic antioxidant and sodium dodecyl sulfate in aqueous-ethanol solution at 25, 30 and 35 °C

    Directory of Open Access Journals (Sweden)

    Varun Bhardwaj

    2016-09-01

    Full Text Available Surfactants are found to enhance the diffusion significantly depending on hydrophobic/hydrophilic group lengths and the structure of the surfactant molecule. Aggregation properties of sodium dodecyl sulfate (SDS in the presence of butylated hydroxyanisole (synthetic antioxidant, at a range of temperatures (25, 30 and 35 °C have been measured by the conductometric study in aqueous-ethanolic composite solution. The experimental data of aqueous-ethanolic solutions as a function of SDS concentration ranging from 1 to 14 mM dm−3 show the presence of inflexion points indicating micellization and interaction mechanisms. Effect of temperature was also observed in increasing the CMC (Critical Micelle Concentration in the narrow composition. From the CMC values as a function of temperature, various thermodynamic parameters have been evaluated viz: (a the standard enthalpy change (ΔHm°, (b standard entropy change (ΔSm°, and (c standard Gibbs energy change (ΔGm°. The results showed that the presence of alcohol, as well as the composition of water + ethanol may have effect on thermodynamic parameters. The variation in these parameters with the concentration of surfactant or with the change in temperature suggests the manifestation of hydrophobic interactions in the studied system.

  8. Effects of Sodium Dodecyl Sulfate on Electroless Nickel Plating%十二烷基硫酸钠对化学镀镍的影响

    Institute of Scientific and Technical Information of China (English)

    线东升; 李喜太; 李艳玲

    2012-01-01

    Sodium dodecyl sulfate is an indispensable pinhole preventive in the electroless nickel plating. During the electroless nickel plating process, white attachments can be easily produced on the surface of larger solid steel parts, which affects the quality of electroless nickel plating. But no white attachments were found on the surface of test pieces in the same plating bath. The producing reasons and solving methods of the produced white attachments have been found after years of exploration and analysis.%十二烷基硫酸钠是化学镀镍不可缺少的防针孔剂,较大实心钢铁零件化学镀镍过程中,很容易在零件表面产生白色附着物,影响化学镀镍的质量,而在同一镀槽的化学镀镍试片表面不产生白色附着物;经过多年的探索和分析,找到了白色附着物产生的原因和解决方法.

  9. Effects of sodium dodecyl benzene sulfonate on the crystal structures and photocatalytic performance of ZnO powders prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Li, Yifan; Pi, Yunqing; Liu, Menglin; Han, Xiao; Sun, Jianhui, E-mail: sunjh@htu.cn

    2015-11-15

    A facile and efficient route for the controllable synthesis of ZnO nanostructures by hydrothermal method using sodium dodecyl benzene sulfonate (SDBS) as surfactant was reported. The obtained products were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical, electrochemical and optical properties. The prepared products were used as photocatalysts in the application of the degradation of metronidazole (MNZ)-contained wastewater under visible light irradiation. A 4.5-fold augmentation of degradation efficiency was in turn observed for optimal ZnO (ZO-0.75) photocatalyst compared with that of sample without SDBS addition (ZO) under the visible light irradiation. The effects of SDBS dosage on the crystal structures of prepared samples as well as the crystal growth mechanism were also probed. - Graphical abstract: ZnO photocatalysts were fabricated through a facile and efficient hydrothermal method using SDBS as structure-directing surfactant in a controllable manner. In particular, the sample with different SDBS dosage exhibited distinct crystal structure and photocatalytic performance. - Highlights: • A rod-like ZnO photocatalyst was facilely synthesized by using SDBS as surfactant. • The effect of SDBS dosage on the crystal structure of photocatalyst was probed. • The probably crystal growth mechanism of prepared photocatalyst was explored. • The optimal ZnO with 0.75 g SDBS dosage displayed the best photocatalytic activity.

  10. ADSORPTION STUDY OF RHODAMIN B DYE ON IRAQI BENTONITE AND MODIFIED BENTONITE BY NANOCOMPOUNDS TIO2, ZNO, AL2O3 AND SODIUM DODECYL SULFATE

    Directory of Open Access Journals (Sweden)

    Iqbal Salman AL-Jobouri

    2013-01-01

    Full Text Available The adsorption of Rhodamin B on Iraqi bentonite at the concentration range from 50 to 250 μg mL-1 was studied, Nano compounds; ZnO, TiO2, Al2O3 m and SDS in different amounts 0.01-0.1 g 10-1 g of Bentonite were used to modified the adsorption capacity of bentonite to remove the Rhodamin B from aqueous solutions. The study indicated that using 0.05 g and 0.1 of Sodium Dodecyl Sulfate (SDS lead to increase the percentage removal (%R from 79.3% for pure bentonite to 99.3%. While using 0.05 g TiO2 lead to increase the %R to 98.9%, 0.05 of ZnO to 98.6%. The other amount additives and Al2O3 using was not success to increase the %R for the Rhodamin B on bentonite surface. SEM measurement was achieved to discover the Nanoparticl exists in the bentonite surfaces.

  11. Restraining Na-Montmorillonite Delamination in Water by Adsorption of Sodium Dodecyl Sulfate or Octadecyl Trimethyl Ammonium Chloride on the Edges

    Directory of Open Access Journals (Sweden)

    Hongliang Li

    2016-08-01

    Full Text Available The delamination of montmorillonite in water leads to sliming in ore slurry, which is detrimental to mineral flotation and solid/water separation. In this work, the delamination of Na-montmorillonite (Na-MMT has been restrained by sodium dodecyl sulfate (SDS or octadecyl trimethyl ammonium chloride (1831 through the adsorption on the edge of the mineral. The experimental results have shown that the pretreatment by adding SDS and 1831 could greatly reduce the Stokes size percentage of −1.1 µm particles in the aqueous Na-MMT suspension. From the X-ray diffractometer (XRD results, the interlayer spacing of the MMT pre-treated by SDS and 1831 is smaller than that of original MMT particles. Adsorption position of SDS and 1831 on MMT surfaces was analyzed by the measurements of adsorption capacity of SDS and 1831, inductively-coupled plasma spectra, and zeta potential before and after the plane surface of MMT was covered with tetraethylenepentaminecopper ([Cu(tetren]2+. The results indicated that SDS and 1831 are adsorbed on the edge and the whole surface of Na-MMT, respectively. Delamination of MMT could be well restrained by the adsorption of SDS and 1831 on the edges of MMT.

  12. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes.

    Science.gov (United States)

    Su, Yuhua; Xie, Qingji; Chen, Chao; Zhang, Qingfang; Ma, Ming; Yao, Shouzhuo

    2008-01-01

    The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.

  13. Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of l-methionine on mild steel in acidic medium

    Directory of Open Access Journals (Sweden)

    M. Mobin

    2017-02-01

    Full Text Available The corrosion inhibition behavior of amino acid l-methionine (LMT separately and in combination with very low concentration of surfactants sodium dodecyl sulfate (SDS and cetyltrimethyl ammonium bromide (CTAB on mild steel in 0.1 M H2SO4 solution was studied, using weight loss and potentiodynamic polarization measurement techniques. The studies were carried out in the temperature range of 30–60 °C. The surface morphology of the corroded steel samples was studied by scanning electron microscopy (SEM and atomic force microscopy (AFM.The results show that LMT is an effective inhibitor for mild steel corrosion in 0.1 M H2SO4 which is synergistically improved in the presence of SDS and CTAB. The mixed LMT and CTAB is more effective as an inhibitor than mixture of LMT and SDS. The SEM and AFM photographs show a clearly different surface morphology in the presence of additives. LMT alone and in combination with surfactants obeys Langmuir adsorption isotherm from the fit of the experimental data of all concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the trend of the IE with temperature and also the values of activation energy (Ea, standard enthalpy of adsorption (ΔHads, and standard free energy of adsorption (ΔGads obtained. The results obtained by potentiodynamic polarization measurements are consistent with the results of the weight loss measurements. LMT acts as a mixed type inhibitor.

  14. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress.

    Science.gov (United States)

    Messina, Concetta Maria; Faggio, Caterina; Laudicella, Vincenzo Alessandro; Sanfilippo, Marilena; Trischitta, Francesca; Santulli, Andrea

    2014-12-01

    In this study the effects of an anionic surfactant, sodium dodecyl sulfate (SDS), are assessed on the Mediterranean mussel (Mytilus galloprovincialis), exposed for 18 days at a concentration ranging from 0.1 mg/l to 1 mg/l. The effects are monitored using biomarkers related to stress response, such as regulatory volume decrease (RVD), and to oxidative stress, such as reactive oxygen species (ROS), endogenous antioxidant systems and Hsp70 levels. The results demonstrate that cells from the digestive gland of M. galloprovincialis, exposed to SDS were not able to perform the RVD owing to osmotic stress. Further, SDS causes oxidative stress in treated organisms, as demonstrated by the increased ROS production, in comparison to the controls (p<0.05). Consequently, two enzymes involved in ROS scavenging, superoxide dismutase (SOD) and catalase (CAT) have higher activities and the proportion of oxidized glutathione (GSSG) is higher in hepatopancreas and mantle of treated animals, compared to untreated animals (p<0.05). Furthermore Hsp70 demonstrates an up-regulation in all the analyzed tissues of exposed animals, attesting the stress status induced by the surfactant with respect to the unexposed animals. The results highlight that SDS, under the tested concentrations, exerts a toxic effect in mussels in which the disruption of the osmotic balance follows the induction of oxidative stress.

  15. Self-aggregation of synthesized novel bolaforms and their mixtures with sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous medium.

    Science.gov (United States)

    Maiti, Kajari; Mitra, Debolina; Mitra, Rajendra N; Panda, Amiya K; Das, Prasanta K; Rakshit, Animesh K; Moulik, Satya P

    2010-06-10

    Bolaforms B(1), B(2), and B(3) of the formulas, Br(-)Me(3)N(+)(CH(2))(10)N(+)Me(3)Br(-), Br(-)Me(3)N(+)(CH(2))(10)OH, and Br(-)Me(3)N(+)(CH(2))(10)COO(-)Na(+), respectively, were synthesized, and their properties in the bulk as well as at the air/aqueous NaBr (10 mM) solution interface have been studied. Their interactions with sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) also have been investigated. Tensiometry, conductometry, spectrophotometry, and microcalorimetry techniques were used for characterization and estimation. Both pure bolaforms and their mixtures with SDS and CTAB have been found to self-aggregate, forming micelles in solution. The mixed systems of bolaform and SDS have been observed to form both micelles and vesicles. Their mutual interactions were synergistic, which at the interface was more spontaneous than in the bulk. The interfacial and bulk compositions of the mixed binary systems (bolaform and SDS or CTAB) with their associated interaction parameters have been estimated from the Rosen interaction model and the regular solution theory of Rubingh, respectively. The formed vesicles have been found to entrap the water-soluble dye, bromophenol blue, and the dye solubilized vesicles of B(1)-SDS and B(2)-SDS completely eluted out of the sephadex column proving their formation. A rough estimation of the size and polydispersity index of the formed micelles and vesicles has been made from DLS measurements.

