WorldWideScience

Sample records for two-dimensional ray-tracing method

  1. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  2. Collision probability in two-dimensional lattice by ray-trace method and its applications to cell calculations

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-03-01

    A series of formulations to evaluate collision probability for multi-region cells expressed by either of three one-dimensional coordinate systems (plane, sphere and cylinder) or by the general two-dimensional cylindrical coordinate system is presented. They are expressed in a suitable form to have a common numerical process named ''Ray-Trace'' method. Applications of the collision probability method to two optional treatments for the resonance absorption are presented. One is a modified table-look-up method based on the intermediate resonance approximation, and the other is a rigorous method to calculate the resonance absorption in a multi-region cell in which nearly continuous energy spectra of the resonance neutron range can be solved and interaction effect between different resonance nuclides can be evaluated. Two works on resonance absorption in a doubly heterogeneous system with grain structure are presented. First, the effect of a random distribution of particles embedded in graphite diluent on the resonance integral is studied. Next, the ''Accretion'' method proposed by Leslie and Jonsson to define the collision probability in a doubly heterogeneous system is applied to evaluate the resonance absorption in coated particles dispersed in fuel pellet of the HTGR. Several optional models are proposed to define the collision rates in the medium with the microscopic heterogeneity. By making use of the collision probability method developed by the present study, the JAERI thermal reactor standard nuclear design code system SRAC has been developed. Results of several benchmark tests for the SRAC are presented. The analyses of critical experiments of the SHE, DCA, and FNR show good agreement of critical masses with their experimental values. (J.P.N.)

  3. RAY TRACING IMPLEMENTATION IN JAVA PROGRAMMING LANGUAGE

    OpenAIRE

    Aybars UĞUR; Mustafa TÜRKSEVER

    2002-01-01

    In this paper realism in computer graphics and components providing realism are discussed at first. It is mentioned about illumination models, surface rendering methods and light sources for this aim. After that, ray tracing which is a technique for creating two dimensional image of a three-dimensional virtual environment is explained briefly. A simple ray tracing algorithm was given. "SahneIzle" which is a ray tracing program implemented in Java programming language which ...

  4. RAY TRACING IMPLEMENTATION IN JAVA PROGRAMMING LANGUAGE

    Directory of Open Access Journals (Sweden)

    Aybars UĞUR

    2002-01-01

    Full Text Available In this paper realism in computer graphics and components providing realism are discussed at first. It is mentioned about illumination models, surface rendering methods and light sources for this aim. After that, ray tracing which is a technique for creating two dimensional image of a three-dimensional virtual environment is explained briefly. A simple ray tracing algorithm was given. "SahneIzle" which is a ray tracing program implemented in Java programming language which can be used on the internet is introduced. As a result, importance of network-centric ray tracing software is discussed.

  5. Development of ray tracing visualization program by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro

    1997-09-01

    Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)

  6. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  7. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    Science.gov (United States)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  8. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  9. Discrete curved ray-tracing method for radiative transfer in an absorbing-emitting semitransparent slab with variable spatial refractive index

    International Nuclear Information System (INIS)

    Liu, L.H.

    2004-01-01

    A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index

  10. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  11. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  12. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  13. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  14. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  15. Parallel ray tracing for one-dimensional discrete ordinate computations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1996-01-01

    The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)

  16. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    Science.gov (United States)

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  17. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  18. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm.

    Science.gov (United States)

    Gan, Lin; Liu, Ya-Zhao; Li, Jiang-Yan; Zhang, Ze-Bo; Zhang, Dao-Zhong; Li, Zhi-Yuan

    2009-06-08

    We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.

  19. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  20. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi; Terada, Yasuko; Yoshinaga, Tatsuki; Tukamoto, Katsumi; Hagiwara, Atsushi

    2002-01-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  1. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi [Tokyo Univ. of Science, Faculty of Science, Tokyo (Japan); Terada, Yasuko [Japan Synchrotron Radiation Research Inst., Mikazuki, Hyogo (Japan); Yoshinaga, Tatsuki; Tukamoto, Katsumi [Tokyo Univ., Ocean Research Inst., Tokyo (Japan); Hagiwara, Atsushi [Nagasaki Univ., Graduate School of Science and Technology, Bunkyou, Nagasaki (Japan)

    2002-10-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  2. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.

    Science.gov (United States)

    Gómez-Correa, J E; Coello, V; Garza-Rivera, A; Puente, N P; Chávez-Cerda, S

    2016-03-10

    Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg lens that represents the human eye lens is also presented.

  3. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  4. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    Science.gov (United States)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  5. 2-Dimensional B-Spline Algorithms with Applications to Ray Tracing in Media of Spatially-Varying Refractive Index

    Science.gov (United States)

    2007-08-01

    In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods

  6. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  7. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    Science.gov (United States)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  8. Reverse ray tracing for transformation optics.

    Science.gov (United States)

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  9. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  10. High-efficiency photorealistic computer-generated holograms based on the backward ray-tracing technique

    Science.gov (United States)

    Wang, Yuan; Chen, Zhidong; Sang, Xinzhu; Li, Hui; Zhao, Linmin

    2018-03-01

    Holographic displays can provide the complete optical wave field of a three-dimensional (3D) scene, including the depth perception. However, it often takes a long computation time to produce traditional computer-generated holograms (CGHs) without more complex and photorealistic rendering. The backward ray-tracing technique is able to render photorealistic high-quality images, which noticeably reduce the computation time achieved from the high-degree parallelism. Here, a high-efficiency photorealistic computer-generated hologram method is presented based on the ray-tracing technique. Rays are parallelly launched and traced under different illuminations and circumstances. Experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional point cloud CGH, the computation time is decreased to 24 s to reconstruct a 3D object of 100 ×100 rays with continuous depth change.

  11. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  12. The vectorization of a ray tracing program for image generation

    Science.gov (United States)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  13. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  14. Geometry-invariant GRIN lens: finite ray tracing.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V

    2014-11-17

    The refractive index distribution of the geometry-invariant gradient refractive index lens (GIGL) model is derived as a function of Cartesian coordinates. The adjustable external geometry of the GIGL model aims to mimic the shape of the human and animal crystalline lens. The refractive index distribution is based on an adjustable power-law profile, which provides additional flexibility of the model. An analytical method for layer-by-layer finite ray tracing through the GIGL model is developed and used to calculate aberrations of the GIGL model. The result of the finite ray tracing aberrations of the GIGL model are compared to those obtained with paraxial ray tracing. The derived analytical expression for the refractive index distribution can be employed in the reconstruction processes of the eye using the conventional ray tracing methods. The layer-by-layer finite ray tracing approach would be an asset in ray tracing through a modified GIGL model, where the refractive index distribution cannot be described analytically. Using the layer-by-layer finite ray-tracing method, the potential of the GIGL model in representing continuous as well as shell-like layered structures is illustrated and the results for both cases are presented and analysed.

  15. ACCELERATION RENDERING METHOD ON RAY TRACING WITH ANGLE COMPARISON AND DISTANCE COMPARISON

    Directory of Open Access Journals (Sweden)

    Liliana liliana

    2007-01-01

    Full Text Available In computer graphics applications, to produce realistic images, a method that is often used is ray tracing. Ray tracing does not only model local illumination but also global illumination. Local illumination count ambient, diffuse and specular effects only, but global illumination also count mirroring and transparency. Local illumination count effects from the lamp(s but global illumination count effects from other object(s too. Objects that are usually modeled are primitive objects and mesh objects. The advantage of mesh modeling is various, interesting and real-like shape. Mesh contains many primitive objects like triangle or square (rare. A problem in mesh object modeling is long rendering time. It is because every ray must be checked with a lot of triangle of the mesh. Added by ray from other objects checking, the number of ray that traced will increase. It causes the increasing of rendering time. To solve this problem, in this research, new methods are developed to make the rendering process of mesh object faster. The new methods are angle comparison and distance comparison. These methods are used to reduce the number of ray checking. The rays predicted will not intersect with the mesh, are not checked weather the ray intersects the mesh. With angle comparison, if using small angle to compare, the rendering process will be fast. This method has disadvantage, if the shape of each triangle is big, some triangles will be corrupted. If the angle to compare is bigger, mesh corruption can be avoided but the rendering time will be longer than without comparison. With distance comparison, the rendering time is less than without comparison, and no triangle will be corrupted.

  16. Technical Note: A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-12-01

    To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in

  17. Three-dimensional ray tracing of electrostatic cyclotron harmonic waves and Z mode electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hashimoto, K.; Yamaashi, K.; Kimura, I.; Kyoto Univ., Japan)

    1987-01-01

    Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere. 20 references

  18. A general ray-tracing algorithm for the solution of the neutron transport equation by the collision probability method

    International Nuclear Information System (INIS)

    Ball, G.

    1990-01-01

    The development and analysis of methods for generating first-flight collision probabilities in two-dimensional geometries consistent with Light Water Moderated (LWR) fuel assemblies are examined. A new ray-tracing algorithm is discussed. A number of numerical results are given demonstrating the feasibility of this algorithm and the effects of the moderator (and fuel) sectorizations on the resulting flux distributions. The collision probabilties have been introduced and their subsequent utilization in the flux calculation procedures illustrated. A brief description of the Coxy-1 and Coxy-2 programs (which were developed in the Reactor Theory Division of the Atomic Energy Agency of South Africa Ltd) has also been added. 41 figs., 9 tabs., 18 refs

  19. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    Science.gov (United States)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  20. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  1. Direct-coupled-ray method for design-oriented three-dimensional transport analysis

    International Nuclear Information System (INIS)

    Bucholz, J.A.; Poncelet, C.G.

    1977-01-01

    A fast three-dimensional design-oriented transport method has been developed for the solution of both neutron and gamma transport problems. It combines a nodal approach with analytic integral transport to achieve relative speed and accuracy. An analytic solution is obtained for the angular flux in each of the 14 directions defined by the six faces and eight corners of a cubic mesh block. The scheme used to accommodate high-order anisotropic scattering is based on the formulation of ray-to-ray scattering probabilities in an integral sense. A variable mesh approximation has also been introduced to provide greater flexibility. The details of a direct-coupled-ray (DCR) → P 1 conversion technique have been developed but not yet implemented. The DCR method, as implemented in the TRANS3 code, has been used in a number of liquid-metal fast breeder reactor shielding applications. These included a one-dimensional deep penetration configuration and one-, two-, and three dimensional representations of the lower axial shield of the Clinch River Breeder Reactor. Comparisons with ANISN and DOT-III solutions indicated good to excellent agreement in most situations

  2. Laser ray tracing and power deposition on an unstructured three-dimensional grid

    International Nuclear Information System (INIS)

    Kaiser, Thomas B.

    2000-01-01

    A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent the beam(s). Ray trajectory equations are integrated using a method that is second order in time, exact for a constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Comparisons with analytic results are given for a density ramp in three dimensions, and a ''quadratic-well'' density trough in two dimensions. (c) 2000 The American Physical Society

  3. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  4. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  5. New challenges in ray tracing simulations of X-ray optics

    International Nuclear Information System (INIS)

    Río, M Sánchez del

    2013-01-01

    The construction of new synchrotron sources and the refurbishment and upgrade of existing ones has boosted in the last years the interest in X-ray optics simulations for beamline design and optimization. In the last years we conducted a full renewal of the well established SHADOW ray tracing code, ending with a modular version SHADOW3 interfaced to multiple programming languages (C, C++, IDL, Python). Some of the new features of SHADOW3 are presented. From the physics point of view, SHADOW3 has been upgraded for dealing with lens systems. X-ray partial coherence applications demand an extension of traditional ray tracing methods into a hybrid ray-tracing wave-optics approach. The software development is essential for fulfilling the requests of the ESRF Upgrade Programme, and some examples of calculations are also presented.

  6. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    Science.gov (United States)

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  7. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  8. Real time ray tracing based on shader

    Science.gov (United States)

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  9. Pseudo forward ray-tracing: A new method for surface validation in cornea topography

    NARCIS (Netherlands)

    Sicam, V.; Snellenburg, J.J.; van der Heijde, R.G.; van Stokkum, I.H.M.

    2007-01-01

    PURPOSE. A pseudo forward ray-tracing (PFRT) algorithm is developed to evaluate surface reconstruction in corneal topography. The method can be applied to topographers where one-to-one correspondence between mire and image points can be established. METHODS. The PFRT algorithm was applied on a

  10. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting useful information from a pair of spectra

    Science.gov (United States)

    Noda, Isao

    2018-05-01

    Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.

  11. A Computer Library for Ray Tracing in Analytical Media

    International Nuclear Information System (INIS)

    Miqueles, Eduardo; Coimbra, Tiago A; Figueiredo, J J S de

    2013-01-01

    Ray tracing technique is an important tool not only for forward but also for inverse problems in Geophysics, which most of the seismic processing steps depends on. However, implementing ray tracing codes can be very time consuming. This article presents a computer library to trace rays in 2.5D media composed by stack of layers. The velocity profile inside each layer is such that the eikonal equation can be analitically solved. Therefore, the ray tracing within such profile is made fast and accurately. The great advantage of an analytical ray tracing library is the numerical precision of the quantities computed and the fast execution of the implemented codes. Although ray tracing programs already exist for a long time, for example the seis package by Cervený, with a numerical approach to compute the ray. Regardless of the fact that numerical methods can solve more general problems, the analytical ones could be part of a more sofisticated simulation process, where the ray tracing time is completely relevant. We demonstrate the feasibility of our codes using numerical examples.

  12. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  13. Computer ray tracing speeds.

    Science.gov (United States)

    Robb, P; Pawlowski, B

    1990-05-01

    The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations.

  14. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  15. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  16. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  17. Approximate P-wave ray tracing and dynamic ray tracing in weakly orthorhombic media of varying symmetry orientation

    KAUST Repository

    Masmoudi, Nabil; Pšenčí k, Ivan

    2014-01-01

    We present an approximate, but efficient and sufficiently accurate P-wave ray tracing and dynamic ray tracing procedure for 3D inhomogeneous, weakly orthorhombic media with varying orientation of symmetry planes. In contrast to commonly used approaches, the orthorhombic symmetry is preserved at any point of the model. The model is described by six weak-anisotropy parameters and three Euler angles, which may vary arbitrarily, but smoothly, throughout the model. We use the procedure for the calculation of rays and corresponding two-point traveltimes in a VSP experiment in a part of the BP benchmark model generalized to orthorhombic symmetry.

  18. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  19. Three-dimensional x-ray diffraction detection and visualization

    International Nuclear Information System (INIS)

    Allahkarami, Masoud; Hanan, Jay C

    2014-01-01

    A new method of sensing and analyzing three-dimensional (3D) x-ray diffraction (XRD) cones was introduced. Using a two-dimensional area detector, a sequence of frames was collected while moving the detector away from the sample with small equally spaced steps and keeping all other parameters constant. A 3D dataset was created from the subsequent frames. The 3D x-ray diffraction (XRD 3 ) pattern contains far more information than a one-dimensional profile collected with the conventional diffractometer and 2D x-ray diffraction (XRD 2 ). The present work discusses some fundamentals about XRD 3 , such as the data collection method, 3D visualization, diffraction data interpretation and potential applications of XRD 3 . (paper)

  20. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  1. Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-tracing Method and Tests

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M 1 closure relation. Although the ART and M 1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.

  2. Study on method of characteristics based on cell modular ray tracing

    International Nuclear Information System (INIS)

    Tang Chuntao; Zhang Shaohong

    2009-01-01

    To address the issue of accurately solving neutron transport problem in complex geometry, method of characteristics (MOC) is studied in this paper, and a quite effective and memory saving cell modular ray tracing (CMRT) method is developed and related angle discretization and boundary condition handling issues are discussed. A CMRT based MOC code-PEACH is developed and tested against C5G7 MOX benchmark problem. Numerical results demonstrate that PEACH can give excellent accuracy for both k eff and pin power distribution for neutron transport problem. (authors)

  3. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Silva, Leonardo Santiago Melgaço

    2011-01-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of 241 Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  4. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, Osamu; Watada, Shingo; Satake, Kenji; Fukao, Yoshio; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime

    2018-04-01

    Ray tracing, which has been widely used for seismic waves, was also applied to tsunamis to examine the bathymetry effects during propagation, but it was limited to linear shallow-water waves. Green's law, which is based on the conservation of energy flux, has been used to estimate tsunami amplitude on ray paths. In this study, we first propose a new ray tracing method extended to dispersive tsunamis. By using an iterative algorithm to map two-dimensional tsunami velocity fields at different frequencies, ray paths at each frequency can be traced. We then show that Green's law is valid only outside the source region and that extension of Green's law is needed for source amplitude estimation. As an application example, we analyzed tsunami waves generated by an earthquake that occurred at a submarine volcano, Smith Caldera, near Torishima, Japan, in 2015. The ray-tracing results reveal that the ray paths are very dependent on its frequency, particularly at deep oceans. The validity of our frequency-dependent ray tracing is confirmed by the comparison of arrival angles and travel times with those of observed tsunami waveforms at an array of ocean bottom pressure gauges. The tsunami amplitude at the source is nearly twice or more of that just outside the source estimated from the array tsunami data by Green's law.

  5. Comparison of matrix method and ray tracing in the study of complex optical systems

    Science.gov (United States)

    Anterrieu, Eric; Perez, Jose-Philippe

    2000-06-01

    In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take into account the geometrical aberrations, a ray tracing approach, using the Snell- Descartes laws, has been implemented in an interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia. This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an eventual surgical act.

  6. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    Science.gov (United States)

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  7. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    Science.gov (United States)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  8. Two-dimensional fast marching for geometrical optics.

    Science.gov (United States)

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  9. Three-dimensional ray tracing for refractive correction of human eye ametropies

    Science.gov (United States)

    Jimenez-Hernandez, J. A.; Diaz-Gonzalez, G.; Trujillo-Romero, F.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.; Santiago-Alvarado, A.

    2016-09-01

    Ametropies of the human eye, are refractive defects hampering the correct imaging on the retina. The most common ways to correct them is by means of spectacles, contact lenses, and modern methods as laser surgery. However, in any case it is very important to identify the ametropia grade for designing the optimum correction action. In the case of laser surgery, it is necessary to define a new shape of the cornea in order to obtain the wanted refractive correction. Therefore, a computational tool to calculate the focal length of the optical system of the eye versus variations on its geometrical parameters is required. Additionally, a clear and understandable visualization of the evaluation process is desirable. In this work, a model of the human eye based on geometrical optics principles is presented. Simulations of light rays coming from a punctual source at six meter from the cornea are shown. We perform a ray-tracing in three dimensions in order to visualize the focusing regions and estimate the power of the optical system. The common parameters of ametropies can be easily modified and analyzed in the simulation by an intuitive graphic user interface.

  10. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography

  11. GPU-accelerated ray-tracing for real-time treatment planning

    International Nuclear Information System (INIS)

    Heinrich, H; Ziegenhein, P; Kamerling, C P; Oelfke, U; Froening, H

    2014-01-01

    Dose calculation methods in radiotherapy treatment planning require the radiological depth information of the voxels that represent the patient volume to correct for tissue inhomogeneities. This information is acquired by time consuming ray-tracing-based calculations. For treatment planning scenarios with changing geometries and real-time constraints this is a severe bottleneck. We implemented an algorithm for the graphics processing unit (GPU) which implements a ray-matrix approach to reduce the number of rays to trace. Furthermore, we investigated the impact of different strategies of accessing memory in kernel implementations as well as strategies for rapid data transfers between main memory and memory of the graphics device. Our study included the overlapping of computations and memory transfers to reduce the overall runtime using Hyper-Q. We tested our approach on a prostate case (9 beams, coplanar). The measured execution times for a complete ray-tracing range from 28 msec for the computations on the GPU to 99 msec when considering data transfers to and from the graphics device. Our GPU-based algorithm performed the ray-tracing in real-time. The strategies efficiently reduce the time consumption of memory accesses and data transfer overhead. The achieved runtimes demonstrate the viability of this approach and allow improved real-time performance for dose calculation methods in clinical routine.

  12. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  13. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    Science.gov (United States)

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  14. SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace

    International Nuclear Information System (INIS)

    Li, H; Zhong, H; Qin, Y; Snyder, K; Chetty, I; Wen, N

    2016-01-01

    Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.

  15. SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Zhong, H; Qin, Y; Snyder, K; Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.

  16. Ray Tracing for Real-time Games

    NARCIS (Netherlands)

    Bikker, J.

    2012-01-01

    This thesis describes efficient rendering algorithms based on ray tracing, and the application of these algorithms to real-time games. Compared to rasterizationbased approaches, rendering based on ray tracing allows elegant and correct simulation of important global effects, such as shadows,

  17. Development of a neutron transport code many-group two-dimensional heterogeneous calculations by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2000-01-01

    The method of characteristics (MOC) is gaining increased popularity in the reactor physics community all over the world because it gives a new degree of freedom in nuclear reactor analysis. The MARIKO code solves the neutron transport equation by the MOC in two-dimensional real geometry. The domain of solution can be a rectangle or right hexagon with periodic boundary conditions on the outer boundary. Any reasonable symmetry inside the domain can be fully accounted for. The geometry is described in three levels-macro-cells, cells, and regions. The macro-cells and cells can be any polygon. The outer boundary of a region can be any combination of straight line and circular arc segments. Any level of embedded regions is allowed. Procedures for automatic geometry description of hexagonal fuel assemblies and reflector macro-cells have been developed. The initial ray tracing procedure is performed for the full rectangular or hexagonal domain, but only azimuthal angles in the smallest symmetry interval are tracked. (Authors)

  18. Polarization ray tracing in anisotropic optically active media. II. Theory and physics

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials

  19. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    Science.gov (United States)

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  20. Study on two-dimensional distribution of X-ray image based on improved Elman algorithm

    International Nuclear Information System (INIS)

    Wang, Fang; Wang, Ming-Yuan; Tian, Feng-Shuo; Liu, Yu-Fang; Li, Lei; Zhao, Jing

    2015-01-01

    The principle of the X-ray detector which can simultaneously perform the measurement of the exposure rate and 2D (two-dimensional) distribution is described. A commercially available CMOS image sensor has been adopted as the key part to receive X-ray without any scintillators. The correlation between the pixel value (PV) and the absorbed exposure rate of X-ray is studied using the improved Elman neural network. Comparing the optimal adjustment process of the BP (Back Propagation) neural network and the improved Elman neural network, the neural network parameters are selected based on the fitting curve and the error curve. The experiments using the practical production data show that the proposed method achieves high accurate predictions to 10 −15 , which is consistent with the anticipated value. It is proven that it is possible to detect the exposure rate using the X-ray detector with the improved Elman algorithm for its advantages of fast converges and smooth error curve. - Highlights: • A method to measure the X-ray radiation with low cost and miniaturization. • A general CMOS image sensor is used to detect X-ray. • The system can measure exposure rate and 2D distribution simultaneously. • The Elman algorithm is adopted to improve the precision of the radiation detector

  1. Improved backward ray tracing with stochastic sampling

    Science.gov (United States)

    Ryu, Seung Taek; Yoon, Kyung-Hyun

    1999-03-01

    This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.

