WorldWideScience

Sample records for two-dimensional ray-tracing method

  1. Development of a curved ray tracing method for modeling of phase paths from GPS radio occultation: A two-dimensional study

    Science.gov (United States)

    Wee, Tae-Kwon; Kuo, Ying-Hwa; Lee, Dong-Kyou

    2010-12-01

    A two-dimensional curved ray tracer (CRT) is developed to study the propagation path of radio signals across a heterogeneous planetary atmosphere. The method, designed to achieve improvements in both computational efficiency and accuracy over conventional straight-line methods, takes rays' first-order bending into account to better describe curved raypaths in the stratified atmosphere. CRT is then used to simulate the phase path from GPS radio occultation (RO). The merit of the ray tracing approach in GPS RO is explicit consideration of horizontal variation in the atmosphere, which may lead to a sizable error but is disregarded in traditional retrieval schemes. In addition, direct modeling of the phase path takes advantage of simple error characteristics in the measurement. With provision of ionospheric and neutral atmospheric refractive indices, in this effort, rays are traced along the full range of GPS-low Earth orbiting (LEO) radio links just as the measurements are made in real life. Here, ray shooting is employed to realize the observed radio links with controlled accuracy. CRT largely reproduces the very measured characteristics of GPS signals. When compared, the measured and simulated phases show remarkable agreement. The cross validation between CRT and GPS RO has confirmed not only the strength of CRT but also the high accuracy of GPS RO measurements. The primary motivation for this study is enabling effective quality control for GPS RO data, overcoming a complicated error structure in the high-level data. CRT has also shown a great deal of potential for improved utilization of GPS RO data for geophysical research.

  2. Development of ray tracing visualization program by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro

    1997-09-01

    Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)

  3. Development of ray tracing visualization program by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro

    1997-09-01

    Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)

  4. A three-dimensional sound ray tracing method by deploying regular tetrahedrons

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; LI Taibao

    2005-01-01

    A sound ray tracing algorithm is presented, which helps to rapidly find the sound ray trajectories in three-dimensional (3-D) space. At each step of ray tracing, a small regular tetrahedron is made in front of a ray, so that the sound speed field inside may be approximately regarded as linear. Since a ray trajectory in the linear sound speed field is always on a plane, it may be obtained by the two-dimensional (2-D) sound ray tracing method by deploying triangles.The theoretical derivation is given and a numerical model is discussed. It shows that the algorithm is fast and precise. It is also more concise and reliable than the traditional 3-D algorithms, and may be used to avoid the damage to the precision by the acoustic refraction in the 3-D ultrasound computerized tomography.

  5. RAY TRACING IMPLEMENTATION IN JAVA PROGRAMMING LANGUAGE

    Directory of Open Access Journals (Sweden)

    Aybars UĞUR

    2002-01-01

    Full Text Available In this paper realism in computer graphics and components providing realism are discussed at first. It is mentioned about illumination models, surface rendering methods and light sources for this aim. After that, ray tracing which is a technique for creating two dimensional image of a three-dimensional virtual environment is explained briefly. A simple ray tracing algorithm was given. "SahneIzle" which is a ray tracing program implemented in Java programming language which can be used on the internet is introduced. As a result, importance of network-centric ray tracing software is discussed.

  6. Design of indoor WLANs: Combination of a ray-tracing tool with the BPSO method

    OpenAIRE

    Moreno Delgado, José; Domingo Gracia, Marta; Valle López, Luis; Pérez López, Jesús Ramón; Torres Jménez, Rafael Pedro; Basterrechea Verdeja, José

    2015-01-01

    This paper presents an approach that combines a ray tracing tool with a binary version of the particle swarm optimization method (BPSO) for the design of infrastructure mode indoor wireless local area networks (WLAN). The approach uses the power levels of a set of candidate access point (AP) locations obtained with the ray tracing tool at a mesh of potential receiver locations or test points to allow the BPSO optimizer to carry out the design of the WLAN. For this purpose, several restriction...

  7. Simulating three-dimensional seismograms in 2.5-dimensional structures by combining two-dimensional finite difference modelling and ray tracing

    Science.gov (United States)

    Miksat, J.; Müller, T. M.; Wenzel, F.

    2008-07-01

    Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor. Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.

  8. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  9. A Ray-tracing Method to Analyzing Modulated Planar Fabry-Perot Antennas

    DEFF Research Database (Denmark)

    Hougs, Mikkel Dahl; Kim, Oleksiy S.; Breinbjerg, Olav

    2015-01-01

    A new approach for fast modelling of Fabry-Perot antennas with modulated partially reflective surfaces (PRS) using ray-tracing is proposed. For validation of the method, a configuration is introduced which consists of a cavity with a modulated PRS, fed internally by a magnetic dipole. The PRS con...

  10. A Ray-tracing Method to Analyzing Modulated Planar Fabry-Perot Antennas

    DEFF Research Database (Denmark)

    Hougs, Mikkel Dahl; Kim, Oleksiy S.; Breinbjerg, Olav

    2015-01-01

    A new approach for fast modelling of Fabry-Perot antennas with modulated partially reflective surfaces (PRS) using ray-tracing is proposed. For validation of the method, a configuration is introduced which consists of a cavity with a modulated PRS, fed internally by a magnetic dipole. The PRS...

  11. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    Science.gov (United States)

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  12. A rapid and accurate two-point ray tracing method in horizontally layered velocity model

    Institute of Scientific and Technical Information of China (English)

    TIAN Yue; CHEN Xiao-fei

    2005-01-01

    A rapid and accurate method for two-point ray tracing in horizontally layered velocity model is presented in this paper. Numerical experiments show that this method provides stable and rapid convergence with high accuracies, regardless of various 1-D velocity structures, takeoff angles and epicentral distances. This two-point ray tracing method is compared with the pseudobending technique and the method advanced by Kim and Baag (2002). It turns out that the method in this paper is much more efficient and accurate than the pseudobending technique, but is only applicable to 1-D velocity model. Kim(s method is equivalent to ours for cases without large takeoff angles, but it fails to work when the takeoff angle is close to 90o. On the other hand, the method presented in this paper is applicable to cases with any takeoff angles with rapid and accurate convergence. Therefore, this method is a good choice for two-point ray tracing problems in horizontally layered velocity model and is efficient enough to be applied to a wide range of seismic problems.

  13. Backward and forward Monte Carlo method for vector radiative transfer in a two-dimensional graded index medium

    Science.gov (United States)

    Qian, Lin-Feng; Shi, Guo-Dong; Huang, Yong; Xing, Yu-Ming

    2017-10-01

    In vector radiative transfer, backward ray tracing is seldom used. We present a backward and forward Monte Carlo method to simulate vector radiative transfer in a two-dimensional graded index medium, which is new and different from the conventional Monte Carlo method. The backward and forward Monte Carlo method involves dividing the ray tracing into two processes backward tracing and forward tracing. In multidimensional graded index media, the trajectory of a ray is usually a three-dimensional curve. During the transport of a polarization ellipse, the curved ray trajectory will induce geometrical effects and cause Stokes parameters to continuously change. The solution processes for a non-scattering medium and an anisotropic scattering medium are analysed. We also analyse some parameters that influence the Stokes vector in two-dimensional graded index media. The research shows that the Q component of the Stokes vector cannot be ignored. However, the U and V components of the Stokes vector are very small.

  14. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the

  15. Methods for two-dimensional cell confinement.

    Science.gov (United States)

    Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu

    2014-01-01

    Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.

  16. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  17. ACCELERATION RENDERING METHOD ON RAY TRACING WITH ANGLE COMPARISON AND DISTANCE COMPARISON

    Directory of Open Access Journals (Sweden)

    Liliana liliana

    2007-01-01

    Full Text Available In computer graphics applications, to produce realistic images, a method that is often used is ray tracing. Ray tracing does not only model local illumination but also global illumination. Local illumination count ambient, diffuse and specular effects only, but global illumination also count mirroring and transparency. Local illumination count effects from the lamp(s but global illumination count effects from other object(s too. Objects that are usually modeled are primitive objects and mesh objects. The advantage of mesh modeling is various, interesting and real-like shape. Mesh contains many primitive objects like triangle or square (rare. A problem in mesh object modeling is long rendering time. It is because every ray must be checked with a lot of triangle of the mesh. Added by ray from other objects checking, the number of ray that traced will increase. It causes the increasing of rendering time. To solve this problem, in this research, new methods are developed to make the rendering process of mesh object faster. The new methods are angle comparison and distance comparison. These methods are used to reduce the number of ray checking. The rays predicted will not intersect with the mesh, are not checked weather the ray intersects the mesh. With angle comparison, if using small angle to compare, the rendering process will be fast. This method has disadvantage, if the shape of each triangle is big, some triangles will be corrupted. If the angle to compare is bigger, mesh corruption can be avoided but the rendering time will be longer than without comparison. With distance comparison, the rendering time is less than without comparison, and no triangle will be corrupted.

  18. Heat-Flux Analysis of Solar Furnace Using the Monte Carlo Ray-Tracing Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam; Kang, Yong Heack [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-10-15

    An understanding of the concentrated solar flux is critical for the analysis and design of solar-energy-utilization systems. The current work focuses on the development of an algorithm that uses the Monte Carlo ray-tracing method with excellent flexibility and expandability; this method considers both solar limb darkening and the surface slope error of reflectors, thereby analyzing the solar flux. A comparison of the modeling results with measurements at the solar furnace in Korea Institute of Energy Research (KIER) show good agreement within a measurement uncertainty of 10%. The model evaluates the concentration performance of the KIER solar furnace with a tracking accuracy of 2 mrad and a maximum attainable concentration ratio of 4400 sun. Flux variations according to measurement position and flux distributions depending on acceptance angles provide detailed information for the design of chemical reactors or secondary concentrators.

  19. Simulation of radiation damping in rings, using stepwise ray-tracing methods

    Science.gov (United States)

    Méot, F.

    2015-06-01

    The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking, many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including the eRHIC electron-ion collider project at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.

  20. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  1. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  2. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  3. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  4. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  5. Two-Dimensional Change Detection Methods Remote Sensing Applications

    CERN Document Server

    Ilsever, Murat

    2012-01-01

    Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a

  6. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  7. Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2014-01-01

    Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.

  8. Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem

    CERN Document Server

    Tarwidi, Dede

    2016-01-01

    Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.

  9. Study of improved ray tracing parallel algorithm for CGH of 3D objects on GPU

    Science.gov (United States)

    Cong, Bin; Jiang, Xiaoyu; Yao, Jun; Zhao, Kai

    2014-11-01

    An improved parallel algorithm for holograms of three-dimensional objects was presented. According to the physical characteristics and mathematical properties of the original ray tracing algorithm for computer generated holograms (CGH), using transform approximation and numerical analysis methods, we extract parts of ray tracing algorithm which satisfy parallelization features and implement them on graphics processing unit (GPU). Meanwhile, through proper design of parallel numerical procedure, we did parallel programming to the two-dimensional slices of three-dimensional object with CUDA. According to the experiments, an effective method of dealing with occlusion problem in ray tracing is proposed, as well as generating the holograms of 3D objects with additive property. Our results indicate that the improved algorithm can effectively shorten the computing time. Due to the different sizes of spatial object points and hologram pixels, the speed has increased 20 to 70 times comparing with original ray tracing algorithm.

  10. Generalized non-separable two-dimensional Dammann encoding method

    Science.gov (United States)

    Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei

    2017-01-01

    We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.

  11. Efficient computation method for two-dimensional nonlinear waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.

  12. Thin Lens Ray Tracing.

    Science.gov (United States)

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  13. Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods.