  16. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Science.gov (United States)

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  17. An Investigation of Structure Transition in Sodium Dodecyl Trioxyethylene Sulfate/n-Butanol/n-Octane/Water System by Dielectric Relaxation Spectroscopy Method

    Institute of Scientific and Technical Information of China (English)

    MU Jian-hai; ZHAO Kong-shuang; WEI Su-xiang; LI Ying; LI Gan-zuo

    2004-01-01

    The phase diagram of the quaternary system of sodium dodecyl trioxyethylene sulfate(SDES)/n-butanol/n-octane/water was obtained at (30.0±0.1) ℃. There exists a clear, isotropic, and low-viscosity L phase, which can be divided into W/O, bi-continuous(B.C.) and O/W microemulsions by conductivity measurement results. Dielectric Relaxation Spectroscopy(DRS) measurements, including permittivity, conductivity, relaxation strength, characteristic relaxation time, dielectric parameters, phase parameters, etc., were applied to investigating the microstructures of the system mentioned above. For the samples with a fixed SDES/n-butanol mass ratio of 4/6 including 20%(mass fraction) of n-octane, DRS indicated a structure transition from a W/O to an O/W via a B.C. microemulsion with the increase of the water content. For the samples with a fixed (SDES/20%n-octane)/H2O mass ratio of 5/5, DRS presented that there only exists a onefold structure of a W/O microemulsion as the (n-butanol/20%n-octane) content increases. The results obtained from DRS are in good agreement with those from the phase diagram.

  18. Thermodynamic characteristics of the dissolution of glycine, glycylglycine, and glycylglycylglycine in aqueous solutions of sodium dodecyl sulfate at T = 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2017-09-01

    the enthalpies of dissolution of glycine (Gly), glycylglycine (GlyGly), and glycylglycylglycine (GlyGlyGly) are measured in aqueous solutions of sodium dodecyl sulfate (SDS) at SDS concentrations m = 0-0.7 mol kg-1 and T = 298.15 K by means of calorimetry. The obtained data are used to calculate the standard values of enthalpies of dissolution (Δsol H m ) and enthalpies of transfer (Δtr H m ) of glycine and its oligomers from water to SDS aqueous solutions. The dependences of Δsol H m and Δtr H m on SDS concentration in an aqueous solution at a constant concentration of glycine and its oligomers are determined. A comparative analysis of the thermodynamic characteristics of Gly, GlyGly, and GlyGlyGly transfer within the studied range of SDS concentrations is performed. The results are interpreted in terms of ion-ion, ion-polar, and hydrophobic interactions between SDS and molecules of glycine and its oligomers.

  19. Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Fu, Dongying; Chang, Yunzhen; Xiao, Yaoming; Zhai, Hua-Jin

    2014-12-01

    A facile and one-step electrochemical codeposition method is introduced for incorporating graphene oxide (GO) into poly(3,4-ethylenedioxythiophene) (PEDOT) films in the presence of sodium dodecyl sulfate (SDS). The as-prepared PEDOT/SDS-GO composites are characterized using scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results show that PEDOT/SDS-GO composites possessing a unique petal-shaped morphology have been prepared successfully and exhibit an intercalated microstructure. With the purpose of electrochemical energy storage, the properties of electrochemical capacitance for composites have also been investigated with cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests. The electrochemical test results manifest the PEDOT/SDS-GO composites have superior capacitive behaviors and cyclic stability, and a high areal capacitance of 79.6 mF cm-2 is achieved at 10 mV s-1 cyclic voltammetry scan. Furthermore, the PEDOT/SDS-GO composites exhibit more superior capacitive performance than that of PEDOT/SDS, indicating the incorporation of GO into the composites effectively boosts the capacitive performance of PEDOT-based supercapacitor electrodes. We consider that this research further extends the application of GO and the composites prepared can be developed as the candidate for the fabrication of low-cost, high-performance supercapacitors for energy storage.

  20. The degradation of sodium dodecyl sulfate based on graphene-modified MFC%石墨烯修饰微生物燃料电池降解十二烷基磺酸钠

    Institute of Scientific and Technical Information of China (English)

    姜倩利; 杨胜科; 张倩; 周扬

    2016-01-01

    以十二烷基磺酸钠为阳极电子供体,同时以石墨烯为催化剂对电极进行修饰。将修饰前后微生物燃料电池的产电性能和十二烷基磺酸钠的降解情况进行对比,经过修饰的电极装置产电效率明显增大,最大电压增加了1倍,并使十二烷基磺酸钠的降解率从49.85%提高到65.11%。这说明用石墨烯修饰后的微生物燃料电池在稳定产电的同时降解十二烷基磺酸钠是可行的,为废水中阴离子表面活性剂的去除提供了新的方法与研究方向。%With sodium dodecyl sulfate as anode electron donor and graphene as catalyst to modify the electrodes,the production performance of MFC and the degradation rate of sodium dodecyl sulfate are compared before and after modification.The treatment effect of modified MFC is two times as the unmodi-fied and the degradation of sodium dodecyl sulfate rate can reach 65 .1 1% from 49 .85%.The perform-ance of MFC with graphene modify electrode and the rate of degradation of SDS was tested.It indicates a good effect with graphene modified MFC to degrade sodium dodecyl sulfate and provides a new orientation for removal of the kind of anionic surfactant in organic wastewater treatment.

  1. Biopartitioning micellar chromatography with sodium dodecyl sulfate as a pseudo α(1)-acid glycoprotein to the prediction of protein-drug binding.

    Science.gov (United States)

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2013-01-01

    A simple and fast method is of urgent need to measure protein-drug binding affinity in order to meet the rapid development of new drugs. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography (MLC) using micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug-protein interactions. In this study, sodium dodecyl sulfate-micellar liquid chromatography (SDS-MLC) was used for the prediction of protein-drug binding based on the similar property of SDS micelles to α(1)-acid glycoprotein (AGP). The relationships between the BMC retention data of a heterogeneous set of 14 basic and neutral drugs and their plasma protein binding parameter were studied and the predictive ability of models was evaluated. Modeling of logk(BMC) of these compounds was established by multiple linear regression (MLR) and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of SDS. The developed MLR models were characterized by both the descriptive and predictive ability (R(2)=0.882, R(CV)(2)=0.832 and R(2)=0.840, R(CV)(2)=0.765 for 0.07 and 0.09M SDS, respectively). The p values <0.01 also indicated that the relationships between the protein-drug binding and the logk(BMC) values were statistically significant at the 99% confidence level. The standard error of estimation showed the standard deviation of the regression to be 11.89 and 13.87 for 0.07 and 0.09M, respectively. The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values were in good agreement with the experimental value.

  2. Effect of β-Cyclodextrin Upon the Sol-gel Transition of Methylcellulose Solutions in the Presence of Sodium Dodecyl Sulfate

    Institute of Scientific and Technical Information of China (English)

    Hua-yu Li; Xiang Hao; Yong-jun Xie; Hai-yang Yang; He Liu; Jian-hui Luo

    2012-01-01

    The sol-gel transition temperature of methylcellulose (MC) solution in the presence of sodium dodecyl sulfate (SDS) as well as the mixtures of SDS andβ-cyclodextrin (β-CD) was measured,and the effect of the two competing interactions,the hydrophobic interaction between SDS and MC and the inclusion interaction between SDS and β-CD,upon the sol-gel transition of MC solution was studied.It has been found that the inclusion interaction between SDS and β-CD is much greater than the hydrophobic interaction between SDS and MC.As a result,in the coexistence of SDS and β-CD,the sol-gel transition temperature of MC solution keeps the same value,independent of the concentration of SDS in solution on condition that the concentration of SDS is less than β-CD.Our experimental results not only suggest that the effect of SDS upon the sol-gel transition of MC solution can be screened by β-CD completely but also indicate the inclusion ratio of SDS to β-CD can be determined quantitatively by using rheological measurement.The inclusion ratio of SDS toβ-CD is 1:1,which is in good agreement with the inclusion ratio of SDS to β-CD in the presence of poly(vincyl pyrrolidone) determined by the viscosity measurement but is critically different from the inclusion ratio of SDS toβ-CD in the presence of the oppositely charged polyelectrolyte by using the rheological measurement,mainly due to the reason that the mechanism of the interaction between SDS and MC is critically different from the mechanism of the interaction between SDS and the oppositely charged polyelectrolyte.

  3. Effects of aggregates on mixed adsorption layers of poly(ethylene imine) and sodium dodecyl sulfate at the air/liquid interface.

    Science.gov (United States)

    Tonigold, Katrin; Varga, Imre; Nylander, Tommy; Campbell, Richard A

    2009-04-07

    We have exploited the spatial and kinetic resolution of ellipsometry to monitor the lateral movement of inhomogeneous patches of material in mixed adsorption layers of poly(ethylene imine) and sodium dodecyl sulfate at the air/liquid interface. We show that the choice of sample preparation methods can have a profound effect on the state of the interface for chemically equivalent samples. The extent of aggregation in the bulk solution on relevant time scales is affected by specific details of the polymer/surfactant mixing process, which produces varying numbers of aggregates that can become trapped in the interfacial layer, resulting in an enhanced and fluctuating ellipsometry signal. It can be beneficial to apply the surface-cleaning method of aspiration prior to physical measurements to remove trapped aggregates through the creation of a fresh interface. At low pH, the ellipsometry signal of samples prepared with surface cleaning is remarkably constant over a factor of >500 in the bulk composition below charge equivalence, which is discussed in terms of possible adsorption mechanisms. At high pH, through observing temporal fluctuations in the ellipsometry signal of samples prepared with surface cleaning, we reveal two important processes: there is the spontaneous adsorption of aggregates > 0.2 microm in diameter into the interfacial layer, and with time there is the fusion of smaller aggregates to generate new large surface aggregates. We attribute the favorability of the adsorption and fusion processes at high pH to reduced electrostatic barriers resulting from the low surface charge density of the aggregates. It is inappropriate in this case to consider the interface to comprise a homogeneous adsorption layer that is in dynamic equilibrium with the bulk solution. Our work shows that it can be helpful to consider whether there are macroscopic particles embedded in molecular layers at the air/liquid interface for systems where there is prior knowledge of

  4. Direct speciation analysis of thallium based on solid phase extraction and specific retention of a Tl(III) complex on alumina coated with sodium dodecyl sulfate.