  2. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  3. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  4. The Alba ray tracing code: ART

    Science.gov (United States)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  5. Polarization ray tracing in anisotropic optically active media. I. Algorithms

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometrical ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide and organic liquids. Refraction and reflection algorithms are presented that compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified. A numerical example of these algorithms is given for analyzing the field of view of a quartz rotator. 37 refs., 3 figs

  6. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  7. Development of a two-dimensional ASIC for hard X-ray spectroscopy and imaging with a CdTe pixel detector

    International Nuclear Information System (INIS)

    Hiruta, Tatsuro; Tamura, K.; Ikeda, H.; Nakazawa, K.; Takasima, T.; Takahashi, T.

    2006-01-01

    We are developing a two-dimensional analog ASIC for the readout of pixel sensors based on silicon (Si) or cadmium telluride (CdTe) for spectroscopic imaging observations in the X-ray and gamma-ray regions. The aim for the ASIC is to obtain a low-noise performance better than 100 electrons (rms) with self-triggering capabilities. As the first step of prototyping, we have fabricated several ASICs. We obtained an energy resolution of 5.4 keV (FWHM) for 81 keV gamma-rays from 133 Ba with a one-dimensional ASIC connected to a CdTe diode and also verified a readout architecture via a two-dimensional ASIC with 144 pixel channels. Based on the results obtained and experience gained through prototype ASICs, we are developing a 4096-channel two-dimensional analog ASIC

  8. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  9. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    Science.gov (United States)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  10. Three-dimensional x-ray stereometry from paired coplanar images: a progress report.

    Science.gov (United States)

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    More than fifty years ago, Broadbent reported the development of a three-dimensional cephalometric method which complexed information from pairs of x-ray images oriented in two planes at right angles to each other. Empirical problems have prevented the routine clinical use of this "biplanar" method, notwithstanding its obvious conceptual brilliance. The present article reports on recent work toward the development of an alternative method of three-dimensional cephalometry in which the two images of each x-ray pair are positioned in the same plane rather than being at right angles to each other. It is believed that this "coplanar" method avoids many of the technical problems that have limited the use of the Broadbent method.

  11. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  12. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1982-01-01

    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  13. Computer program for optical systems ray tracing

    Science.gov (United States)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  14. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  15. Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry.

    Science.gov (United States)

    Asselineau, Charles-Alexis; Zapata, Jose; Pye, John

    2015-06-01

    A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.

  16. 3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method

    Science.gov (United States)

    Schmitt, Andrew J.

    2017-10-01

    Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel fastrad3d code by adding a more realistic EM-wave interference structure. This interference model adds an axial laser speckle to the previous transverse-only laser structure, and can be impressed on our improved smoothed 3D raytrace package. This latter package, which connects rays to form bundles and performs power deposition calculations on the bundles, is intended to decrease ray-trace noise (which can mask or add to imprint) while using fewer rays. We apply this improved model to 3D simulations of recent imprint experiments performed on the Omega-EP laser and the Nike laser that examined the reduction of imprinting due to very thin high-Z target coatings. We report on the conditions in which this new model makes a significant impact on the development of laser imprint. Supported by US DoE/NNSA.

  17. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  18. Usage of ray tracing transfer matrix to mitigate the stray light for ITER spectroscopy

    International Nuclear Information System (INIS)

    Kajita, S.; Veshchev, E.; Barnsley, R.; Walsh, M.

    2016-01-01

    Stray light formed by the reflection of photons on inner wall from a bright divertor region can be a serious issue in spectroscopic measurement systems in ITER. In this study, we propose a method to mitigate the influence of stray light using a ray tracing analysis. Usually, a ray tracing simulation requires a time consuming runs. We constructed transfer matrices based on the ray tracing simulation results and used them to demonstrate the influence of stray light. It is shown that the transfer matrix can be used to reconstruct the emission profile by considering the influence of the stray light without any additional ray tracing runs. Mitigation of the stray light in ITER divertor impurity monitor was demonstrated, and a method of prediction of the stray light level for the scrape off layer spectroscopy from divertor region was proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study

    Science.gov (United States)

    Wu, Bifen; Zhao, Xinyu

    2018-06-01

    The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.

  20. Two-dimensional numerical modeling of the cosmic ray storm

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    A numerical model of the cosmic ray storm in the two-dimensional heliosphere is constructed incorporating the drift effect. We estimate the effect of a flare-associated interplanetary shock and the disturbed region behind it (characterized by enhancement in velocity and magnetic field, and decrease in mean free path) on the density and anisotropy of cosmic rays in the heliosphere. As the disturbance propagates outward, a density enhancement appears on the front side, and a density depression region is produced on the rear side. The effect of drift on the cosmic ray storm appears most clearly in the higher-latitude region. For the parallel (antiparallel) state of the solar magnetic field which corresponds to the pre(post-) 1980 period, the density in the higher-latitude region decreases (increases) before the shock arrival. The maximum density depression near the earth for the parallel state is greater than for the antiparallel state, and the energy spectrum of the density depression in percentage is softer for the parallel state than for the antiparallel state. Prior to the arrival of the shock, the phase of solar diurnal anisotropy begins to shift to the earlier hours, and its amplitude becomes greater for both polarity states. North-south anisotropy also becomes greater because of the enhanced drift for both polarity states

  1. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  2. X-ray studies on a two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.R.; Alpen, E.L.

    1985-01-01

    X-ray studies were performed on cells grown in a new type of in vitro multicellular system, the ''sandwich'' system. This system is a two-dimensional array of cells, sandwiched between transparent slides which are impermeable to oxygen. The cell system is subject to self-created diffusion gradients of nutrients, metabolic products and, most importantly, oxygen. Sandwiches are analogous to living cross sections of multicellular spheroids or of poorly vascularized tumors. They contain a necrotic center, which the authors show to be due to diffusion limitations, an intermediate region which has a large fraction of quiescent cells and a cycling outer rim. One advantage sandwiches have over three-dimensional tumor models (sheproids) is that can control the amount of cell to cell contact and thereby separate effects due to oxygen or other gradients from effects due to contact. The authors present x-ray survival curves for sandwiches of various cell densities and compare them to x-ray survival curves done for spheroids and monolayers of the same cell line

  3. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2.

    Science.gov (United States)

    Filik, J; Ashton, A W; Chang, P C Y; Chater, P A; Day, S J; Drakopoulos, M; Gerring, M W; Hart, M L; Magdysyuk, O V; Michalik, S; Smith, A; Tang, C C; Terrill, N J; Wharmby, M T; Wilhelm, H

    2017-06-01

    A software package for the calibration and processing of powder X-ray diffraction and small-angle X-ray scattering data is presented. It provides a multitude of data processing and visualization tools as well as a command-line scripting interface for on-the-fly processing and the incorporation of complex data treatment tasks. Customizable processing chains permit the execution of many data processing steps to convert a single image or a batch of raw two-dimensional data into meaningful data and one-dimensional diffractograms. The processed data files contain the full data provenance of each process applied to the data. The calibration routines can run automatically even for high energies and also for large detector tilt angles. Some of the functionalities are highlighted by specific use cases.

  4. Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials

    International Nuclear Information System (INIS)

    Sasaki, T; Maruyama, Y; Ohba, H; Ejiri, S

    2014-01-01

    In this study, an application of the two-dimensional imaging technology to the X ray tri-axial stress analysis was studied. An image plate (IP) was used to obtain a Debye-Scherre ring and the image data was analized for determining stress. A new principle for stress analysis which is suitable to two-dimensional imaging data was used. For the verification of this two-dimensional imaging type X-ray stress measurement method, an experiment was conducted using a ferritic steel sample which was processed with a surface grinder. Tri-axial stress analysis was conducted to evaluate the sample. The conventional method for X-ray tri-axial stress analysis proposed by Dölle and Hauk was used to evaluate residual stress in order to compare with the present method. As a result, it was confirmed that a sufficiently highly precise and high-speed stress measurement was enabled with the two-dimensional imaging technology compared with the conventional method

  5. Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    Directory of Open Access Journals (Sweden)

    Mingchi Feng

    2017-10-01

    Full Text Available Multi-camera systems are widely applied in the three dimensional (3D computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out.

  6. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  7. An efficient ray tracing method for propagation prediction along a mobile route in urban environments

    Science.gov (United States)

    Hussain, S.; Brennan, C.

    2017-07-01

    This paper presents an efficient ray tracing algorithm for propagation prediction in urban environments. The work presented in this paper builds upon previous work in which the maximum coverage area where rays can propagate after interaction with a wall or vertical edge is described by a lit polygon. The shadow regions formed by buildings within the lit polygon are described by shadow polygons. In this paper, the lit polygons of images are mapped to a coarse grid superimposed over the coverage area. This mapping reduces the active image tree significantly for a given receiver point to accelerate the ray finding process. The algorithm also presents an efficient method of quickly determining the valid ray segments for a mobile receiver moving along a linear trajectory. The validation results show considerable computation time reduction with good agreement between the simulated and measured data for propagation prediction in large urban environments.

  8. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  9. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Kulshreshth, Arun Kumar; Alpers, Andreas; Herman, Gabor T.

    2009-01-01

    An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which...

  10. GAMMA-RAY BURST LUMINOSITY RELATIONS: TWO-DIMENSIONAL VERSUS THREE-DIMENSIONAL CORRELATIONS

    International Nuclear Information System (INIS)

    Yu Bo; Qi Shi; Lu Tan

    2009-01-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons that prevent the extensive applications of GRBs in cosmology. In this paper, we extend the two-dimensional (2D) luminosity relations with τ lag , V, E peak , and τ RT as the luminosity indicators to three dimensions (3D) using the same set of luminosity indicators to explore the possibility of decreasing the intrinsic scatters. We find that, for the 3D luminosity relations between the luminosity and an energy scale (E peak ) and a timescale (τ lag or τ RT ), their intrinsic scatters are considerably smaller than those of corresponding 2D luminosity relations. Enlightened by the result and the definition of the luminosity (energy released in units of time), we discussed possible reasons behind this result, which may give us helpful suggestions on seeking more precise luminosity relations for GRBs in the future.

  11. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  12. The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis

    Science.gov (United States)

    Nounu, Hatem N.; Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2009-01-01

    This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling.

  13. RayTrace: A Simplified Ray Tracing Software for use in AutoCad

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Tang, C.K.

    2005-01-01

    A design aid tool for testing and development of daylighting systems was developed. A simplified ray tracing software was programmed in Lisp for AutoCad. Only fully specularly reflective, fully transparent and fully absorbant surfaces can be defined in the software. The software is therefore best...

  14. AXAF FITS standard for ray trace interchange

    Science.gov (United States)

    Hsieh, Paul F.

    1993-07-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  15. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang

    2010-01-01

    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  16. Implementation of Refined Ray Tracing inside a Space Module

    Directory of Open Access Journals (Sweden)

    Balamati Choudhury

    2012-08-01

    Full Text Available Modern space modules are susceptible to EM radiation from both external and internal sources within the space module. Since the EM waves for various operations are frequently in the high-frequency domain, asymptotic raytheoretic methods are often the most optimal choice for deterministic EM field analysis. In this work, surface modeling of a typical manned space module is done by hybridizing a finite segment of right circular cylinder and a general paraboloid of revolution (GPOR frustum. A transmitting source is placed inside the space module and test rays are launched from the transmitter. The rays are allowed to propagate inside the cavity. Unlike the available ray-tracing package, that use numerical search methods, a quasi-analytical ray-propagation model is developed to obtain the ray-path details inside the cavity which involves the ray-launching, ray-bunching, and an adaptive cube for ray-reception.

  17. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    Science.gov (United States)

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems

    International Nuclear Information System (INIS)

    Morisada, Y.; Fujii, H.; Kawahito, Y.; Nakata, K.; Tanaka, M.

    2011-01-01

    Material flow during friction stir welding is crucial to obtaining sound joints. However, this phenomenon is still not fully understood despite many investigations and numerous models. In this study, the material flow is three-dimensionally visualized by X-ray radiography using a tiny spherical tungsten tracer. The movement of the tracer during the friction stir welding is observed by two pairs of X-ray transmission real-time imaging systems. The three-dimensional material flow is obtained by following the locus of the tracer.

  19. At-wavelength metrology using the moiré fringe analysis method based on a two dimensional grating interferometer

    International Nuclear Information System (INIS)

    Wang, Hongchang; Berujon, Sebastien; Pape, Ian; Rutishauser, Simon; David, Christian; Sawhney, Kawal

    2013-01-01

    A two-dimensional (2D) grating interferometer was used to perform at-wavelength metrology. A Fast Fourier Transform (FFT) of the interferograms recovers the differential X-ray beam phase in two orthogonal directions simultaneously. As an example, the X-ray wavefronts downstream from a Fresnel Zone plate were measured using the moiré fringe analysis method, which requires only a single image. The rotating shearing interferometer technique for moiré fringe analysis was extended from one dimension to two dimensions to carry out absolute wavefront metrology. In addition, the 2D moiré fringes were extrapolated using Gerchberg's method to reduce the boundary artifacts. The advantages and limitations of the phase-stepping method and the moiré fringe analysis method are also discussed. -- Highlights: ► A rapid and sensitive strip test for CPPU (forchlorfenuron) detection is reported. ► Carbon nanoparticles were used for antibody labelling. ► A common flatbed scanner was employed to the quantitate strip spots. ► The new method was successfully applied to the analysis of the field samples

  20. Ray Tracing Study on Top ECCD Launch in KSTAR

    Directory of Open Access Journals (Sweden)

    Bae Young-soon

    2017-01-01

    Full Text Available The current drive efficiency of electron cyclotron (EC wave is typically low compared with other RF and neutral beam heating system in tokamak. It is known that EC current drive by outboard launch suffers from low current drive efficiency due to electron trapping. However, the heating and current drive by EC wave is being regarded as a strong candidate for DEMO reactor due to the simplicity of the launcher, none of its interaction with plasma, and no coupling issue at the plasma edge. Also, off-axis heating and current drive by EC wave plays an important role of steady state operation optimization. To enhance the current drive efficiency in DEMO-relevant operation condition having high density and high temperature, the top launch of EC wave is recently proposed in FNSF design [2]. In FNSF, a top launch makes use of a large toroidal component to the launch direction adjusting the vertical launch angle so that the rays propagate nearly parallel to the resonance layer increasing of Doppler shift with higher n||. The results shows a high dimensional efficiency for a broad ECCD profile peaked off axis. In KSTAR, the possibility of efficient off-axis ECCD using top launch is investigated using the ray tracing code, GENRAY [3] for the operating EC frequencies (105 GHz or 140 GHz, and 170 GHz. The high current drive efficiency is found by adjusting the toroidal magnetic field and the radial pivot position of the final launcher mirror for fundamental O-mode and second harmonic X-mode. A large Doppler shift is not quite sure in the typical plasma profile in KSTAR, but the simulation results show high current drive efficiency. This paper presents ray tracing results for many cases with the wave trajectories and damping of EC by scanning the launching angle for specific launcher pivot positions and toroidal magnetic field, and two equilibriums of the KSTAR.

  1. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    Science.gov (United States)

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  2. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  3. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  4. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    Science.gov (United States)

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We calculate their trace anomaly. It follows that an RST-type counterterm appears naturally in the one-loop effective action.

  6. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  7. A ray-tracing study of electron cyclotron resonance heating in Tokamak plasmas with a superthermal electron tail

    International Nuclear Information System (INIS)

    Montes, A.; Dendy, R.O.

    1987-09-01

    We consider a Tokamak plasma in which the distribution of electron velocities in the direction parallel to the magnetic field has a monotonically decreasing superthermal tail. A fully three-dimensional ray-tracing code, which includes a realistic antenna pattern, toroidal effects, and refaction, is used to calculate the absorption of the extraordinary mode in the nonrelativistic limit away from perpendicular incidence. The ray-tracing approach extends results previously obtained in slab geometry (3-8) to a more realistic configuration; it is also essential in dealing with strong refraction in high-density plasmas. Our analytical model for the tail makes available a wide range of tail shapes and parameters. At low densities small tails (tail fraction [pt

  8. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    Science.gov (United States)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The

  9. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  10. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  11. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  12. Use of X-Ray Fluorescence Spectrometry to Determine Trace ...

    African Journals Online (AJOL)

    This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, as function of ...

  13. SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities

    International Nuclear Information System (INIS)

    Roccia, J P; Piaud, B; Coustet, C; Caliot, C; Guillot, E; Flamant, G; Delatorre, J

    2012-01-01

    In this communication, the software SOLFAST is presented. It is a simulation tool based on the Monte-Carlo method and accelerated Ray-Tracing techniques to evaluate efficiently the energy flux in concentrated solar installations.

  14. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    Science.gov (United States)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  15. Ray tracing method for simulation of laser beam interaction with random packings of powders

    Science.gov (United States)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  16. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  17. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  18. Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2014-01-01

    Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.

  19. Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources

    International Nuclear Information System (INIS)

    Andersen, A.H.

    1983-01-01

    Ray tracing methods are investigated in forward and inverse processes and applied for image restoration and resolution enhancement in computed tomography with diffracting sources. Within the geometrical optics approximation for a given refractive field, a mathematical model for the forward propagation and inverse reconstruction process is presented. For a finite set of rays in a discrete image representation, an algebraic reconstruction technique is derived which is analogous to the inverse process for a continuum of rays. The geometrical theory of diffraction is invoked to describe ray patterns arising from the introduction of object discontinuity surfaces. We have compared the performance of existing recursive ray tracing techniques for the reconstruction of objects exhibiting discontinuity boundaries. A novel ray tracing and reconstruction technique is presented which enjoys significant computational savings over traditional implementations incorporating tedious ray linking procedures. Simulation studies illustrate the macro-structural distortion and loss of fine resolution when ray refraction is unaccounted for. Restoration and resolution enhancement is achieved with a recursive ray tracing approach. Successful experimental studies with tissue equivalent phantoms are presented. The comparison of simulation and experimental results demonstrated the reasonable assumption of the geometrical optics approximation. Simulation results for larger refractive deviations are encouraging

  20. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional

  1. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    Science.gov (United States)

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  2. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

    Science.gov (United States)

    Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

    2017-05-01

    Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

  3. Theories to support method development in comprehensive two-dimensional liquid chromatography - A review

    NARCIS (Netherlands)

    Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.

    2012-01-01

    On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization

  4. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

    Science.gov (United States)

    Ekeberg, Tomas; Svenda, Martin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; Claverie, Jean-Michel; Hantke, Max; Jönsson, Olof; Nettelblad, Carl; van der Schot, Gijs; Liang, Mengning; DePonte, Daniel P; Barty, Anton; Seibert, M Marvin; Iwan, Bianca; Andersson, Inger; Loh, N Duane; Martin, Andrew V; Chapman, Henry; Bostedt, Christoph; Bozek, John D; Ferguson, Ken R; Krzywinski, Jacek; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Kimmel, Nils; Hajdu, Janos

    2015-03-06

    We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

  5. Painleve analysis and transformations for a generalized two-dimensional variable-coefficient Burgers model from fluid mechanics, acoustics and cosmic-ray astrophysics

    International Nuclear Information System (INIS)

    Wei, Guang-Mei

    2006-01-01

    Generalized two-dimensional variable-coefficient Burgers model is of current value in fluid mechanics, acoustics and cosmic-ray astrophysics. In this paper, Painleve analysis leads to the constraints on the variable coefficients for such a model to pass the Painleve test and to an auto-Baecklund transformation. Moreover, four transformations from this model are constructed, to the standard two-dimensional and one-dimensional Burgers models with the relevant constraints on the variable coefficients via symbolic computation. By virtue of the given transformations the properties and solutions of this model can be obtained from those of the standard two-dimensional and one-dimensional ones

  6. Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging

    Directory of Open Access Journals (Sweden)

    Margarita Zakharova

    2018-03-01

    Full Text Available Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and increasing flux efficiency. One of the ways to upgrade single-shot imaging techniques is to utilize customized optical components, such as two-dimensional (2D X-ray gratings. In this contribution, we present the achievements in the development of 2D gratings with UV lithography and gold electroplating. Absorption gratings represented by periodic free-standing gold pillars with lateral structure sizes from 5 µm to 25 µm and heights from 5 µm to 28 µm have shown a high degree of periodicity and defect-free patterns. Grating performance was tested in a radiographic setup using a self-developed quality assessment algorithm based on the intensity distribution histograms. The algorithm allows the final user to estimate the suitability of a specific grating to be used in a particular setup.

  7. Proton induced X-Ray fluorescence study as a tool trace element analysis

    International Nuclear Information System (INIS)

    El-Kady, Ahmed A.