    Science.gov (United States)

    Sarmah, Nabin; Richards, Bryce S; Mallick, Tapas K

    2011-07-01

    We present a detailed design concept and optical performance evaluation of stationary dielectric asymmetric compound parabolic concentrators (DiACPCs) using ray-tracing methods. Three DiACPC designs, DiACPC-55, DiACPC-66, and DiACPC-77, of acceptance half-angles (0° and 55°), (0° and 66°), and (0° and 77°), respectively, are designed in order to optimize the concentrator for building façade photovoltaic applications in northern latitudes (>55 °N). The dielectric concentrator profiles have been realized via truncation of the complete compound parabolic concentrator profiles to achieve a geometric concentration ratio of 2.82. Ray-tracing simulation results show that all rays entering the designed concentrators within the acceptance half-angle range can be collected without escaping from the parabolic sides and aperture. The maximum optical efficiency of the designed concentrators is found to be 83%, which tends to decrease with the increase in incidence angle. The intensity is found to be distributed at the receiver (solar cell) area in an inhomogeneous pattern for a wide range of incident angles of direct solar irradiance with high-intensity peaks at certain points of the receiver. However, peaks become more intense for the irradiation incident close to the extreme acceptance angles, shifting the peaks to the edge of the receiver. Energy flux distribution at the receiver for diffuse radiation is found to be homogeneous within ±12% with an average intensity of 520 W/m².

  14. 改进的地震模型初值射线追踪方法%Improved Seismic Model Initial Value Ray Tracing Method

    Institute of Scientific and Technical Information of China (English)

    贺中银; 高阳

    2011-01-01

    The initial value ray tracing method is one of major method in modem ray tracing methods. It overcomes time-consuming computing efficiency in two spots ray tracing. Based on eikonal equation, improved initial value ray tracing, that is using square slowness to replace velocity parameters in model, make eikonal equation produces analytic solutions, a step further to derive computing expressions of reflection and transmission slowness vectors when the ray confiont with interface, and reflection and transmission coefficients function expressions. Through ray tracings of simple two layered interface syncline model and complex multiple layered salt-dome model, have shown the improvement of initial value ray tracing by comparison with Runge-Kutta discrete numerical solution, not only improved ray tracing efficiency (about 10 times), but also extended limit for the use of ray tracing method.%初值射线追踪方法是现代射线追踪方法中的一个很重要的理论,它克服了两点法射线追踪方法耗时的计算效率问题.以程函方程为基础,对初值射线追踪方法进行改进,即利用平方慢度来替换模型中的速度参数,使得程函方程产生解析解,从而进一步导出当射线遇到界面时的反射和透射慢度向量的计算表达式,以及反射、透射系数的函数表达式.通过对简单的两层界面向斜模型及复杂的多层盐丘模型的射线追踪,表明该初值射线追踪方法的改进相比于以往的龙格库塔离散数值解法,不但使射线追踪效率得到了大幅度提高(10倍左右),且也扩大了射线法使用范围.

  15. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    Science.gov (United States)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  16. Using Ray Tracing to Evaluate the Performance of Several Methods for Determining the Ground Range and Refractive Index of Ionospheric Scattering Volumes

    Science.gov (United States)

    Greenwald, R. A.; Frissell, N. A.; de Larquier, S.

    2016-12-01

    In this paper, we evaluate the performance of three methods used by HF radars in the SuperDARN network for determining the ground ranges to ionospheric scattering volumes. Each method uses somewhat different approaches, but the same equivalent-path analysis. We also show that Snell's Law can be added to this analysis to determine the refractive index of each scattering volume and thereby correct Doppler velocity measurements for ionospheric refraction. Two of these methods make their predictions using the group range to the scattering volume and a virtual height model, while the third method uses the group range and the elevation angle each backscattered return. The effectiveness of each of these methods is evaluated using ray tracing analyses through the International Reference Ionosphere. Ray tracings analysis provides determinations of the initial elevation angle, group range, group range, and refractive index of each ionospheric volume that backscatters signals to the radar. The initial or final elevation angle and the group range are used as inputs to the geolocation methods and the ground range and refractive index serve as reference data against which the predictions of the geolocation methods can be evaluated. We find that the methods using virtual height models actually change the initial elevation angle determined from ray tracing to a different elevation angle that is consistent with the virtual height model. Due to this change, predictions of the ground range and refractive index of scattering volumes located with virtual-height models are rarely consistent with the predictions obtained from ray tracing. In contrast, the geolocation method that uses the group range and initial or final elevation angle yields predictions that are in good agreement with ray tracing. Modifications to the equivalent-path analysis are required to obtain consistent predictions of the ground range and refractive index of backscatter from the topside F-layer.

  17. Technical Note : A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-01-01

    Purpose: To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Methods: Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45x45 mm(2) field-of-view) of 9x9 spots capable

  18. Radiation modeling of a photo-reactor using a backward ray-tracing method: an insight into indoor photocatalytic oxidation.

    Science.gov (United States)

    Pelzers, R S; Yu, Q L; Mangkuto, R A

    2014-10-01

    This article aims to understand the radiation behavior within a photo-reactor, following the ISO 22197-1:2007 standard. The RADIANCE lighting simulation tool, based on the backward ray-tracing modeling method, is employed for a numerical computation of the radiation field. The reflection of the glass cover in the photo-reactor and the test sample influence the amount of irradiance received by the test-sample surface in the photo-reactor setup. The reflection of a white sample limits the irradiance reduction by the glass cover to 1.4 %, but darker samples can lead to an overestimation up to 9.8 % when used in the same setup. This overestimation could introduce considerable error into the interpretation of experiments. Furthermore, this method demonstrates that the kinetics for indoor photocatalytic pollutant degradation can be refined through radiation modeling of the reactor setup. In addition, RADIANCE may aid in future modeling of the more complex indoor environment where radiation affects significantly photocatalytic activity.

  19. Reverse ray tracing for transformation optics.

    Science.gov (United States)

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  20. Creeping Ray Tracing Algorithm for Arbitrary NURBS Surfaces Based on Adaptive Variable Step Euler Method

    Directory of Open Access Journals (Sweden)

    Song Fu

    2015-01-01

    Full Text Available Although the uniform theory of diffraction (UTD could be theoretically applied to arbitrarilyshaped convex objects modeled by nonuniform rational B-splines (NURBS, one of the great challenges in calculation of the UTD surface diffracted fields is the difficulty in determining the geodesic paths along which the creeping waves propagate on arbitrarilyshaped NURBS surfaces. In differential geometry, geodesic paths satisfy geodesic differential equation (GDE. Hence, in this paper, a general and efficient adaptive variable step Euler method is introduced for solving the GDE on arbitrarilyshaped NURBS surfaces. In contrast with conventional Euler method, the proposed method employs a shape factor (SF ξ to efficiently enhance the accuracy of tracing and extends the application of UTD for practical engineering. The validity and usefulness of the algorithm can be verified by the numerical results.

  1. Alternative methods for ray tracing in uniaxial media. Application to negative refraction

    Science.gov (United States)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2007-03-01

    In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.

  2. Seventy-meter antenna performance predictions: GTD analysis compared with traditional ray-tracing methods

    Science.gov (United States)

    Schredder, J. M.

    1988-01-01

    A comparative analysis was performed, using both the Geometrical Theory of Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF antenna gain performance and pointing corrections. The NASA/JPL 70 meter antenna with its shaped surface was analyzed for gravity loading over the range of elevation angles. Also analyzed were the effects of lateral and axial displacements of the subreflector. Significant differences were noted between the predictions of the two methods, in the effect of subreflector displacements, and in the optimal subreflector positions to focus a gravity-deformed main reflector. The results are of relevance to future design procedure.

  3. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, Yann [Univ. of Grenoble (France)

    2006-08-07

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly

  4. Advanced simulations of x-ray beam propagation through CRL transfocators using ray-tracing and wavefront propagation methods

    DEFF Research Database (Denmark)

    Baltser, Jana; Bergbäck Knudsen, Erik; Vickery, Anette

    2011-01-01

    of X-ray beamline designs for particular user experiments. In this work we used the newly developed McXtrace ray-tracing package and the SRW wave-optics code to simulate the beam propagation of X-ray undulator radiation through such a "transfocator" as implemented at ID- 11 at ESRF. By applying two...

  5. Theories to support method development in comprehensive two-dimensional liquid chromatography - A review

    NARCIS (Netherlands)

    Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.

    2012-01-01

    On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization

  6. Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method

    Institute of Scientific and Technical Information of China (English)

    张昕; 刘月巍; 王斌; 季仲贞

    2004-01-01

    The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. Verified by radiosonde, including GPS/MET observations into the analysis makes an overall improvement to the analysis variables of temperature, winds, and water vapor. However, the variational model with the ray-tracing method is quite expensive for numerical weather prediction and climate research. For example, about 4 000 GPS/MET refraction angles need to be assimilated to produce an ideal global analysis. Just one iteration of minimization will take more than 24 hours CPU time on the NCEP's Gray C90 computer. Although efforts have been taken to reduce the computational cost, it is still prohibitive for operational data assimilation. In this paper, a parallel version of the three-dimensional variational data assimilation model of GPS/MET occultation measurement suitable for massive parallel processors architectures is developed. The divide-and-conquer strategy is used to achieve parallelism and is implemented by message passing. The authors present the principles for the code's design and examine the performance on the state-of-the-art parallel computers in China. The results show that this parallel model scales favorably as the number of processors is increased. With the Memory-IO technique implemented by the author, the wall clock time per iteration used for assimilating 1420 refraction angles is reduced from 45 s to 12 s using 1420 processors. This suggests that the new parallelized code has the potential to be useful in numerical weather prediction (NWP) and climate studies.

  7. Two-Dimensional Rectangular Stock Cutting Problem and Solution Methods

    Institute of Scientific and Technical Information of China (English)

    Zhao Hui; Yu Liang; Ning Tao; Xi Ping

    2001-01-01

    Optimal layout of rectangular stock cutting is still in great demand from industry for diversified applications. This paper introduces four basic solution methods to the problem: linear programming, dynamic programming, tree search and heuristic approach. A prototype of application software is developed to verify the pros and cons of various approaches.

  8. VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS

    Institute of Scientific and Technical Information of China (English)

    冯文杰; 邹振祝

    2003-01-01

    A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.

  9. Two-Dimensional Correlation Method for Polymer Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-08

    Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.

  10. Method and apparatus for two-dimensional spectroscopy

    Science.gov (United States)

    DeCamp, Matthew F.; Tokmakoff, Andrei

    2010-10-12

    Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.

  11. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    Science.gov (United States)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  12. Solution of two-dimensional Fredholm integral equation via RBF-triangular method

    Directory of Open Access Journals (Sweden)

    Amir Fallahzadeh

    2012-04-01

    Full Text Available In this paper, a new method is introduced to solve a two-dimensional Fredholm integral equation. The method is based on the approximation by Gaussian radial basis functions and triangular nodes and weights. Also, a new quadrature is introduced to approximate the two dimensional integrals which is called the triangular method. The results of the example illustrate the accuracy of the proposed method increases.

  13. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  14. NONLINEAR GALERKIN METHODS FOR SOLVING TWO DIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    GUOBOLING

    1995-01-01

    The nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations are proposed. The existence and uniqueness of global generalized solution of these equations,and the convergence of approximate solutions are also obtained.

  15. Method and system for determining a volume of an object from two-dimensional images

    Science.gov (United States)

    Abercrombie, Robert K [Knoxville, TN; Schlicher, Bob G [Portsmouth, NH

    2010-08-10

    The invention provides a method and a computer program stored in a tangible medium for automatically determining a volume of three-dimensional objects represented in two-dimensional images, by acquiring at two least two-dimensional digitized images, by analyzing the two-dimensional images to identify reference points and geometric patterns, by determining distances between the reference points and the component objects utilizing reference data provided for the three-dimensional object, and by calculating a volume for the three-dimensional object.

  16. Restoration of Scanning Tunneling Microscope Images by means of Two-Dimensional Maximum Entropy Method

    Science.gov (United States)

    Matsumoto, Hisanori; Tokiwano, Kazuo; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2002-05-01

    We present a new technique for the restoration of scanning tunneling microscopy (STM) images, which is a two-dimensional extension of a recently developed statistical approach based on the one-dimensional least-squares method (LSM). An STM image is regarded as a realization of a stochastic process and assumed to be a composition of an underlying image and noise. We express the underlying image in terms of a two-dimensional generalized trigonometric polynomial suitable for representing the atomic protrusions in STM images. The optimization of the polynomial is performed by the two-dimensional LSM combined with the power spectral density function estimated by means of the maximum entropy method (MEM) iterative algorithm for two-dimensional signals. The restored images are obtained as the optimum least-squares fitting polynomial which is a continuous surface. We apply this technique to modeled and actual STM data. Results show that the present method yields a reasonable restoration of STM images.