    Science.gov (United States)

    Biaduń, Ewa; Sadowska, Monika; Ospina-Alvarez, Natalia; Krasnodębska-Ostręga, Beata

    Alumina (Al2O3) with an average particle size of 63 μm was modified with the anionic surfactant sodium dodecyl sulfate (SDS) and then applied to (i) solid phase extraction and separation of both thallium(I) and thallium(III), and (ii) preconcentration of Tl(III) from waste water samples. Only Tl(III), in the form of its complex with diethylenetriaminepentaacetate (DTPA), was retained on the sorbent, from where it can be eluted with 40 % nitric acid. Thallium species were then quantified by ICP MS. The method was characterized by a LOD of 25 pg of Tl(I) and 160 pg of Tl(III) in 10 mL samples. A large excesses of Tl(I) over Tl(III) was tolerated, and relatively high levels of other metal ions, such as a 500-fold excess of Pb(II) and Cd(II), and a 2000-fold excess of Zn(II), respectively, do not interfere. The sorbent was easily prepared and possesses a high loading capacity, and these properties make it an attractive material for rapid and efficient extraction and speciation of Tl. Graphical abstract:Schematic of the SPE procedure for separation (with preconcentration) of Tl(III) from Tl(I) was developed and applied to direct speciation analysis of thallium in wastewater. Self-made columns packed with alumina coated with SDS were used. The method is resistant to interferences from Pb, Cd, Zn and tolerates a large excess of Tl(I) over Tl(III).

  5. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    Science.gov (United States)

    Hubbard, F Pierce; Abbott, Nicholas L

    2007-04-24

    We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.

  6. Proteins of human urine. II. Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.J. (Argonne National Lab., IL); Anderson, N.G.; Tollaksen, S.L.; von Eschenbach, A.C.; Guevara, J. Jr.

    1982-01-01

    A protein series common to the urine and prostatic tissue of 16 of 17 patients with prostatic adenocarcinoma has been identified by high-resolution two-dimensional gel electrophoresis. These proteins, designated PCA-1, have a relative molecular mass in sodium dodecyl sulfate of about 40,000. Analyses of urines from eight age-matched controls, seven patients with other types of urogenital malignancies, two patients with benign prostatic hyperplasia, and five patients with malignancies not associated with the urogenital system failed to show PCA-1 in the patterns. These preliminary findings suggest that this protein should be systematically investigated as a candidate marker for prostatic adenocarcinoma in man.

  7. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  8. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  9. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems.

    Science.gov (United States)

    Görg, A; Boguth, G; Obermaier, C; Posch, A; Weiss, W

    1995-07-01

    After having established the basic protocol of two-dimensional electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt) in 1988 (A. Görg et al., Electrophoresis 1988, 9, 531-546), some critical parameters of the actual IPG-Dalt protocols as well as the results obtained with horizontal and vertical second-dimensional sodium dodecyl sulfate-electrophoresis are demonstrated and discussed.

  10. Identification of Contaminations Hiding Beneath the α- and β-Subunits of Partially Purified Nitrogenase MoFe Protein on the Sodium Dodecyl Sulfate Gel

    Institute of Scientific and Technical Information of China (English)

    Hui-Na ZHOU; Ying ZHAO; Shao-Min BIAN; Jian-Feng ZHAO; Fei REN; Huang-Ping WANG; Ju-Fu HUANG

    2005-01-01

    To identify the unknown proteins that would contaminate the α- and β-subunits of nitrogenase MoFe protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the partially purified MoFe protein (Av 1) preparation was obtained from Azotobacter vinelandii Lipmann OP by chromatography on DEAE-cellulose (DE52) and Sephacryl S-200 columns and analyzed by PAGE and matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The Av 1 preparation was shown to have two main bands at the position of the α- and β-subunits of crystalline Avl on the SDS gel. However, on the anoxic native PAGE, in addition to the Ay 1 band, the preparation was shown to have three other main bands that migrated slower than Avl. Of these three main bands, the protein with the fastest migration was identified as bacterioferritin elsewhere. The proteins on the other two bands, termed Upper and Middle, were suggested to be two different homopolymers with the same apparent subunit electrophoretic mobilities as the α- and β-subunits of Avl, respectively. By analysis of MALDI-TOF mass spectrometry, the Upper was identified as GroEL, which belongs to the heat shock protein 60 family, and the Middle was identified as glucose-6-phosphate isomerase (PGI). In our preparation, anoxic native electrophoresis indicated that GroEL was composed of 14 identical subunits and that PGI was composed of 10 identical subunits. This is the first report of PGI, with so many subunits. The contaminating proteins in the Av 1 preparation, mainly GroEL and PGI, could be totally or partially removed from Av1 if the shoulders and center of the elution peak were collected separately from the Sephacryl S-200 column and the center fraction was purified further by Q-Sepharose developed with an NaCl concentration gradient. Thus, Avl with more than 90% purity was obtained. Obviously, this modified method is useful for the purification of mutant MoFe proteins with a high purity.

  11. Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: Dissociation of oligomeric structure and autoxidation.

    Science.gov (United States)

    Santiago, Patricia S; Moreira, Leonardo M; de Almeida, Erika V; Tabak, Marcel

    2007-04-01

    The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the

  12. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Atsushi Wada

    Full Text Available BACKGROUND: For precise diagnosis of urinary tract infections (UTI, and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. METHODOLOGY/PRINCIPAL FINDINGS: We employed the NaOH-sodium dodecyl sulfate (SDS solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. CONCLUSIONS/SIGNIFICANCE: Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history

  13. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods.

    Science.gov (United States)

    Esterman, Abbie L; Katiyar, Amit; Krishnamurthy, Girija

    2016-09-05

    Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is widely used for purity analysis of monoclonal antibody therapeutics for release and stability to demonstrate product consistency and shelf life during the manufacturing and life cycle of the product. CE-SDS method development is focused on exploring the method capability to provide the information about the product purity and product related degradants (fragmentation, aggregation etc.). In order to establish the functionality of the instrumentation, software, and sample preparation; system suitability criteria need to be defined for analytical methods using a well characterized reference standard run under the same protocol and analysis as the test articles. Typically the reference standard is produced using a manufacturing process representative of the clinical material. The qualification, control, and maintenance of in-house reference standards are established through rigorous quality and regulatory guidelines. The U.S. Pharmacopeia (USP) has developed a monoclonal IgG System Suitability Reference Standard to be utilized for assessment of system suitability in CE-SDS methods. In this communication, we evaluate the system suitability acceptance criteria performance of the USP IgG standard using two methods, the recommended USP protocol provided in monograph and a molecule specific Bristol-Myers Squibb (BMS) CE-SDS method. The results from USP IgG standard were compared with two in-house monoclonal antibody reference standards. The data suggest that the USP CE-SDS method may not be suitable for CE-SDS analysis for release and stability of monoclonal antibody therapeutics due to the high level of method induced partial reduction observed for all molecules tested. This high level of fragmentation observed utilizing the USP method will result in reporting lower purity levels, which will impact the overall quality assessment of the molecule. The system suitability criteria recommended by the USP method can be

  14. Luminescence and bio-imaging response of thio-glycolic acid (TGA) and sodium dodecyl sulfate (SDS)-coated fluorescent cadmium selenide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2015-05-15

    We demonstrate the usefulness of surfactant coated CdSe quantum dots in bio-imaging applications after evaluating their steady state and time resolved emission responses. The surfactant coated QDs, with the respective sizes of ~14 nm and 10 nm are synthesized considering two different types of coating agents, namely, thio-glycolic acid (TGA) and sodium dodecyl sulfate (SDS). The steady state luminescence response is characterized by both near band edge (NBE) and defect-related emissions, but with a strong dependency on the nature of surfactant coating. Time resolved photoluminescence (TR-PL) studies have revealed bi-exponential characteristics with CdSe–TGA QDs exhibiting longer life time decay parameters than those of CdSe–SDS QDs. To be specific, the fast (τ{sub 1}) and the slow (τ{sub 2}) components are characterized by ~10 and 30 times larger values in the former than the latter case. In the FT-IR spectra, several stretching and bending vibrations are observed to be adequately influenced by the nature of surfactant coating. The availability of plentiful Na{sup +} counter ions around SDS coated QDs, as evident from the FT-IR spectroscopy studies, can also be responsible for obtaining reduced size of the QDs. In contrast, Raman active modes are apparently distinguishable in TGA coated QDs, with LO and TO mode positions significantly blue-shifted from the bulk values. While attributing to the intense defect mediated emission of TGA coated QDs, the effect of TGA coating presented a stronger fluorescence imaging capability over the SDS coated ones. A detailed assessment of fluorescent counts, as a basis of bio-imaging response, is being discussed on a comparative basis. - Highlights: • Fluorescent CdSe quantum dots are synthesized with two different kinds of surfactant coatings. • Time resolved photoluminescence (TR-PL) studies have revealed bi-exponential decay characteristics. • Both slow and fast decay parameters are found to be longer in CdSe QDs

  15. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  16. Proteins isolated with TRIzol are compatible with two-dimensional electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Young, Clifford; Truman, Penelope

    2012-02-01

    TRIzol is used for RNA isolation but also permits protein recovery. We investigated whether proteins prepared with TRIzol were suitable for two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization mass spectrometry. Proteins from TRIzol-treated SH-SY5Y cells produced 2-DE spot patterns similar to those from an equivalent untreated sample. Subsequent identification of TRIzol-treated proteins using peptide mass fingerprinting was successful. TRIzol exposure altered neither the mass of myoglobin extracted from sodium dodecyl sulfate (SDS) gels nor the masses of myoglobin peptides produced by in-gel trypsin digestion. These findings suggest that proteins isolated with TRIzol remain amenable to proteomic analyses.

  17. 十二烷基磺酸钠/异辛烷/正构醇/水微乳状液的相行为及其结构转变的研究%Phase Behavior and Structural Transitions in Sodium Dodecyl Sulfonate Microemulsions

    Institute of Scientific and Technical Information of China (English)

    杨根生; 施介华; 李景华; 王普; 姚善泾

    2002-01-01

    The forming mechanism ofmicroemulsion of sodium dodecyl sulfonate, alcohols, water and isooctane was studied, with particular emphasis on the effect of molecular weight and concentration of alcohols. Phase diagram of the four components, alcohol,sodium dodecyl sulfonate, water and isooctane, was used as a means of study, through which the microemulsion regions were determined. Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at km, = 2 (km, = Wn-pentanol / WsDs ) is presented.The variation of conductivities of different microemulsion samples with water was measured. From the conductivities we investigated a change in structure from water droplets in oil (W/O) at low water content to liquid crystal at intermediate water content and a struc ture ofoil droplets in water (O/W) at high water content.