    1978-01-01

    Usefulness and limitations of trace elemental analysis by high energy charged particles and photon induced X-ray have been discussed. Comparison with the well established neutron activation analysis technique is also given. Back-ground radiation due to bremsstrahlung from secondary electrons and due to charged particle bremsstrahlung have been reviewed for different projectiles. The sensitivity of elemental analysis by proton induced X-ray fluorescence have been examined by measuring the characteristic X-ray emission cross section for K and L transitions of many elements and for different proton energies and compared with theroretical values. The discussion given in this report show that with suitable proton generator and a high resolution X-ray detector, proton X-ray fluorescence technique is capable of analyzing many elements simultaneously at the part per million level and offers a rapid and reliable method for trace element analysis. Data on water, blood and tissue samples given in this report are few examples of many possible applications

  8. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  9. Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise

    Science.gov (United States)

    Groeneboom, N. E.; Dahle, H.

    2014-03-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  10. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Dahle, H.

    2014-01-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  11. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    Energy Technology Data Exchange (ETDEWEB)

    Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  12. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  13. Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing

    Science.gov (United States)

    Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.

    2018-01-01

    We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.

  14. use of x-ray fluorescence spectrometry to determine trace elements ...

    African Journals Online (AJOL)

    NIJOTECH

    Abstract. This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, ...

  15. A two-dimensional adaptive numerical grids generation method and its realization

    International Nuclear Information System (INIS)

    Xu Tao; Shui Hongshou

    1998-12-01

    A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given

  16. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  17. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes

    Science.gov (United States)

    Delgado, Carlos; Cátedra, Manuel Felipe

    2018-05-01

    This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.

  18. Accounting for partiality in serial crystallography using ray-tracing principles

    International Nuclear Information System (INIS)

    Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet

    2015-01-01

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography

  19. Accounting for partiality in serial crystallography using ray-tracing principles

    Energy Technology Data Exchange (ETDEWEB)

    Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Gros, Piet [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2015-08-25

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  20. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  1. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  2. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  3. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Elhag, A. Y.

    2004-01-01

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  4. TIM, a ray-tracing program for METATOY research and its dissemination

    Science.gov (United States)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  5. Solution of the two-dimensional space-time reactor kinetics equation by a locally one-dimensional method

    International Nuclear Information System (INIS)

    Chen, G.S.; Christenson, J.M.

    1985-01-01

    In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program

  6. Application of neutron activation and high resolution X-ray spectrometry to the development of analytical methods suitable for the assay of trace elements in biological materials. Part of a coordinated programme on comparative methods for the study of trace elements in human nutrition

    International Nuclear Information System (INIS)

    Mantel, J.

    1980-12-01

    A new method for determining trace elements in biological materials by instrumental neutron activation analysis (INAA) has been investigated. This method is based on the measurement of low-energy X-rays emitted by the sample after appropriate activation with thermal neutrons. The X-rays were detected by a Si(Li) diode connected to a multichannel analyser. The background in the energy region of interest was reduced by means of an electromagnet which deflects high-energy beta-particles away from the detector. This method of measurement has been evaluated by application to a number of different biological reference materials. The use of the electromagnet for background reduction was shown to be extremely effective for several radionuclides that are common sources of disturbance in INAA. For 32 P the background was only 0.8% of its original value. For real samples the background reduction depends somewhat on the matrix and therefore varies from one material to another. Practical detection limits for typical biological materials were derived for 18 different trace elements. The use of a perspex absorber was also considered as an alternative to magnetic deflection of the beta rays. In practice, magnetic deflection is preferable for the lower-energy X-ray emitters such as the activation products of Co, Cr, Cu and Zn

  7. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  8. Biomedical applications of two- and three-dimensional deterministic radiation transport methods

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1992-01-01

    Multidimensional deterministic radiation transport methods are routinely used in support of the Boron Neutron Capture Therapy (BNCT) Program at the Idaho National Engineering Laboratory (INEL). Typical applications of two-dimensional discrete-ordinates methods include neutron filter design, as well as phantom dosimetry. The epithermal-neutron filter for BNCT that is currently available at the Brookhaven Medical Research Reactor (BMRR) was designed using such methods. Good agreement between calculated and measured neutron fluxes was observed for this filter. Three-dimensional discrete-ordinates calculations are used routinely for dose-distribution calculations in three-dimensional phantoms placed in the BMRR beam, as well as for treatment planning verification for live canine subjects. Again, good agreement between calculated and measured neutron fluxes and dose levels is obtained

  9. Equilibrium spherically curved two-dimensional Lennard-Jones systems

    NARCIS (Netherlands)

    Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.

    2005-01-01

    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced

  10. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  11. The quantitative determination of trace elements in giant unicellular plants by particle-induced X-ray emission

    International Nuclear Information System (INIS)

    Navarrete-Dominguez, V.R.; Yoshihara, K.; Tanaka, N.

    1982-01-01

    Particle-induced X-ray emission (PIXE) was applied for the determination of trace elements in biologically interesting materials, giant unicellular plants. It was found that the PIXE method had advantages in multi-element trace analysis of a single cell of the sample plant. (author)

  12. X-ray fluorescence analysis for trace element determination in foodstuff chemistry

    International Nuclear Information System (INIS)

    Wildanger, W.

    The physical fundamentals of X-ray fluorescence analysis are given and the routine spectrometers described. The basic principles are given of analytical methods used in qualitative and quantitative fluorescence analyses. Examples are given of the use of the method in a number of fields and the possibility and usefulness is discussed for the determination of trace elements in foodstuffs. The preparation of samples, preliminary concentration of components and calibration methods are discussed. (M.K.)

  13. Development of the neutron-transport code TransRay and studies on the two- and three-dimensional calculation of effective group cross sections; Entwicklung des Neutronentransportcodes TransRay und Untersuchungen zur zwei- und dreidimensionalen Berechnung effektiver Gruppenwirkungsquerschnitte

    Energy Technology Data Exchange (ETDEWEB)

    Beckert, C.

    2007-12-19

    Conventionally the data preparation of the neutron cross sections for reactor-core calculations pursues with 2D cell codes. Aim of this thesis was, to develop a 3D cell code, to study with this code 3D effects, and to evaluate the necessarity of a 3D data preparation of the neutron cross sections. For the calculation of the neutron transport the method of the first-collision probabilities, which are calculated with the ray-tracing method, was chosen. The mathematical algorithms were implemented in the 2D/3D cell code TransRay. For the geometry part of the program the geometry module of a Monte Carlo code was used.The ray tracing in 3D was parallelized because of the high computational time. The program TransRay was verified on 2D test problems. For a reference pressured-water reactor following 3D problems were studied: A partly immersed control rod and void (vacuum or steam) around a fuel rod as model of a steam void. All problems were for comparison calculated also with the programs HELIOS(2D) and MCNP(3D). The dependence of the multiplication factor and the averaged two-group cross section on the immersion depth of the control rod respectively of the height of the steam void were studied. The 3D-calculated two-group cross sections were compared with three conventional approximations: Linear interpolation, interpolation with flux weighting, and homogenization, At the 3D problem of the control rod it was shown that the interpolation with flux weighting is a good approximation. Therefore here a 3D data preparation is not necessary. At the test case of the single control rod, which is surrounded by the void, the three approximation for the two-group cross sections were proved as unsufficient. Therefore a 3D data preparation is necessary. The single fuel-rod cell with void can be considered as the limiting case of a reactor, in which a phase interface has been formed. [German] Standardmaessig erfolgt die Datenaufbereitung der Neutronenwirkungsquerschnitte fuer

  14. Technical Note : A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-01-01

    Purpose: To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Methods: Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45x45 mm(2) field-of-view) of 9x9 spots capable

  15. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods.

    Science.gov (United States)

    Ding, Xinrui; Li, Jiasheng; Chen, Qiu; Tang, Yong; Li, Zongtao; Yu, Binhai

    2015-02-09

    Although the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods. Results show that the sample with the upward-facing convex-cone MPA film that has a diameter of half of that of the remote phosphor glass, and is tightly affixed to the inward surface of the remote phosphor glass renders a superior light distribution performance. When compared with the case in which no MPA film is used, the deviation of the CCT distribution decreases from 1033 K to 223 K, and the corresponding output power of the sample is an acceptable level of 85.6%. We perform experiments to verify our simulation results, and the two sets of results exhibit a close agreement. We believe that our approach can be used to optimize MPA films for various lighting applications.

  16. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  17. Geotechnical applications of a two-dimensional elastodynamic displacement discontinuity method

    CSIR Research Space (South Africa)

    Siebrits, E

    1993-12-01

    Full Text Available A general two-dimensional elastodynamic displacement discontinuity method is used to model a variety of application problems. The plane strain problems are: the elastodynamic motions induced on a cavity by shear slip on a nearby crack; the dynamic...

  18. Measurement of cardiac ventricular volumes using multidetector row computed tomography: comparison of two- and three-dimensional methods

    International Nuclear Information System (INIS)

    Montaudon, M.; Laffon, E.; Berger, P.; Corneloup, O.; Latrabe, V.; Laurent, F.

    2006-01-01

    This study compared a three-dimensional volumetric threshold-based method to a two-dimensional Simpson's rule based short-axis multiplanar method for measuring right (RV) and left ventricular (LV) volumes, stroke volumes, and ejection fraction using electrocardiography-gated multidetector computed tomography (MDCT) data sets. End-diastolic volume (EDV) and end-systolic volume (ESV) of RV and LV were measured independently and blindly by two observers from contrast-enhanced MDCT images using commercial software in 18 patients. For RV and LV the three-dimensionally calculated EDV and ESV values were smaller than those provided by two-dimensional short axis (10%, 5%, 15% and 26% differences respectively). Agreement between the two methods was found for LV (EDV/ESV: r=0.974/0.910, ICC=0.905/0.890) but not for RV (r=0.882/0.930, ICC=0.663/0.544). Measurement errors were significant only for EDV of LV using the two-dimensional method. Similar reproducibility was found for LV measurements, but the three-dimensional method provided greater reproducibility for RV measurements than the two-dimensional. The threshold value supported three-dimensional method provides reproducible cardiac ventricular volume measurements, comparable to those obtained using the short-axis Simpson based method. (orig.)

  19. A manual to the MAXRAY program library for reflective and dispersive ray tracing

    International Nuclear Information System (INIS)

    Svensson, S.; Nyholm, R.

    1985-07-01

    A general ray tracing program package for reflective and dispersive X-ray optics is described. The package consists of a number of subroutines written in FORTRAN 77 code giving the necessary tools for ray tracing. The program package is available on request from the authors. (authors)

  20. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    Science.gov (United States)

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  1. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    International Nuclear Information System (INIS)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M.; Wagter, C. de; Boon, P.; Reuck, J. de

    1998-01-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences (δV) between the HC (δV HC ), the amygdala (δV A ) and the sum of both (δV HCA) were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for δV HCA , 4.7 % for δV HC and 7.3 % for δV A . The intraobserver variability coefficient was 3.4 % for δV HCA , 4.2 % for δV HC amd 5.6 % for δV A . The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the δV were defined. No intra- or interobserver lateralisation differences were encountered with δV HCA and δV HC . From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.)

  2. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M. [MR Department 1K12, University Hospital Gent (Belgium); Wagter, C. de [Department of Radiotherapy and Nuclear Medicine, University Hospital Gent (Belgium); Boon, P.; Reuck, J. de [Department of Neurology, University Hospital Gent (Belgium)

    1998-09-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences ({delta}V) between the HC ({delta}V{sub HC}), the amygdala ({delta}V{sub A}) and the sum of both ({delta}V{sub HCA)} were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for {delta}V{sub HCA}, 4.7 % for {delta}V{sub HC} and 7.3 % for {delta}V{sub A}. The intraobserver variability coefficient was 3.4 % for {delta}V{sub HCA}, 4.2 % for {delta}V{sub HC} amd 5.6 % for {delta}V{sub A}. The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the {delta}V were defined. No intra- or interobserver lateralisation differences were encountered with {delta}V{sub HCA} and {delta}V{sub HC}. From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.) With 2 figs., 7 tabs., 23 refs.

  3. Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    Science.gov (United States)

    Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.

    2018-06-01

    Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142

  4. Simple simultaneous determination of soluble and insoluble trace metal components in sea salts by a combined coprecipitation/X-ray fluorescence method

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki; Ali, Muhammad; Kyotani, Tomohiro; Fukasawa, Tsutomu

    1996-01-01

    An X-ray fluorescence method using the coprecipitation-preconcentration technique has been developed for simple determination of both acid-soluble and insoluble trace metal components, such as manganese, iron, nickel, copper and zinc in sea salts. A salt sample is dissolved in a nitric acid solution, and the residue is filtered off onto a membrane filter. After the pH is adjusted to 7-8, the filtrate is boiled, followed by addition of aluminum carrier, oxine and thionalide solutions. The solution is re-adjusted to pH 9, and kept at 80-85degC for 60 min. The precipitates are filtered off onto another membrane filter. X-Ray fluorescence intensities from two filters loaded with the residue and precipitates are measured and the concentrations of the elements are determined simultaneously using the calibration curves. Detection limits were 0.01 μg g -1 for manganese and copper, 0.04 μg g -1 for nickel and zinc, and 0.05 μg g -1 for iron, regardless of the soluble and the insoluble components. The present method was successfully applied to the analysis of sea salt samples. (author)

  5. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  6. Phase and Texture of Solution-Processed Copper Phthalocyanine Thin Films Investigated by Two-Dimensional Grazing Incidence X-Ray Diffraction

    Directory of Open Access Journals (Sweden)

    Lulu Deng

    2011-07-01

    Full Text Available The phase and texture of a newly developed solution-processed copper phthalocyanine (CuPc thin film have been investigated by two-dimensional grazing incidence X-ray diffraction. The results show that it has β phase crystalline structure, with crystallinity greater than 80%. The average size of the crystallites is found to be about 24 nm. There are two different arrangements of crystallites, with one dominating the diffraction pattern. Both of them have preferred orientation along the thin film normal. Based on the similarities to the vacuum deposited CuPc thin films, the new solution processing method is verified to offer a good alternative to vacuum process, for the fabrication of low cost small molecule based organic photovoltaics.

  7. Use of the maximum entropy method in X-ray astronomy

    International Nuclear Information System (INIS)

    Willingale, R.

    1981-01-01

    An algorithm used to apply the maximum entropy method in X-ray astronomy is described. It is easy to programme on a digital computer and fast enough to allow processing of two-dimensional images. The method gives good noise suppression without loss of instrumental resolution and has been successfully applied to several data analysis problems in X-ray astronomy. The restoration of a high-resolution image from the Einstein Observatory demonstrates the use of the algorithm. (author)

  8. Two Dimensional X-Ray Diffraction (2D-XRD) studies on Olivine of U.S.A

    International Nuclear Information System (INIS)

    Jabeen, S.; Raza, S.M.; Ahmed, M.A.; Zai, M.Y.; Elacher, K.

    2011-01-01

    The Olivine (Mg, Fe) 2SiO/sub 4/ of USA has been studied with two dimensional X-ray diffractometer (D8 discover with GADDS). The two distinct phases of orthorhombic structure, one with Mg/sub 8/[Fe/sub 2/SiO/sub 4/] and the other with Mg/sub 2/SiO/sub 4/ is observed. We also observed phase transitions due to presence of iron and Silicon preferably the structural change of Mg/sub 8/[Fe/sub 2/SiO/sub 4/] from orthorhombic to spinel like (spinel chord) structure. Magnesium ions in Mg/sub 8/[Fe/sub 2/SiO/sub 4/] shuffle, arrange at the five vertices of a pentagon and the remaining three at the central but with displaced position from the plane of the pentagon, Thus resulting into a three dimensional spinel chord like structure. We evidenced the same from diverse orientations of phase peaks and indeed from Kossel lines. (author)

  9. On two flexible methods of 2-dimensional regression analysis

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2012-01-01

    Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf

  10. Trace element distribution in the rat cerebellum

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Reuhl, K.R.; Hanson, A.L.; Jones, K.W.

    1989-10-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with x-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and non-destructive irradiation. Trace elements were measured in thin rat brain sections of 20-micrometers thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppM wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semi-quantitative mapping of the TE distribution in a section were used

  11. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    Science.gov (United States)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  12. The two-wave X-ray field calculated by means of integral-equation methods

    International Nuclear Information System (INIS)

    Bremer, J.

    1984-01-01

    The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)

  13. Real-time generation of kd-trees for ray tracing using DirectX 11

    OpenAIRE

    Säll, Martin; Cronqvist, Fredrik

    2017-01-01

    Context. Ray tracing has always been a simple but effective way to create a photorealistic scene but at a greater cost when expanding the scene. Recent improvements in GPU and CPU hardware have made ray tracing faster, making more complex scenes possible with the same amount of time needed to process the scene. Despite the improvements in hardware ray tracing is still rarely run at a interactive speed. Objectives. The aim of this experiment was to implement a new kdtree generation algorithm us...

  14. Modified Splitting FDTD Methods for Two-Dimensional Maxwell’s Equations

    Directory of Open Access Journals (Sweden)

    Liping Gao

    2017-01-01

    Full Text Available In this paper, we develop a new method to reduce the error in the splitting finite-difference method of Maxwell’s equations. By this method two modified splitting FDTD methods (MS-FDTDI, MS-FDTDII for the two-dimensional Maxwell equations are proposed. It is shown that the two methods are second-order accurate in time and space and unconditionally stable by Fourier methods. By energy method, it is proved that MS-FDTDI is second-order convergent. By deriving the numerical dispersion (ND relations, we prove rigorously that MS-FDTDI has less ND errors than the ADI-FDTD method and the ND errors of ADI-FDTD are less than those of MS-FDTDII. Numerical experiments for computing ND errors and simulating a wave guide problem and a scattering problem are carried out and the efficiency of the MS-FDTDI and MS-FDTDII methods is confirmed.

  15. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens

    International Nuclear Information System (INIS)

    Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.

    2012-01-01

    An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))

  16. New method of three-dimensional reconstruction from two-dimensional MR data sets

    International Nuclear Information System (INIS)

    Wrazidlo, W.; Schneider, S.; Brambs, H.J.; Richter, G.M.; Kauffmann, G.W.; Geiger, B.; Fischer, C.

    1989-01-01

    In medical diagnosis and therapy, cross-sectional images are obtained by means of US, CT, or MR imaging. The authors propose a new solution to the problem of constructing a shape over a set of cross-sectional contours from two-dimensional (2D) MR data sets. The authors' method reduces the problem of constructing a shape over the cross sections to one of constructing a sequence of partial shapes, each of them connecting two cross sections lying on adjacent planes. The solution makes use of the Delaunay triangulation, which is isomorphic in that specific situation. The authors compute this Delaunay triangulation. Shape reconstruction is then achieved section by pruning Delaunay triangulations

  17. Tracers and tracing methods

    International Nuclear Information System (INIS)

    Leclerc, J.P.

    2001-01-01

    The first international congress on 'Tracers and tracing methods' took place in Nancy in May 2001. The objective of this second congress was to present the current status and trends on tracing methods and their applications. It has given the opportunity to people from different fields to exchange scientific information and knowledge about tracer methodologies and applications. The target participants were the researchers, engineers and technologists of various industrial and research sectors: chemical engineering, environment, food engineering, bio-engineering, geology, hydrology, civil engineering, iron and steel production... Two sessions have been planned to cover both fundamental and industrial aspects: 1)fundamental development (tomography, tracer camera visualization and particles tracking; validation of computational fluid dynamics simulations by tracer experiments and numerical residence time distribution; new tracers and detectors or improvement and development of existing tracing methods; data treatments and modeling; reactive tracer experiments and interpretation) 2)industrial applications (geology, hydrogeology and oil field applications; civil engineering, mineral engineering and metallurgy applications; chemical engineering; environment; food engineering and bio-engineering). The program included 5 plenary lectures, 23 oral communications and around 50 posters. Only 9 presentations are interested for the INIS database

  18. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  19. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  20. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  1. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

    Science.gov (United States)

    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

    2014-03-01

    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Newton-sor iterative method for solving the two-dimensional porous ...

    African Journals Online (AJOL)

    In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

  3. High performance dosimetry calculations using adapted ray-tracing

    International Nuclear Information System (INIS)

    Perrotte, Lancelot; Saupin, Guillaume

    2010-01-01

    When preparing interventions on nuclear sites, it is interesting to study different scenarios, to identify the most appropriate one for the operator(s). Using virtual reality tools is a good way to simulate the potential scenarios. Thus, taking advantage of very efficient computation times can help the user studying different complex scenarios, by immediately evaluating the impact of any changes. In the field of radiation protection, people often use computation codes based on the straight line attenuation method with build-up factors. As for other approaches, geometrical computations (finding all the interactions between radiation rays and the scene objects) remain the bottleneck of the simulation. We present in this paper several optimizations used to speed up these geometrical computations, using innovative GPU ray-tracing algorithms. For instance, we manage to compute every intersection between 600 000 rays and a huge 3D industrial scene in a fraction of second. Moreover, our algorithm works the same way for both static and dynamic scenes, allowing easier study of complex intervention scenarios (where everything moves: the operator(s), the shielding objects, the radiation sources).

  4. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.

    1985-01-01

    Fracture traces exposed on three 214- to 260-m 2 pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs

  5. Alternative methods for ray tracing in uniaxial media. Application to negative refraction

    Science.gov (United States)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2007-03-01

    In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.