  17. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  18. Interactive Ray Tracing for Virtual TV Studio Applications

    Directory of Open Access Journals (Sweden)

    Philipp Slusallek

    2005-12-01

    Full Text Available In the last years, the well known ray tracing algorithm gained new popularity with the introduction of interactive ray tracing methods. The high modularity and the ability to produce highly realistic images make ray tracing an attractive alternative to raster graphics hardware.Interactive ray tracing also proved its potential in the field of Mixed Reality rendering and provides novel methods for seamless integration of real and virtual content. Actor insertion methods, a subdomain of Mixed Reality and closely related to virtual television studio techniques, can use ray tracing for achieving high output quality in conjunction with appropriate visual cues like shadows and reflections at interactive frame rates.In this paper, we show how interactive ray tracing techniques can provide new ways of implementing future virtual studio applications.

  19. Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Xuemei Gao

    2014-01-01

    Full Text Available The aim of this paper is to extend the lattice method proposed by Ritchken and Trevor (1999 for pricing American options with one-dimensional stochastic volatility models to the two-dimensional cases with strangle payoff. This proposed method is compared with the least square Monte-Carlo method via numerical examples.

  20. Quadrature Rules and Iterative Method for Numerical Solution of Two-Dimensional Fuzzy Integral Equations

    Directory of Open Access Journals (Sweden)

    S. M. Sadatrasoul

    2014-01-01

    Full Text Available We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover, we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations of the second kind (2DFFLIE2, and we present the error estimation of the proposed method. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.

  1. Dynamic ray tracing and its application in triangulated media

    Energy Technology Data Exchange (ETDEWEB)

    Rueger, A.

    1993-07-01

    Hale and Cohen (1991) developed software to generate two-dimensional computer models of complex geology. Their method uses a triangulation technique designed to support efficient and accurate computation of seismic wavefields for models of the earth`s interior. Subsequently, Hale (1991) used this triangulation approach to perform dynamic ray tracing and create synthetic seismograms based on the method of Gaussian beams. Here, I extend this methodology to allow an increased variety of ray-theoretical experiments. Specifically, the developed program GBmod (Gaussian Beam MODeling) can produce arbitrary multiple sequences and incorporate attenuation and density variations. In addition, I have added an option to perform Fresnel-volume ray tracing (Cerveny and Soares, 1992). Corrections for reflection and transmission losses at interfaces, and for two-and-one-half-dimensional (2.5-D) spreading are included. However, despite these enhancements, difficulties remain in attempts to compute accurate synthetic seismograms if strong lateral velocity inhomogeneities are present. Here, these problems are discussed and, to a certain extent, reduced. I provide example computations of high-frequency seismograms based on the method of Gaussian beams to exhibit the advantages and disadvantages of the proposed modeling method and illustrate new features for both surface and vertical seismic profiling (VSP) acquisition geometries.

  2. Two-Dimensional DOA Estimation for Uniform Rectangular Array Using Reduced-Dimension Propagator Method

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    2015-01-01

    Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.

  3. Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schriidinger Equation

    Institute of Scientific and Technical Information of China (English)

    陈亚铭; 朱华君; 宋松和

    2011-01-01

    Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.

  4. Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method

    NARCIS (Netherlands)

    van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.

    2013-01-01

    We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this

  5. Geotechnical applications of a two-dimensional elastodynamic displacement discontinuity method

    CSIR Research Space (South Africa)

    Siebrits, E

    1993-12-01

    Full Text Available A general two-dimensional elastodynamic displacement discontinuity method is used to model a variety of application problems. The plane strain problems are: the elastodynamic motions induced on a cavity by shear slip on a nearby crack; the dynamic...

  6. Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method

    NARCIS (Netherlands)

    van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.

    2013-01-01

    We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedba

  7. Quantitative evaluation of ultrasonic C-scan image in acoustically homogeneous and layered anisotropic materials using three dimensional ray tracing method.

    Science.gov (United States)

    Kolkoori, Sanjeevareddy; Hoehne, Christian; Prager, Jens; Rethmeier, Michael; Kreutzbruck, Marc

    2014-02-01

    Quantitative evaluation of ultrasonic C-scan images in homogeneous and layered anisotropic austenitic materials is of general importance for understanding the influence of anisotropy on wave fields during ultrasonic non-destructive testing and evaluation of these materials. In this contribution, a three dimensional ray tracing method is presented for evaluating ultrasonic C-scan images quantitatively in general homogeneous and layered anisotropic austenitic materials. The directivity of the ultrasonic ray source in general homogeneous columnar grained anisotropic austenitic steel material (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. As a prerequisite for ray tracing model, the problem of ultrasonic ray energy reflection and transmission coefficients at an interface between (a) isotropic base material and anisotropic austenitic weld material (including layback orientation), (b) two adjacent anisotropic weld metals and (c) anisotropic weld metal and isotropic base material is solved in three dimensions. The influence of columnar grain orientation and layback orientation on ultrasonic C-scan image is quantitatively analyzed in the context of ultrasonic testing of homogeneous and layered austenitic steel materials. The presented quantitative results provide valuable information during ultrasonic characterization of homogeneous and layered anisotropic austenitic steel materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A new complex variable element-free Galerkin method for two-dimensional potential problems

    Institute of Scientific and Technical Information of China (English)

    Cheng Yu-Min; Wang Jian-Fei; Bai Fu-Nong

    2012-01-01

    In this paper,based on the element-free Galerkin (EFG) method and the improved complex variable moving least-square (ICVMLS) approximation,a new meshless method,which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems,is presented. In the method,the integral weak form of control equations is employed,and the Lagrange multiplier is used to apply the essential boundary conditions.Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained.Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng,the functional in the ICVMLS approximation has an explicit physical meaning.Furthermore,the ICVEFG method has greater computational precision and efficiency.Three numerical examples are given to show the validity of the proposed method.

  9. The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems

    Institute of Scientific and Technical Information of China (English)

    Yang Xiu-Li; Dai Bao-Dong; Zhang Wei-Wei

    2012-01-01

    Based on the complex variable moving least-square (CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin (CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square (MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local PetrovGalerkin (MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.

  10. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method

    Science.gov (United States)

    Pingbo, An; Li, Wang; Hongxi, Lu; Zhiguo, Yu; Lei, Liu; Xin, Xi; Lixia, Zhao; Junxi, Wang; Jinmin, Li

    2016-06-01

    The internal quantum efficiency (IQE) of the light-emitting diodes can be calculated by the ratio of the external quantum efficiency (EQE) and the light extraction efficiency (LEE). The EQE can be measured experimentally, but the LEE is difficult to calculate due to the complicated LED structures. In this work, a model was established to calculate the LEE by combining the transfer matrix formalism and an in-plane ray tracing method. With the calculated LEE, the IQE was determined and made a good agreement with that obtained by the ABC model and temperature-dependent photoluminescence method. The proposed method makes the determination of the IQE more practical and conventional. Project supported by the National Natural Science Foundation of China (Nos.11574306, 61334009), the China International Science and Technology Cooperation Program (No. 2014DFG62280), and the National High Technology Program of China (No. 2015AA03A101).

  11. Quadrature-free spline method for two-dimensional Navier-Stokes equation

    Institute of Scientific and Technical Information of China (English)

    HU Xian-liang; HAN Dan-fu

    2008-01-01

    In this paper,a quadrature-free scheme of spline method for two-dimensional Navier-Stokes equation is derived,which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally,the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.

  12. Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media using a polarization method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.

  13. BENDING RAY-TRACING BASED ON SIMULATED ANNEALING METHOD%基于模拟退火法的弯曲射线追踪

    Institute of Scientific and Technical Information of China (English)

    周竹生; 谢金伟

    2011-01-01

    This paper proposes a new ray-tracing method based on the concept of simulated annealing. With the new method, not only the problem that the traditional ray-tracing method is over dependent on pre - established initial ray-paths is well solved, but also the quality of desirable ray-paths construction and the associated traveltime calculation between fixed sources and receivers is ensured, even if the model is of much complicated velocity-field. As a result, the ray-paths whose traveltime approach is overall minimum are searched out successfully. Furthermore, the algorithm may calculate ray-paths with local extreme lower traveltime too and restrict them easily by instructing rays to pass through some fixed points. The feasibility and stability of the method have been proved by trial results of theoretical models.%提出了一种新的射线追踪方法——模拟退火法.新方法不仅较好地解决了传统射线追踪方法过分依赖初始模型的问题,而且对于复杂速度场模型也能保证在固定的发射与接收点之间构建令人满意的射线路径及其相应的走时,搜索到满足旅行时全局最小的射线路径.此外,新方法还可计算局部最小旅行时,并可方便地通过指定射线经过固定点来对射线路径进行限制.理论模型的试算结果证明了该方法的可行性和稳健性.

  14. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  15. An immersed interface method for two-dimensional modelling of stratified flow in pipes

    OpenAIRE

    Berthelsen, Petter Andreas

    2004-01-01

    This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...

  16. Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Molabahrami, A. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of)], E-mail: a_m_bahrami@yahoo.com; Khani, F. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of); Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)], E-mail: farzad_khani59@yahoo.com; Hamedi-Nezhad, S. [Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)

    2007-10-29

    In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple.

  17. Prandtl's Boundary Layer Equation for Two-Dimensional Flow: Exact Solutions via the Simplest Equation Method

    Directory of Open Access Journals (Sweden)

    Taha Aziz

    2013-01-01

    Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.

  18. New ray tracing method to investigate the various effects on wave propagation in medical scenario: an application of wireless body area network.

    Science.gov (United States)

    Islam, M J; Reza, A W; Kausar, A S M Z; Ramiah, H

    2014-01-01

    The advent of technology with the increasing use of wireless network has led to the development of Wireless Body Area Network (WBAN) to continuously monitor the change of physiological data in a cost efficient manner. As numerous researches on wave propagation characterization have been done in intrabody communication, this study has given emphasis on the wave propagation characterization between the control units (CUs) and wireless access point (AP) in a hospital scenario. Ray tracing is a tool to predict the rays to characterize the wave propagation. It takes huge simulation time, especially when multiple transmitters are involved to transmit physiological data in a realistic hospital environment. Therefore, this study has developed an accelerated ray tracing method based on the nearest neighbor cell and prior knowledge of intersection techniques. Beside this, Red-Black tree is used to store and provide a faster retrieval mechanism of objects in the hospital environment. To prove the superiority, detailed complexity analysis and calculations of reflection and transmission coefficients are also presented in this paper. The results show that the proposed method is about 1.51, 2.1, and 2.9 times faster than the Object Distribution Technique (ODT), Space Volumetric Partitioning (SVP), and Angular Z-Buffer (AZB) methods, respectively. To show the various effects on received power in 60 GHz frequency, few comparisons are made and it is found that on average -9.44 dBm, -8.23 dBm, and -9.27 dBm received power attenuations should be considered when human, AP, and CU move in a given hospital scenario.

  19. New Ray Tracing Method to Investigate the Various Effects on Wave Propagation in Medical Scenario: An Application of Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    M. J. Islam

    2014-01-01

    Full Text Available The advent of technology with the increasing use of wireless network has led to the development of Wireless Body Area Network (WBAN to continuously monitor the change of physiological data in a cost efficient manner. As numerous researches on wave propagation characterization have been done in intrabody communication, this study has given emphasis on the wave propagation characterization between the control units (CUs and wireless access point (AP in a hospital scenario. Ray tracing is a tool to predict the rays to characterize the wave propagation. It takes huge simulation time, especially when multiple transmitters are involved to transmit physiological data in a realistic hospital environment. Therefore, this study has developed an accelerated ray tracing method based on the nearest neighbor cell and prior knowledge of intersection techniques. Beside this, Red-Black tree is used to store and provide a faster retrieval mechanism of objects in the hospital environment. To prove the superiority, detailed complexity analysis and calculations of reflection and transmission coefficients are also presented in this paper. The results show that the proposed method is about 1.51, 2.1, and 2.9 times faster than the Object Distribution Technique (ODT, Space Volumetric Partitioning (SVP, and Angular Z-Buffer (AZB methods, respectively. To show the various effects on received power in 60 GHz frequency, few comparisons are made and it is found that on average −9.44 dBm, −8.23 dBm, and −9.27 dBm received power attenuations should be considered when human, AP, and CU move in a given hospital scenario.