  18. Micropreparative one- and two-dimensional electrophoresis: improvement with new photopolymerization systems.

    Science.gov (United States)

    Rabilloud, T; Vincon, M; Garin, J

    1995-08-01

    To improve the efficiency of one- and two-dimensional electrophoresis for micropreparative purposes, the use of gels polymerized with other initiators than the standard N,N,N',N'-tetramethylethylenediamine (TEMED)/persulfate systems for sodium dodecyl sulfate electrophoresis has been investigated. We show here that the recently described photoinitiator system, composed of methylene blue, toluene sulfinate and diphenyliodonium chloride, leads to a decreased resolution. Resolution can be restored if methylene blue is replaced by riboflavin. Two-dimensional electrophoresis with mg loadings of proteins has also been evaluated with these systems. Independently of the polymerization system, resolution for the first dimension is low with rod gels, increases with gel strips and is further improved when immobilized pH gradients are used. Here too, only the riboflavin/sulfinate/iodonium system results in a resolution that matches the one obtained with the standard TEMED/persulfate system. Gels polymerized with the riboflavin/sulfinate/iodonium system yield better results upon N-terminal microsequencing after blotting than gels polymerized with the standard TEMED/persulfate system.

  19. LINEAR SOLVATION ENERGY RELATIONSHIPS FOR CHARACTERIZATION OF MLC SYSTEMS WITH SODIUM DODECYL SULPHATE MOBILE PHASES MODIFIED BY ALIPHATIC ALCOHOLS OR CARBOXYLIC ACIDS

    NARCIS (Netherlands)

    Markov, Vadym V.; Boichenko, Alexander P.; Loginova, Lidia P.

    2012-01-01

    The Linear Solvation Energy Relationships (LSER) have been successfully used for the modeling of partition and retention of the set of test compounds in different systems. The properties of micellar chromatographic systems with the mobile phases on the basis of sodium dodecylsulphate modified (ODS)

  20. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  1. 光度法研究十二烷基硫酸钠的临界胶束浓度%Determination of critical micelle concentration of sodium dodecyl sulfate by using spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    王新红; 戴兢陶; 顾云兰

    2011-01-01

    Critical micelle concentrations (CMC) of sodium dodecyl sulfate (SDS) in aqueous solution of io dine and I-3 solution were determined, and two salts, sodium sulfate and potassium chloride on the impact of CMC of SDS in the aqueous solution of iodine in different concentrations of iodine were also discussed.The CMC of SDS obtained in two different systems are different by using spectrophotometry. Sodium sul fate salts on the impact of the surface activity of SDS are greater than potassium chloride in I-3 solution, and with the increasing concentration of iodine, the CMC of SDS show the trend of increasing in the aqueous so lution of iodine.%在碘的水溶液和I-3溶液2种体系中测定了十二烷基硫酸钠(SDS)的临界胶束浓度(CMC),讨论了在I-3体系中,不同硫酸钠和氯化钾对测定结果的影响,在碘的水溶液中研究了不同碘浓度对SDS的CMC的影响.采用分光光度法求得SDS在两种体系中的CMC值,硫酸钠与氯化钾对CMC的值有影响,且硫酸钠对SDS的表面活性影响大于氯化钾;在碘的水溶液中,随碘的浓度增大,CMC呈增大趋势.

  2. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  3. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  4. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    Science.gov (United States)

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix.

  5. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  6. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  7. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  8. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  9. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  10. Surface atomic structures of Fe2O3 nanoparticles coated with cetyltrimethyl ammonium bromide and sodium dodecyl benzene sulphonate:an extended x-ray absorption fine-structure study

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Fe2O3 nanoparticles coated with sodium dodecyl benzene sulphonate(DBS)or cetyltrimethyl ammonium bromide(CTAB) were prepared by using a microemulsion method in the system water/toluene.The nanoparticles were characterized by means of transmission electron microscopy and average particle sizes of 5.0nm and 6.0nm were found for DBS-modified and CTAB-modified nanoparticles respectively.The local atomic structures of these iron(Ⅲ) oxide nanoparticles were probed by using the extended x-ray absorption fine-structure technique.Fe K absorption spectra were collected at beam line 4W1B of Beijing Synchrotron Radiation Facility.A structureal model was proposed for describing their atomic structures.The Fe-O bond length at the surface of DBS-coated Fe2O3 nanoparticles was found to be similar to that in bulk Fe2O3.but there was about 0.04A expansion for the CTAB-coated Fe2O3 nanoparticles.On the basis of the model proposed in this paper,the thicknesses of the surface layers were estimated to be 0.5nm and 0.7nm.respectively,for the DBS-coated and CTAB-coated Fe2O3 nanoparticles.The anharmonicity of the atomic vibration and the asymmetry of atom-pair distribution were found to be larger at the surface of the nanoparticles than in the bulk material,while the Debye-Waller factors are almost the same for the surface and the core parts of the nanoparticles.It can be concluded that the atomic structure of the nanoparticle surface is ordered.but the atom-pari distribution is asymmetric.

  11. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  12. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  13. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  14. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis

    Science.gov (United States)

    1976-01-01

    In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are

  15. 荷电膜去除水中表面活性剂十二烷基苯磺酸钠研究%STUDY ON THE REMOVAL OF SURFACTANT SODIUM DODECYL BENZENE SULFONATE BY CHARGED MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    张洁欣; 魏俊富; 张环

    2011-01-01

    采用自制等离子体改性聚砜荷电膜对表面活性剂十二烷基苯磺酸钠(SDBS)进行截留测试,通过改变溶液的初始SDBS质量浓度(40~400 mg· L-1)、操作压力(0.15~0.35 MPa),离子强度(NaCl质量浓度100~300 mg·L-1)以及pH(2~12)等影响因素,观察荷电膜对SDBS溶液的截留率以及通量的变化,分析作用机理.结果表明,静电斥力为主要作用力,同时伴有机械筛分作用.初始SDBS含量低时比高时截留效果好,SDBS初始质量浓度为40 mg· L-1时截留率可达85.68%;低离子强度时静电斥力发挥主要作用,截留率比高离子强度时高;压力越大,截留率越高;溶液pH接近中性时截留效果最好.%Surfactant sodium dodecyl benzene sulfonate solution was retained by the plasma modified polysulfone charged membrane. The rejection tests were at different factors including solution concentration, operating pressure (0.15~0.35 Mpa), ionic strength (concentration of NaCl 100~300 mg*L') and pH (2~12). The retention rate and flux of SDBS solution retained by charged membrane were observed. The mechanism of retention was analyzed. Experimental results revealed that electrostatic repulsion was the main force in the process. And size exclusion also existed. Solutions possessing low concentration showed better rejection effect than those having high concentration. When initial feed concentration was 40 mg'L', the retention rate could reach 85.68%. Electrostatic repulsion played an important role at low ionic strength. The retention rate at low ionic strength was higher than those at high ionic strength. The retention rate increased as the operating pressure presented high. And the rejection performed well when pH was close to neutral.

  16. Role of additives; sodium dodecyl sulphate and manganese chloride on morphology of Zn{sub 1−x}Mn{sub x}O nanoparticles and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajanan, E-mail: pandeygajanan@rediffmail.com [Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Dixit, Supriya; Shrivastava, A.K. [School of Studies in Physics, Jiwaji University, Gwalior 474011, M.P. (India)

    2014-10-15

    In the present study Zn{sub 1−x}Mn{sub x}O (x = 0, 0.05 and 0.1) nanoparticles (NPs) have been synthesised in aqueous solution phase at mild reaction temperature 100 °C in moderate alkaline medium (pH = 9.5), and the role of external additives; like sodium dodecyl sulphate and manganese chloride on the morphology and size of the products has been explored on the basis of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectral analyses data. ZnO hexagonal nano-plates, core–shell like spherical/ellipsoidal Zn{sub 0.95}Mn{sub 0.05}O structures and thin sheets, thorn/needle mixed shaped Zn{sub 0.9}Mn{sub 0.1}O structures have been observed in TEM and SEM images. Zn(OH){sub 2} formed in moderate alkaline medium, converted to Zn(II) hydroxo complex ions on dissolution, which further recrystallizes to produce wurtzite ZnO at 100 °C. From XRD and EDX analysis, successful doping of Mn{sup 2+} ions at the Zn{sup 2+} sites in ZnO host has been proved. In the photoluminescence spectra, the observed blue shifts in NBE peaks and decrease of emissions intensity on Mn doping have thoroughly been discussed in the present investigation. - Highlights: • Zn{sub 1−x}Mn{sub x}O NPs have been prepared in aqueous solution at mild temperature 100 °C. • Shifts in XRD lines and NBE peaks in PL spectra proved doping of Mn{sup 2+} in the ZnO. • ZnO is formed via dissolution–recrystallization of ε-Zn(OH){sub 2}–ZnO. • Additives SDS and MnCl{sub 2}·4H{sub 2}O play important role on morphology of Zn{sub 1−x}Mn{sub x}O NPs. • Mn contents increased extrinsic defects, which decreased intensity of PL spectra.

  17. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  18. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  19. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  20. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  1. 羊毛纤维吸附十二烷基磺酸钠的热力学研究%Thermodynamic study on the adsorption of sodium dodecyl sulfonate by wool fiber

    Institute of Scientific and Technical Information of China (English)

    戴丽; 耿信鹏; 林国栋

    2007-01-01

    采用电导法研究了366K(93℃)时经洁净处理的羊毛纤维在酸性(pH=3.0~3.5)水溶液中对十二烷基磺酸钠(SDS)的吸附等温线,以及羊毛在不同助剂(含乙二醇/苯甲醇和硫酸锌)的水溶液中对SDS的吸附等温线.结果表明,加入助剂后,SDS的吸附量均出现不同程度的下降.可解释为较高温度下,阴离子表面活性剂SDS在水中的溶解度升高.同时,苯甲醇、乙二醇分子中都含有羟基,亲水性较强,在水中的溶解度也较高,使得表面活性剂与水的亲和性增强,表面活性剂分子自水中逃离而吸附于羊毛上的趋势相对减少,故SDS的吸附量降低.由通用吸附等温线公式估算了不同助剂作用下SDS在羊毛/溶液界面吸附的表面胶团聚集数和表面胶团化标准自由能,与实验结果比较符合.本文还研究了在空白浴和加助剂("DL"、"FL")条件下分散染料上染羊毛的吸附等温线,并探讨了其吸附机理,从较深层次上探索其染色机理.%The adsorption isotherms of Sodium Dodecyl Sulfonate (SDS) onto wool fiber surface which experienced clean processing from an acid aqueous solution(pH3.0~3.5) by conductance method at 366K(93℃) were studied, so did the isotherms of wool adsorbing SDS from different aqueous solutions which containing various auxiliaries(containing glycol/benzalcohol and zinc sulfate). Some results can be found that all the adsorbed amounts of SDS show a descending trend at different degrees after adding the auxiliaries. The increasing solubility of the agent indicates the affinity of surfactant with water becoming stronger, and the trend of surfactant fleeing away water and adsorbed onto the wool is relatively decrease, which made the adsorbed amounts of SDS reduce. The surface micelle aggregation number and the standard Gibbs free energy for surface micellization of SDS adsorbed onto the wool/solution interface in the actions of different auxiliaries were estimated by the general

  2. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  3. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  4. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  5. Identification of tumor markers using two-dimensional electrophoresis in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kai-Juan Wang; Run-Tian Wang; Jian-Zhong Zhang

    2004-01-01

    AIM: To study the differential expression of proteins in normal and cancerous gastric tissues, and further identify new molecular markers for diagnosis and prognosis of gastric carcinoma, as well as develop new therapeutic targets of the disease.METHODS: Matched pairs of tissues from 6 gastric cancer patients were analyzed for their two-dimensional electrophoresis (2DE) profiles. Soluble fraction proteins from human normal and cancerous gastric tissue were separated in the first dimension by isoelectric focusing on immobilized pH gradient (IPG, pH3-10) strips, and by 125 g/L sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension with silver nitrate staining. Protein differential expression was analyzed by use of image analysis software to find out candidates for gastric cancer-associated proteins.RESULTS: Nine protein spots overexpressed in tumor tissues as compared with noncancerous regions. In the next step, 9 tumor-specific spots were cut off from Coomassie Brilliant Blue staining gels, digested in gel with L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-trypsin. Protein identification was done by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS).In total, 5 tumor-specific protein spots corresponding to 5 different polypeptide chains were identified, including annexin V, carbonic anhydrase, prohibitin, fibrin beta and fibrinogen fragment D. Among these 5 spots, the potential significance of the differential expressions is discussed.CONCLUSION Differential expression analysis of proteomes may be useful for the development of new molecular markers for diagnosis and prognosis of gastric carcinoma.