  6. Trace element analysis of environmental samples by multiple prompt gamma-ray analysis method

    International Nuclear Information System (INIS)

    Oshima, Masumi; Matsuo, Motoyuki; Shozugawa, Katsumi

    2011-01-01

    The multiple γ-ray detection method has been proved to be a high-resolution and high-sensitivity method in application to nuclide quantification. The neutron prompt γ-ray analysis method is successfully extended by combining it with the γ-ray detection method, which is called Multiple prompt γ-ray analysis, MPGA. In this review we show the principle of this method and its characteristics. Several examples of its application to environmental samples, especially river sediments in the urban area and sea sediment samples are also described. (author)

  7. A survey on coordinate metrology using dimensional X-ray CT

    International Nuclear Information System (INIS)

    Matsuzaki, Kazuya

    2016-01-01

    X-ray computed tomography (X-ray CT) has been occupying indispensable position in geometrical and dimensional measurements in industry, which is capable of measuring both external and internal dimensions of industrial products. Since dimensional X-ray CT has problems about ensuring traceability and estimating uncertainty, requirement of developing measurement standard for dimensional X-ray CT is increasing. Some of national metrology institutes (NMIs) including NMIJ have been working on developing measurement standard. In this report, the background of coordinate metrology using dimensional X-ray CT is reviewed. Then, measurement error sources are discussed. Finally, the plan to develop high accuracy dimensional X-ray CT is presented. (author)

  8. Correlation based method for comparing and reconstructing quasi-identical two-dimensional structures

    International Nuclear Information System (INIS)

    Mejia-Barbosa, Y.

    2000-03-01

    We show a method for comparing and reconstructing two similar amplitude-only structures, which are composed by the same number of identical apertures. The structures are two-dimensional and differ only in the location of one of the apertures. The method is based on a subtraction algorithm, which involves the auto-correlations and cross-correlation functions of the compared structures. Experimental results illustrate the feasibility of the method. (author)

  9. Analyzing three-dimensional position of region of interest using an image of contrast media using unilateral X-ray exposure

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Gotou, Hiroshi; Tanooka, Masao

    1994-01-01

    Analyzing three-dimensional internal structure of object in an X-ray study is usually performed by using two or more of the incidents of an X-ray direction. In this report, we analyzed the three-dimensional position of tubes with a phantom by using both contrast media and imaging of one direction in the X-ray study. The concentration of the iodine in contrast media can be known by using the log-subtraction image of only the one-directional incident X-ray. Also the diameter of tube filled with contrast media is calculated by the concentration of iodine. So we can show the three-dimensional position of tubes geometrically, by the diameter of tube and the measured value of the film. We verified this method by an experiment according to the theory. (author)

  10. Analysis of trace elements in opal using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ruth, E-mail: ruth.hinrichs@ufrgs.br [Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Bertol, A.P.L. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física, UFRGS, Porto Alegre, RS (Brazil)

    2015-11-15

    Particle induced X-ray emission (PIXE) analysis is particularly important for the analysis of trace elements of precious samples, being one of the few methods to determine elements with ppm concentration that does not affect sample integrity. A PIXE methodology for trace element analysis in opal was developed. To avoid detector count saturation due to the high number of Si-Kα X-rays generated in the sample, several filters were employed to optimize the reduction of the Si-Kα signal, while maintaining acceptable intensities of the other relevant X-ray lines. Two proton beam energies were tested, to establish the signal to noise ratio in different X-ray energies. Spectra were fitted with the software GUPIX, using a matrix composition determined with electron beam excited energy dispersive X-ray spectrometry. Above the energy of the silicon X-ray, several trace elements were quantified.

  11. A comparison of three different ray trace programs for x-ray and infrared synchrotron beamline designs

    International Nuclear Information System (INIS)

    Irick, S.C.; Jung, C.R.

    1997-07-01

    There are a number of ray trace programs currently used for the design of synchrotron beamlines. While several of these programs have been written and used mostly within the programmer''s institution, many have also been available to the general public. This paper discusses three such programs. One is a commercial product oriented for the general optical designer (not specifically for synchrotron beamlines). One is designed for synchrotron beamlines and is free with restricted availability. Finally, one is designed for synchrotron beamlines and is used primarily in one institution. The wealth of information from general optical materials and components catalogs is readily available in the commercial program for general optical designs. This makes the design of an infrared beamline easier from the standpoint of component selection. However, this program is not easily configured for synchrotron beamline designs, particularly for a bending magnet source. The synchrotron ray trace programs offer a variety of sources, but generally are not as easy to use from the standpoint of the user interface. This paper shows ray traces of the same beamline Optikwerks, SHADOW, and RAY, and compares the results

  12. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  13. Simulations Of Neutron Beam Optic For Neutron Radiography Collimator Using Ray Tracing Methodology

    International Nuclear Information System (INIS)

    Norfarizan Mohd Said; Muhammad Rawi Mohamed Zin

    2014-01-01

    Ray- tracing is a technique for simulating the performance of neutron instruments. McStas, the open-source software package based on a meta-language, is a tool for carrying out ray-tracing simulations. The program has been successfully applied in investigating neutron guide design, flux optimization and other related areas with high complexity and precision. The aim of this paper is to discuss the implementation of ray-tracing technique with McStas for simulating the performance of neutron collimation system developed for imaging system of TRIGA RTP reactor. The code for the simulation was developed and the results are presented. The analysis of the performance is reported and discussed. (author)

  14. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    International Nuclear Information System (INIS)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da; Alves, Jose Marcos

    2014-01-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  15. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da, E-mail: alhakme@sc.usp.br [Universidade de Sao Paulo (EESC/FMRP/IQSC/USP), Sao Carlos, SP (Brazil); Alves, Jose Marcos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Departamento de Engenharia Eletrica e Computacao

    2014-07-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  16. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  17. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  18. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  19. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  20. The determination of the C, N, O and trace element content of Triticum aestivum by activation analysis, X-ray excitation and mass spectrometry

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Dahn, E.; Dietze, H.J.; Freyer, K.; Geisler, M.; Hartmann, G.; Jung, K.; Schelhorn, H.

    1979-01-01

    The results of determinations of the C, N, O and trace element content of grains, sprouts and leaves of Triticum aestivum by means of various methods of activation analysis, X-ray excitation and mass spectrometry are presented. The C and O contents were determined by X-ray excitation; the O, N, P and Si contents were measured by NAA with 14-MeV neutrons, and the trace elements were determined by NAA with thermal neutrons. A mass-spectrometric survey analysis confirmed the results obtained by NAA. The use of neutron-induced nuclear reactions together with autoradiography enabled a representative picture to be formed of the spatial distribution in two dimensions of 14 N in biological specimens. (author)

  1. Determination of trace elements in Katana (Japanese sword) by neutron activation analysis with multidimensional γ-ray spectrometry

    International Nuclear Information System (INIS)

    Okada, Y.; Hirai, S.; Ohya, S.; Kimura, Atsushi; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Oshima, Masumi

    2006-01-01

    In this study, we tried to measure trace elements (As and Sb) in Katana (Japanese swords) by multidimensional γ-ray spectrometry method (GEMINI-II) and conventional counting method for neutron activation analysis (NAA). The determined values by GEMINI-II and conventional counting were in good agreement with. Using the multidimensional γ-ray spectrometry (GEMINI-II) to determine As and Sb was improved by 7 times and 10 times compared with the conventional counting method. (author)

  2. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  3. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  4. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  5. Geometric estimation method for x-ray digital intraoral tomosynthesis

    Science.gov (United States)

    Li, Liang; Yang, Yao; Chen, Zhiqiang

    2016-06-01

    It is essential for accurate image reconstruction to obtain a set of parameters that describes the x-ray scanning geometry. A geometric estimation method is presented for x-ray digital intraoral tomosynthesis (DIT) in which the detector remains stationary while the x-ray source rotates. The main idea is to estimate the three-dimensional (3-D) coordinates of each shot position using at least two small opaque balls adhering to the detector surface as the positioning markers. From the radiographs containing these balls, the position of each x-ray focal spot can be calculated independently relative to the detector center no matter what kind of scanning trajectory is used. A 3-D phantom which roughly simulates DIT was designed to evaluate the performance of this method both quantitatively and qualitatively in the sense of mean square error and structural similarity. Results are also presented for real data acquired with a DIT experimental system. These results prove the validity of this geometric estimation method.

  6. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    Science.gov (United States)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  7. Evaluation of the effectiveness of the three-dimensional residual stresses method based on the eigenstrain methodology via x-ray measurements

    International Nuclear Information System (INIS)

    Ogawa, Masaru; Ishii, Takehiro; Furusako, Seiji

    2015-01-01

    In order to prevent fractures caused by fatigue or stress corrosion cracking in welded structures, it is important to predict crack propagation for cracks observed during in-service inspections. However, it is difficult to evaluate three-dimensional welding residual stresses non-destructively. Today, it is possible to measure residual stresses just on surface by X-ray diffraction. Neutron diffraction makes it possible to measure welding residual stresses non-destructively even in the thickness direction but it is only available in special irradiation facilities. Therefore, it is impossible to use neutron diffraction as an on-site measurement technique. As non-destructive method of three-dimensional welding residual stresses based on the eigenstrain methodology, the bead flush method has been proposed. In this method, three-dimensional welding residual stresses are calculated by an elastic FEM (Finite Element Method) analysis from eigenstrain distributions which are estimated by an inverse analysis from released strains by strain gauges in the removal of the weld reinforcement. Here, the removal of the excess metal contributes inhibition of crack initiation. Therefore, the bead flush method is a non-destructive technique essentially. However, estimation accuracy of this method becomes relatively poor when processing strains are added on the machined surface. The first author has been developed the bead flush method to be free from the influence of the processing strains. In this method, eigenstrains are estimated not from released strains but from residual strains on surface by X-ray diffraction. In this study, welding residual stresses on the bottom surface in an actual welded plate are estimated from elastic strains measured on the top surface using this method. To evaluate estimation accuracy, estimated residual stresses on the bottom surface are compared with residual stresses measured by X-ray diffraction. Here, eigenstrain distributions not only in the welding

  8. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  9. A new hybrid algorithm using thermodynamic and backward ray-tracing approaches for modeling luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Ch. K.; Lim, Y. S.; Tan, S. G.; Rahman, F. A. [Faculty of Engineering and Science, University Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur (Malaysia)

    2010-12-15

    A Luminescent Solar Concentrator (LSC) is a transparent plate containing luminescent material with photovoltaic (PV) cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs. (authors)

  10. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    Science.gov (United States)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  11. Graphene – A Two-Dimensional Dirac Material

    OpenAIRE

    Liu, Danny; Wicklund, Johan

    2014-01-01

    Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are...

  12. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  13. High-resolution mapping of two-dimensional lattice distortions in ion-implanted crystals from X-ray diffractometry data

    International Nuclear Information System (INIS)

    Nikulin, A.Y.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W.; Hashizume, H.; Cookson, D.

    1996-01-01

    The triple-crystal synchrotron X-ray diffractometry data described in Nikulin, Stevenson, Hashizume, Wilkins, Foran, Cookson and Garrett (J. Appl. Cryst. 28, 57-60 (1995)) has been analyzed to map out two-dimensional (2D) lattice distortions in silicon (111) crystals implanted with B + ions of 100 keV energy through a periodic SiO 2 strip pattern. The lateral periodic structure produced a series of satellite reflections associated with the 111 Bragg peak. The 2D reconstruction incorporates the use of the Petrashen-Chukhovskii method, which retrieves the phases of the Bragg waves for these satellite reflections, together with that for the fundamental. The finite Fourier series is then synthesized with the relative phases determined. Localized distortions perpendicular to the surface arising from deposited B + ions in near-surface layers of the crystal are clearly displayed with spatial resolutions of 0.016 and 0.265 μm in the depth and lateral directions respectively. For a sample with the oxide layer removed from the surface, two equally plausible strain maps have been obtained by assigning relative phases to eleven satellites using a sequential trial method and a minimum-energy method. Failed map reconstructions for the oxide-covered sample are discussed in terms of the non-unique solutions of the Petrashen-Chukhovskii phase-recovery algorithm and the ambiguous phases determined for the satellites. 16 refs., 8 figs

  14. Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method

    International Nuclear Information System (INIS)

    Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.

    2010-01-01

    The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.

  15. Particle induced X-ray emission and complementary nuclear methods for trace element determination; Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, S A.E. [Lund Univ. (Sweden). Dept. of Nuclear Physics

    1992-03-01

    In this review the state-of-the-art of particle induced X-ray emission (PIXE) methods for the determination of trace elements is described. The developmental work has mostly been carried out in nuclear physics laboratories, where accelerators are available, but now the increased interest has led to the establishment of other dedicated PIXE facilities. The reason for this interest is the versatility, high sensitivity and multi-element capability of PIXE analysis. A further very important advantage is that PIXE can be combined with the microbeam technique, which makes elemental mapping with a spatial resolution of about 1 {mu}m possible. As a technique, PIXE can also be combined with other nuclear reactions such as elastic scattering and particle-induced gamma emission, so that light elements can be determined. The usefulness of PIXE is illustrated by a number of typical applications in biology, medicine, geology, air pollution research, archaeology and the arts. (author).

  16. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon?hydrogen bonds

    OpenAIRE

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals u...

  17. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-01-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  18. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    International Nuclear Information System (INIS)

    Incerti, S.; Smith, R.W.; Merchant, M.; Grime, G.W.; Meot, F.; Serani, L.; Moretto, Ph.; Touzeau, C.; Barberet, Ph.; Habchi, C.; Nguyen, D.T.

    2005-01-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented

  19. Focused two-dimensional antiscatter grid for mammography

    International Nuclear Information System (INIS)

    Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.

    2002-01-01

    We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed

  20. Systematic Errors in Dimensional X-ray Computed Tomography

    DEFF Research Database (Denmark)

    that it is possible to compensate them. In dimensional X-ray computed tomography (CT), many physical quantities influence the final result. However, it is important to know which factors in CT measurements potentially lead to systematic errors. In this talk, typical error sources in dimensional X-ray CT are discussed...

  1. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  2. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  3. Right ventricular volume determination by two-dimensional echocardiography and radiography in model hearts using a subtraction method

    International Nuclear Information System (INIS)

    Krebs, W.; Erbel, R.; Schweizer, P.; Richter, H.A.; Massberg, I.; Meyer, J.; Effert, S.; Henn, G.

    1982-01-01

    The irregularity and complexity of the right ventricle is the reason why no accurate method for right ventricular volume determination exists. A new method for right ventricular volume determination particularly for two-dimensional echocardiography was developed - it is called subtraction method - and was compared with the pyramid and Simpson's methods. The partial volume of the left ventricle and septum was subtracted from total volume of right and left ventricle including interventricular septum. Thus right ventricular volume resulted. Total and partial volume were computer-assisted calculated by use of biplane methods, preferably Simpson's rule. The method was proved with thinwall silicon-rubber model hearts of the left and right ventricle. Two orthogonal planes in the long-axis were filmed by radiography or scanned in a water bath by two-dimensional echocardiography equivalent to RAO and LAO-projections of cineangiocardiograms or to four- and two-chamber views of apical two-dimensional echocardiograms. For calculation of the major axes of the elliptical sections, summed up by Simpson's rule, they were derived from the LAO-projection and the four-chamber view, respectively, the minor axis approximated from the RAO-projection and the two-chamber view. For comparison of direct-measured volume and two-dimensional echocardiographically determined volume, regression equation was given by y = 1.01 x - 3.2, correlation-coefficient, r = 0.977, and standard error of estimate (SEE) +-10.5 ml. For radiography, regression equation was y = 0.909 x + 13.3, r = 0.983, SEE = +-8.0 ml. For pyramid method and Simpson's rule, higher standard errors and lower correlation coefficients were found. Between radiography and two-dimensional echocardiography a mean difference of 4.3 +- 13.2 ml, using subtraction method, and -10.2 +- 22.9 ml, using pyramid method, as well as -0.6 +- 18.5 ml, using Simpson's rule, were calculated for right ventricular volume measurements. (orig./APR) [de

  4. (U) Second-Order Sensitivity Analysis of Uncollided Particle Contributions to Radiation Detector Responses Using Ray-Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities of a response of uncollided particles with respect to isotope densities, cross sections, and source emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates code. In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a flux or partial current density computed at a single point on the boundary, and the inner products are computed using ray-tracing. Both the PARTISN approach and the ray-tracing approach are implemented in a computer code, SENSPG. The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of the inner products needed for second-order sensitivities. Numerical results for the total leakage from a homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in Sec. VI. Section VII is a summary and conclusions.

  5. Random ray-tracing and graphic analysing of charged particle trajectories

    International Nuclear Information System (INIS)

    Lin Xiaomei; Mao Naifeng; Chen Jingxian

    1990-01-01

    In order to describe the optical properties of a charged particle beam realistically, the random sampling of initial conditions of particles in ray-tracing is discussed. The emission surface of particles may be a plane, a cylindrical surface or a spherical surface. The distribution functions may be expressed analytically or numerically. In order to analyse the properties of the charged particle beam systematically by use of the results from ray-tracing efficiently, the graphic processing and analysing of particle trajectories are also discussed, including the spline function fitting of trajectories, the graphic drafting of trajectories and beam envelopes, the determining of image dimensions and the correspinding positions, and also the graphic drafting of particle distributions on arbitrary cross sections

  6. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  7. Trace element analysis in liquids by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Deconninck, G.

    Proton induced x-ray emission (PIXE) from liquid has been developed for quantitative and simultaneous analysis of trace elements. Liquid drops and trickles are bombarded at atmospheric pressure, x-rays are detected in a non dispersive Si(Li) solid state detector. Absolute determinations are made by comparison with standard solutions. Detection limits in a 5 minutes run are in the ppm range for a single drop (0.05 ml). The application of this technique to the determination of trace elements in biological liquids is investigated (Cr, Mn, Fe, Co, Ni, Cu, Zn, in plant extracts, haemocyanine, albumins...). (author)

  8. Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, L.; Somogyi, A.; Osan, J.; Vekemans, B.; Torok, S.; Janssens, K.; Adams, F. [Universitaire of Instelling Antwerp, Wilrijk (Belgium). Dept. of Chemistry

    2002-07-01

    A new quantification procedure was developed for the evaluation of X-ray microfluorescence (XRF) data sets obtained from individual particles, based on iterative Monte Carlo (MC) simulation. Combined with the high sensitivity of synchrotron radiation-induced XRF spectroscopy, the method was used to obtain quantitative information down to trace-level concentrations from micrometer-sized particulate matter. The detailed XRF simulation model was validated by comparison of calculated and experimental XRF spectra obtained for glass microsphere standards, resulting in uncertainties in the range of 3-10% for the calculated elemental sensitivities. The simulation model was applied for the quantitative analysis of X-ray tube and synchrotron radiation-induced scanning micro-XRF spectra of individual coal and wood fly ash particles originating from different Hungarian power plants. By measuring the same particles by both methods the major, minor, and trace element compositions of the particles were determined. The uncertainty of the MC based quantitative analysis scheme is estimated to be in the range of 5-30%.

  9. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    Science.gov (United States)

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  10. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)

    2004-10-15

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  11. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    International Nuclear Information System (INIS)

    Yoon, Hyun Jin; Kim, Dong Il

    2004-01-01

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  12. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    International Nuclear Information System (INIS)

    Yonemura, M; Okada, J; Ishikawa, T; Nanao, S; Watanabe, Y; Shobu, T; Toyokawa, H

    2013-01-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  13. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-01-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion

  14. Multiplexed optical data storage and vectorial ray tracing

    Directory of Open Access Journals (Sweden)

    Foreman M.R.

    2010-06-01

    Full Text Available With the motivation of creating a terabyte-sized optical disk, a novel imaging technique is implemented. This technique merges two existing technologies: confocal microscopy and Mueller matrix imaging. Mueller matrix images from a high numerical space are obtained. The acquisition of these images makes the exploration of polarisation properties in a sample possible. The particular case of optical data storage is used as an example in this presentation. Since we encode information into asymmetric datapits (see Figure 1, the study of the polarisation of the scattered light can then be used to recover the orientation of the pit. It is thus possible to multiplex information by changing the angle of the mark. The storage capacity in the system is hence limited by the number of distinct angles that the optical system can resolve. This presentation thus answers the question; what is the current storage capacity of a polarisation sensitive optical disk? After a brief introduction to polarisation, the decoding method and experimental results are presented so as to provide an answer to this question. With the aim of understanding high NA focusing, an introduction to vectorial ray tracing is then given.

  15. Ray tracing study of rising tone EMIC-triggered emissions

    Science.gov (United States)

    Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole

    2017-04-01

    ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.

  16. Correction for interelement effect in X-Ray fluorescence analysis of trace elements in geological materials

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Attawiya, M.Y.; Khattab, F.M.

    1984-01-01

    In a trial to obtain accurate results from X-ray fluorescence technique for the analysis of trace elements in geological materials, two corrections were used for the obtained data, namely, correction for the observed x-ray intensities for absorption and/or enhancement effects due to the presence of other elements in the system and correction for spectral deconvolution to account for the overlapping lines. Significant improvement in the precision and accuracy was obtained and evaluated

  17. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  18. Simultaneous Determination of 30 Trace Elements in Cancerous and Noncancerous Human Tissue Samples with Gamma-ray Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K; Brune, D; Wester, P O

    1963-10-15

    The following trace elements were quantitatively determined by gamma-ray spectrometry in T samples of non-cancerous and 5 samples of cancerous human tissue: P, Ca, Cr, Fe, Co, Cu, Zn, As, Se, Br, Rb, Mo, Ag, Cd, Sb, Cs, La, Au, and Hg. In some of the samples the following elements were qualitatively determined: Ti+Sc, Ga, Sr, In, Ba, Ce, Hf, Os, Pt, and U. Most of the trace elements were found to be present in much higher concentrations in the non-cancerous than in the corresponding cancerous liver samples. In a typical run one sample each of cancerous and non-cancerous tissue was irradiated together with standards of the elements to be determined in a thermal flux of 2.10{sup 13} n/cm{sup 2}/sec. for 24 hours. The radioactive trace elements were separated into 16, and in some cases 18, groups by means of a chemical group separation method. Subsequently, the gamma spectrometric measurements were performed. Two persons can manage the chemical separations and measure the different activities from a run in 1,5 days. A new method of comparing unknown samples with standards was developed.