  20. Suppression method of low-frequency noise for two-dimensional integrated magnetic sensor

    Science.gov (United States)

    Kimura, Takayuki; Sakairi, Yusuke; Mori, Akihiro; Masuzawa, Toru

    2017-04-01

    A new correlated double sampling method for two-dimensional magnetic sensors was proposed. In this method, output from a magnetic sensor is controlled by adjusting the drain bias of a MOSFET used as a Hall element. The two-dimensional integrated magnetic sensor used for the demonstration of correlated double sampling was composed of a 64 × 64 array of Hall sensors and fabricated by a 0.18 µm CMOS standard process. The size of a Hall element was 2.7 × 2.7 µm2. The dimensions of one pixel in which a Hall element was embedded were 7 × 7 µm2. The magnitude of residual noise after correlated double sampling with drain bias control was 0.81 mVp–p. This value is 16% of the original low-frequency noise. From the experimental results, the proposed correlated double sampling method is found to be suitable for low-frequency noise suppression in the two-dimensional magnetic sensors.

  1. Short-pulsed laser transport in two-dimensional scattering media by natural element method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping

    2014-04-01

    The natural element method (NEM) is extended to solve transient radiative transfer (TRT) in two-dimensional semitransparent media subjected to a collimated short laser irradiation. The least-squares (LS) weighted residuals approach is employed to spatially discretize the transient radiative heat transfer equation. First, for the case of the refractive index matched boundary, LSNEM solutions to TRT are validated by comparison with results reported in the literature. Effects of the incident angle on time-resolved signals of transmittance and reflectance are investigated. Afterward, the accuracy of this algorithm for the case of the refractive index mismatched boundary is studied. Finally, the LSNEM is extended to study the TRT in a two-dimensional semitransparent medium with refractive index discontinuity irradiated by the short pulse laser. The effects of scattering albedo, optical thickness, scattering phase function, and refractive index on transmittance and reflectance signals are investigated. Several interesting trends on the time-resolved signals are observed and analyzed.

  2. Two-dimensional wood drying stress simulation using control-volume mixed finite element methods (CVFEM

    Directory of Open Access Journals (Sweden)

    Carlos Salinas

    2011-05-01

    Full Text Available  The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood. 

  3. Errors in using two dimensional methods for ergonomic assessment of motion in three dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Hollerbach, K.; Van Vorhis, R.L. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States)

    1996-03-01

    Wrist posture and rapid wrist movements are risk factors for work related musculoskeletal disorders. Measurement studies frequently involve optoelectronic methods in which markers are placed on the subject`s hand and wrist and the trajectories of the markers are tracked in three dimensional space. A goal of wrist posture measurements is to quantitatively establish wrist posture orientation. Accuracy and fidelity of the measurement data with respect to kinematic mechanisms are essential in wrist motion studies. Fidelity with the physical kinematic mechanism can be limited by the choice of kinematic modeling techniques and the representation of motion. Frequently, ergonomic studies involving wrist kinematics make use of two dimensional measurement and analysis techniques. Two dimensional measurement of human joint motion involves the analysis of three dimensional displacements in an obersver selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors that result from measuring joint motion about an arbitrary axis using two dimensional methods.

  4. A Convergent Method of Auxiliary Sources for Two-Dimensional Impedance Scatterers With Edges

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2001-01-01

    A modification to the Method of Auxiliary Sources (MAS) is introduced which renders the method operational for two-dimensional impedance scatterers with edges. The modification consists in letting the auxiliary surface converge to the scatterer physical surface for increasing number of auxiliary...... sources, whereby MAS approaches a surface integral equation (IE) method. Hereby, a systematic procedure for selecting the number and locations of the auxiliary sources is provided, and convergence of numerical results is obtained. The new method resulting from this modification thus combines the desirable...

  5. Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources

    Science.gov (United States)

    Li, Jun-Jie; Yan, Jia-Bin; Huang, Xiang-Yu

    2015-12-01

    Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled-source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.

  6. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    Science.gov (United States)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  7. Contact position controlling for two-dimensional motion bodies by the boundary element method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.

  8. A discontinuous Galerkin method for two-dimensional PDE models of Asian options

    Science.gov (United States)

    Hozman, J.; Tichý, T.; Cvejnová, D.

    2016-06-01

    In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.

  9. The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters

    OpenAIRE

    Gangatharan N; Reddy PS

    2003-01-01

    Two-dimensional (2D) recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP) filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP) filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI) method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the P...

  10. Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)

    2010-10-15

    Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.

  11. Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method

    Institute of Scientific and Technical Information of China (English)

    Yongzhi ZHAO; Yi CHENG; Maoqiang JIANG; Yong JIN

    2008-01-01

    A discrete element method (DEM)-computa-tional fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by com-bining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pat-tern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the aver-aged void fraction in the spout and the annulus were stat-istically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.

  12. An improved complex variable element-free Galerkin method for two-dimensional elasticity problems

    Institute of Scientific and Technical Information of China (English)

    Bai Fu-Nong; Li Dong-Ming; Wang Jian-Fei; Cheng Yu-Min

    2012-01-01

    In this paper,the improved complex variable moving least-squares (ICVMLS) approximation is presented.The ICVMLS approximation has an explicit physics meaning.Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren,the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation,the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems,and the corresponding formulae are obtained.Compared with the conventional EFG method,the ICVEFG method has a great computational accuracy and efficiency.For the purpose of demonstration,three selected numerical examples are solved using the ICVEFG method.

  13. Parallel processing method for two-dimensional Sn transport code DOT3.5

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Mikio [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1998-03-01

    A parallel processing method for the two-dimensional Sn transport code DOT3.5 has been developed to achieve drastic reduction of computation time. In the proposed method, parallelization is made with angular domain decomposition and/or space domain decomposition. Calculational speedup for parallel processing by angular domain decomposition is achieved by minimizing frequency of communications between processing elements. As for parallel processing by space domain decomposition, two-step rescaling method consisting of segmentwise rescaling and the ordinary pointwise rescaling have been developed to accelerate convergence, which will otherwise be degraded because of discontinuity at the segment boundaries. The developed method was examined with a Sun workstation using the PVM message-passing library, and sufficient speedup was observed. (author)

  14. The solution of the two-dimensional sine-Gordon equation using the method of lines

    Science.gov (United States)

    Bratsos, A. G.

    2007-09-01

    The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor-corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.

  15. A characteristic mapping method for two-dimensional incompressible Euler flows

    Science.gov (United States)

    Yadav, Badal; Mercier, Olivier; Nave, Jean-Christophe; Schneider, Kai

    2016-11-01

    We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical scheme that has exponential resolution in linear time. The computational efficiency and the high precision of the method are illustrated for a vortex merger and a four mode flow. Comparisons with a Cauchy-Lagrangian method are also presented. KS thankfully acknowledges financial support from the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA).

  16. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    Science.gov (United States)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  17. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  18. Two-dimensional thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear

    2015-07-01

    In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)

  19. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  20. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  1. A General Method for Growing Two-Dimensional Crystals of Organic Semiconductors by "Solution Epitaxy".

    Science.gov (United States)

    Xu, Chunhui; He, Ping; Liu, Jie; Cui, Ajuan; Dong, Huanli; Zhen, Yonggang; Chen, Wei; Hu, Wenping

    2016-08-08

    Two-dimensional (2D) crystals of organic semiconductors (2DCOS) have attracted attention for large-area and low-cost flexible optoelectronics. However, growing large 2DCOS in controllable ways and transferring them onto technologically important substrates, remain key challenges. Herein we report a facile, general, and effective method to grow 2DCOS up to centimeter size which can be transferred to any substrate efficiently. The method named "solution epitaxy" involves two steps. The first is to self-assemble micrometer-sized 2DCOS on water surface. The second is epitaxial growth of them into millimeter or centimeter sized 2DCOS with thickness of several molecular layers. The general applicability of this method for the growth of 2DCOS is demonstrated by nine organic semiconductors with different molecular structures. Organic field-effect transistors (OFETs) based on the 2DCOS demonstrated high performance, confirming the high quality of the 2DCOS.

  2. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    Energy Technology Data Exchange (ETDEWEB)

    Landmann, S. [Universität Leipzig, Institut für Theoretische Physik, Brüderstr. 16, 04103 Leipzig (Germany); Kählert, H.; Thomsen, H.; Bonitz, M. [Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel (Germany)

    2015-09-15

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.

  3. A minimum action method for small random perturbations of two-dimensional parallel shear flows

    Science.gov (United States)

    Wan, Xiaoliang

    2013-02-01

    In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.

  4. A Ternary Solvent Method for Large-Sized Two-Dimensional Perovskites.

    Science.gov (United States)

    Chen, Junnian; Gan, Lin; Zhuge, Fuwei; Li, Huiqiao; Song, Jizhong; Zeng, Haibo; Zhai, Tianyou

    2017-02-20

    Recent reports demonstrate that a two-dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4 H9 NH3 )2 PbBr4 perovskites by a chlorobenzene-dimethylformide-acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4 H9 NH3 )2 PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4 H9 NH3 )2 PbBrx I4-x perovskites were accessed to tune the optical properties rationally.

  5. INTERVAL FINITE VOLUME METHOD FOR UNCERTAINTY SIMULATION OF TWO-DIMENSIONAL RIVER WATER QUALITY

    Institute of Scientific and Technical Information of China (English)

    HE Li; ZENG Guang-ming; HUANG Guo-he; LU Hong-wei

    2004-01-01

    Under the interval uncertainties, by incorporating the discretization form of finite volume method and interval algebra theory, an Interval Finite Volume Method (IFVM) was developed to solve water quality simulation issues for two-dimensional river when lacking effective data of flow velocity and flow quantity. The IFVM was practically applied to a segment of the Xiangjiang River because the Project of Hunan Inland Waterway Multipurpose must be started working after the environmental impact assessment for it. The simulation results suggest that there exist rather apparent pollution zones of BOD5 downstream the Dongqiaogang discharger and that of COD downstream Xiaoxiangjie discharger, but the pollution sources have no impact on the safety of the three water plants located in this river segment. Although the developed IFVM is to be perfected, it is still a powerful tool under interval uncertainties for water environmental impact assessment, risk analysis, and water quality planning, etc. besides water quality simulation studied in this paper.

  6. The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters

    Directory of Open Access Journals (Sweden)

    Gangatharan N

    2003-01-01

    Full Text Available Two-dimensional (2D recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the PLSI polynomial is always stable, irrespective of whether the coefficients of the given polynomial have relationship among its coefficients or not. Examples are given for 2D first-order and second-order cases to prove our results. The generalization is done for the th order polynomial.

  7. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  8. Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Rodrigo A. [Instituto de Investigaciones en Fisicoquimica de Cordoba (INFIQC), Consejo Nacional de Investigaciones, Cientificas y Tecnicas (CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Edificio Integrador, Ciudad Universitaria, Cordoba, CP 5000 (Argentina)]. E-mail: riglesias@mail.fcq.unc.edu.ar; Leiva, Ezequiel P.M. [Instituto de Investigaciones en Fisicoquimica de Cordoba (INFIQC), Consejo Nacional de Investigaciones, Cientificas y Tecnicas (CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Edificio Integrador, Ciudad Universitaria, Cordoba, CP 5000 (Argentina)

    2006-06-15

    The quasicontinuum method (two-dimensional) developed by Tadmor et al. [Tadmor EB, Ortiz M, Phillips R. Philos Mag 1996;73:1529] is applied to an indentation process taking account of the atomic structure of the indenter and the substrate subject to indentation. Slip vectors, dislocation nucleation and nanostructure formation are analyzed for different indenter materials (Ag, Cu and Pd) and indenter crystal orientations. Slip vectors near to the contact region show that, depending on the material and orientation of the indenter, plastic deformations occur either inside the indenter or the substrate. Long-range material deformations appear during the indentation or retraction of the indenter. All of these aspects mainly dictate the formation of nanoclusters or nanoholes on the substrate surface.