  6. 无机阴离子对TiO2-膨润土紫外光降解SDBS的影响%Effect of Inorganic Anion on Degradation of Sodium Dodecyl Benzene Sulfonate by TiO2-bentonite

    Institute of Scientific and Technical Information of China (English)

    温淑瑶; 马占青; 马敏立

    2012-01-01

    Photodegradation of sodium dodecyl benzene sulfonate (SDBS) by TiO2-bentonite is efficient, and the inorganic anions such as Cl-, SO42-, NO3-, HCO3-, H2PO4- which usually exist in water have an effect on photodegradation efficiency of SDBS by TiO2-bentonite. 36 mmol/L sodium salt of these inorganic anions was input into SDBS aqueous solution respectively,and the solutions were irradiated for 2 h with ultraviolet lamp. The difference of photodegradation results with or without the input of inorganic anions in the solution was compared. Results showed that effect of inorganic anion such as Cl-, SO42-, NO3-,HCO3-, H2PO4- on degradation of SDBS by TiO2-bentonite existed. Among which the effect of HCO3- on degradation was the most obvious, followed by H2PO-4 , NO3- , SO42-, Cl- The concentration of SDBS solutions with input of HCO3- , H2PO4- , NO3- ,SO42-, Cl- increased by 2.63, 1.63, 0.73, 0.52 and 0.46 times respectively within 2 h than that without input of the inorganic anions, which mainly depends on the competitions of surface active position between inorganic anions and organic molecules,appearance of high polarity environment near surface of catalyst particle and change of pH of solutions. Effect of inorganic anion on COD of aqueous solutions was different, within 2 h COD of aqueous solutions which had been input Cl-, SO42-,NO3- , HCO3- , HZPO4- , increased 6.62, 0.26, 0.03, 0.29 and 0.45 times respectively than that hadn't been put into.%TiO2-膨润土光催化降解水溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的效率较高,Cl-、SO42-、NO3-、HC3-、H2PO4-是水体中常见的阴离子,这些阴离子对降解效果的影响直接影响该技术的实际应用.分别投加36 mmol/L上述阴离子的钠盐到SDBS水溶液中,紫外光照射溶液2h,比较投加与不投加的SDBS去除效果差异,结果表明:(1)水溶液中上述阴离子对TiO2-膨润土降解SDBS的效果都有不利影响,其中HCO3影响最大,其次是H2PO4_,

  7. Surfactant-thermal method to prepare two novel two-dimensional Mn–Sb–S compounds for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lina [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Ceantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Xiong, Wei-Wei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Peizhou [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Han, Jianyu [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhang, Guodong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Shengming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhao, Yanli [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xu, Rong, E-mail: RXu@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); SinBeRISE CREATE, National Research Foundation, CREATE Tower level 11, 1 Create Way, University Town, National University of Singapore, 138602 Singapore (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-12-15

    Two novel two-dimensional crystalline chalcogenidoantimonates, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions through using PEG-400 and sodium dodecyl sulfate as reaction media, respectively. In compound 1, [MnS{sub 2}N{sub 4}]{sub n}{sup 2n−} species connect [SbS{sub 2}]{sub n}{sup n−} chains via vertex-sharing S atoms to form neutral layered frameworks, while in compound 2, 8-membered windows [Sb{sub 4}S{sub 8}]{sub n}{sup 4n−}, 24-membered windows [Sb{sub 12}S{sub 24}]{sub n}{sup 12n−} and Mn atoms are connected together to form neutral 2D-[MnSb{sub 6}S{sub 10}] layers. All Sb atoms in both complexes form [Sb{sup ⍰}S{sub 3}]{sup 3−} trigonal-pyramid by coordinating with three S atoms. The steep UV–vis absorption edges indicate that 1 and 2 have the band gaps of 1.96 eV and 2.12 eV, respectively. Both compound 1 and 2 show active visible-light-driven photocatalytic properties for hydrogen production. - Graphiacl abstract: Two novel 2D framework sulfides, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions and show active visible-light-driven photocatalytic properties for hydrogen production. - Highlights: • Two novel two-dimensional Mn–Sb–sulfide frameworks. • Synthesis through surfactant-thermal condition. • Photocatalytic properties for hydrogen generation.

  8. Two Dimensional Electrophoresis of Proteins from Cultures of Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Torp, J.; Andersen, Brian

    1982-01-01

    Conidial proteins from barley powdery mildew, Erysiphe graminis f. sp. hordei, were separated by 2-dimensional electrophoresis in polyacrylamide slab gels. Isoelectric focusing was used in the first dimension and separation according to molecular weight in a gel containing sodium dodecyl sulphate...

  9. Characterization of Purified Glutathione S-Transferase (GSTs from Fasciola hepatica and Liver Tissue by Two-Dimensional Electrophoresis (2-DE

    Directory of Open Access Journals (Sweden)

    A Farahnak 1

    2005-07-01

    Full Text Available Two-dimensional electrophoresis (2-D electrophoresis is a powerful and extensively used method for analysis of complex protein mixtures extracted from cells, tissue, or other biological samples such as helminth parasites including, F. hepatica. Each spot on the resulting two-dimensional collection corresponds to a single protein species in the sample. This study was carried out to detect of GSTs isoenzyme spots map for collection of highly specific proteins. For this purpose, GSTs were purified from adult parasite of F.hepatica and sheep liver tissue as an enzyme pool by a glutathione affinity matrix using a wash-bath method and investigated for sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE pattern. For 2-DE, purified GSTs from F.hepatica and sheep liver tissue were resuspended in sample buffer and then run on a IPG strip in the first dimension and then on an Excel Gel SDS in the second dimension before protein spots staining with Coomassie blue. The obtaining spots in the gels were compared and GSTs protein spots were detected with similar molecular weight, 26 kDa. The protein spots which are recorded in this paper could be GSTs isoenzymes and are highly specific peptids. These findings may be considered for vaccination or chemotherapeutic targets in sheep and human fascioliasis.

  10. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    Science.gov (United States)

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Detection of low-molecular weight allergens resolved on two-dimensional electrophoresis with acid-urea polyacrylamide gel.

    Science.gov (United States)

    Kitta, Kazumi; Ohnishi-Kameyama, Mayumi; Moriyama, Tatsuya; Ogawa, Tadashi; Kawamoto, Shinichi

    2006-04-15

    Two-dimensional electrophoresis with immobilized pH gradient (IPG) followed by acetic acid/urea-polyacrylamide gel electrophoresis (AU-PAGE) was developed for the detection of low-molecular weight food allergens. Wheat proteins were used to test the applicability of AU-PAGE for the analysis of food allergens. Isoelectric focusing (IEF) for first dimension was performed with IPG pH 3-10. AU-PAGE was performed as a second-dimensional electrophoresis and high resolution was obtained, especially for proteins below 15 kDa. For immunodetection, the proteins resolved on AU gel were transferred to a polyvinylidene difluoride membrane. The assembly of semidry electroblotting for AU gel was set reversed as for sodium dodecyl sulfate (SDS)-PAGE gel. The electroblotted membrane was immunolabeled with serum from a radio-allergosorbent test-positive individual for wheat to identify allergenic proteins. Protein spots strongly recognized by the patient's serum were chosen for further analysis. Mass spectrometry analysis revealed that these proteins were alpha-amylase/trypsin inhibitors and lipid transfer protein. The system developed in this study was shown to be useful as a standard protocol for the separation of low-molecular weight proteins. Moreover, the IPG strips on which IEF was performed could be used either for SDS-PAGE or AU-PAGE by only changing equilibrating conditions, allowing for a wide range of allergen analysis.

  12. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  13. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  14. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  15. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  16. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  17. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  18. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  19. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  1. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  2. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  3. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  4. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  5. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  6. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  7. 分子动力学模拟研究盐离子对十二烷基硫酸钠胶束溶液中亲水亲油协调机制的影响%Molecular Dynamics Simulation of Effect of Salt on the Compromise of Hydrophilic and Hydrophobic Interactions in Sodium Dodecyl Sulfate Micelle Solutions

    Institute of Scientific and Technical Information of China (English)

    高健; 任瑛; 葛蔚

    2009-01-01

    The presence of salt has a profound effect on the size, shape and structure of sodium dodecyl sulfate (SDS) micelles. There have been a great number of experiments on SDS micelles in the presence and absence of salt to study this complex problem. Unfortunately, it is not clear yet how electrolyte ions influence the structure of micelles. By describing the compromise between dominant mechanisms, a simplified atomic model of SDS in presence of salt has been developed and the molecular dynamics (MD) simulations of two series of systems with different concentrations of salt and charges of ion have been performed. Polydispersity of micelle size is founded at relatively high concentration of SDS and low charge of cation. Although the counter-ion pairs with head groups are formed, the transition of micelle shape is not observed because the charge of cation is not enough to neutralize the polar of micelle surface.

  8. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  9. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  10. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  11. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  12. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  13. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  14. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  15. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  16. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  17. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  18. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  19. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  20. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  2. Halogen bonded two-dimensional supramolecul arassemblies studied by high resolution scanning tunneling microscopy

    Institute of Scientific and Technical Information of China (English)

    YANG XunYu; WANG Fang; CHEN QiuXia; WANG LiYan; WANG ZhiQiang

    2007-01-01

    We described the formation of self-organized two-dimensional (2D) assemblies of N-(2,3,5,6-tetrafluoro- 4-iodophenyl)hexadecylamine and 1-dodecyl-imidazole at the liquid/HOPG interface. The two-dimen- sional assemblies showed a fishbone-like pattern structure as revealed by high-resolution scanning tunneling microscopy. Although different interactions can drive the formation of 2D assemblies,as far as we know,this is the first report on halogen bond-driven 2D assemblies.