  19. Two-dimensional semi-analytic nodal method for multigroup pin power reconstruction

    International Nuclear Information System (INIS)

    Seung Gyou, Baek; Han Gyu, Joo; Un Chul, Lee

    2007-01-01

    A pin power reconstruction method applicable to multigroup problems involving square fuel assemblies is presented. The method is based on a two-dimensional semi-analytic nodal solution which consists of eight exponential terms and 13 polynomial terms. The 13 polynomial terms represent the particular solution obtained under the condition of a 2-dimensional 13 term source expansion. In order to achieve better approximation of the source distribution, the least square fitting method is employed. The 8 exponential terms represent a part of the analytically obtained homogeneous solution and the 8 coefficients are determined by imposing constraints on the 4 surface average currents and 4 corner point fluxes. The surface average currents determined from a transverse-integrated nodal solution are used directly whereas the corner point fluxes are determined during the course of the reconstruction by employing an iterative scheme that would realize the corner point balance condition. The outgoing current based corner point flux determination scheme is newly introduced. The accuracy of the proposed method is demonstrated with the L336C5 benchmark problem. (authors)

  20. Matching methods evaluation framework for stereoscopic breast x-ray images.

    Science.gov (United States)

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  1. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  2. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    Science.gov (United States)

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  3. Approximate solutions of the two-dimensional integral transport equation by collision probability methods

    International Nuclear Information System (INIS)

    Sanchez, Richard

    1977-01-01

    A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr

  4. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    International Nuclear Information System (INIS)

    Baran, A.J.; Hesse, Evelyn; Sourdeval, Odran

    2017-01-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed. - Highlights: • A method of physical optics is shown to apply to size parameters as low as 18 in the mm and sub-mm-wave spectral regions. • Including ray tracing with diffraction on facets and diffraction at the cross-section of

  5. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  6. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  7. Estimation of the two-dimensional power spectral density of spatial fluctuation in terrestrial gamma-ray dose rate

    International Nuclear Information System (INIS)

    Minato, Susumu

    2000-01-01

    The multiple regression analysis done for 50 sets of data of natural terrestrial gamma-ray dose rates collected from different sites of the world led to an empirical formula for the variance of the data as a function of mean value and area. The mean values and areas studied in this paper range from 10 to 100 (nGy/h) and from 10 -3 to 10 7 (km 2 ), respectively. For an isotropic field of fluctuation, a two-dimensional power spectral density (2D PSD) was derived theoretically from the above mentioned empirical formula in a form of S(k)=0.952 x 10 -3 m 2.02 k -2.36 , where k (cycles/km) and m (nGy/h) are the wave number and the mean, respectively. The validity of the estimated 2D PSD was confirmed by comparing with PSDs obtained by the following two methods. One is the spatial auto-correlation analysis for several sets of randomly distributed 2D data consisting of more than 170 samples taken through ground surveys. The other is the direct 2D Fourier transform for two sets of 100 x 100 data matrix picked up from a dose rate map produced through airborne surveys. (author)

  8. Ray tracing of auroral Z mode radiation, AKR and auroral hiss

    International Nuclear Information System (INIS)

    Horne, R.B.; Jones, D.; Kimura, I.; Sawada, A.

    1990-01-01

    While observed frequency bandwidths of auroral Z mode radiation cannot be directly accounted for in terms of direct cyclotron maser instability generation, ray tracing in a hot plasma indicates that if the radiation near a plasma frequency lower than the gyrofrequency, the observed bandwidths are explainable in terms of upward propagation away from the earth. An auroral Z-mode generation mechanism is proposed involving mode conversion from O-mode auroral kilometric radiation (AKR) at the plasma frequency, as well as mode conversion from upgoing auroral hiss. Ray tracings in the O mode identify a possible AKR source region along L = 8.55. 11 refs

  9. Ray tracing for inhomogeneous media applied to the human eye

    Science.gov (United States)

    Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.

    2017-08-01

    Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.

  10. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry; Montagem de posicionador de varredura bidimensional automatizada acoplado a espectrometria de fluorescência de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Santiago Melgaço

    2011-07-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of {sup 241}Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  11. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...... penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  12. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  13. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  14. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    Science.gov (United States)

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  15. Perfect imaging of three object points with only two analytic lens surfaces in two dimensions

    Science.gov (United States)

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan Carlos; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat's principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

  16. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  17. Matrix method for two-dimensional waveguide mode solution

    Science.gov (United States)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  18. Method for monitoring drilling materials for gamma ray activity

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.; Schultz, W.E.

    1985-01-01

    This invention relates to a method of verifying the radioactivity levels in raw barite prior to its use in drilling mud. Certain gamma ray measurements are taken of the raw barite and extrapolated to a well bore environment using the projected drilling mud weight made from this barite and the dimensions of the well bore. The natural radioactivity occurring in the formations in the vicinity of the well bore is then compared with the projected levels to enable a determination of whether or not the barite has sufficient radioactive trace elements to forbid its use in a well. Alternatively, the method indicates the ratios by which such additives containing radioactive trace elements must be diluted with non-radioactive additives before use in the drilling mud. A second use of the method involves mud testing at the well site for radioactivity from mud additives, including barite, potassium chloride, and well cuttings. Additional uses include testing other weight materials prior to or subsequent to addition to the mud, and methods for correcting observed gamma ray measurements for the mud-induced background

  19. Studies of trace elements in biological systems by energy dispersive x-ray fluorescence (EDXRF) and proton induced x-ray emission (PIXE) methods

    International Nuclear Information System (INIS)

    Lal, Madan; Choudhury, R.K.

    1991-01-01

    Applicability of EDXRF and PIXE techniques for trace elemental analysis in biology and medicine is demonstrated. Due to increasing importance of the need to determine the role of essential and toxic trace elements in human health and disease, the method of PIXE analysis has assumed great importance in recent years. This method has been found to be particularly useful for biological samples. EDXRF also offers a complimentary method particularly in the range of elements of Z=45 to 60 where the sensitivity of PIXE analysis is not quite adequate. EDXRF can also be usefully employed for other elements of the periodic chart with relatively lesser sensitivity. The work being presented here includes trace element analysis of normal and cancer bearing tissues of Swiss mice, trace element profiles in cancerous human oesophageal tissues, investigations on the effect of toxic metals such as Hg from Ayurvedic drugs on Wister rats, and investigations of blood lead levels of children admitted to Sion Hospital from Dharavi slums of Bombay. The results of these investigations are presented and discussed. (author). 21 refs., 8 figs., 3 tabs

  20. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  1. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    Science.gov (United States)

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.

  2. Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Yu

    2018-02-01

    Full Text Available A three-dimensional topography simulation of deep reactive ion etching (DRIE is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.

  3. Automated three-dimensional X-ray analysis using a dual-beam FIB

    International Nuclear Information System (INIS)

    Schaffer, Miroslava; Wagner, Julian; Schaffer, Bernhard; Schmied, Mario; Mulders, Hans

    2007-01-01

    We present a fully automated method for three-dimensional (3D) elemental analysis demonstrated using a ceramic sample of chemistry (Ca)MgTiO x . The specimen is serially sectioned by a focused ion beam (FIB) microscope, and energy-dispersive X-ray spectrometry (EDXS) is used for elemental analysis of each cross-section created. A 3D elemental model is reconstructed from the stack of two-dimensional (2D) data. This work concentrates on issues arising from process automation, the large sample volume of approximately 17x17x10 μm 3 , and the insulating nature of the specimen. A new routine for post-acquisition data correction of different drift effects is demonstrated. Furthermore, it is shown that EDXS data may be erroneous for specimens containing voids, and that back-scattered electron images have to be used to correct for these errors

  4. Generalized similarity method in unsteady two-dimensional MHD ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.

  5. Two dimensional CCD [charged coupled device] arrays as parallel detectors in electron energy loss and x-ray wavelength dispersive spectroscopy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1988-08-01

    Parallel detection systems for spectroscopy have generally been based upon linear detector arrays. Replacing the linear arrays with two dimensional systems yields more complicated devices; however, there are corresponding benefits which can be realized for both x-ray and electron energy loss spectroscopy. The operational design of these systems, as well as preliminary results from the construction of such a device used for electron spectroscopy, are presented. 10 refs., 8 figs

  6. Parallelization of a three-dimensional whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Jin Young, Cho; Han Gyu, Joo; Ha Yong, Kim; Moon-Hee, Chang [Korea Atomic Energy Research Institute, Yuseong-gu, Daejon (Korea, Republic of)

    2003-07-01

    Parallelization of the DeCART (deterministic core analysis based on ray tracing) code is presented that reduces the computational burden of the tremendous computing time and memory required in three-dimensional whole core transport calculations. The parallelization employs the concept of MPI grouping and the MPI/OpenMP mixed scheme as well. Since most of the computing time and memory are used in MOC (method of characteristics) and the multi-group CMFD (coarse mesh finite difference) calculation in DeCART, variables and subroutines related to these two modules are the primary targets for parallelization. Specifically, the ray tracing module was parallelized using a planar domain decomposition scheme and an angular domain decomposition scheme. The parallel performance of the DeCART code is evaluated by solving a rodded variation of the C5G7MOX three dimensional benchmark problem and a simplified three-dimensional SMART PWR core problem. In C5G7MOX problem with 24 CPUs, a speedup of maximum 21 is obtained on an IBM Regatta machine and 22 on a LINUX Cluster in the MOC kernel, which indicates good parallel performance of the DeCART code. In the simplified SMART problem, the memory requirement of about 11 GBytes in the single processor cases reduces to 940 Mbytes with 24 processors, which means that the DeCART code can now solve large core problems with affordable LINUX clusters. (authors)

  7. Creation of three-dimensional craniofacial standards from CBCT images

    Science.gov (United States)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  8. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Weeratunga, S K

    2008-11-06

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can be easily shared between these two code frameworks and concludes with a set of recommendations for its development.

  9. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  10. Solution of two-dimensional equations of neutron transport in 4P0-approximation of spherical harmonics method

    International Nuclear Information System (INIS)

    Polivanskij, V.P.

    1989-01-01

    The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs

  11. A more general expression for the average X-ray diffraction intensity of crystals with an incommensurate one-dimensional modulation

    International Nuclear Information System (INIS)

    Lam, E.J.W.; Beurskens, P.T.; Smaalen, S. van

    1994-01-01

    Statistical methods are used to derive an expression for the average X-ray diffraction intensity, as a function of (sinθ)/λ, of crystals with an incommensurate one-dimensional modulation. Displacive and density modulations are considered, as well as a combination of these two. The atomic modulation functions are given by truncated Fourier series that may contain higher-order harmonics. The resulting expression for the average X-ray diffraction intensity is valid for main reflections and low-order satellite reflections. The modulation of individual atoms is taken into account by the introduction of overall modulation amplitudes. The accuracy of this expression for the average X-ray diffraction intensity is illustrated by comparison with model structures. A definition is presented for normalized structure factors of crystals with an incommensurate one-dimensional modulation that can be used in direct-methods procedures for solving the phase problem in X-ray crystallography. A numerical fitting procedure is described that can extract a scale factor, an overall temperature parameter and overall modulation amplitudes from experimental reflection intensities. (orig.)

  12. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method

    Science.gov (United States)

    Pingbo, An; Li, Wang; Hongxi, Lu; Zhiguo, Yu; Lei, Liu; Xin, Xi; Lixia, Zhao; Junxi, Wang; Jinmin, Li

    2016-06-01

    The internal quantum efficiency (IQE) of the light-emitting diodes can be calculated by the ratio of the external quantum efficiency (EQE) and the light extraction efficiency (LEE). The EQE can be measured experimentally, but the LEE is difficult to calculate due to the complicated LED structures. In this work, a model was established to calculate the LEE by combining the transfer matrix formalism and an in-plane ray tracing method. With the calculated LEE, the IQE was determined and made a good agreement with that obtained by the ABC model and temperature-dependent photoluminescence method. The proposed method makes the determination of the IQE more practical and conventional. Project supported by the National Natural Science Foundation of China (Nos.11574306, 61334009), the China International Science and Technology Cooperation Program (No. 2014DFG62280), and the National High Technology Program of China (No. 2015AA03A101).

  13. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  14. [Comparison of ocular modulation transfer function measurements by ray tracing wavefront technology and double-pass system].

    Science.gov (United States)

    Qiao, Liya; Cai, Xiaogu; Wan, Xiuhua; Guan, Zheng; Xiong, Ying; Lin, Zhong; Zhang, Ye; Tan, Jiaxuan; Wang, Ningli

    2015-01-01

    To compare the agreement of the ocular modulation transfer function (MTF) measured by double-pass system and ray tracing wavefront aberrometry, and to analyze the correlations of two MTFs with the visual acuity and contrast sensitivity function results. Comparative study. Subjects with no ocular diseases were consecutively enrolled in an epidemic study field located at the Dongyangzhuang Health Center, Yongnian County, Handan City, Hebei Province, China. After comprehensive ophthalmic examinations, the mean values of subtracted lower order aberration MTF at 5, 10, 15, 20, 25, and 30 cycle/degree(c/d) spatial frequencies were obtained with a double-pass system (optical quality analysis system II, OQAS II system) and a ray tracing wavefront aberrometer (iTrace visual function analyzer, iTrace system) in the 4.0 mm and 6.0 mm pupil after dilation, respectively. Paired-sample t test and Bland-Altman analysis were used to compare the difference and agreement of MTFs obtained with two instruments. Correlation analysis was preformed between two MTF measurement results and subjective visual quality including visual acuity and contrast sensitivity function. Two hundred and fifty-one healthy eyes of 163 subjects were enrolled, aged 30 to 60, mean (44.1 ± 9.7) years, including 139 eyes of 81 males and 112 eyes of 82 females. The mean value of MTF at 5, 10, 15, 20.25, 30 c/d obtained by iTrace in 4.0 mm pupil were 0.730 ± 0.138, 0.431 ± 0.159, 0.262 ± 0.120, 0.169 ± 0.078, 0.118 ± 0.053, 0.094 ± 0.043. The value obtained by OQASII were 0.347 ± 0.123, 0.162 ± 0.086, 0.072 ± 0.049, 0.042 ± 0.033, 0.026 ± 0.022, 0.017 ± 0.022, The result of iTrace were all significant higher than OQAS in both 4mm(t = 38.72, 28.03, 27.32, 27.59, 29.23, 28.96, P < 0.01) and 6.0 mm(t = 4.60, 3.19, 9.34, 13.41, 16.96, 20.24, P < 0.01)pupil diameter. The iTrace-OQAS II MTF difference was smaller in the 6.0 mm pupil. Bland-Altman analysis indicated that the agreement of two instruments was

  15. Ray-tracing toroidal axisymmetric devices. 1. theoretical analysis

    International Nuclear Information System (INIS)

    Cardinali, A.; Brambilla, M.

    1981-06-01

    Ray tracing technique for lower hybrid waves is used to obtain informations about accessibility, power deposition profiles and eventually electric field distribution. In the first part a critical discussion to establish the meaning and validity of this technique is presented, while in the second part of this work applications to small and to large, fat tokamaks are presented, which support and explain the theoretical arguments

  16. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  17. Trace and axial anomalies in dimensional renormalization through Zimmermann-like identities

    International Nuclear Information System (INIS)

    Bonneau, G.

    1980-01-01

    The problem of anomalies is solved in dimensional renormalization in two steps. Firstly one shows that trace and γ 5 anomalies can be expressed as the anomalous normal product N[gsub(μ rho)Osub(μ rho lambda)...(x)] where gsub(μ rho) is the metric tensor in D-4 dimensions (D being the space-time dimension) and Osub(μ rho lambda)...(x) a monomial in the fields and their derivatives. Then, with techniques similar to those used in a previous work to study N[(4-D)Osub(μ rho lambda)(x)], we prove a Zimmermann-like identity that gives the decomposition of such anomalous normal product on 'usual' normal products, the coefficients being explicitly given as residues of the simple pole in v = 4-D of definite proper Green functions where the overall subtraction has not been done. We apply the above formalism to obtain the renormalization group as a consequence of trace anomalies in the dilatation current and to derive the Adler-Bardeen theorem for massive QED. (orig.)

  18. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  19. Accounting for partiality in serial crystallography using ray-tracing principles.

    Science.gov (United States)

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  20. PEMBUATAN PERANGKAT LUNAK UNTUK MEMVISUALISASIKAN BENDA TEMBUS PANDANG DENGAN METODE RAY TRACING

    Directory of Open Access Journals (Sweden)

    Liliana Liliana

    2004-01-01

    Full Text Available Today computer graphics is used in many aspects, especially to make animation, advertisement and game. We hope this technology can produce realistic pictures which same quality with photo. Metode to get the realistic 3D image is ray tracing. In this journal, make a software which can produce realistic 3D image, especially for reflective and transparent object. Reflective object will modeled can reflect another object surrounding it. And transparent object will modeled can produce caustic effect, that's rays which refract in one area. So that area will appear brighter than area surround it. Abstract in Bahasa Indonesia : Dewasa ini grafika komputer semakin banyak digunakan di berbagai bidang terutama untuk pembuatan film animasi, iklan dan pembuatan game. Diharapkan teknologi grafika komputer mampu menghasilkan gambar-gambar realistik yang kualitasnya sama dengan kualitas foto. Salah satu metode yang digunakan untuk menghasilkan gambar 3D yang realistik tersebut adalah metode ray tracing. Dalam penelitian ini dibuat perangkat lunak yang mampu menghasilkan gambar-gambar 3D yang realistik terutama untuk benda-benda yang mengkilap dan benda-benda transparan. Benda mengkilap yang dimodelkan bisa memantulkan bayangan benda lain yang berada di sekitarnya. Benda transparan yang dimodelkan adalah benda transparan yang menghasilkan efek kaustik, yaitu pembiasan sinar dari sumber cahaya yang mengumpul di suatu daerah sehingga pada daerah tersebut akan tampak lebih terang daripada daerah sekitarnya. Kata kunci: efek kaustik, ray tracing.

  1. Integration of Trace Images in Three-dimensional Crime Scene Reconstruction

    Directory of Open Access Journals (Sweden)

    Quentin Milliet

    2016-01-01

    Full Text Available Forensic image analysis has greatly developed with the proliferation of photography and video recording devices. Trace images of serious incidents are increasingly captured by first responders, witnesses, bystanders, or surveillance systems. Image perception is exposed with a special emphasis on the influence of the field of view on observation. In response to the pitfalls of the mental eye, a way to systematize the integration of images as traces in three-dimensional crime scene reconstruction is proposed. The systematic approach is based on the application of photogrammetric principles to slightly modify the usual photographic documentation as well as on the early collection and review of available trace images. The integration of images as traces provides valuable contributions to contextualize what happened at a crime scene based on the information that can be obtained from images. In a wider perspective, the systematic analysis of images fosters the use and interpretation of forensic evidence to complement witness statements in the criminal justice system. This article outlines the benefits of integrating trace images into a coherent reconstruction framework in order to improve interpretation of their content. A solution is proposed to integrate perception differences between the field of view of cameras and the human eye.

  2. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    Science.gov (United States)

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Invisibility cloaking via non-smooth transformation optics and ray tracing

    International Nuclear Information System (INIS)

    Crosskey, Miles M.; Nixon, Andrew T.; Schick, Leland M.; Kovacic, Gregor

    2011-01-01

    We present examples of theoretically-predicted invisibility cloaks with shapes other than spheres and cylinders, including cones and ellipsoids, as well as shapes spliced from parts of these simpler shapes. In addition, we present an example explicitly displaying the non-uniqueness of invisibility cloaks of the same shape. We depict rays propagating through these example cloaks using ray tracing for geometric optics. - Highlights: → Theoretically-predicted conical and ellipsoidal invisibility cloaks. → Non-smooth cloaks spliced from parts of simpler shapes. → Example displaying non-uniqueness of invisibility cloaks of the same shape. → Rays propagating through example cloaks depicted using geometric optics.

  4. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  5. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  6. Simulation of transmitted X-rays in a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shiqi [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Liu, Zhiguo, E-mail: liuzhiguo512@126.com [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Wang, Kai; Yi, Longtao; Yang, Kui; Chen, Man; Wang, Jinbang [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-09-21

    The geometrical description of capillary systems adjusted for the controlled guiding of X-rays and the basic theory of the transmission of X-rays are presented. A method of numerical calculation, based on Ray-Tracing theory, is developed to simulate the transmission efficiency of an X-ray parallel lens and the shape and size of the light spot gain from it. The simulation results for two half-lenses are in good agreement with the experimental results.

  7. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  8. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    Science.gov (United States)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  9. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  10. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  11. A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas

    International Nuclear Information System (INIS)

    Peysson, Y; Decker, J; Morini, L

    2012-01-01

    A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a Runge–Kutta–Fehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves. (paper)

  12. Peculiarities of cyclotron magnetic system calculation with the finite difference method using two-dimensional approximation

    International Nuclear Information System (INIS)

    Shtromberger, N.L.

    1989-01-01

    To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs

  13. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  14. Three-dimensional display of femoral head cartilage thickness maps from MR images

    International Nuclear Information System (INIS)

    Rubin, R.A.; Dolecki, M.; Rubash, H.E.; Thaete, F.L.; Hernden, J.H.

    1990-01-01

    This paper reports on the development of methods for three-dimensional display and analysis of the articular cartilage of the hip from MR images. Cadaveric femoral head specimens were images with three-dimensional GRASS MR imaging. Data were analyzed on a SUN workstation with original software, the ANALYZE package from Richard Robb's Biomedical Research Group at the Mayo Clinic, and SUN's Voxvu program. The articular cartilage was isolated by manually segmenting images. An original computer ray tracing method measured the cartilage thickness radially and produced movies of a rotating femoral head, displaying brightness proportional to cartilage thickness

  15. X-ray and nuclear methods for comparative analysis of environmental samples

    International Nuclear Information System (INIS)

    Kudryashov, V.I.; Gundorina, S.F.; Frontas'eva, M.V.; Saidmuradov, Zh.