  9. A method of boundary parameter estimation for a two-dimensional diffusion system under noisy observations

    Science.gov (United States)

    Sunahara, Y.; Kojima, F.

    1988-01-01

    The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.

  10. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  11. Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

    CERN Document Server

    Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume

    2009-01-01

    In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...

  12. Application of Corner Transfer Matrix Renormalization Group Method to the Correlation Function of a Two-Dimensional Ising Model

    Institute of Scientific and Technical Information of China (English)

    何春山; 李志兵

    2003-01-01

    The correlation function of a two-dimensionalIsing model is calculated by the corner transfer matrix renormalization group method.We obtain the critical exponent η= 0.2496 with few computer resources.

  13. Comparison of Three Methods of Protein Extraction from Dermatophagoides Pteronyssinus for Two-dimensional Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Jin-lu Sun; Hong-yu Zhang; Zhi-yi Guo; Wan-tao Ying; Xiao-hong Qian; Jing-lan Wang

    2009-01-01

    Objective To explore an effective method of Dermatophagoides pteronyssinus protein extraction suitable for two-dimensional electrophoresis (2-DE) analysis. Methods The extracts of Dermatophagoides pteronyssinus were prepared with Coca's solution, lysis buffer of 2-DE, and Trizol reagent, respectively. Bicinchoninic acid (BCA) assay was used to determine the total protein concentration of the samples. The efficiency of different protein extraction methods were evaluated with 2-DE analysis. Results The concentrations of extracted protein by methods of Coca's solution, lysis buffer, and Trizol reagent were 0.63 g/L, 0.90 g/L, and 0.80 g/L, respectively. The 2-DE analysis results showed that some protein spots in low molecular weight (LMW) range could be detected with the Coca's solution method. With the lysis buffer of 2-DE method, more protein spots in LMW range could be detected, while the medium molecular weight (MMW) protein spots were absent. Several MMW protein spots (174-178 kD and 133 kD) and more LMW protein spots were detected with Trizol reagent method. Conclusions Among Coca's solution, lysis buffer of 2-DE, and Trizol reagent, the concentration of extracted protein of Dermatophagoides pteronyssinus by lysis buffer of 2-DE is the highest. However, most protein components of Dermatophagoides pteronyssinus purified mite bodies can be extracted by Trizol reagent, which may generally reflect the whole profile of Dermatophagoides pteronyssinus allergens.

  14. Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays

    NARCIS (Netherlands)

    Sluijter, M.; Herzog, A.; De Boer, D.K.G.; Krijn, M.P.C.M.; Urbach, P.H.

    2009-01-01

    For the first time, to our knowledge, we report ray-tracing simulations of an advanced liquid-crystal gradientindex lens structure for application in switchable two-dimensional/three-dimensional (3D) autostereoscopic displays. We present ray-tracing simulations of the angular-dependent lens action.

  15. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  16. Two-dimensional Phase Unwrapping Method Using Cost Function of L0 Norm

    Science.gov (United States)

    GAO, J.; LI, L.; SHI, L.

    2017-02-01

    Considering cost model and convergence speed of the minimum norm unwrapping, a highly efficient two-dimensional global phase unwrapping method optimized with L0 norm is proposed. As analysing features of cost model in phase unwrapping with minimum norm, a cost function definition is provided in line with the L0 norm, which impose a stronger constraint in the tangent direction of phase discontinuity boundary than that in normal direction, in order to preserve integrity of discontinuity during iterative unwrapping processing for continuous phase. For the sake of slow speed of low-frequency error convergence during linear solving, a data partitioning strategy is introduced into unwrapping processing. Due to independence of minimum norm method in blocks, linear solving only focus on high-frequency information and improve efficiency of iterative work, and the low-frequency processing part is transferred to offsetting-aligning between blocks. With experiments and analysis, reliability and efficiency of the novel phase unwrapping method are certified comparing to existing methods.

  17. Two-dimensional cylindrical thermal cloak designed by implicit transformation method

    Science.gov (United States)

    Yuan, Xuebo; Lin, Guochang; Wang, Youshan

    2016-07-01

    As a new-type technology of heat management, thermal metamaterials have attracted more and more attentions recently and thermal cloak is a typical case. Thermal conductivity of thermal cloak designed by coordinate transformation method is usually featured by inhomogeneity, anisotropy and local singularity. Explicit transformation method, which is commonly used to design thermal cloak with the coordinate transformation known in advance, has insufficient flexibility, making it hard to proactively reduce the difficulty of device fabrication. In this work, we designed the thermal conductivity of two-dimensional (2D) cylindrical thermal cloak using the implicit transformation method without knowledge of the coordinate transformation in advance. With two classes of generation functions taken into consideration, this study adopted full-wave simulations to analyze the thermal cloaking performances of designed thermal cloaks. Material distributions and simulation results showed that the implicit transformation method has high flexibility. The form of coordinate transformation not only influences the homogeneity and anisotropy but also directly influences the thermal cloaking performance. An improved layered structure for 2D cylindrical thermal cloak was put forward based on the generation function g(r) = r15, which reduces the number of the kinds of constituent materials while guaranteeing good thermal cloaking performance. This work provides a beneficial guidance for reducing the fabrication difficulty of thermal cloak.

  18. A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems.

    Science.gov (United States)

    McNett, Gabriel D; Miles, Ronald N; Homentcovschi, Dorel; Cocroft, Reginald B

    2006-12-01

    Conventional approaches to measuring animal vibrational signals on plant stems use a single transducer to measure the amplitude of vibrations. Such an approach, however, will often underestimate the amplitude of bending waves traveling along the stem. This occurs because vibration transducers are maximally sensitive along a single axis, which may not correspond to the major axis of stem motion. Furthermore, stem motion may be more complex than that of a bending wave propagating along a single axis, and such motion cannot be described using a single transducer. Here, we describe a method for characterizing stem motion in two dimensions by processing the signals from two orthogonally positioned transducers. Viewed relative to a cross-sectional plane, a point on the stem surface moves in an ellipse at any one frequency, with the ellipse's major axis corresponding to the maximum amplitude of vibration. The method outlined here measures the ellipse's major and minor axes, and its angle of rotation relative to one of the transducers. We illustrate this method with measurements of stem motion during insect vibrational communication. It is likely the two-dimensional nature of stem motion is relevant to insect vibration perception, making this method a promising avenue for studies of plant-borne transmission.

  19. Tuning of Feedback Decoupling Controller for Two-Dimensional Heat Plate by Using VRFT Method

    Science.gov (United States)

    Matsunaga, Nobutomo; Nakano, Masahiko; Okajima, Hiroshi; Kawaji, Shigeyasu

    In manufacturing processes, inappropriate thermal distribution, which is observed in both steady and transient states of the thermal plant, leads to inferior quality. For a plant with strong thermal interaction, decoupling control is effective in precisely tuning the control system. We proposed the decoupling controller based on the temperature-difference feedback model. However, no parameter-identification method of thermal interaction has been presented so far. Traditionally, iterative tuning by trial and error has been used to tune the controller parameters. In the case of an industrial plant, the tuning time would be long because of the large time constants of the plant. Recently, the virtual reference feedback tuning (VRFT) method, which can be used for off-line tuning of the controller parameters using a set of I/O data, has been studied to examine the possibility of shortening the tuning time. In this paper, a VRFT method for the feedback decoupling controller is proposed for a two-dimensional heat plate by taking consideration the thermal interaction property. The effectiveness of this VRFT method is evaluated by performing an experimental simulation.

  20. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    Science.gov (United States)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  1. The Characteristics Method Applied to Stationary Two-Dimensional and Rotationally Symmetrical Gas Flows

    Science.gov (United States)

    Pfeiffer, F.; Meyer-Koenig, W.

    1949-01-01

    By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.

  2. Two-dimensional thermoluminescence method for checking LiF crystals homogeneity

    Science.gov (United States)

    Marczewska, B.; Bilski, P.; Gieszczyk, W.; Kłosowski, M.

    2017-01-01

    Thermoluminescence (TL), being one of the common luminescence methods, is very sensitive to the presence of any impurities in the material structure and can be used for the detection of impurity distribution in the bulk of the crystal. If in a TL reader a CCD camera is used, a measurement of TL signal would give us an unique two-dimensional (2-D) imaging of TL signal distribution, and thereby the distribution of dopants. The possibility of the application of 2-D TL method for the control of uniformity of the crystal related to dopant distribution in the volume of the bulk crystal was tested on the large area samples of LiF doped and un-doped crystals grown by Czochralski method at the IFJ PAN in Kraków. The special TL reader with a CCD camera was used for analyzing of luminescence emitting during the heating of the irradiated in uniform radiation field slices of crystals cut longitudinal and perpendicular to the growth axis and for analyzing of the shape of TL glow curves for selected crystal areas. Non-uniform distribution of the dopants was demonstrated for doped crystal grown with relatively slow growth rate.

  3. Stabilized Discretization in Spline Element Method for Solution of Two-Dimensional Navier-Stokes Problems

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2014-01-01

    Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.

  4. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    Science.gov (United States)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  5. Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method

    Science.gov (United States)

    Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li

    2016-04-01

    A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).

  6. Combining Capability Assessment and Value Engineering: a New Two-dimensional Method for Software Process Improvement

    Directory of Open Access Journals (Sweden)

    Pasi Ojala

    2008-02-01

    Full Text Available During the last decades software process improvement (SPI has been recognized as a usable possibility to increase the quality of software development. Implemented SPI investments have often indicated increased process capabilities as well. Recently more attention has been focused on the costs of SPI as well as on the cost-effectiveness and productivity of software development, although the roots of economic-driven software engineering originate from the very early days of software engineering research. This research combines Value Engineering and capability assessment into usable new method in order to better respond to the challenges that cost-effectiveness and productivity has brought to software companies. This is done in part by defining the concepts of value, worth and cost and in part by defining the Value Engineering process and different enhancements it has seen to offer to software assessment. The practical industrial cases show that proposed two-dimensional method works in practise and is useful to assessed companies.

  7. A Parallel Algorithm for the Two-Dimensional Time Fractional Diffusion Equation with Implicit Difference Method

    Directory of Open Access Journals (Sweden)

    Chunye Gong

    2014-01-01

    Full Text Available It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE with iterative implicit finite difference method is O(MxMyN2. In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16–4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.

  8. A digital sampling moiré method for two-dimensional displacement measurement

    Science.gov (United States)

    Chen, Xinxing; Chang, Chih-Chen

    2015-04-01

    Measuring static and dynamic displacements for in-service structures is an important issue for the purpose of design validation, performance monitoring and safety assessment of structures. Currently available techniques can be classified into indirect measurement and direct measurement. These methods however have their own problems and limitations Digital sampling moiré method is a newly developed vision-based technique for direct displacement measurement. It uses one camera to capture digital images containing a grating pattern. The images are subsampled and interpolated to generate moiré patterns whose phase information can then be used to calculate displacements of the grating pattern. As the moiré patterns can magnify the pattern's movement, this technique is expected to provide more accurate displacement measurement than the other vision based approaches. In this study, a digital sampling moiré technique is proposed for measuring two-dimensional structural displacements using a designed grating pattern. The pattern contains two orthogonally inclined gratings and does not have to be perfectly aligned with the image plane. A series of simulation and laboratory tests are conducted to validate the accuracy of the proposed technique. Results show that the technique can achieve accuracy in the order of 10 micrometers in the laboratory. Also, the technique does not seem to suffer from the issue of misalignment between the camera and the pattern and exhibits a potential for accurate measurement of displacement for civil engineering structures.