  3. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  4. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  5. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  6. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  7. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  8. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  9. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  10. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  11. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  12. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  13. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  14. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  15. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  16. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  17. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  18. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  19. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  20. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  1. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  2. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  3. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  4. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  5. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  6. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  7. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  8. House-dust mite allergy: mapping of Dermatophagoides pteronyssinus allergens for dogs by two-dimensional immunoblotting

    Science.gov (United States)

    Marques, Andreia Grilo; Pereira, Luísa Maria Dotti Silva; Goicoa, Ana; Semião-Santos, Saul José; Bento, Ofélia Pereira

    2015-01-01

    Introduction Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. Aim To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. Material and methods To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Results Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Conclusions Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients’ allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy. PMID:26015775

  9. Ecotoxicological assessment of the pharmaceutical fluoxetine hydrochloride and the surfactant dodecyl sodium sulfate after their submission to ionizing radiation treatment; Avaliacao ecotoxicologica do farmaco cloridrato de fluoxetina e do surfactante dodecil sulfato de sodio quando submetidos a tratamento por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes Rafael Alves dos

    2011-07-01

    The use of pharmaceuticals and personal care products and the consequent and continuous input of this substances in the environment generates an increasing need to investigate the presence, behavior and the effects on aquatic biota, as well as new ways to treat effluents containing such substances. Fluoxetine hydrochloride is an active ingredient used in the treatment of depressive disorders and anxiety. As the surfactant sodium dodecyl sulfate is present in many cleaning and personal care products. The present study aimed on assessing the acute toxicity of fluoxetine hydrochloride, sodium dodecyl sulfate and the mixture of both to the aquatic organisms Hyalella azteca, Daphnia similis and Vibrio ficheri. Reducing the toxicity of fluoxetine and the mixture after treatment with ionizing radiation from industrial electron beam accelerator has also been the focus of this study. For Daphnia similis the average values of CE50-4{sub 8h} found for the non-irradiated drug, surfactant and mixture were 14.4 %, 9.62 % and 13.8 %, respectively. After irradiation of the substances, the dose 5 kGy proved itself to be the most effective dose for the treatment of the drug and the mixture as it was obtained the mean values for CE50{sub 48h} 84.60 % and > 90 %, respectively. For Hyalella azteca the acute toxicity tests were performed for water column with duration of 96 hours, the mean values for CE50{sub 96h} found for the drug, the surfactant and the mixture non-irradiated were 5.63 %, 19.29 %, 6.27 %, respectively. For the drug fluoxetine and the mixture irradiated with 5 kGy, it was obtained 69.57 % and 77.7 %, respectively. For Vibrio ficheri the acute toxicity tests for the untreated drug and the drug irradiated with 5 kGy it was obtained CE50{sub 15min} of 6.9 % and 32.88 % respectively. These results presented a reduction of the acute toxicity of the test-substances after irradiation. (author)

  10. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    Science.gov (United States)

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like.

  11. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  12. Optimization of an Efficient Protein Extraction Protocol Compatible with Two-Dimensional Electrophoresis and Mass Spectrometry from Recalcitrant Phenolic Rich Roots of Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Moniya Chatterjee

    2012-01-01

    Full Text Available Two-dimensional electrophoresis and mass spectrometry are undoubtedly two essential tools popularly used in proteomic analyses. Utilization of these techniques however largely depends on efficient and optimized sample preparation, regarded as one of the most crucial steps for recovering maximum amount of reliable information. The present study highlights the optimization of an effective and efficient protocol, capable of extraction of root proteins from recalcitrant phenolic rich tissues of chickpea. The widely applicable TCA-acetone and phenol-based methods have been comparatively evaluated, amongst which the latter appeared to be better suited for the sample. The phenol extraction-based method further complemented with sodium dodecyl sulphate (SDS and pulsatory treatments proved to be the most suitable method represented by greatest spot number, good resolution, and spot intensities. All the randomly selected spots showed successful identification when subjected to further downstream MALDI-TOF and MS/MS analyses. Hence, the information obtained collectively proposes the present protein extraction protocol to be an effective one that could be applicable for recalcitrant leguminous root samples.

  13. Optimization of an Efficient Protein Extraction Protocol Compatible with Two-Dimensional Electrophoresis and Mass Spectrometry from Recalcitrant Phenolic Rich Roots of Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Chatterjee, Moniya; Gupta, Sumanti; Bhar, Anirban; Das, Sampa

    2012-01-01

    Two-dimensional electrophoresis and mass spectrometry are undoubtedly two essential tools popularly used in proteomic analyses. Utilization of these techniques however largely depends on efficient and optimized sample preparation, regarded as one of the most crucial steps for recovering maximum amount of reliable information. The present study highlights the optimization of an effective and efficient protocol, capable of extraction of root proteins from recalcitrant phenolic rich tissues of chickpea. The widely applicable TCA-acetone and phenol-based methods have been comparatively evaluated, amongst which the latter appeared to be better suited for the sample. The phenol extraction-based method further complemented with sodium dodecyl sulphate (SDS) and pulsatory treatments proved to be the most suitable method represented by greatest spot number, good resolution, and spot intensities. All the randomly selected spots showed successful identification when subjected to further downstream MALDI-TOF and MS/MS analyses. Hence, the information obtained collectively proposes the present protein extraction protocol to be an effective one that could be applicable for recalcitrant leguminous root samples.

  14. Two-dimensional gel electrophoresis analysis of the proteomes expressed in the human hepatoma cell line BEL-7404 and normal liver cell line L-02

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Proteome analysis technology has been used extensively in conducting discovery research of biology and has become one of the most essential technologies in functional genomics. The proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 have been separated by high resolution two-dimensional gel electrophoresis (2-DE) with immobilized pH gradient isoelectric focusing (IPG-IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension (IPG-DALT). The resulting images have been analyzed using 2-D analysis software. Quantitative analysis reveals that 7 protein spots are detected only in hepatoma BEL-7404 cells, 14 only in L-02 cells, and 78 protein spots show significant fluctuation in quantity in both cell lines (P<0.01).These protein spots have been displayed on a proteome differential expression map. Analysis for the reproducibility of 2-DE indicates that the positional variability in the IEF dimension is 0.73 mm, while the variability in the SDS-PAGE dimension is 0.44 mm, and the quantitative variability is 17.6%-19.2%. These results suggest that the reproducibility of 2-DE has been suitable for the study of differential expression of proteomes. Proteome differential expression maps can be useful tools for disease diagnosis, drug-target validation analysis and biological process elucidation.

  15. DNA-PKcs-OBA/Ku associate in the absence of DNA, as revealed by two-dimensional capillary gel electromobility shift assay.

    Science.gov (United States)

    Ruiz, Marcia T; Nichols, Amanda; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-08-01

    Ors-binding activity (OBA) has been previously purified by its ability to specifically interact with A3/4, a 36-bp mammalian origin consensus sequence [1]. Peptide sequence analyses identified OBA as Ku86, the largest subunit of Ku antigen, a heterodimeric protein (Ku70/Ku86) involved in several autoimmune disorders [2-5]. The affinity-purified fraction containing OBA/Ku is also enriched for DNA-dependent protein kinase DNA-PKcs, the catalytic subunit of the DNA-PK holoenzyme, of which Ku antigen is the DNA-binding subunit [6-8]. Glycerol-gradient sedimentation analyses have demonstrated the presence of OBA/Ku in a high-molecular-weight complex. In order to investigate whether OBA/Ku and DNA-PKcs are associated in this fraction, we have used a modification of the two-dimensional gel electrophoresis technique originally described [9]. Electromobility shift assays were developed in native capillary gels, which were subsequently used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension. The gels were then processed for Western blotting using the Ku70, Ku86 and DNA-PKcs antibodies. This approach has revealed the association of OBA/Ku and DNA-PKcs to give rise to the DNA-PK holoenzyme irrespective of the presence, or the absence of DNA. Altogether, we have proven the utility of this technique for the study of protein-protein and protein-DNA interactions.

  16. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  17. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  18. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  19. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  20. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  1. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  2. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  4. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  5. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  6. Proteinograma sérico de bezerros recém-nascidos da raça Holandesa obtido por eletroforese em gel de poliacrilamida Serum protein concentration in newborn Holstein calves determined by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    J.J. Fagliari

    2006-06-01

    Full Text Available The serum protein concentration of newborn Holstein calves determined by means of sodium dodecyl sulphate-polyacrylamide (SDS-PAGE was studied. Blood samples from 40 healthy newborn calves were obtained 48 hours after birth. Calves had been given 3 liters of colostrum within 2 hours after birth, following by dose corresponding by 15% of animal weight each 24 hours. The results showed three different proteinograms: 19 calves had 14 proteins with molecular weights (MW ranging from 28,000 D to 170,000D (proteinogram 1; 11 calves had 14 proteins with MW ranging from 18,000 to 170,000 D (proteinogram 1; and 10 calves had 12 proteins with MW ranging from 28,000 D to 170,000 D (proteinogram 3. The three groups presented similar IgG levels. The highest serum concentration of ceruloplasmin were verified in proteinogram 3, which had the lowest serum level of protein with MW 58,000D. It was verified a1-antitrypsin only in proteinogram 2, which had no proteins with MW of 42,000 D and 37,000D. The highest serum concentrations of IgA and protein with MW 58,000 D, and the lowest serum levels of transferrin, haptoglobin, and acid glycoprotein were verified in proteinogram 3. Measurement of serum protein concentrations by SDS-PAGE may be useful in monitoring the occurrence of hypogammaglobulinemia and the neonatal disease in calves.

  7. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  8. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  9. Poly[bis(μ3-dodecyl sulfatocalcium

    Directory of Open Access Journals (Sweden)

    Genta Sakane

    2010-07-01

    Full Text Available In the title compound [Ca(C12H25O4S2]n, the unique CaII ion lies on an inversion center and is coordinated in a slightly distorted octahedral environment by six O atoms from dodecyl sulfate anions. The crystal structure is based on hydrocarbon (dodecyl sulfate layers which sandwich the CaII ions. Within the layers, the hydrocarbon zigzag chains are parallel to one another and interact via van der Waals forces.

  10. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  11. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  12. Development of two-dimensional hot pool model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Hahn, H. D

    2000-05-01

    During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coast-down. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHX{sub s}, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHX{sub s} and its contribution to the net buoyancy head. Therefore, in this study two-dimensional hot pool model is developed instead of existing one-dimensional model to predict the hot pool coolant temperature and velocity distribution more accurately and is applied to the SSC-K code.