    1988-01-01

    X-ray and instrumental neutron activation methods, and in some cases methods of photon activation (X-ray spectral analysis with proton activation and analysis on the basis of (p, n) reaction) were used to obtain elementary content of different water samples. The possibility of getting space-time dependences of trace elementary concentrations in water (and under certain conditions in atmosphere) is shown. These data are to be used at a complex investigation of sanitary norms of water systems. The advantages of abovementined methods are discussed for obtaining different elementary content in water in different ways

  16. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  17. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  18. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences.

    Science.gov (United States)

    Strange, Richard W; Feiters, Martin C

    2008-10-01

    Using X-ray absorption spectroscopy (XAS) the binding modes (type and number of ligands, distances and geometry) and oxidation states of metals and other trace elements in crystalline as well as non-crystalline samples can be revealed. The method may be applied to biological systems as a 'stand-alone' technique, but it is particularly powerful when used alongside other X-ray and spectroscopic techniques and computational approaches. In this review, we highlight how biological XAS is being used in concert with crystallography, spectroscopy and computational chemistry to study metalloproteins in crystals, and report recent applications on relatively rare trace elements utilised by living organisms and metals involved in neurodegenerative diseases.

  19. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  20. Tuning the Two-Dimensional Electron Gas at Oxide Interfaces with Ti-O Configurations: Evidence from X-ray Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Yu; Gan, Yulin; Niu, Wei

    2018-01-01

    Chemical redox reaction can lead to a two-dimensional electron gas (2DEG) at the interface between a TiO2-terminated SrTiO3 (STO) substrate and an amorphous LaAlO3 (a-LAO) capping layer. When replacing the STO substrate with rutile and anatase TiO2 substrates, considerable differences...... in interfacial conduction are observed. Based on X-ray photoelectron spectroscopy (XPS) and transport measurements, we conclude that the interfacial conduction comes from redox reactions, and that the differences among the materials systems result mainly from variations in the activation energies...

  1. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B.S.; Baines, S.B.; Fisher, N.S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S.A.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10 -16 mol μm -2 for Si and between 5.0 x 10 -20 and 3.9 x 10 -19 mol μm -2 for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  2. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  3. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  4. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  5. Two-dimensional fluid-hammer analysis by the method of nearcharacteristics

    International Nuclear Information System (INIS)

    Shin, Y.W.; Kot, C.A.

    1975-05-01

    A numerical technique based on the method of nearcharacteristics is considered for solving propagation of fluid-hammer waves in a two-dimensional geometry. The solution is constructed by relating flow conditions by compatibility equations along lines called nearcharacteristics. Three choices are considered in the numerical scheme that are accurate within an error of the order of magnitude of the time step. Since the nearcharacteristics lie in the coordinate planes, the technique provides an efficient method requiring only simple interpolations in the initial plane. On the other hand, the nearcharacteristics fall outside the characteristics cone. Thus the solution procedure directly refers to conditions outside the true domain of dependence. The effect of this is studied through numerical calculation of a simple example problem and comparison with results obtained by a bicharacteristic method. Comparison is also made with existing analytical solutions and experiments. Furthermore, the three solution schemes considered are examined for numerical stability by the vonNeumann test. Two of the schemes were found to be unstable; the third yielded a stability criterion equivalent to that of the bicharacteristic formulation. The stability-analysis results were confirmed by numerical experimentation. (auth)

  6. RAY: a ray tracing program in cold magnetized plasma

    International Nuclear Information System (INIS)

    Montes, A.; Souza, L.H.

    1985-01-01

    This report deals with the development of a ray tracing program, that is, the plot of an electromagnetic wave path in a cold magnetized plasma medium. The program was developed based on the validity of the geometrical optics laws to calculate the electromagnetic wave trajectory. This approximation is valid when the wave length is much smaller than the characteristic length of the medium. No hypothesis was made about a particular geometric configuration for the magnetic field, what enables the use of the program in any magnetic confinment scheme. The numerically obtained results were compared with an analytic solution for a particular case (cylindrically symmetric medium, uniform magnetostatic, field along the symmetry axis and ordinary wave) and have shown a satisfactory precision. (Author) [pt

  7. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.

    Science.gov (United States)

    Hilaire, F; Basset, E; Bayard, R; Gallardo, M; Thiebaut, D; Vial, J

    2017-11-17

    The gas industry is going to be revolutionized by being able to generate bioenergy from biomass. The production of biomethane - a green substitute of natural gas - is growing in Europe and the United-States of America. Biomethane can be injected into the gas grid or used as fuel for vehicles after compression. Due to various biomass inputs (e.g. agricultural wastes, sludges from sewage treatment plants, etc.), production processes (e.g. anaerobic digestion, municipal solid waste (MSW) landfills), seasonal effects and purification processes (e.g. gas scrubbers, pressure swing adsorption, membranes for biogas upgrading), the composition and quality of biogas and biomethane produced is difficult to assess. All previous publications dealing with biogas analysis reported that hundreds of chemicals from ten chemical families do exist in trace amounts in biogas. However, to the best of our knowledge, no study reported a detailed analysis or the implementation of comprehensive two-dimensional gas chromatography (GC×GC) for biogas matrices. This is the reason why the benefit of implementing two-dimensional gas chromatography for the characterization of biogas and biomethane samples was evaluated. In a first step, a standard mixture of 89 compounds belonging to 10 chemical families, representative of those likely to be found, was used to optimize the analytical method. A set consisting of a non-polar and a polar columns, respectively in the first and the second dimension, was used with a modulation period of six seconds. Applied to ten samples of raw biogas, treated biogas and biomethane collected on 4 industrial sites (two MSW landfills, one anaerobic digester on a wastewater treatment plant and one agricultural biogas plant), this analytical method provided a "fingerprint" of the gases composition at the molecular level in all biogas and biomethane samples. Estimated limits of detection (far below the μgNm -3 ) coupled with the resolution of GC×GC allowed the comparison

  8. Method for producing three-dimensional real image using radiographic perspective views of an object

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Read, A.A.

    1976-01-01

    A sequence of separate radiographs may be made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to veiw the real image along any desired surface with the optical information in all other surfaces greatly suppressed. 4 claims, 5 drawing figures

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  11. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  12. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    International Nuclear Information System (INIS)

    Fainberg, J; Schaefer, W

    2015-01-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples. (paper)

  13. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Dongming [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Hou, Peipei; Liu, Chang [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuerong [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Luodong [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.

  14. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  15. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  16. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  17. Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems

    International Nuclear Information System (INIS)

    Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Schueler, Beth A.; Ritenour, E. Russell

    2002-01-01

    The purpose of this work was to develop methods to measure the presampled two-dimensional modulation transfer function (2D MTF) of digital imaging systems. A custom x-ray 'point source' phantom was created by machining 256 holes with diameter 0.107 mm through a 0.5-mm-thick copper plate. The phantom was imaged several times, resulting in many images of individual x-ray 'spots'. The center of each spot (with respect to the pixel matrix) was determined to subpixel accuracy by fitting each spot to a 2D Gaussian function. The subpixel spot center locations were used to create a 5x oversampled system point spread function (PSF), which characterizes the optical and electrical properties of the system and is independent of the pixel sampling of the original image. The modulus of the Fourier transform of the PSF was calculated. Next, the Fourier function was normalized to the zero frequency value. Finally, the Fourier transform function was divided by the first-order Bessel function that defined the frequency content of the holes, resulting in the presampled 2D MTF. The presampled 2D MTF of a 0.1 mm pixel pitch computed radiography system and 0.2 mm pixel pitch flat panel digital imaging system that utilized a cesium iodide scintillator was measured. Comparison of the axial components of the 2D MTF to one-dimensional MTF measurements acquired using an edge device method demonstrated that the two methods produced consistent results

  18. General beam position controlling method for 3D optical systems based on the method of solving ray matrix equations

    Science.gov (United States)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Wang, Zhiguo; Li, Yingying

    2013-12-01

    A general beam position controlling method for 3D optical systems based on the method of solving ray matrix equations has been proposed in this paper. As a typical 3D optical system, nonplanar ring resonator of Zero-Lock Laser Gyroscopes has been chosen as an example to show its application. The total mismatching error induced by Faraday-wedge in nonplanar ring resonator has been defined and eliminated quite accurately with the error less than 1 μm. Compared with the method proposed in Ref. [14], the precision of the beam position controlling has been improved by two orders of magnitude. The novel method can be used to implement automatic beam position controlling in 3D optical systems with servo circuit. All those results have been confirmed by related alignment experiments. The results in this paper are important for beam controlling, ray tracing, cavity design and alignment in 3D optical systems.

  19. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  20. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  1. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  2. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  3. The method of separation of variables for the Frobenius-Perron operator associated to a class of two dimensional chaotic maps

    International Nuclear Information System (INIS)

    Luevano, Jose-Ruben

    2011-01-01

    Analytical expressions for the invariant densities for a class of discrete two dimensional chaotic systems are given. The method of separation of variables for the associated Frobenius-Perron equation is introduced. These systems are related to nonlinear difference equations which are of the type x k+2 = T(x k ). The function T is a chaotic map of an interval whose chaotic behaviour is inherited to the two dimensional one. We work out in detail some examples, with T an expansive or intermittent map, in order to expose the method. Finally, we discuss how to generalize the method to higher dimensional maps.

  4. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  5. Comparative studies of trace elements in two kinds of human gallstones

    International Nuclear Information System (INIS)

    Vatankhah, S.; Moosavi, K.; Peyrovan, H.; Salimi, J.

    2003-01-01

    Structural composition of 11 trace elements with Z greater than 13 (Al, P, Si, K, Ca, Mn, Fe, Cu, Zn, Mo, I) was analyzed for the two main groups of human gallstones according to their cholesterol and pigment types by PIXE (Proton Induced X-ray Emission). In both types of stones, the shell and the center were analyzed separately. The gallstones were obtained from 12 patients in wide age group from 22 to 78 years of age during surgical operation. The results show relatively higher values of heavy elements for ages greater than 40. The values of phosphorus in cholesterol type stones are significantly higher than in those of pigment stones. The concentration of calcium in the center of stones is large in comparison with that in the shells. In this paper, a correlation between stone structure and trace elemental concentration has been presented. Comparison of the two essential types of stones (cholesterol and pigment) shows that the center of the pigment stones is very similar to that of the cholesterol type. (author)

  6. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    Science.gov (United States)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  7. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles

    International Nuclear Information System (INIS)

    Okonda, J.J.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectroscopy is an analytical method for identification and quantification of elements in materials by measurement of their spectral energy and intensity. EDXRFS spectroscopic technique involves simultaneous non-invasive acquisition of both fluorescence and scatter spectra from samples for quantitative determination of trace elemental content in complex matrix materials. The objective is develop a chemometric-aided EDXRFS method for rapid diagnosis of cancer and its severity (staging) based on analysis of trace elements (Cu, Zn, Fe, Se and Mn), their speciation and multivariate alterations of the elements in cancerous body tissue samples as cancer biomarkers. The quest for early diagnosis of cancer is based on the fact that early intervention translates to higher survival rate and better quality of life. Chemometric aided EDXRFS cancer diagnostic model has been evaluated as a direct and rapid superior alternative for the traditional quantitative methods used in XRF such as FP method. PCA results of cultured samples indicate that it is possible to characterize cancer at early and late stage of development based on trace elemental profiles

  8. Determination of trace elements in tea by wavelength dispersive X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gong Chunhui; Zeng Guoqiang; Ge Liangquan; Li Jun; Wen Ziqiang

    2013-01-01

    Background: Measuring trace elements in tea can determine its nutritional value, verify the authenticity and place of origin, and detect the poisonous and harmful elements remaining in tea due to the application of chemical fertilizers and pesticides. Purpose: In order to reduce the time for sample preparation and the costs of equipment maintenance, wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy was used to determine the trace elements in tea which is rapid, non-destructive and accurate. The contents of more than 20 elements can be measured simultaneously. Methods: Sample pieces were made by the sample preparation method of boric acid rebasing. To avoid the exogenous environmental pollution subjected in the growth of tea, we removed the residual dust of the tea by cleaning it. According to the principle that the standard samples should be similar types with the samples to be analyzed to select standard samples. The curves were built by SuperQ, which contained compiling the measurement conditions, establishing the measurement conditions, checking the angles, determining the measurement times, checking PHD and adding the contents and the names of sample pieces. The accuracy of the method can be obtained by comparing the measured values with the trace element contents of standard samples. The contents of trace elements in tea determined by WDXRF can be used to classify the tea attribution and the tea species through cluster analysis of SPSS software. Results: (1) The results show that the biggest relative standard deviation is 0.43% of Pb, and the precision is very good. (2) Five kinds of tea are taken separately in Fujian and Yunnan, measured three times with the established working curves. And tree diagram of cluster analysis can be obtained with SPSS software to analyze the measured average values with cluster analysis, coupling method between groups and Minkowski distance measurement techniques. It can be seen that in the tree diagram, when the

  9. Methods for the solution of the two-dimensional radiation-transfer equation

    International Nuclear Information System (INIS)

    Weaver, R.; Mihalas, D.; Olson, G.

    1982-01-01

    We use the variable Eddington factor (VEF) approximation to solve the time-dependent two-dimensional radiation transfer equation. The transfer equation and its moments are derived for an inertial frame of reference in cylindrical geometry. Using the VEF tensor to close the moment equations, we manipulate them into a combined moment equation that results in an energy equation, which is automatically flux limited. There are two separable facets in this method of solution. First, given the variable Eddington tensor, we discuss the efficient solution of the combined moment matrix equation. The second facet of the problem is the calculation of the variable Eddington tensor. Several options for this calculation, as well as physical limitations on the use of locally-calculated Eddington factors, are discussed

  10. Application of space-angle synthesis to two-dimensional neutral-particle transport problems of weapon physics

    International Nuclear Information System (INIS)

    Roberds, R.M.

    1975-01-01

    A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation

  11. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    Science.gov (United States)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  12. Two-dimensional parasitic capacitance extraction for integrated circuit with dual discrete geometric methods

    International Nuclear Information System (INIS)

    Ren Dan; Ren Zhuoxiang; Qu Hui; Xu Xiaoyu

    2015-01-01

    Capacitance extraction is one of the key issues in integrated circuits and also a typical electrostatic problem. The dual discrete geometric method (DGM) is investigated to provide relative solutions in two-dimensional unstructured mesh space. The energy complementary characteristic and quick field energy computation thereof based on it are emphasized. Contrastive analysis between the dual finite element methods and the dual DGMs are presented both from theoretical derivation and through case studies. The DGM, taking the scalar potential as unknown on dual interlocked meshes, with simple form and good accuracy, is expected to be one of the mainstreaming methods in associated areas. (paper)

  13. The elimination of ray tracing in Monte Carlo shielding programs

    International Nuclear Information System (INIS)

    Bendall, D.E.

    1988-01-01

    The MONK6 code has clearly demonstrated the advantages of hole tracking, which was devised by Woodcock et at. for use in criticality codes from earlier work by Von Neumann. Hole tracking eliminates ray tracing by introducing, for all materials present in the problem, a pseudo scattering reaction that forward scatters without energy loss. The cross section for this reaction is chosen so that the total cross sections for all the materials are equal at a given energy. By this means, tracking takes place with a constant total cross section everywhere, so there is now no need to ray trace. The present work extends hole tracking to shielding codes, where it functions in tandem with Russian roulette and splitting. An algorithm has been evolved and its performance is compared with the ray-tracking code McBEND. A disadvantage with hole tracking occurs when there is a wide variation in total cross section for materials present. As the tracking uses the total cross section of the material that has the maximum cross section, there can be a large number of pseudo collisions in the materials with low total cross sections. In extreme cases, the advantages of hole tracking can be lost by the by the extra time taken in servicing these pseudo collisions; however, techniques for eliminating this problem are under consideration

  14. A comparison of partially specular radiosity and ray tracing for room acoustics modeling

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2005-04-01

    Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.

  15. Three dimensional analysis of coelacanth body structure by computer graphics and X-ray CT images

    International Nuclear Information System (INIS)

    Suzuki, Naoki; Hamada, Takashi.

    1990-01-01

    Three dimensional imaging processes were applied for the structural and functional analyses of the modern coelacanth (Latimeria chalumnae). Visualization of the obtained images is performed with computer graphics on the basis of serial images by an X-ray CT scanning method. Reconstruction of three dimensional images of the body structure of coelacanth using the volume rendering and surface rendering methods provides us various information about external and internal shapes of this exquisite fish. (author)

  16. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    Science.gov (United States)

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  17. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  18. Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods

    International Nuclear Information System (INIS)

    Men, H.; Nguyen, N.C.; Freund, R.M.; Parrilo, P.A.; Peraire, J.

    2010-01-01

    In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the bandgap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.

  19. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  20. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  1. Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels

    International Nuclear Information System (INIS)

    Yonemura, Mitsuharu

    2009-01-01

    Full text: The high intensity heat source used for fusion welding creates steep thermal gradients of 100 degree C/s from 1800 degree Celsius. Further, the influence of a preferred orientation is serious for observation of a directional solidification that follows the dendrite growth along the direction toward the moving heat source. Therefore, we observed the rapid solidification of weld metal at a time resolution of 0.01∼0.1seconds by the Two-Dimensional Time-Resolved X-ray Diffraction (2DTRXRD) system for real welding. The diffraction ring was dynamically observed by 2DTRXRD during arc-passing over the irradiation area of X-ray with synchrotron energy of 18 KeV. The arc power output was 10 V - 150 A, and a scan speed of the arc was 1.0 mm/s. The temperature rise of instruments was suppressed by the water-cooled copper plate under the sample. Further, the temperature distribution of the weld metal was measured by the thermocouple and related to the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low-carbon steel, the microstructure is formed in the 2 step process; (i) formation of crystallites and (ii) increase of crystallinity. In the stainless steel, the irregular interface layer of σ/y in the quenched metal after solidification is expected that it is easy for dendrites to move at the lower temperature. In the carbide precipitation stainless steel, it is easy for NbC to grow on σ phase with a little under cooling. Further, a mist-like pattern, which differs from the halo-pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD. (author)

  2. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  3. The simulation of two-dimensional migration patterns - a novel approach

    International Nuclear Information System (INIS)

    Villar, Heldio Pereira

    1997-01-01

    A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author)

  4. A Sub-band Divided Ray Tracing Algorithm Using the DPS Subspace in UWB Indoor Scenarios

    DEFF Research Database (Denmark)

    Gan, Mingming; Xu, Zhinan; Hofer, Markus

    2015-01-01

    Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub-bands. A......Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub...

  5. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  6. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  7. Tracking and tracing of participants in two large cancer screening trials.

    Science.gov (United States)

    Marcus, Pamela M; Childs, Jeffery; Gahagan, Betsy; Gren, Lisa H

    2012-07-01

    Many clinical trials rely on participant report to first learn about study events. It is therefore important to have current contact information and the ability to locate participants should information become outdated. The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) and the Lung Screening Study (LSS) component of the National Lung Screening Trial, two large randomized cancer screening trials, enrolled almost 190,000 participants on whom annual contact was necessary. Ten screening centers participated in both trials. Centers developed methods to track participants and trace them when necessary. We describe the methods used to keep track of participants and trace them when lost, and the extent to which each method was used. Screening center coordinators were asked, using a self-administered paper questionnaire, to rate the extent to which specific tracking and tracing methods were used. Many methods were used by the screening centers, including telephone calls, mail, and internet searches. The most extensively used methods involved telephoning the participant on his or her home or cell phone, or telephoning a person identified by the participant as someone who would know about the participant's whereabouts. Internet searches were used extensively as well; these included searches on names, reverse-lookup searches (on addresses or telephone numbers) and searches of the Social Security Death Index. Over time, the percentage of participants requiring tracing decreased. Telephone communication and internet services were useful in keeping track of PLCO and LSS participants and tracing them when contact information was no longer valid. Published by Elsevier Inc.

  8. Boundary element methods applied to two-dimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1985-01-01

    The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)

  9. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  10. Application of synthesis methods to two-dimensional fast reactor transient study

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Hirakawa, Naohiro

    1978-01-01

    Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)

  11. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Glenn, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  12. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  13. R-LODs: fast LOD-based ray tracing of massive models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-Eui; Lauterbach, Christian; Manocha, Dinesh

    2006-08-25

    We present a novel LOD (level-of-detail) algorithm to accelerate ray tracing of massive models. Our approach computes drastic simplifications of the model and the LODs are well integrated with the kd-tree data structure. We introduce a simple and efficient LOD metric to bound the error for primary and secondary rays. The LOD representation has small runtime overhead and our algorithm can be combined with ray coherence techniques and cache-coherent layouts to improve the performance. In practice, the use of LODs can alleviate aliasing artifacts and improve memory coherence. We implement our algorithm on both 32bit and 64bit machines and able to achieve up to 2.20 times improvement in frame rate of rendering models consisting of tens or hundreds of millions of triangles with little loss in image quality.

  14. High resolution x-ray stereomicroscopy: True three-dimensional imaging of biological samples

    International Nuclear Information System (INIS)

    Loo, B.W.Jr.; Williams, S.; Meizel, S.; Rothman, S.S.; Univ. of California, Berkeley/San Francisco, CA; Univ. of California, San Francisco, CA

    1993-01-01

    X-ray microscopy has the potential to become a powerful tool for the study of biological samples, allowing the imaging of intact cells and subcellular organelles in an aqueous environment at resolutions previously achievable only by electron microscopy. The ability to examine a relatively thick sample raises the issue of superposition of objects from multiple planes within the sample, making difficult the interpretation of conventional, orthogonally projected images. This paper describes early attempts at developing three-dimensional methods for x-ray microimaging: the first to use x-ray optics, and to the authors' knowledge, the first demonstrating sub-visible resolutions and natural contrast. These studies were performed using the scanning transmission x-ray microscope (STXM) at the National Synchrotron Light Source, Brookhaven National Laboratory

  15. Particle induced X-ray emission for quantitative trace-element analysis using the Eindhoven cyclotron

    International Nuclear Information System (INIS)

    Kivits, H.