  9. Two-dimensional nonlinear geophysical data filtering using the multidimensional EEMD method

    Science.gov (United States)

    Chen, Chih-Sung; Jeng, Yih

    2014-12-01

    A variety of two-dimensional (2D) empirical mode decomposition (EMD) methods have been proposed in the last decade. Furthermore, the multidimensional EMD algorithm and its parallel class, multivariate EMD (MEMD), are available in recent years. From those achievements, it is possible to design an efficient 2D nonlinear filter for geophysical data processing. We introduce a robust 2D nonlinear filter which can be applied to enhance the signal of 2D geophysical data or to highlight the feature component on an image. We did this by replacing the conventionally used smooth interpolation in the ensemble empirical mode decomposition (EEMD) algorithm with a piecewise interpolation method. The one-dimensional (1D) EEMD procedures were consecutively performed in all directions, and then the comparable minimal scale combination technique was applied to the decomposed components. The theoretical derivation, model simulation, and real data applications are demonstrated in this paper. The proposed filtering method is effective in improving the image resolution by suppressing the random noise added in the simulation example and strong low frequency track corrugation noise bands with background noise in the field example. Furthermore, the algorithm can be easily extended to higher dimensions by repeating the same procedure in the succeeding dimension. To evaluate the proposed method, one data set is processed separately by using the enhanced analytic signal method and the multivariate EMD (MEMD) algorithm, and the results from these two methods are compared with that of the proposed method. A general equation for generating three-dimensional (3D) EEMD components based on the comparable minimal scale combination principle is derived for further applications.

  10. IONORT: IONOsphere Ray-Tracing

    OpenAIRE

    Bianchi, C.; Settimi, A; Azzarone, A.

    2010-01-01

    Il pacchetto applicativo “IONORT” per il calcolo del ray-tracing può essere utilizzato dagli utenti che impiegano il sistema operativo Windows. È un programma la cui interfaccia grafica con l’utente è realizzata in MATLAB. In realtà, il programma lancia un eseguibile che integra il sistema d’equazioni differenziali scritto in linguaggio Fortran e ne importa l’output nel programma MATLAB, il quale genera i grafici e altre informazioni sul raggio. A completamento di questa premessa va detto ...

  11. Efficient two-dimensional magnetotellurics modelling using implicitly restarted Lanczos method

    Indian Academy of Sciences (India)

    Krishna Kumar; Pravin K Gupta; Sri Niwas

    2011-08-01

    This paper presents an efficient algorithm, FDA2DMT (Free Decay Analysis for 2D Magnetotellurics (MT)), based on eigenmode approach to solve the relevant partial differential equation, for forward computation of two-dimensional (2D) responses. The main advantage of this approach lies in the fact that only a small subset of eigenvalues and corresponding eigenvectors are required for satisfactory results. This small subset (pre-specified number) of eigenmodes are obtained using shift and invert implementation of Implicitly Restarted Lanczos Method (IRLM). It has been established by experimentation that only 15–20% smallest eigenvalue and corresponding eigenvectors are sufficient to secure the acceptable accuracy. Once the single frequency response is computed using eigenmode approach, the responses for subsequent frequencies can be obtained in negligible time. Experiment design results for validation of FDA2DMT are presented by considering two synthetic models from COMMEMI report, Brewitt-Taylor and Weaver (1976) model and a field data based model from Garhwal Himalaya.

  12. A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer

    CERN Document Server

    Peng, Xiaohui; Protas, Bartosz

    2013-01-01

    This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the sol...

  13. A two-dimensional embedded-boundary method for convection problems with moving boundaries

    NARCIS (Netherlands)

    Hassen, Y.J.; Koren, B.

    2010-01-01

    In this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes in the imme

  14. Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method

    Directory of Open Access Journals (Sweden)

    H. Hasegawa

    2004-04-01

    Full Text Available A recently developed technique for reconstructing approximately two-dimensional (∂/∂z≈0, time-stationary magnetic field structures in space is applied to two magnetopause traversals on the dawnside flank by the four Cluster spacecraft, when the spacecraft separation was about 2000km. The method consists of solving the Grad-Shafranov equation for magnetohydrostatic structures, using plasma and magnetic field data measured along a single spacecraft trajectory as spatial initial values. We assess the usefulness of this single-spacecraft-based technique by comparing the magnetic field maps produced from one spacecraft with the field vectors that other spacecraft actually observed. For an optimally selected invariant (z-axis, the correlation between the field components predicted from the reconstructed map and the corresponding measured components reaches more than 0.97. This result indicates that the reconstruction technique predicts conditions at the other spacecraft locations quite well.

    The optimal invariant axis is relatively close to the intermediate variance direction, computed from minimum variance analysis of the measured magnetic field, and is generally well determined with respect to rotations about the maximum variance direction but less well with respect to rotations about the minimum variance direction. In one of the events, field maps recovered individually for two of the spacecraft, which crossed the magnetopause with an interval of a few tens of seconds, show substantial differences in configuration. By comparing these field maps, time evolution of the magnetopause structures, such as the formation of magnetic islands, motion of the structures, and thickening of the magnetopause current layer, is discussed.

    Key words. Magnetospheric physics (Magnetopause, cusp, and boundary layers – Space plasma physics (Experimental and mathematical techniques, Magnetic reconnection

  15. New Methods for Two-Dimensional Schr\\"odinger Equation SUSY-separation of Variables and Shape Invariance

    CERN Document Server

    Cannata, F; Nishnianidze, D N

    2002-01-01

    Two new methods for investigation of two-dimensional quantum systems, whose Hamiltonians are not amenable to separation of variables, are proposed. 1)The first one - $SUSY-$ separation of variables - is based on the intertwining relations of Higher order SUSY Quantum Mechanics (HSUSY QM) with supercharges allowing for separation of variables. 2)The second one is a generalization of shape invariance. While in one dimension shape invariance allows to solve algebraically a class of (exactly solvable) quantum problems, its generalization to higher dimensions has not been yet explored. Here we provide a formal framework in HSUSY QM for two-dimensional quantum mechanical systems for which shape invariance holds. Given the knowledge of one eigenvalue and eigenfunction, shape invariance allows to construct a chain of new eigenfunctions and eigenvalues. These methods are applied to a two-dimensional quantum system, and partial explicit solvability is achieved in the sense that only part of the spectrum is found analyt...

  16. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  17. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  18. The Use of Iterative Methods to Solve Two-Dimensional Nonlinear Volterra-Fredholm Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    shadan sadigh behzadi

    2012-03-01

    Full Text Available In this present paper, we solve a two-dimensional nonlinear Volterra-Fredholm integro-differential equation by using the following powerful, efficient but simple methods: (i Modified Adomian decomposition method (MADM, (ii Variational iteration method (VIM, (iii Homotopy analysis method (HAM and (iv Modified homotopy perturbation method (MHPM. The uniqueness of the solution and the convergence of the proposed methods are proved in detail. Numerical examples are studied to demonstrate the accuracy of the presented methods.

  19. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

    Science.gov (United States)

    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

    2014-03-01

    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved.

  20. Description of Collective Motion in Two-Dimensional Nuclei; Tomonaga's Method Revisited

    CERN Document Server

    Nishiyama, Seiya

    2014-01-01

    Four decades ago, Tomonaga proposed the elementary theory of quantum mechanical collective motion of two-dimensional nuclei of N nucleons. The theory is based essentially on the neglect of 1/sqrtN against unity. Very recently we have given exact canonically conjugate momenta to quadrupole-type collective coordinates under some subsidiary conditions and have derived nuclear quadrupole-type collective Hamiltonian. Even in the case of simple two-dimensional nuclei, we have a subsidiary condition to obtain exact canonical variables. Particularly the structure of the collective subspace satisfying the subsidiary condition is studied in detail. This subsidiary condition is important to investigate what is a structure of the collective subspace.

  1. The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system

    Institute of Scientific and Technical Information of China (English)

    Sun Juying; Zhang Yanhua

    2008-01-01

    Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.

  2. Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system

    OpenAIRE

    Lukácová-Medvid'ová, Maria; Warnecke, Gerald; Zahaykah, Yousef

    2003-01-01

    The subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order...

  3. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Directory of Open Access Journals (Sweden)

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  4. 基于GPU和均匀栅格法的光线追踪算法研究%Research of ray-tracing algorithm based on GPU and uniform grid method

    Institute of Scientific and Technical Information of China (English)

    童星; 袁道华

    2011-01-01

    由于GPU(图形处理器)性能的大幅提高和可编程性的发展,基于GPU的光线追踪算法逐渐成为研究热点,光线追踪算法需要的计算量大,基于此,分析了光线追踪算法的基本原理,在NVIDIA公司的CUDA(计算统一设备体系结构)环境下采用均匀栅格法作为加速结构实现了光线追踪算法.实验结果表明,该计算模式相对于传统基于CPU的光线追踪算法具有更快的整体运算速度,GPU适合处理高密度数据计算.%Ray-tracing is the technique that rendering images from a three dimensional model of a scene by projecting it on to a two dimensional image plane. In the past decades, the development of the computer graphic (especial for raster graphics systems) emphasize on building the high-efficient, low-cost large graphic systems. For the above-mentioned reasons such as the implementation of a large number of mathematical calculation, the large-scale parallel processing technologies play a important role in graphics compose. The principle of ray-tracing algorithm is introduced. A ray-tracing parallel processing model is built through the research on GPU stream processing and MPICH, and it is proved that applying this mode reduces computation time effectively and the quality of the generated graph holds no difference with that by traditional stand-alone computer.

  5. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  6. Validation of Ray Tracing Code Refraction Effects

    Science.gov (United States)

    Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.

    2008-01-01

    NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.

  7. Bessel-Modal Method for Finite-Height Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    SHI Jun-Feng; HUANG Sheng-Ye; WANG Dong-Sheng

    2005-01-01

    @@ By applying the dyadic Green function, the dispersion relation of two-dimensional photonic crystal can be ex pressed as the cylindrical wave expansions of eigenmodes. With the aid of Green's theorem, the plane-wavecoefficients of eigenmodes are reconstructed and employed to formulate the scattering matrix of finite-height twodimensional photonic crystal. These operations make the convergence rate very rapid, and reduce the dimension of the scattering matrix. As a demonstration, we present the transmission and electromagnetic field distributions for an InGaAsIn photonic crystal, and investigate their convergence.

  8. THE UNCONDITIONAL STABLE DIFFERENCE METHODS WITH INTRINSIC PARALLELISM FOR TWO DIMENSIONAL SEMILINEAR PARABOLIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Guangwei Yuan; Longjun Shen

    2003-01-01

    In this paper we are going to discuss the difference schemes with intrinsic parallelismfor the boundary value problem of the two dimensional semilinear parabolic systems. Theunconditional stability of the general finite difference schemes with intrinsic parallelismis justified in the sense of the continuous dependence of the discrete vector solution ofthe difference schemes on the discrete data of the original problems in the discrete W2(2,1)norms. Then the uniqueness of the discrete vector solution of this difference scheme followsas the consequence of the stability.

  9. Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method

    Directory of Open Access Journals (Sweden)

    H. S. Shukla

    2014-11-01

    Full Text Available In this paper, a numerical solution of two dimensional nonlinear coupled viscous Burger equation is discussed with appropriate initial and boundary conditions using the modified cubic B-spline differential quadrature method. In this method, the weighting coefficients are computed using the modified cubic B-spline as a basis function in the differential quadrature method. Thus, the coupled Burger equation is reduced into a system of ordinary differential equations. An optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme is applied for solving the resulting system of ordinary differential equations. The accuracy of the scheme is illustrated by taking two numerical examples. Computed results are compared with the exact solutions and other results available in literature. Obtained numerical result shows that the described method is efficient and reliable scheme for solving two dimensional coupled viscous Burger equation.

  10. First Characterization of a New Method for Numerically Solving the Dirichlet Problem of the Two-Dimensional Electrical Impedance Equation

    OpenAIRE

    Marco Pedro Ramirez-Tachiquin; Cesar Marco Antonio Robles Gonzalez; Rogelio Adrian Hernandez-Becerril; Ariana Guadalupe Bucio Ramirez

    2013-01-01

    Based upon the elements of the modern pseudoanalytic function theory, we analyze a new method for numerically solving the forward Dirichlet boundary value problem corresponding to the two-dimensional electrical impedance equation. The analysis is performed by introducing interpolating piecewise separable-variables conductivity functions in the unit circle. To warrant the effectiveness of the posed method, we consider several examples of conductivity functions, whose boundary condi...