  13. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  14. Determination of Cd(II, Zn(II and Ag(Iin different matrixes after solid phase extraction on sodium dodecyl sulfate(SDS-coated alumina as their 2,3 Di Hydro 2,3 paratolylQinazoline (1 H- 4 one (DPTQO by Flame atomic absorption spectrometric

    Directory of Open Access Journals (Sweden)

    Farveh Raoufi

    2016-03-01

    Full Text Available A sensitive and selective solid phase extraction procedure for the determination of traces of Cd(II, Zn(II and Ag(I ions has been developed. An alumina-sodium dodecyl sulfate (SDS coated on with 2,3 Di Hydro 2,3 paratolylQinazoline (1 H- 4 one (DPTQO. The influences of the analytical parameters including pH and sample volume were investigated.Common coexisting ions did not interfere on the separation and determination of analytes under study. The adsorbed analytes were desorbed by using 6mL of 4 mol L−1 nitric acid. The responses are linear 0.02–0.85 µg mL-1 for Cd2+ ion0.01–0.90 µg mL-1 for Zn2+and0.02–0.92µg mL-1for Ag+ detection limit for Cd(II, Zn(II and Ag(I ions were found to be 1.4, 1.3 and1.12(ng mL-1, respectively.It was found that the recovery for Cd2+, Zn2+and Ag+ ions were 97.7, 98.2 and 98.0 with RSD of 1.9, 1.8 and 1.7. It was also observed that recovery for repeated recovery on the same solid phase not varies more than 3%. The presented procedurewas successfully applied for determination of analytes in radiology wastewater, amalgam, natural water and blood samples.

  15. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  16. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  17. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  18. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  19. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  20. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  1. Stabilization of solutions of feather keratins by sodium dodecyl sulphate

    NARCIS (Netherlands)

    Schrooyen, P.M.M.; Dijkstra, Pieter J.; Oberthür, Radulf C.; Bantjes, A.; Bantjes, Adriaan; Feijen, Jan

    2001-01-01

    Feather keratins were extracted from chicken feathers with aqueous solutions of urea and 2-mercaptoethanol. After filtration of the insoluble residue, a feather keratin solution was obtained. Removal of 2-mercaptoethanol and urea by dialysis resulted in aggregation of the keratin polypeptide chains

  2. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    Science.gov (United States)

    2013-08-01

    and boiling temperatures. Additionally, MP2f (Akin- Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Con- densed Phase Quantum...results. In the second part, we introduce the ab initio flexible water model developed by Akin- Ojo et al. [38] in 2008 using the relatively new adaptive...38] Akin- Ojo , O., Song, Y., and Wang, F., 2008, “Developing Ab Initio Quality Force Fields From Condensed Phase Quantum-Mechanics/Molecular-Mechan

  3. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  4. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  5. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  6. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  7. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  8. Two-dimensional self-organi-zation of 1-nonanethiol-capped gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-dimensional (2D) ordered hexagonal close-packed structure, formed by 1-nonanethiol-capped gold nanoparticles, is reported. The structure was constructed only by dipping the gold nanoparticle colloidal solution on flat substrate. The gold nanoparticles were synthesized as follows: First, AuCl4-1 was transferred from aqueous solution to toluene by the phase-transfer reagent of tetraoctylammo-nium bromide. Then it was reduced with aqueous sodium borohydride in the presence of a given amount of 1-nonanethiol molecules which was used to control the nuclea-tion and growth of the gold nanoparticles for the desired size. The experimental techniques, such as UV-Vis, FT-IR, and X-ray photoelectron spectroscopy (XPS), were employed to characterize the obtained product. Transmission electron microscopy (TEM) measurement demonstrated the size of the gold nanoparticle and the formation of two-dimensional ordered hexagonal close-packed gold nanoparticle structure.

  9. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  10. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  11. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  12. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  13. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  14. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  15. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  16. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  17. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  18. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  19. A Self-Assembled Nano-Structrured Peroxidase Based on Sodium Dodecyl Sulfate Nano-Micelle and Cytochrome c%十二烷基磺酸钠纳米胶团-细胞色素c自组装高效纳米结构过氧化物酶

    Institute of Scientific and Technical Information of China (English)

    黄琨; 洪军; 王玮; 肖保林; 赵莹雪; 杨卫云; 高云飞

    2012-01-01

    用阴离子表面活性剂十二烷基磺酸钠与细胞色素c自组装的方法构建了一种纳米超分子结构,观察到其具有显著的过氧化物酶活性,且在pH为10.5时达到最高.这种纳米结构过氧化物酶的催化效率为0.0219μmol/L·s.电化学方法测得其电子传递速率常数ks为0.586 s-1.这种以自组装方法构建的超分子结构不仅具有较高活性,可在天然过氧化物酶自杀性失活底物浓度较高时运用,且可固定化于电极上,实现与电极间的直接电子传递.%A nano-structured supermolecule or artificial enzyme was built self-assembly based on sodium dodecyl sulfate nano-micelle and cytochrome c. A significant peroxidase activity was observed and reached the maximum value at pH 10.5. Its catalytic efficiency was evaluated to be 0.0219 μmol/L·s. The immobilized nano-structured peroxidase modified electrode showed quasi-reversible electrochemical redox behaviors with a formal potential of (-38 ± 5) mV (vs. Ag/AgCI) at a scan rate of 0.05 V/s. The cathodic transfer coefficient and electron transfer rate constant were evaluated to be 0.51 and 0.59 s-1 respectively. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.14 mmol/L. These results suggest that the nano-structured peroxidase not only perform a high activity as peroxidase and can be used in high concentration of hydrogen peroxide,but also can be immobilized on the electrode and realize direct electrochemical behavior.

  20. Correlation between HSP27 and CFL-1 in acute irritation induced by sodium dodecyl sulfate in keratinocytes%HSP27和CFL-1在角质细胞急性刺激反应中相关性的研究

    Institute of Scientific and Technical Information of China (English)

    胡浩; 张齐好; 邹萍; 仝雷; 黄亚东

    2011-01-01

    研究急性刺激条件下,角质细胞中热休克蛋白27(heat shock protein 27,HSP27)和Cofilin-1(CFL-1)的表达是否具有相关性,初步探讨皮肤急性刺激反应的作用机理.通过免疫印迹法检测十二烷基硫酸钠(SDS)诱发的急性刺激反应下,角质细胞中HSP27和CFL-1蛋白的表达,并通过RNAi技术验证两者之间的相关性.结果发现,急性刺激诱导HSP27表达显著下调,CFL-1显著上调;干扰HSP27后,CFL-1的表达也随着下调,SDS刺激后,则表达上调.在急性刺激性条件下,HSP27和CFL-1的表达具有一定的浓度和时间依赖性;急性刺激能影响角质细胞骨架的改变,这些改变可能是通过HSP27和CFL-1的相互作用来调节的.%The correlation between heat shock protein 27 (HSP27) and Cofilin-1 ( CFL-1 ) was studied in acute irritation induced by sodium dodecyl sulfate (SDS) in keratinocytes, which would be helpful for the mechanistic understanding of the skin irritation.The expressions of HSP27 and CFL-1 were detected by immunoblotting in keratinocytes exposed to SDS.The correlation between HSP27 and CFL-1 was validated by RNAi technology.HSP27 was significantly downregulated and CFL-1 was significantly upregulated in response to the chemical challenge.The expression of CFL-1 was significantly reduced after interference of HSP27, but it was upregulated after exposure to SDS.The expressions of HSP27 and CFL-1 showed a time-and dose-dependent manner in acute irritation.The cute irritant may alter the cytoskeleton of keratinocyte, and these changes may be regulated by the interaction between HSP27 and CFL-1.

  1. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  2. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  3. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  4. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  5. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  6. Flotation of kaolinite with dodecyl tertiary amines

    Institute of Scientific and Technical Information of China (English)

    CAO Xue-feng; LIU Chang-miao; HU Yue-hua

    2009-01-01

    The flotation of kaolinite using a series of tertiary amines (N,N-dimethyl-dodecyl amine (DRN), N,N-diethyl-dodecyl amine (DEN), N,N-dipropyl-dodecyl amine (DPN) and N,N-dibenzyl-bodecyi amine (DBN)) was investigated. The results show that the maximum recoveries of kaolinite for DEN, DPN and DRN are 93%, 88% and 84%, respectively, but that of DBN is very low. On the basis of zeta potential and FT-IR spectra, the ionization of surface hydroxyl and isomorphic exchange of surface ions account for the charging mechanisms of kaolinite surface. The adsorption mechanism of tertiary amines on kaolinite surface is mainly electrostatic. The isoelectric point (IEP) of kaolinite increases from 3.4 to some more positive points after the interaction of kaolinite with the four tertiary amines. The FT-IR spectra of kaolinite change with the presence of some new sharp shapes belonging to the tertiary amines. The inductive electronic effects and space-steric effects of -CH_3, -C_2H_5, -C_3H_7 and -C_7H_7 bonding to N atom result in different collecting power of the four tertiary amines.

  7. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  8. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  9. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  10. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  11. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  12. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  13. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  14. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  15. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  16. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  17. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  18. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  19. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  20. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  1. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  2. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  3. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  4. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  5. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  6. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  7. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  8. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  9. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  10. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  11. Effect of intensity of ultraviolet light on degradation of sodium dodecyl benzene sulfonate by TiO2-bentonite%紫外光光强对TiO2-膨润土降解十二烷基苯磺酸钠的影响

    Institute of Scientific and Technical Information of China (English)

    温淑瑶; 马敏立; 陈素云; 马占青

    2011-01-01

    在室温、电磁搅拌和6W紫外灯(距静止液面距离分别为6.5 cm、18.5 cm、30.5 cm和42.5 cm)的不同光强(在静止液面处的光强分别为700~750 μW/cm2、300~310μW/cm2、200~210 μW/cm2和110~120μW/cm2),及太阳光的不同紫外光强度照射条件下,质量分数为0.5‰的纳米TiO2-膨润土复合光催化剂对初始质量浓度为20 mg/L的十二烷基苯磺酸钠(SDBS)溶液中SDBS的降解反应表明:光强对SDBS降解的影响较大,光强越强SDBS的降解率越高、溶液的COD值降低率越大;不同光强下,TiO2-膨润土对SDBS降解反应为一级反应,符合Langmuir-Hinshelwood方程;随着光强的增大,TiO2-膨润土对SDBS降解的光催化反应速率常数增大.%Different intensities of ultraviolet light (700~750 (μW/cm2 ,300~310μ/W/cm2,200~210μW/cm2 and 110-120 μW/cm2)resulted from different distances(6.5 cm, 18.5 cm,30.5 cm and 42.5 cm ) between 6 W ultraviolet light and still solution surface respectively.Original concentration of sodium dodecyl benzene sulfonate (SDBS) was 20mg/L.Under the same condition (temperature, ultraviolet light shining period, electromagnetic mixing, Ph 6 ) and different intensities of light, the results of degradation reaction of SDBS by 0.5 TiO2-bentonite show that the effect of intensity of light on degradation is obvious.The higher the intensity of ultraviolet light, the more the SDBS was degradated.The higher the intensity of ultraviolet light, the more the chemical oxide demand of solution decreased.The degradation reaction was first-order reaction.Its law of dynamics accorded with Langmuir-Hinshelwood equation.The higher the intensity of ultraviolet light, the bigger the speed coefficient of photocatalytic reaction between SDBS and TiO2-bentonite.