    1980-01-01

    Development of a multi-elemental trace analysis technique using PIXE (Particle Induced X-ray Emission), was started almost five years ago at the Eindhoven University of Technology, in the Cyclotron Applications Group of the Physics Department. The aim of the work presented is to improve the quantitative aspects of trace-element analysis with PIXE, as well as versatility, speed and simplicity. (Auth.)

  16. Optimization of Monte Carlo algorithms and ray tracing on GPUs

    International Nuclear Information System (INIS)

    Bergmann, R.M.; Vujic, J.L.

    2013-01-01

    To take advantage of the computational power of GPUs (Graphical Processing Units), algorithms that work well on CPUs must be modified to conform to the GPU execution model. In this study, typical task-parallel Monte Carlo algorithms have been reformulated in a data-parallel way, and the benefits of doing so are examined. We were able to show that the data-parallel approach greatly improves thread coherency and keeps thread blocks busy, improving GPU utilization compared to the task-parallel approach. Data-parallel does not, however, outperform the task-parallel approach in regards to speedup over CPU. Regarding the ray-tracing acceleration, OptiX shows promise for providing enough ray tracing speed to be used in a full 3D Monte Carlo neutron transport code for reactor calculations. It is important to note that it is necessary to operate on large datasets of particle histories in order to have good performance in both OptiX and the data-parallel algorithm since this reduces the impact of latency. Our paper also shows the need to rewrite standard Monte Carlo algorithms in order to take full advantage of these new, powerful processor architectures

  17. Design of the nickel-like tin x-ray laser at 12.0 nm

    International Nuclear Information System (INIS)

    Yan Fei; Zhang Jie; Lu Xin; Zhong, Jia Y.

    2005-01-01

    The effects of the drive laser intensity, pulse duration, and pulse configuration on the performance of the Ni-like Sn x-ray laser at 12.0 nm (4d→4p, J=0→1) are investigated with use of a one-dimensional hydrodynamic code coupled with an atomic physics code. High gain operation is predicted for the optimized drive pulse configuration. The effects of refraction and saturation on the propagation of the x-ray laser in the plasma medium are also investigated by use of a two-dimensional ray-tracing code. The results show that the refraction plays an important role. The saturated output with an effective gain product length of 17.88 can be obtained for an ∼0.40-cm-long plasma column by use of optimized parameters

  18. Inverse identification of intensity distributions from multiple flux maps in concentrating solar applications

    International Nuclear Information System (INIS)

    Erickson, Ben; Petrasch, Jörg

    2012-01-01

    Radiative flux measurements at the focal plane of solar concentrators are typically performed using digital cameras in conjunction with Lambertian targets. To accurately predict flux distributions on arbitrary receiver geometries directional information about the radiation is required. Currently, the directional characteristics of solar concentrating systems are predicted via ray tracing simulations. No direct experimental technique to determine intensities of concentrating solar systems is available. In the current paper, multiple parallel flux measurements at varying distances from the focal plane together with a linear inverse method and Tikhonov regularization are used to identify the directional and spatial intensity distribution at the solution plane. The directional binning feature of an in-house Monte Carlo ray tracing program is used to provide a reference solution. The method has been successfully applied to two-dimensional concentrators, namely parabolic troughs and elliptical troughs using forward Monte Carlo ray tracing simulations that provide the flux maps as well as consistent, associated intensity distribution for validation. In the two-dimensional case, intensity distributions obtained from the inverse method approach the Monte Carlo forward solution. In contrast, the method has not been successful for three dimensional and circular symmetric concentrator geometries.

  19. The three dimensional X-ray diffraction technique

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Poulsen, Henning Friis

    2012-01-01

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials...

  20. Ray Tracing modelling of reflector for vertical bifacial panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  1. Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings

    International Nuclear Information System (INIS)

    Lemuet, F.; Meot, F.

    2005-01-01

    A geometrical method for 3-D modeling of the magnetic field in scaling and non-scaling FFAG magnets has been installed in the ray-tracing code Zgoubi. The method in particular allows a good simulation of transverse non-linearities, of field fall-offs and possible merging fields in configurations of neighboring magnets, while using realistic models of magnetic fields. That yields an efficient tool for FFAG lattice design and optimizations, and for 6-D tracking studies. It is applied for illustration to the simulation of an acceleration cycle in a 150 MeV radial sector proton FFAG

  2. Enabling three-dimensional densitometric measurements using laboratory source X-ray micro-computed tomography

    Science.gov (United States)

    Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.

    2018-01-01

    We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.

  3. Gravitational microlensing - Powerful combination of ray-shooting and parametric representation of caustics

    Science.gov (United States)

    Wambsganss, J.; Witt, H. J.; Schneider, P.

    1992-01-01

    We present a combination of two very different methods for numerically calculating the effects of gravitational microlensing: the backward-ray-tracing that results in two-dimensional magnification patterns, and the parametric representation of caustic lines; they are in a way complementary to each other. The combination of these methods is much more powerful than the sum of its parts. It allows to determine the total magnification and the number of microimages as a function of source position. The mean number of microimages is calculated analytically and compared to the numerical results. The peaks in the lightcurves, as obtained from one-dimensional tracks through the magnification pattern, can now be divided into two groups: those which correspond to a source crossing a caustic, and those which are due to sources passing outside cusps. We determine the frequencies of those two types of events as a function of the surface mass density, and the probability distributions of their magnitudes. We find that for low surface mass density as many as 40 percent of all events in a lightcurve are not due to caustic crossings, but rather due to passings outside cusps.

  4. The simulation of two-dimensional migration patterns - a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Heldio Pereira [Universidade de Pernambuco, Recife, PE (Brazil). Escola Politecnica]|[Centro Regional de Ciencias Nucleares, Recife, PE (Brazil)

    1997-12-31

    A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author) 6 refs., 6 figs.

  5. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  6. Trace element load in cancer and normal lung tissue

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Braziewicz, J.; Banas, D.; Majewska, U.; Gozdz, S.; Urbaniak, A.

    1999-01-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described

  7. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  8. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    Science.gov (United States)

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  9. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  10. ImaSim, a software tool for basic education of medical x-ray imaging in radiotherapy and radiology

    Science.gov (United States)

    Landry, Guillaume; deBlois, François; Verhaegen, Frank

    2013-11-01

    Introduction: X-ray imaging is an important part of medicine and plays a crucial role in radiotherapy. Education in this field is mostly limited to textbook teaching due to equipment restrictions. A novel simulation tool, ImaSim, for teaching the fundamentals of the x-ray imaging process based on ray-tracing is presented in this work. ImaSim is used interactively via a graphical user interface (GUI). Materials and methods: The software package covers the main x-ray based medical modalities: planar kilo voltage (kV), planar (portal) mega voltage (MV), fan beam computed tomography (CT) and cone beam CT (CBCT) imaging. The user can modify the photon source, object to be imaged and imaging setup with three-dimensional editors. Objects are currently obtained by combining blocks with variable shapes. The imaging of three-dimensional voxelized geometries is currently not implemented, but can be added in a later release. The program follows a ray-tracing approach, ignoring photon scatter in its current implementation. Simulations of a phantom CT scan were generated in ImaSim and were compared to measured data in terms of CT number accuracy. Spatial variations in the photon fluence and mean energy from an x-ray tube caused by the heel effect were estimated from ImaSim and Monte Carlo simulations and compared. Results: In this paper we describe ImaSim and provide two examples of its capabilities. CT numbers were found to agree within 36 Hounsfield Units (HU) for bone, which corresponds to a 2% attenuation coefficient difference. ImaSim reproduced the heel effect reasonably well when compared to Monte Carlo simulations. Discussion: An x-ray imaging simulation tool is made available for teaching and research purposes. ImaSim provides a means to facilitate the teaching of medical x-ray imaging.

  11. A two-dimensional, finite-element methods for calculating TF coil response to out-of-plane Lorentz forces

    International Nuclear Information System (INIS)

    Witt, R.J.

    1989-01-01

    Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)

  12. Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method

    International Nuclear Information System (INIS)

    Molabahrami, A.; Khani, F.; Hamedi-Nezhad, S.

    2007-01-01

    In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple

  13. A Monte Carlo Ray Tracing Model to Improve Simulations of Solar-Induced Chlorophyll Fluorescence Radiative Transfer

    Science.gov (United States)

    Halubok, M.; Gu, L.; Yang, Z. L.

    2017-12-01

    A model of light transport in a three-dimensional vegetation canopy is being designed and evaluated. The model employs Monte Carlo ray tracing technique which offers simple yet rigorous approach of quantifying the photon transport in a plant canopy. This method involves simulation of a chain of scattering and absorption events incurred by a photon on its path from the light source. Implementation of weighting mechanism helps avoid `all-or-nothing' type of interaction between a photon packet and a canopy element, i.e. at each interaction a photon packet is split into three parts, namely, reflected, transmitted and absorbed, instead of assuming complete absorption, reflection or transmission. Canopy scenes in the model are represented by a number of polygons with specified set of reflectances and transmittances. The performance of the model is being evaluated through comparison against established plant canopy reflectance models, such as 3D Radiosity-Graphics combined model which calculates bidirectional reflectance distribution function of a 3D canopy scene. This photon transport model is to be coupled to a leaf level solar-induced chlorophyll fluorescence (SIF) model with the aim of further advancing of accuracy of the modeled SIF, which, in its turn, has a potential of improving our predictive capability of terrestrial carbon uptake.

  14. Dibenzylammonium and sodium dibenzyldithiocarbamates as precipitants for preconcentration of trace elements in water for analysis by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Moore, R.V.

    1982-01-01

    Precipitation with combined dibenzylammonium dibenzyldithiocarbamate and sodium dibenzyldithiocarbamate at pH 5.0 can be used to separate 22 trace elements from water. Membrane filtration of the precipitate yielded a thin sample, suitable for analysis by energy dispersive X-ray fluorescence spectrometry. Alkalis, alkaline earths, lanthanides, and halides were not precipitated, permitting a clean separation of trace elements from the macro constituents of drinking water and drinking water supplies. Methods are given for preparation of reagents of higher purity than previously described

  15. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  16. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    International Nuclear Information System (INIS)

    Xiao Sanshui; He Sailing

    2002-01-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k z although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k z is founded

  17. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

    International Nuclear Information System (INIS)

    Minato, Akihiko; Naitoh, Masanori

    1987-01-01

    A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

  18. Streamline integration as a method for two-dimensional elliptic grid generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Held, M. [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Einkemmer, L. [Numerical Analysis group, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2017-07-01

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metrics we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.

  19. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    International Nuclear Information System (INIS)

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  20. Theoretical estimation of proton induced X-ray emission yield of the trace elements present in the lung and breast cancer

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.

    2013-01-01

    X-rays may be produced following the excitation of target atoms induced by an energetic incident ion beam of protons. Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays. Recent interest in the proton induced X-ray emission cross section has arisen due to their importance in the rapidly expanding field of PIXE analysis. One of the steps in the analysis is to fit the measured X-ray spectrum with theoretical spectrum. The theoretical cross section and yields are essential for the evaluation of spectrum. We have theoretically evaluated the PIXE cross sections for trace elements in the lung and breast cancer tissues such as Cl, K, Ca,Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, P, S, Sr, Hg and Pb. The estimated cross section is used in the evaluation of Proton induced X-ray emission spectrum for the given trace elements.We have also evaluated the Proton induced X-ray emission yields in the thin and thick target of the given trace elements. The evaluated Proton induced X-ray emission cross-section, spectrum and yields are graphically represented. Some of these values are also tabulated. Proton induced X-ray emission cross sections and a yield for the given trace elements varies with the energy. PIXE yield depends on a real density and does not on thickness of the target. (author)

  1. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  2. Evaluation of a new electronic preoperative reference marker for toric intraocular lens implantation by two different methods of analysis: Adobe Photoshop versus iTrace.

    Science.gov (United States)

    Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo

    2017-01-01

    The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant ( P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° ( P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° ( P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag.

  3. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  4. Two gamma-ray detectors method for examination of fuel elements

    International Nuclear Information System (INIS)

    Kristof, E.; Pregl, G.

    1979-01-01

    Th initial experiment and method for the nondestructive determination of a fuel element burnup is given. The method eliminates the error which originates from the unknown local dependency of the attenuation coefficient for gamma rays in fuel. (author)

  5. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  6. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    Energy Technology Data Exchange (ETDEWEB)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  7. Bayesian approach for peak detection in two-dimensional chromatography

    NARCIS (Netherlands)

    Vivó-Truyols, G.

    2012-01-01

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual

  8. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.; Yang, D.Y.

    1998-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination

  9. Comparative investigation of two-dimensional imaging methods and X-ray tomography in the characterization of microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaicoa, Inigo; Luetje, Martin [Kassel Univ. (Germany). Inst. of Materials Engineering, Quality and Reliability; Saelzer, Philipp [Kassel Univ. (Germany). Abt. Materialentwicklung und Verbundwerkstoffe; Umbach, Cristin [Kassel Univ. (Germany). Inst. for Structural Engineering; Brueckner-Foit, Angelika [Kassel Univ. (Germany). Inst. of Materials Engineering; Heim, Hans-Peter [Kassel Univ. (Germany). Plastics Engineering; Middendorf, Bernhard [Kassel Univ. (Germany). Dept. of Building Materials and Construction Chemistry

    2017-11-01

    The microstructural features of three different materials have been quantified by means of 2D image analysis and X-ray micro-computer tomography (CT) and the results were compared to determine the reliability of the 2D analysis in the material characterization. The 3D quantification of shrinkage pores and Fe-rich inclusions of an Al-Si-Cu alloy by X-ray tomography was compared with the statistical analysis of the 2D metallographic pictures and a significant difference in the results was found due to the complex morphology of shrinkage pores and Fe-rich particles. Furthermore, wood particles of a wood-plastic composite were measured by dynamic image analysis and X-ray tomography. Similar results were obtained for the maximum length of the particles, although the results of width differ considerably, which leads to a miscalculation of the particles aspect ratio. Finally, air voids of a foam concrete were investigated by the analysis of the 2D pictures in ImageJ and the results of the 2D circularity were compared with the values of the 3D elongation obtained by micro-computed tomography. The 3D analysis of the air voids in the foam concrete showed a more precise description of the morphology, although the 2D result are in good agreement with the results obtained by X-ray micro-tomography.

  10. Comparative investigation of two-dimensional imaging methods and X-ray tomography in the characterization of microstructure

    International Nuclear Information System (INIS)

    Bacaicoa, Inigo; Luetje, Martin; Saelzer, Philipp; Umbach, Cristin; Brueckner-Foit, Angelika; Heim, Hans-Peter; Middendorf, Bernhard

    2017-01-01

    The microstructural features of three different materials have been quantified by means of 2D image analysis and X-ray micro-computer tomography (CT) and the results were compared to determine the reliability of the 2D analysis in the material characterization. The 3D quantification of shrinkage pores and Fe-rich inclusions of an Al-Si-Cu alloy by X-ray tomography was compared with the statistical analysis of the 2D metallographic pictures and a significant difference in the results was found due to the complex morphology of shrinkage pores and Fe-rich particles. Furthermore, wood particles of a wood-plastic composite were measured by dynamic image analysis and X-ray tomography. Similar results were obtained for the maximum length of the particles, although the results of width differ considerably, which leads to a miscalculation of the particles aspect ratio. Finally, air voids of a foam concrete were investigated by the analysis of the 2D pictures in ImageJ and the results of the 2D circularity were compared with the values of the 3D elongation obtained by micro-computed tomography. The 3D analysis of the air voids in the foam concrete showed a more precise description of the morphology, although the 2D result are in good agreement with the results obtained by X-ray micro-tomography.

  11. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  12. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  13. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  14. Critical review of conservation equations for two-phase flow in the U.S. NRC TRACE code

    International Nuclear Information System (INIS)

    Wulff, Wolfgang

    2011-01-01

    Research highlights: → Field equations as implemented in TRACE are incorrect. → Boundary conditions needed for cooling of nuclear fuel elements are wrong. → The two-fluid model in TRACE is not closed. → Three-dimensional flow modeling in TRACE has no basis. - Abstract: The field equations for two-phase flow in the computer code TRAC/RELAP Advanced Computational Engine or TRACE are examined to determine their validity, their capabilities and limitations in resolving nuclear reactor safety issues. TRACE was developed for the NRC to predict thermohydraulic phenomena in nuclear power plants during operational transients and postulated accidents. TRACE is based on the rigorously derived and well-established two-fluid field equations for 1-D and 3-D two-phase flow. It is shown that: (1)The two-fluid field equations for mass conservation as implemented in TRACE are wrong because local mass balances in TRACE are in conflict with mass conservation for the whole reactor system, as shown in Section . (2)Wrong equations of motion are used in TRACE in place of momentum balances, compromising at branch points the prediction of momentum transfer between, and the coupling of, loops in hydraulic networks by impedance (form loss and wall shear) and by inertia and thereby the simulation of reactor component interactions. (3)Most seriously, TRACE calculation of heat transfer from fuel elements is incorrect for single and two-phase flows, because Eq. of the TRACE Manual is wrong (see Section ). (4)Boundary conditions for momentum and energy balances in TRACE are restricted to flow regimes with single-phase wall contact because TRACE lacks constitutive relations for solid-fluid exchange of momentum and heat in prevailing flow regimes. Without a quantified assessment of consequences from (3) to (4), predictions of phasic fluid velocities, fuel temperatures and important safety parameters, e.g., peak clad temperature, are questionable. Moreover, TRACE cannot predict 3-D single- or

  15. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  16. Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors

    Directory of Open Access Journals (Sweden)

    Sanjun Zhang

    2010-05-01

    Full Text Available This article reviews the synthesis, structural and optical characterizations of some novel luminescent two dimensional organic-inorganic perovskite (2DOIP semiconductors. These 2DOIP semiconductors show a self-assembled nano-layered structure, having the electronic structure of multi-quantum wells. 2DOIP thin layers and nanoparticles have been prepared through different methods. The structures of the 2DOIP semiconductors are characterized by atomic force microscopy and X-ray diffraction. The optical properties of theb DOIP semiconductors are characterized from absorption and photoluminescence spectra measured at room and low temperatures. Influences of different components, in particular the organic parts, on the structural and optical properties of the 2DOIP semiconductors are discussed.

  17. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  18. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  19. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  20. Proton induced x-ray emission analysis of trace elements in thick bread samples

    International Nuclear Information System (INIS)

    Mohamed Baker Al-bedri; Ikram Jameel Abdul Ghani; Ibrahim Abdul Rahman Al-aghil

    2009-01-01

    Proton induced X-ray emission (PIXE) technique has been used for identification and quantitative analysis of the elemental concentration in thick bread samples. Bread samples were air-oven dried at 60degC and milled in a clean agate mortar to homogenize the sample and pressed into a pellet. PIXE technique relies on the analysis of the energy spectra of the characteristic X-ray emitted from the thick bread sample and the orchard leaf standard (NIST-SRM-1571) bombarded with 2.0 MeV protons. The concentration of the elements (Cl, K, Ca, Mn, Fe, Cu, and Zn) in the bread samples was determined by comparison with NIST orchard leaf standard. The accuracy of the measurements ranged between ±2% and ±10% for the most elements detected in this method. The aim of this study is to establish the reference concentration of trace elements in the Iraqi bread using PIXE technique. (author)

  1. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Takashi; Tateno, Satoko (Tokyo Univ. (Japan). Coll. of Arts and Sciences); Suzuki, Naoki

    1991-12-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author).

  2. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    International Nuclear Information System (INIS)

    Hamada, Takashi; Tateno, Satoko; Suzuki, Naoki.

    1991-01-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author)

  3. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  4. Trace element studies at University of Pittsburgh

    International Nuclear Information System (INIS)

    Cohen, B.L.; Chan, K.C.; Shabason, L.; Wedberg, G.; Rudolph, H.

    1974-01-01

    Seven areas of research are discussed. A method was developed for analyzing samples for their major constituent elements by irradiating with protons and detecting prompt gamma rays, mostly produced in (p,p'γ) reactions. Among other applications, the method was used to analyze air particulates for C, N, O, Al, Si, S, Co, and Fe. Trace element analysis by proton or alpha particle induced x-ray fluorescence was used on thin samples in a study of the variations of Pb, Br, Fe, and Zn in air particulates as a function of time. Among other applications this method was also used in studying trace elements in rainwater. An x-ray fluorescence method that is effective in the analysis of thick samples was developed. A method based on measuring energies of elastically scattered protons was developed for the analysis of light elements. The use of proton and neutron activation analyses, as well as methods for studying depth profiles for hydrogen and helium in materials are discussed

  5. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  6. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  7. Comparison of Two- and Three-Dimensional Methods for Analysis of Trunk Kinematic Variables in the Golf Swing.

    Science.gov (United States)

    Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E

    2016-02-01

    Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

  8. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    Science.gov (United States)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  9. OBSERVATIONS ON THE PERFORMANCE OF X-RAY COMPUTED TOMOGRAPHY FOR DIMENSIONAL METROLOGY

    Directory of Open Access Journals (Sweden)

    H. C. Corcoran

    2016-06-01

    Full Text Available X-ray computed tomography (XCT is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  10. A NEW METHOD TO QUANTIFY X-RAY SUBSTRUCTURES IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-Santos, Felipe; Lima Neto, Gastao B.; Lagana, Tatiana F. [Departamento de Astronomia, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Geofisica e Ciencias Atmosfericas, Rua do Matao 1226, Cidade Universitaria, 05508-090 Sao Paulo, SP (Brazil)

    2012-02-20

    We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model ({beta}-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z in [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high- and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high- and low-substructure level clusters) are different (they present an offset, i.e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.