  11. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  12. Modeling the Reflectance of the Lunar Regolith by a New Method Combining Monte Carlo Ray Tracing and Hapke’s Model with Application to Chang’E-1 IIM Data

    Directory of Open Access Journals (Sweden)

    Un-Hong Wong

    2014-01-01

    Full Text Available In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke’s model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke’s model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC data and Chang’E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang’E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  13. Development of a two-dimensional imaging GEM detector using the resistive anode readout method with $6\\times6$ cells

    CERN Document Server

    Ju, Xu-Dong; Zhou, Chuan-Xing; Dong, Jing; Zhao, Yu-Bin; Zhang, Hong-Yu; Qi, Hui-Rong; Ou-Yang, Qun

    2016-01-01

    We report the application of the resistive anode readout method on a two dimensional imaging GEM detector. The resistive anode consists $6\\times6$ cells with the cell size $6~\\mathrm{mm}\\times6~\\mathrm{mm}$. New electronics and DAQ system are used to process the signals from 49 readout channels. The detector has been tested by using the X-ray tube (8~keV). The spatial resolution of the detector is about $103.46~\\mathrm{{\\mu}m}$ with the signal part $66.41~\\mathrm{{\\mu}m}$. The nonlinearity of the detector is less than $0.5\\%$. A good two dimensional imaging capability is achieved as well. The performances of the detector show the prospect of the resistive anode readout method for the large readout area imaging detectors.

  14. Parallel finite difference beam propagation method based on message passing interface: application to MMI couplers with two-dimensional confinement

    Institute of Scientific and Technical Information of China (English)

    Chaojun Yan; Wenbiao Peng; Haijun Li

    2007-01-01

    @@ The alternate-direction implicit finite difference beam propagation method (FD-BPM) is used to analyze the two-dimensional (2D) symmetrical multimode interference (MMI) couplers. The positions of the images at the output plane and the length of multimode waveguide are accurately determined numerically. In order to reduce calculation time, the parallel processing of the arithmetic is implemented by the message passing interface and the simulation is accomplished by eight personal computers.

  15. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  16. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    Science.gov (United States)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  17. Bayesian reconstruction of P(r) directly from two-dimensional detector images via a Markov chain Monte Carlo method.

    Science.gov (United States)

    Paul, Sudeshna; Friedman, Alan M; Bailey-Kellogg, Chris; Craig, Bruce A

    2013-04-01

    The interatomic distance distribution, P(r), is a valuable tool for evaluating the structure of a molecule in solution and represents the maximum structural information that can be derived from solution scattering data without further assumptions. Most current instrumentation for scattering experiments (typically CCD detectors) generates a finely pixelated two-dimensional image. In contin-uation of the standard practice with earlier one-dimensional detectors, these images are typically reduced to a one-dimensional profile of scattering inten-sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier transformation methods are then used to reconstruct P(r) from I(q). Substantial advantages in data analysis, however, could be achieved by directly estimating the P(r) curve from the two-dimensional images. This article describes a Bayesian framework, using a Markov chain Monte Carlo method, for estimating the parameters of the indirect transform, and thus P(r), directly from the two-dimensional images. Using simulated detector images, it is demonstrated that this method yields P(r) curves nearly identical to the reference P(r). Furthermore, an approach for evaluating spatially correlated errors (such as those that arise from a detector point spread function) is evaluated. Accounting for these errors further improves the precision of the P(r) estimation. Experimental scattering data, where no ground truth reference P(r) is available, are used to demonstrate that this method yields a scattering and detector model that more closely reflects the two-dimensional data, as judged by smaller residuals in cross-validation, than P(r) obtained by indirect transformation of a one-dimensional profile. Finally, the method allows concurrent estimation of the beam center and Dmax, the longest interatomic distance in P(r), as part of the Bayesian Markov chain Monte Carlo method, reducing experimental effort and providing a well defined protocol for these

  18. Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method

    Directory of Open Access Journals (Sweden)

    Hadjira Badaoui

    2011-05-01

    Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.

  19. Numerical method of the Riemann problem for two-dimensional multi-fluid flows with general equation of state

    Institute of Scientific and Technical Information of China (English)

    Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min

    2006-01-01

    Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.

  20. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Zhu Pei-Ping; Tian Yang-Chao; Wu Zi-Yu

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique.By using two-dimensional (2D) gratings,the observable contrast is extended to two refraction directions.Recently,we have developed a novel reverse-projection (RP) method,which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging.In this contribution,we present its extension to the 2D grating-based X-ray phase contrast imaging,named the two-dimensional reverseprojection (2D-RP) method,for information retrieval.The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption,the horizontal and the vertical refraction images.The obtained information can be used for the reconstruction of the three-dimensional phase gradient field,and for an improved phase map retrieval and reconstruction.Numerical experiments are carried out,and the results confirm the validity of the 2D-RP method.

  1. CHEBYSHEV SPECTRAL-FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES EQUATION

    Institute of Scientific and Technical Information of China (English)

    Benyu Guo; Songnian He; Heping Ma

    2002-01-01

    A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensionalunsteady Navier-Stokes equation. The generalized stability and convergence are proved.The numerical results show the advantages of this method.

  2. 短波射线追踪技术中的电离层混合建模方法%Ionosphere hybrid modeling method for short-wave ray tracing

    Institute of Scientific and Technical Information of China (English)

    栗伟珉; 苏东林; 阎照文; 刘焱

    2012-01-01

    在国际参考电离层模型和多层准抛物模型的基础上,提出了一种混合应用两种模型进行电离层建模的新方法.利用射线追踪技术,分别对混合模型和传统国际参考电离层模型下短波射线在电离层中的轨迹进行了仿真,得到了电波群路径.通过与实测电波群路径的对比,结果表明:对中国中纬度地区在电离层混合模型下的射线追踪精度优于传统国际参考电离层模型下的射线追踪精度,同时混合建模方法降低了多层准抛物模型对输入条件的要求,扩展了多层准抛物模型在射线追踪技术中的应用范围.%Based on the international reference ionosphere(IRI) and the quasi-parabolic segments(QPS) model,a new ionosphere hybrid modeling method for short-wave ray tracing was proposed.The group ranges which show the short-wave propagation trace in the ionosphere were obtained separately by simulation in the hybrid model and the IRI model.By comparing the simulated results and the ionospheric oblique incidence sounding experimental data,the hybrid modeling method accuracy at mid-latitude region in China was analyzed.It indicates the ray tracing simulation accuracy in the hybrid model on experimental day better than the one in the IRI model.The limit to the QPS model's input is reduced by the hybrid modeling method and the QPS model's application range is extended in ray tracing technology.

  3. A Method to Formulate the Unit Cell for Density Functional Theory (DFT) Calculations of the Electronic Band Structure of Heterostructures of Two-dimensional Nanosheets

    Science.gov (United States)

    2015-04-01

    distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature

  4. The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations

    Science.gov (United States)

    Kulikov, Yu M.; Son, E. E.

    2016-11-01

    The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.

  5. AN IMPROVED HYBRID BOUNDARY NODE METHOD IN TWO-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Miao Yu; Wang Yuanhan; Jiang Heyang

    2005-01-01

    The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution.The parameters that influence the performance of this method are studied through numerical examples.

  6. Two Hybrid Methods for Solving Two-Dimensional Linear Time-Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    B. A. Jacobs

    2014-01-01

    Full Text Available A computationally efficient hybridization of the Laplace transform with two spatial discretization techniques is investigated for numerical solutions of time-fractional linear partial differential equations in two space variables. The Chebyshev collocation method is compared with the standard finite difference spatial discretization and the absolute error is obtained for several test problems. Accurate numerical solutions are achieved in the Chebyshev collocation method subject to both Dirichlet and Neumann boundary conditions. The solution obtained by these hybrid methods allows for the evaluation at any point in time without the need for time-marching to a particular point in time.

  7. Variational Methods in Design Optimization and Sensitivity Analysis for Two-Dimensional Euler Equations

    Science.gov (United States)

    Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.

    1997-01-01

    Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.

  8. Integration of tunable two-dimensional nanostructures on a chip by an improved nanosphere lithography method

    Science.gov (United States)

    Ni, Haibin; Wang, Ming; Hao, Hui; Zhou, Jing

    2016-06-01

    By uniform infiltration of a different material into monolayered polystyrene colloidal crystals and by flexibly combining the two materials as etching masks, we demonstrate an improved nanosphere lithography method that possesses the ability to produce a diverse range of tunable nano-patterns in a small area with good reproducibility. The factors that affect the infiltration height and uniformity are characterized and discussed. Annular gap arrays, close-packed ring arrays, and bowl arrays are demonstrated by this method. The geometry size of these nano-patterns can be tuned over the range 10 nm to ∼500 nm with steps of ∼5 nm during the fabrication progress. Formation mechanisms of the close-packed ring arrays are experimentally investigated. Because all the fabrication processes involved in this method are adaptable to sophisticated integrated circuit fabrication techniques, most of the nano-patterns produced by this method could be integrated on thin films, which is desirable for optics integration and array sensing.

  9. The multi-concentration and two-dimensional capillary electrophoresis method for the analysis of drugs in urine samples

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel method has been developed by integration of multi-concentration and two-dimensional(2D) capillary electrophoresis(CE) for simultaneous enhancement of detection sensitivity and separation power in complex samples.Capillary zone electrophoresis(CZE) was used as the first dimension separation according to mobilities,from which the effluent fractions were further analyzed by micellar electrokinetic capillary chromatography(MEKC) acting as the second dimension.Cation-selective exhaustive injection(CSEI) preconcentration method was used to introduce more analytes into the capillary.Furthermore,pH junction and sweeping dual concentration strategies were employed to avoid sample zone diffusion at the interface.The resulting electrophoregram was quite different from that of either CZE or MEKC separation.Up to(0.5-1.2) ×104 fold improvements in sensitivity were obtained relative to the conventional electrokinetic injection method.The proposed method was successfully applied to the determination of drugs in human urine.

  10. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Ningbo Univ., Ningbo (China). Department of Mathematics; Shanghai Jiao-Tong Univ., Shangai (China). Department of Physics; Chinese Academy of sciences, Beijing (China). Key Laboratory of Mathematics Mechanization

    2005-03-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion.

  11. An accelerated Monte Carlo method to solve two-dimensional radiative transfer and molecular excitation

    CERN Document Server

    Hogerheijde, M R; Hogerheijde, Michiel R.; Tak, Floris F. S. van der

    2000-01-01

    We present a numerical method and computer code to calculate the radiative transfer and excitation of molecular lines. Formulating the Monte Carlo method from the viewpoint of cells rather than photons allows us to separate local and external contributions to the radiation field. This separation is critical to accurate and fast performance at high optical depths (tau>100). The random nature of the Monte Carlo method serves to verify the independence of the solution to the angular, spatial, and frequency sampling of the radiation field. These features allow use of our method in a wide variety of astrophysical problems without specific adaptations: in any axially symmetric source model and for all atoms or molecules for which collisional rate coefficients are available. Continuum emission and absorption by dust is explicitly taken into account but scattering is neglected. We illustrate these features in calculations of (i) the HCO+ J=1-0 and 3-2 emission from a flattened protostellar envelope with infall and ro...

  12. A method for geometric modelling of magnetic anomalies: Two dimensional bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.C.S.

    for bodies of different shapes. A procedure has been evolved to compute the anomalies for all types of step and dyke models from a single formula by suitably reorienting the 'step model and by redefining its edges and the slope or dip angle. This method also...

  13. Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method.

    NARCIS (Netherlands)

    Wendling, M.; Louwe, R.J.W.; McDermott, L.N.; Sonke, J.J.; Herk, M. van; Mijnheer, B.J.

    2006-01-01

    The use of electronic portal imaging devices (EPIDs) is a promising method for the dosimetric verification of external beam, megavoltage radiation therapy-both pretreatment and in vivo. In this study, a previously developed EPID back-projection algorithm was modified for IMRT techniques and applied

  14. The Alba ray tracing code: ART

    Science.gov (United States)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  15. Two-Dimensional Far Field Source Locating Method with Nonprior Velocity

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2016-01-01

    Full Text Available Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating accuracy of far field sources by isometric placed sensors in a straight line, a new locating method with nonprior velocity is proposed. After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and better stability.

  16. Errors in using two dimensional methods to measure motion about an offset revolute

    Energy Technology Data Exchange (ETDEWEB)

    Hollerbach, K. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States). Medical Center

    1996-03-01

    2D measurement of human joint motion involves analysis of 3D displacements in an observer selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. Alignment of the two planes is essential for accurate recording and understanding of the joint mechanism and the movement about it. In nature, joint axes can exist at any orientation and location relative to a global reference frame. An aritrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors resulting from measuring joint motion about an arbitrary axis using 2D methods.