  12. Investigation on the Interaction of Sodium Dodecyl Sulfate with Poly(Ethylene Oxide) by Electron Spin Resonance and UV Spectrum%顺磁共振和紫外光谱法研究SDS-PEO体系的相互作用

    Institute of Scientific and Technical Information of China (English)

    海明潭; 韩布兴; 闫海科

    2001-01-01

    合成更疏水的自旋探针4-羰基2,2,6,6四甲基哌啶氮氧自由基2,4-二硝基苯腙.用顺磁共振(ESR)和紫外光谱法研究了十二烷基硫酸钠(SDS)0.5%(w,质量分数)聚氧乙烯(PEO)体系的分子间相互作用.ESR结果表明,此水溶液体系的微极性随SDS浓度增大而减小,并且SDS与PEO聚集体具有更加紧密的堆积结构使其结合处具有较大的微粘性,SDS与PEO间的相互作用导致PEO分子链伸展.UV表明自旋探针分子可能靠近胶束的表面存在,2,4-二硝基苯肼基团可能位于靠近SDS的硫酸根基团,定向于SDS胶束的表面,氮氧自由基基团短距离渗透到SDS胶束的碳氢核.%ESR and UV spectrum of the aqueous solution of sodium dodecyl sulfate(SDS)/poly(ethylene oxide)(PEO) were measured at room temperature respectively, the concentration of PEO was 0.5% (mass fraction), and the concentration of SDS (mSDS) was up to 50 mmol· kg- 1. 2,4-dinitrophylhydrazone of 2,2,6,6-tetramethyl-4-piperidine-1-oxyl (Tempone-DNPH) was synthesized and used as ESR probe. The binding site of SDS-PEO interaction, the micropolarity and microviscosity information of the microenvironments have been determined by ESR. UV spectrum gives information on the environment of 2,4-dinitrophylhydrazone group. The hyperfine coupling constant and the rotational correlation time of the spin probe reflect the microenvironment of the polymer-micelle aggregates. The micropolarity of the solutions decreases with increasing SDS concentration, the polymer-micelle aggregate forms a more compact structure at the binding site and the binding site between PEO and SDS micelles yields a strong increase of the microviscosity at the micelle-polymer interface. Spin probe is located near the surface of the micelle. 2,4-dinitrophylhydrazone group may be adjacent to the sulphate groups, and the nitroxide group penetrates a small distance into the hydrocarbon core of the micelle

  13. 十二烷基苯磺酸钠-异辛烷-正辛醇反胶束萃取苦参生物碱的研究%Extraction of Alkaloids in Sophora Flavescens Ait by Reverse Micelle of Sodium Dodecyl Benzene Sulfonate/Isooctane/n-Octanol

    Institute of Scientific and Technical Information of China (English)

    刘小琴; 范华均; 佘旭辉; 张来凤; 王李平

    2012-01-01

    利用阴离子表面活性剂十二烷基苯磺酸钠(SDBS)与溶剂异辛烷和助溶剂正辛醇形成反胶束体系,用于苦参生物碱的萃取分离.研究了pH值、表面活性剂浓度、增溶水量W0、盐种类及浓度等因素对萃取的影响.结果表明:SDBS-异辛烷-正辛醇反胶束体系对苦参生物碱具有良好的选择性和较高萃取率,在pH 5.0,增溶水量W0 25,0.05 mol/L SDBS,0.05 mol/L KCl,室温,萃取时间5 min,反萃取时间20 min的最佳萃取条件下,氧化苦参碱、氧化槐果碱、槐定碱、苦参碱、槐果碱5种生物碱及总生物碱的萃取率和RSD分别在74.1%~87.2%和0.63%~3.0%之间.本方法选择性高,操作简便.%A method of reverse micelle extraction of alkaloids in Sophora Flavescens Ait has been developed using the reverse micelle system of sodium dodecyl benzene sulfonate(SDBS)/isooctane/ n-octanol. The experimental conditions such as pH, water content Wo, extraction time and temperature, the concentration of surfactant and salts were optimized. With the help of high performance liquid chromatography, the results showed that the reverse micelle formed by SDBS, isooctane and n-octanol can more effectively extract alkaloids than others. The optimum extraction conditions were as follows: pH 5. 0, 25 of water content Wo, 0. 05 mol/L of SDBS concentration, 0. 05 mol/L of KC1 concentration, 5 min of forward-extraction time and 20 min of backward-extraction time at room temperature. The method has been applied to separate and purify alkaloids from the extract by water with pressurized microwave-assisted extraction. Under the optimum conditions, the extraction yields of oxymatrine, n-oxysophocarpine, sophoridine, matrine, sophocarpine and total alkaloids in Sophora Flavescens Ait were between 74. 1% and 87. 2%, RSDs of their reproducibility were from 0. 6% to 3. 0%. The method is higher selectivity, and easy to operate.

  14. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  15. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  16. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  17. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  18. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  19. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  20. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  1. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  2. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  3. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  4. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  5. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  6. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  7. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  8. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  9. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  10. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  11. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  12. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  13. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  14. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  15. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  16. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  17. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  18. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  19. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  20. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  1. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  2. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  3. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  4. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  5. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  6. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  7. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  8. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  9. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  10. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  11. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  12. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  13. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  14. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  15. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  16. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  17. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  18. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  19. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  20. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  1. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  2. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  3. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  4. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  5. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  6. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  7. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    Science.gov (United States)

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva.

  8. Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Mr.P. Atcha Rao

    2015-11-01

    Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.

  9. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  10. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  11. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  12. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  13. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  14. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  15. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...

  16. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  17. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  18. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  19. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  20. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  1. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  2. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  3. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  4. Two-dimensional magnetostriction under vector magnetic characteristic

    Science.gov (United States)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  5. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  6. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  7. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  8. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  9. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  10. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  11. Conductivity of a two-dimensional guiding center plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1972-01-01

    The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.

  12. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  13. Cryptography Using Multiple Two-Dimensional Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Ibrahim S. I. Abuhaiba

    2012-08-01

    Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.

  14. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  15. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  16. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  17. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  18. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  19. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  20. А heuristic algorithm for two-dimensional strip packing problem

    OpenAIRE

    Dayong, Cao; Kotov, V.M.

    2011-01-01

    In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.

  1. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  2. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  3. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  4. SU(1,2) invariance in two-dimensional oscillator

    CERN Document Server

    Krivonos, Sergey

    2016-01-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.

  5. Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.

  6. Multiple Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  7. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  8. Thermal diode from two-dimensional asymmetrical Ising lattices.

    Science.gov (United States)

    Wang, Lei; Li, Baowen

    2011-06-01

    Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.

  9. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  10. Spirals and Skyrmions in two dimensional oxide heterostructures.

    Science.gov (United States)

    Li, Xiaopeng; Liu, W Vincent; Balents, Leon

    2014-02-14

    We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.

  11. Acoustic Bloch oscillations in a two-dimensional phononic crystal.

    Science.gov (United States)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  12. Exact analytic flux distributions for two-dimensional solar concentrators.

    Science.gov (United States)

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  13. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  14. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  15. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  16. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  17. Interior design of a two-dimensional semiclassic black hole

    CERN Document Server

    Levanony, Dana; 10.1103/PhysRevD.80.084008

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.

  18. Towards a two dimensional model of surface piezoelectricity

    OpenAIRE

    Monge Víllora, Oscar

    2016-01-01

    We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...

  19. Velocity Statistics in the Two-Dimensional Granular Turbulence

    OpenAIRE

    Isobe, Masaharu

    2003-01-01

    We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...

  20. Statistical study of approximations to two dimensional inviscid turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Glaz, H.M.

    1977-09-01

    A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.

  1. Static Structure of Two-Dimensional Granular Chain

    Institute of Scientific and Technical Information of China (English)

    WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan

    2010-01-01

    @@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.

  2. THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.

  3. Two-Dimensional Identification of Fetal Tooth Germs.

    Science.gov (United States)

    Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António

    2017-03-01

      To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology.   Observational, descriptive, cross-sectional study.   Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal.   A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams.   Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations.   In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine.   We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.

  4. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  5. a First Cryptosystem for Security of Two-Dimensional Data

    Science.gov (United States)

    Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen

    In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.

  6. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    Science.gov (United States)

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  7. A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids

    Science.gov (United States)

    Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.

    2007-05-01

    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.

  8. A two-dimensional analytical model of petroleum vapor intrusion

    Science.gov (United States)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  9. Strongly correlated two-dimensional plasma explored from entropy measurements.

    Science.gov (United States)

    Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S

    2015-06-23

    Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.

  10. Augmented reality simulator for training in two-dimensional echocardiography.

    Science.gov (United States)

    Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A

    2000-02-01

    In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.

  11. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  12. Two-dimensional oxides: multifunctional materials for advanced technologies.

    Science.gov (United States)

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  14. Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2009-01-01

    We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.

  15. Right ventricular dysfunction in patients with Brugada-like electrocardiography: a two dimensional strain imaging study

    Directory of Open Access Journals (Sweden)

    Murata Kazuya

    2011-11-01

    Full Text Available Abstract Background Sodium channel blockers augment ST-segment elevation in the right precordial leads in patients undergoing Brugada-type electrocardiography (ECG. However, their effect on echocardiographic features is not known. We address this by assessing global and regional ventricular function using conventional Doppler and two- dimensional (2D speckle tracking techniques. Methods Thirty-one patients with Brugada-type ECG were studied. A pure sodium channel blocker, pilsicainide, was used to provoke an ECG response. The percentage longitudinal systolic myocardial strain at the base of both the right ventricular (RV free wall and the interventricular septum wall was measured using 2D speckle tracking. Left ventricular (LV and RV myocardial performance (TEI indices were also measured. Results The pilsicainide challenge provoked a positive ECG response in 13 patients (inducible group. In the inducible group, longitudinal strain was significantly reduced only at the RV (-27.3 ± 5.4% vs -22.1 ± 3.6%, P P P Conclusions Temporal and spatial analysis using the TEI index and 2D strain imaging revealed the deterioration of global ventricular function associated with conduction disturbance and RV regional function in patients with Brugada-type ECG and coved type ST elevation due to administration of a sodium channel blocker.

  16. The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2005-01-01

    The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.

  17. Improved modeling and numerics to solve two-dimensional elliptic fluid flow and heat transfer problems

    Science.gov (United States)

    Chan, B. C.

    1986-05-01

    A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.

  18. Nonlinear acoustic propagation in two-dimensional ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  19. Two-dimensional dispersive shock waves in dissipative optical media

    CERN Document Server

    Kartashov, Yaroslav V

    2013-01-01

    We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.

  20. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;

    2016-01-01

    BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...