  11. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    Science.gov (United States)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  12. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  13. Novel applications of the x-ray tracing software package McXtrace

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Nielsen, Martin Meedom; Haldrup, Kristoffer

    2014-01-01

    We will present examples of applying the X-ray tracing software package McXtrace to different kinds of X-ray scattering experiments. In particular we will be focusing on time-resolved type experiments. Simulations of full scale experiments are particularly useful for this kind, especially when...... some of the issues encountered. Generally more than one or all of these effects are present at once. Simulations can in these cases be used to identify distinct footprints of such distortions and thus give the experimenter a means of deconvoluting them from the signal. We will present a study...... of this kind along with the newest developments of the McXtrace software package....

  14. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Directory of Open Access Journals (Sweden)

    Jan Rustemeyer

    2011-07-01

    Full Text Available Objectives: We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods.Material and Methods: Twenty-six patients (mean age 25.5, standard deviation (SD 5.2 years with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded.Results: Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007; and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043 compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039.Conclusions: Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.

  15. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Science.gov (United States)

    Martin, Alice

    2011-01-01

    ABSTRACT Objectives We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Material and Methods Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Results Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Conclusions Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another. PMID:24421994

  16. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, Volker [University of Ulm, Department of Internal Medicine II, Ulm (Germany); Philips Medical Systems, Bothell, WA (United States); Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy [Massachusetts General Hospital, Harvard Medical School, Cardiac Arrhythmia Service, Boston, MA (United States); Qureshi, Answer [Massachusetts General Hospital, Harvard Medical School, Echocardiography, Boston, MA (United States); Manzke, Robert; Sokka, Sham [Philips Research North America, Clinical Sites Research, Briacliff Manor, NY (United States)

    2008-03-15

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  17. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham

    2008-01-01

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  18. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Directory of Open Access Journals (Sweden)

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  19. Analytical approximations to the Hotelling trace for digital x-ray detectors

    Science.gov (United States)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  20. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    Science.gov (United States)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  1. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  2. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  3. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology

    International Nuclear Information System (INIS)

    Lifton, J J; McBride, J W; Malcolm, A A

    2016-01-01

    Scattered radiation and beam hardening introduce artefacts that degrade the quality of data in x-ray computed tomography (CT). It is unclear how these artefacts influence dimensional measurements evaluated from CT data. Understanding and quantifying the influence of these artefacts on dimensional measurements is required to evaluate the uncertainty of CT-based dimensional measurements. In this work the influence of scatter and beam hardening on dimensional measurements is investigated using the beam stop array scatter correction method and spectrum pre-filtration for the measurement of an object with internal and external cylindrical dimensional features. Scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, a gradient-based surface determination method is found to be robust to the influence of artefacts and leads to more accurate dimensional measurements than those evaluated using the ISO50 method. In addition to these observations the GUM method for evaluating standard measurement uncertainties is applied and the standard measurement uncertainty due to scatter and beam hardening is estimated. (paper)

  4. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    Science.gov (United States)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  5. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    Science.gov (United States)

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  6. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  7. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  8. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  9. Two-dimensional PCA-based human gait identification

    Science.gov (United States)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  10. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  11. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    International Nuclear Information System (INIS)

    Zhang Feng; Zhang Ning-Ning; Yan Sen; Song Sun; Jun Bao; Chen Gao; Zhang Yi

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells, and thereby reducing the cost of PV electricity generation. LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light, so further improving the efficiency of the PV cells. However, it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC. In this paper, all the physical processes of the light transmission and collection in the BMP-LSC were analyzed. A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC. A larger-size LSC was simulated, and the effects of dye concentration, the LSC thickness, the cell area, and the cell distance were systematically analyzed. (paper)

  12. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Ning-Ning Zhang; Yi Zhang; Sen Yan; Song Sun; Jun Bao; Chen Gao

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells,and thereby reducing the cost of PV electricity generation.LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light,so further improving the efficiency of the PV cells.However,it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC.In this paper,all the physical processes of the light transmission and collection in the BMP-LSC were analyzed.A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC.A larger-size LSC was simulated,and the effects of dye concentration,the LSC thickness,the cell area,and the cell distance were systematically analyzed.

  13. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    Science.gov (United States)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  14. Procedure of trace element analysis in oyster tissues by using X-ray fluorescence

    International Nuclear Information System (INIS)

    Vo Thi Tuong Hanh; Dinh Thi Bich Lieu; Dinh Thien Lam and Nguyen Manh Hung

    2004-01-01

    The procedure of trace element analysis such as Ca, Mn, Fe, Zn, Cu, Pb in molluscs (oyster tissues) was established by using X-ray fluorescence techniques. The procedure was investigated from the sample collection, drying, ashing ratio to the analytical techniques by using Cd-109, detector Si (Li) and the peak processing MCAPLUS program was applied for this study. The procedure is based on direct comparison with certified concentrations of international standard reference SRM 1566b Oyster Tissue of National Institute of Standards and Technology, Department of commerce, United States of America for Ca, Mn, Fe, Zn, Cu and the Standard Addition Methods for Pb. The accuracy of the Standard Addition Methods was estimated by CRM281 Rye Grass of Community Bureau of Reference-BCR, European Commission. The results of 10 samples which were collected from several markets in Hanoi are shown. (author)

  15. A two-dimensional model study of past trends in global ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.

    1988-08-01

    Emissions and atmospheric concentrations of several trace gases important to atmospheric chemistry are known to have increased substantially over recent decades. Solar flux variations and the atmospheric nuclear test series are also likely to have affected stratospheric ozone. In this study, the LLNL two-dimensional chemical-radiative-transport model of the troposphere and stratosphere has been applied to an analysis of the effects that these natural and anthropogenic influences may have had on global ozone concentrations over the last three decades. In general, model determined species distributions and the derived ozone trends agree well with published analyses of land-based and satellite-based observations. Also, the total ozone and ozone distribution trends derived from CFC and other trace gas effects have a different response with latitude than the derived trends from solar flux variations, thus providing a ''signature'' for anthropogenic effects on ozone. 24 refs., 5 figs

  16. Application of energy dispersive X-ray fluorescence technique for investigations of trace element composition in medicinal plants from Manipur

    International Nuclear Information System (INIS)

    Joseph, Daisy; Singh, Toudam Sony; Singh, Rajmohan

    2009-01-01

    Seven medicinal plants from remote areas of Manipur were analyzed for their trace elemental composition using an X-ray spectrometer consisting of a radioisotope source of 109 Cd and Si (Li) X-ray detector of resolution 170 eV at 5.9 keV Mn K-X-ray and its associated electronics. In most samples Ca, Mn, Fe and Sr were predominantly seen and Cu, Zn and Pb were detected at trace levels. The presence and significance of the elements in these medicinal plants will be presented and discussed in the following sections of the paper. (author)

  17. Total reflection X-ray fluorescence as a convenient tool for determination of trace elements in microscale gasoline and diesel

    Science.gov (United States)

    Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian

    2018-03-01

    Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.

  18. Probabilistic Evaluation of Three-Dimensional Reconstructions from X-Ray Images Spanning a Limited Angle

    Directory of Open Access Journals (Sweden)

    Jörn Ostermann

    2012-12-01

    Full Text Available An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction.

  19. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  20. On self-consistent ray-tracing and Fokker-Planck modeling of the hard X-ray emission during lower-hybrid current driven in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; Dudok de Wit, T.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P.

    1993-04-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker-Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced-ray-stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate LH power deposition and Fokker-Planck calculations. Most of the experimentally observed features of the HXR emission are correctly predicted. It is found that corrections due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant

  1. Generalized Runge-Kutta method for two- and three-dimensional space-time diffusion equations with a variable time step

    International Nuclear Information System (INIS)

    Aboanber, A.E.; Hamada, Y.M.

    2008-01-01

    An extensive knowledge of the spatial power distribution is required for the design and analysis of different types of current-generation reactors, and that requires the development of more sophisticated theoretical methods. Therefore, the need to develop new methods for multidimensional transient reactor analysis still exists. The objective of this paper is to develop a computationally efficient numerical method for solving the multigroup, multidimensional, static and transient neutron diffusion kinetics equations. A generalized Runge-Kutta method has been developed for the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic time step control. In addition, the A(α)-stability properties of the method are investigated. The analyses of two- and three-dimensional benchmark problems as well as static and transient problems, demonstrate that very accurate solutions can be obtained with assembly-sized spatial meshes. Preliminary numerical evaluations using two- and three-dimensional finite difference codes showed that the presented generalized Runge-Kutta method is highly accurate and efficient when compared with other optimized iterative numerical and conventional finite difference methods

  2. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  3. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  4. Method to determine trace elements in water samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Kueppers, G.; Erdtmann, G.

    1981-05-01

    For the determination of trace elements in water by neutron activation analysis irradiation porcedures and chemical separation procedures have been developed. Irradiation in melted quarz glass ampoules in the presence of a platinum wire (for recombination of the oxyhydrogen gas produced by radiolysis) proved successfull with different variants of the irradiation methods, as long irradiation periods without pressure build-up could be achieved. Possible falsifications of the analysis results were investigated in detail (losses by absorption on vessel walls etc.). The irradiated samples can be measured directly with a gamma ray spectrometer and from the radionuclides found the trace element contents may be calculated. More sensitive determinations are possible if the radionuclides are chemically separated. Procedures for removing the matrix activities, for the separation of the radionuclides in groups of elements and for the isolation of single elements have been developed. For especially sensitive determination of some elements selective separation procedures for antimony, cadmium, selenium, mercury and uranium have been developed. The analytical procedures described have been applied to trace element determinations in river water, glacier ice and water solutions from technical processes. (orig./RB) [de

  5. Diffusion accessibility as a method for visualizing macromolecular surface geometry.

    Science.gov (United States)

    Tsai, Yingssu; Holton, Thomas; Yeates, Todd O

    2015-10-01

    Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.

  6. A new method for imaging nuclear threats using cosmic ray muons

    International Nuclear Information System (INIS)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-01-01

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  7. A new method for imaging nuclear threats using cosmic ray muons

    Science.gov (United States)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-01

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  8. A new method for imaging nuclear threats using cosmic ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Aberle, Derek; Green, J. Andrew; McDuff, George G. [National Security Technologies, Los Alamos, NM 87544 (United States); Lukić, Zarija [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States)

    2013-08-15

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  9. Manual tracing versus smartphone application (app) tracing: a comparative study.

    Science.gov (United States)

    Sayar, Gülşilay; Kilinc, Delal Dara

    2017-11-01

    This study aimed to compare the results of conventional manual cephalometric tracing with those acquired with smartphone application cephalometric tracing. The cephalometric radiographs of 55 patients (25 females and 30 males) were traced via the manual and app methods and were subsequently examined with Steiner's analysis. Five skeletal measurements, five dental measurements and two soft tissue measurements were managed based on 21 landmarks. The durations of the performances of the two methods were also compared. SNA (Sella, Nasion, A point angle) and SNB (Sella, Nasion, B point angle) values for the manual method were statistically lower (p < .001) than those for the app method. The ANB value for the manual method was statistically lower than that of app method. L1-NB (°) and upper lip protrusion values for the manual method were statistically higher than those for the app method. Go-GN/SN, U1-NA (°) and U1-NA (mm) values for manual method were statistically lower than those for the app method. No differences between the two methods were found in the L1-NB (mm), occlusal plane to SN, interincisal angle or lower lip protrusion values. Although statistically significant differences were found between the two methods, the cephalometric tracing proceeded faster with the app method than with the manual method.

  10. Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver

    International Nuclear Information System (INIS)

    Benredjem, D.; Guilbaud, O.; Moeller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.

    2006-01-01

    Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d-4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ∼10 mA, the amplified X-ray line exhibits gain narrowing leading to the smaller width ∼3 mA. Comparison with experiment is discussed

  11. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  12. Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.

    Science.gov (United States)

    1975-01-01

    Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which

  13. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  14. Kinematics of swimming of the manta ray: three-dimensional analysis of open-water maneuverability.

    Science.gov (United States)

    Fish, Frank E; Kolpas, Allison; Crossett, Andrew; Dudas, Michael A; Moored, Keith W; Bart-Smith, Hilary

    2018-03-22

    For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray ( Mobula birostris ), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s -1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies. © 2018. Published by The Company of Biologists Ltd.

  15. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  16. A comparison of primary two- and three-dimensional methods to review CT colonography

    International Nuclear Information System (INIS)

    Gelder, Rogier E. van; Florie, Jasper; Nio, C. Yung; Jager, Steven W. de; Lameris, Johan S.; Stoker, Jaap; Jensch, Sebastiaan; Vos, Frans M.; Venema, Henk W.; Bartelsman, Joep F.; Reitsma, Johannes B.; Bossuyt, Patrick M.M.

    2007-01-01

    The aim of our study was to compare primary three-dimensional (3D) and primary two-dimensional (2D) review methods for CT colonography with regard to polyp detection and perceptive errors. CT colonography studies of 77 patients were read twice by three reviewers, first with a primary 3D method and then with a primary 2D method. Mean numbers of true and false positives, patient sensitivity and specificity and perceptive errors were calculated with colonoscopy as a reference standard. A perceptive error was made if a polyp was not detected by all reviewers. Mean sensitivity for large (≥10 mm) polyps for primary 3D and 2D review was 81% (14.7/18) and 70%(12.7/18), respectively (p-values ≥0.25). Mean numbers of large false positives for primary 3D and 2D were 8.3 and 5.3, respectively. With primary 3D and 2D review 1 and 6 perceptive errors, respectively, were made in 18 large polyps (p = 0.06). For medium-sized (6-9 mm) polyps these values were for primary 3D and 2D, respectively: mean sensitivity: 67%(11.3/17) and 61%(10.3/17; p-values≥ 0.45), number of false positives: 33.3 and 15.6, and perceptive errors: 4 and 6 (p = 0.53). No significant differences were found in the detection of large and medium-sized polyps between primary 3D and 2D review. (orig.)

  17. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    Science.gov (United States)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  18. Cardiac dimensional analysis by use of biplane cineradiography: description and validation of method.

    Science.gov (United States)

    Lipscomb, K

    1980-01-01

    Biplane cineradiography is a potentially powerful tool for precise measurement of intracardiac dimensions. The most systematic approach to these measurements is the creation of a three-dimensional coordinate system within the x-ray field. Using this system, interpoint distances, such as between radiopaque clips or coronary artery bifurcations, can be calculated by use of the Pythagoras theorem. Alternatively, calibration factors can be calculated in order to determine the absolute dimensions of a structure, such as a ventricle or coronary artery. However, cineradiography has two problems that have precluded widespread use of the system. These problems are pincushion distortion and variable image magnification. In this paper, methodology to quantitate and compensate for these variables is presented. The method uses radiopaque beads permanently mounted in the x-ray field. The position of the bead images on the x-ray film determine the compensation factors. Using this system, measurements are made with a standard deviation of approximately 1% of the true value.

  19. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  20. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  1. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  2. Efficient Time-Domain Ray-Tracing Technique for the Analysis of Ultra-Wideband Indoor Environments including Lossy Materials and Multiple Effects

    Directory of Open Access Journals (Sweden)

    F. Saez de Adana

    2009-01-01

    Full Text Available This paper presents an efficient application of the Time-Domain Uniform Theory of Diffraction (TD-UTD for the analysis of Ultra-Wideband (UWB mobile communications for indoor environments. The classical TD-UTD formulation is modified to include the contribution of lossy materials and multiple-ray interactions with the environment. The electromagnetic analysis is combined with a ray-tracing acceleration technique to treat realistic and complex environments. The validity of this method is tested with measurements performed inside the Polytechnic building of the University of Alcala and shows good performance of the model for the analysis of UWB propagation.

  3. Image-reconstruction methods in positron tomography

    CERN Document Server

    Townsend, David W; CERN. Geneva

    1993-01-01

    Physics and mathematics for medical imaging In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-rays but also for studies which explore the functional status of the body using positron-emitting radioisotopes and nuclear magnetic resonance. Mathematical methods which enable three-dimentional distributions to be reconstructed from projection data acquired by radiation detectors suitably positioned around the patient will be described in detail. The lectures will trace the development of medical imaging from simpleradiographs to the present-day non-invasive measurement of in vivo boichemistry. Powerful techniques to correlate anatomy and function that are cur...

  4. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    Science.gov (United States)

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  5. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    Science.gov (United States)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  6. The determination of trace elements in uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    De Villiers, W. van Z.

    1983-11-01

    The determination of 17 trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated in this study. The determination of major elements was also necessary for the calculation of mass absorption coefficients. Initially a method was developed for the determination of the elements of interest in unmineralised silicates. Correction for absorption of radiation by the sample were made by means of mass absorption coefficients which were obtained from the relation between the inverse of the mass absorption coefficient and the intensity of the Compton scattering peak. The Feather and Willis method was used for determining the background intensity at the peak positions as well as for mass absorption coefficients. It was observed that the background intensity in the region of the uranium lines increases with increasing uranium content of the sample

  7. Assessing the accuracy and reliability of ultrasonographic three-dimensional parathyroid volume measurement in a patient with secondary hyperparathyroidism: a comparison with the two-dimensional conventional method

    Energy Technology Data Exchange (ETDEWEB)

    You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Suh, Sangil; Ryoo, In Seon; Seol, Hae Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2017-01-15

    The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.

  8. Assessing the accuracy and reliability of ultrasonographic three-dimensional parathyroid volume measurement in a patient with secondary hyperparathyroidism: a comparison with the two-dimensional conventional method

    International Nuclear Information System (INIS)

    You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon; Suh, Sangil; Ryoo, In Seon; Seol, Hae Young; Lee, Young Hen; Seo, Hyung Suk

    2017-01-01

    The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism

  9. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  10. F--Ray: A new algorithm for efficient transport of ionizing radiation

    Science.gov (United States)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  11. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

    International Nuclear Information System (INIS)

    Qin Xudong; Chen Yonghai; Liu Yu; Zhu Laipan; Li Yuan; Wu Qing; Huang Wei

    2016-01-01

    We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS 2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials. (paper)

  12. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  13. Crystallization of SHARPIN using an automated two-dimensional grid screen for optimization

    International Nuclear Information System (INIS)

    Stieglitz, Benjamin; Rittinger, Katrin; Haire, Lesley F.

    2012-01-01

    The expression, purification and crystallization of an N-terminal fragment of SHARPIN are reported. Diffraction-quality crystals were obtained using a two-dimensional grid-screen seeding technique. An N-terminal fragment of human SHARPIN was recombinantly expressed in Escherichia coli, purified and crystallized. Crystals suitable for X-ray diffraction were obtained by a one-step optimization of seed dilution and protein concentration using a two-dimensional grid screen. The crystals belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 61.55, c = 222.81 Å. Complete data sets were collected from native and selenomethionine-substituted protein crystals at 100 K to 2.6 and 2.0 Å resolution, respectively

  14. New method of design of nonimaging concentrators.

    Science.gov (United States)

    Miñano, J C; González, J C

    1992-06-01

    A new method of designing nonimaging concentrators is presented and two new types of concentrators are developed. The first is an aspheric lens, and the second is a lens-mirror combination. A ray tracing of three-dimensional concentrators (with rotational symmetry) is also done, showing that the lens-mirror combination has a total transmission as high as that of the full compound parabolic concentrators, while their depth is much smaller than the classical parabolic mirror-nonimaging concentrator combinations. Another important feature of this concentrator is that the optically active surfaces are not in contact with the receiver, as occurs in other nonimaging concentrators in which the rim of the mirror coincides with the rim of the receiver.

  15. Determination of trace gold in rocks and minerals by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhao Yunlong; Zhou Suqing; Liang Yutang

    1988-05-01

    The determination of trace gold in rocks and minerals by neutron activation analysis is described. Two methods are used for pre-separating and concentrating the trace gold in geological samples. one of the methods is that the samples are dissolved in aqua regia solution; activated carbon paper pulp filter is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the activated carbon containing gold was ashed at 650 ∼ 700 deg c. The other method is that the samples are dissolved in aqua regia solution; the polyurethane foam plastic filled with activated carbon is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the foam plastic containing gold was ashed at 650 deg c. The gold in ashes is determinated by neutron activation analysis. The detection limit is 0.004ng/g. The accuracy of the method is examined by gold in reference standard material. The results of this method are in good agreement with the recommended value. For analysis of the trace gold by the methods of instrumental neutron activation analysis and epithermal neutron activation analysis, the interference of 411.8 keV γ-ray from 153 Sm, 152 Eu and fission products of uranium and the correction methods are discussed

  16. Trace analysis in the atmosphere, water bodies and uranium ores by means of X-ray fluorescence

    International Nuclear Information System (INIS)

    Perez Novara, A.M.

    1986-01-01

    Analysis with X-ray fluorescence is an instrumental method that evaluates concentrations, at trace levels, of elements in samples of all kinds. The applications of this method are broad, specially useful in the analysis of metals as contaminators in air and water, and as impurities in minerals. The preparation of the samples is very important to obtain good accuracy, and at the same time, you should make a series of standards of known concentrations so you can compare the counting of each sample against the standard, for each of the elements. You should make, depending on the nature of the sample, several corrections with respect to the background, interferences, overlaps, or for effects of a third element. (author)

  17. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom.

    Science.gov (United States)

    Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim

    2012-07-07

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.

  18. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom

    International Nuclear Information System (INIS)

    Yu Zhicong; Noo, Frédéric; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Hornegger, Joachim

    2012-01-01

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp–Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp–Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. (note)

  19. Two active states of the narrow-line gamma-ray-loud AGN GB 1310+487

    International Nuclear Information System (INIS)

    Sokolovsky, K. V.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310+487 showed a γ-ray flare on 2009 November 18, reaching a daily flux of ~ 10"-"6 photons cm"-"2 s"-"1 at energies E > 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object’s radio-to-GeV spectral energy distribution (SED) during and after the prominent γ-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at γ-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH andWISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The γ-ray/radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and γ-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during γ-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the γ-ray flux and spectral index, with the hardest spectrum observed during the brightest γ-ray state. The γ-ray flares occurred before and during a slow rising trend in the radio, but no direct association between γ-ray and radio flares could be established. Conclusions. If the γ-ray

  20. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey

    2008-01-01

    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es