  17. Level set formulation of two-dimensional Lagrangian vortex detection methods

    CERN Document Server

    Hadjighasem, Alireza

    2016-01-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  18. Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems.

    Science.gov (United States)

    Finazzi, S; Le Boité, A; Storme, F; Baksic, A; Ciuti, C

    2015-08-21

    We present a theoretical method to study driven-dissipative correlated quantum systems on lattices with two spatial dimensions (2D). The steady-state density matrix of the lattice is obtained by solving the master equation in a corner of the Hilbert space. The states spanning the corner space are determined through an iterative procedure, using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. We demonstrate the efficiency of such an approach by applying it to the driven-dissipative 2D Bose-Hubbard model, describing lattices of coupled cavities with quantum optical nonlinearities.

  19. Two-dimensional finite volume method for dam-break flow simulation

    Institute of Scientific and Technical Information of China (English)

    M.ALIPARAST

    2009-01-01

    A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).

  20. Improved algorithm of ray tracing in ICF cryogenic targets

    Science.gov (United States)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  1. Two-dimensional cell tracking by FPGA-optical correlation method

    Science.gov (United States)

    Solís, Iraís; Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Ibarra-Manzano, O. G.; Debeir, O.; Ledesma-Orozco, S.; Pérez-Careta, E.; Sanchez-Mondragón, J. J.

    2009-06-01

    Our work uses 1080 images sequence obtained from "in vitro" samples taken every 4 min from a microscope under phase contrast technique. These images are in JPEG format and are 500×700 pixels size with a compression rate of 3:1. We developed an algorithm and characterize it over several image operations against the tracking effectiveness and its robustness respect mitosis and cell shape change. Image equalization, dilation and erosion were the image processing procedures founded to provide best tracking results. Equalization procedure, for example, required a time delay of 5 sec for a size target of 60×90 pixels and 9 sec for size target of 89×100 pixels. This algorithm was implemented into a FPGA which controlled our optical correlator in order to performance all Fourier operations by optical method. Our results showed that the use of the optical correlator can reduce the time consuming in the image process until for 90% which able us to track cells in vascular structure.

  2. Note on the Physical Basis of the Kutta Condition in Unsteady Two-Dimensional Panel Methods

    Directory of Open Access Journals (Sweden)

    M. La Mantia

    2015-01-01

    Full Text Available Force generation in avian and aquatic species is of considerable interest for possible engineering applications. The aim of this work is to highlight the theoretical and physical foundations of a new formulation of the unsteady Kutta condition, which postulates a finite pressure difference at the trailing edge of the foil. The condition, necessary to obtain a unique solution and derived from the unsteady Bernoulli equation, implies that the energy supplied for the wing motion generates trailing-edge vortices and their overall effect, which depends on the motion initial parameters, is a jet of fluid that propels the wing. The postulated pressure difference (the value of which should be experimentally obtained models the trailing-edge velocity difference that generates the thrust-producing jet. Although the average thrust values computed by the proposed method are comparable to those calculated by assuming null pressure difference at the trailing edge, the latter (commonly used approach is less physically meaningful than the present one, as there is a singularity at the foil trailing edge. Additionally, in biological applications, that is, for autonomous flapping, the differences ought to be more significant, as the corresponding energy requirements should be substantially altered, compared to the studied oscillatory motions.

  3. Streamline integration as a method for two-dimensional elliptic grid generation

    CERN Document Server

    Wiesenberger, Matthias; Einkemmer, Lukas

    2016-01-01

    We propose a new numerical algorithm to construct a structured numerical grid of a doubly connected domain that is bounded by the contour lines of a given function. It is based on the integration of the streamlines of the two vector fields that form the basis of the coordinate system. These vector fields are either built directly from the given function or from the solution of a suitably chosen elliptic equation (which can be solved once an initial grid has been constructed). We are able to construct conformal, orthogonal and curvilinear coordinates. The method is parallelizable and the metric elements can be computed with high accuracy. Furthermore, it is easy to implement as only the integration of well-behaved ordinary differential equations and the inversion of a linear elliptic equation are required. All our grids are orthogonal to the boundary of the domain, which is the major advantage over previously suggested grids. We assess the quality of our grids with the solution of an elliptic equation and the ...

  4. PHYSALIS: a new method for particle flow simulation. Part III: convergence analysis of two-dimensional flows

    Science.gov (United States)

    Huang, Huaxiong; Takagi, Shu

    2003-08-01

    In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.

  5. A sparsity-regularized Born iterative method for reconstruction of two-dimensional piecewise continuous inhomogeneous domains

    KAUST Repository

    Sandhu, Ali Imran

    2016-04-10

    A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.

  6. An ultrasonic sensor system based on a two-dimensional state method for highway vehicle violation detection applications.

    Science.gov (United States)

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-04-16

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  7. Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method

    Directory of Open Access Journals (Sweden)

    H. S. Shukla

    2015-01-01

    Full Text Available In this paper, a modified cubic B-spline differential quadrature method (MCB-DQM is employed for the numerical simulation of two-space dimensional nonlinear sine-Gordon equation with appropriate initial and boundary conditions. The modified cubic B-spline works as a basis function in the differential quadrature method to compute the weighting coefficients. Accordingly, two dimensional sine-Gordon equation is transformed into a system of second order ordinary differential equations (ODEs. The resultant system of ODEs is solved by employing an optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme (SSP-RK54. Numerical simulation is discussed for both damped and undamped cases. Computational results are found to be in good agreement with the exact solution and other numerical results available in the literature.

  8. Evaluation of Protein Extraction Methods for Vitis vinifera Leaf and Root Proteome Analysis by Two-Dimensional Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Neila Jellouli; Asma Ben Salem; Abdelwahed Ghorbel; Hatem Ben Jouira

    2010-01-01

    An efficient protein extraction method is crucial to ensure successful separation by two-dimensional electrophoresis(2-DE)for recalcitrant plant species, in particular for grapevine(Vitis vinifera L.). Trichloroacetic acid-acetone(TCA-acetone)and phenol extraction methods were evaluated for proteome analysis of leaves and roots from the Tunisian cultivar 'Razegui'. The phenol-based protocol proved to give a higher protein yield,a greater spot resolution, and a minimal streaking on 2-DE gels for both leaf and root tissues compared with the TCA-based protocol. Furthermore, the highest numbers of detected proteins on 2-DE gels were observed using the phenol extraction from leaves and roots as compared with TCA-acetone extraction.

  9. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    Directory of Open Access Journals (Sweden)

    Shogo Kaneko

    2014-01-01

    Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  10. First characterization of a new method for numerically solving the Dirichlet problem of the two-dimensional Electrical Impedance Equation

    CERN Document Server

    T., M P Ramirez; Hernandez-Becerril, R A

    2012-01-01

    Based upon elements of the modern Pseudoanalytic Function Theory, we analyse a new method for numerically approaching the solution of the Dirichlet boundary value problem, corresponding to the two-dimensional Electrical Impedance Equation. The analysis is performed by interpolating piecewise separable-variables conductivity functions, that are eventually used in the numerical calculations in order to obtain finite sets of orthonormal functions, whose linear combinations succeed to approach the imposed boundary conditions. To warrant the effectiveness of the numerical method, we study six different examples of conductivity. The boundary condition for every case is selected considering one exact solution of the Electrical Impedance Equation. The work intends to discuss the contributions of these results into the field of the Electrical Impedance Tomography.

  11. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

    Science.gov (United States)

    Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.

    2007-04-01

    A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

  12. Tropospheric Refraction Modeling Using Ray-Tracing and Parabolic Equation

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2005-12-01

    Full Text Available Refraction phenomena that occur in the lower atmospheresignificantly influence the performance of wireless communicationsystems. This paper provides an overview of corresponding computationalmethods. Basic properties of the lower atmosphere are mentioned.Practical guidelines for radiowave propagation modeling in the loweratmosphere using ray-tracing and parabolic equation methods are given.In addition, a calculation of angle-of-arrival spectra is introducedfor multipath propagation simulations.

  13. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  14. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  15. A Method of Three-Dimensional Recording of Mandibular Movement Based on Two-Dimensional Image Feature Extraction.

    Directory of Open Access Journals (Sweden)

    Fusong Yuan

    Full Text Available To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions.A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject's upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests.The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05.Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording accuracy of approximately ± 0.1 mm, and is

  16. Comparison between five commonly used two-dimensional methods of human bite mark overlay production from the dental study casts.

    Science.gov (United States)

    Maloth, Saritha; Ganapathy, K S

    2011-01-01

    The present study was conducted to determine the most accurate bite mark overlay fabrication technique by studying two physical characteristics, i.e., area and rotation of biting edges of anterior teeth of thirty volunteers. The objective of the study was to evaluate the reliability and efficacy of five commonly used methods of human bite mark overlays using two dimensional (2D) digital images of dental study casts as a gold standard, to rank different methods according to statistically based determination of relative accuracy of each method and to determine its feasibility in Forensic science. Overlays were produced from the biting surfaces of six upper and six lower anterior teeth of 30 volunteers using the following five methods: a) hand tracing from study casts, b) hand tracing from wax impressions, c) xerographic method, d) radiopaque impression method and e) 2D computer-based method. Area of the biting edges of the anterior teeth and relative rotation of each anterior tooth were measured and compared. The xerographic method was determined to be the more accurate method with respect to tooth area and rotation. Hand tracing methods, from either wax impressions of teeth or directly from study casts, were determined to be inaccurate and subjective. It is recommended that forensic odontologists discontinue the use of hand tracing overlays in bite mark comparison cases as there is lot of scope for manipulation and observer bias.

  17. Systematic method for unification of various field theories in a two-dimensional classical $\\phi^4$ field theory

    CERN Document Server

    Zarei, Mohammad Hossein

    2016-01-01

    Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...

  18. A new method of boundary parameter estimation for a two-dimensional diffusion system under noisy observations

    Science.gov (United States)

    Sunahara, Y.; Kojima, F.

    1987-01-01

    The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.

  19. PHYSALIS: a new method for particle simulation. Part II: two-dimensional Navier-Stokes flow around cylinders

    Science.gov (United States)

    Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.

    2003-05-01

    This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.

  20. Three-dimensional polarization ray-tracing calculus I: definition and diattenuation.

    Science.gov (United States)

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-06-20

    A three-by-three polarization ray-tracing matrix method for polarization ray tracing in optical systems is presented for calculating the polarization transformations associated with ray paths through optical systems. The method is a three-dimensional generalization of the Jones calculus. Reflection and refraction algorithms are provided. Diattenuation of the optical system is calculated via singular value decomposition. Two numerical examples, a three fold-mirror system and a hollow corner cube, demonstrate the method.

  1. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  2. Fast Ray Tracing NURBS Surfaces

    Institute of Scientific and Technical Information of China (English)

    秦开怀; 龚明伦; 等

    1996-01-01

    In this paper,a new algorithm wit extrapolation process for computing the ray/surface intersection is presented.Also,a ray is defined to be the intersection of two planes,which are non-orthogonal in general,in such a way that the number of multiplication operations is reduced.In the preprocessing step,NURBS surfaces are subdivded adaptively into rational Bezier patches.Parallelepipeds are used to enclose the respective patches as tightly as possible Therefore,for each ray that hits the enclosure(i.e.,parallelepiped)of a patch the intersection points with the parallelepiped's faces can be used to yield a good starting point for the following iteration.The improved Newton iteration with extrapolation process saves CPU time by reducing the number of iteration steps.The intersection scheme is facter than previous methods for which published performance data allow reliable comparison.The method may also be used to speed up tracing the intersection of two parametric surfaces and oter operations that need Newton iteration.

  3. Two-dimensional thin-layer chromatographic method for the analysis of ochratoxin A in green coffee.

    Science.gov (United States)

    Ventura, Meritxell; Anaya, Ivan; Broto-Puig, Francesc; Agut, Montserrat; Comellas, Lluís

    2005-09-01

    A low-cost thin-layer chromatographic method has been developed for the presumptive measurement of ochratoxin A (OTA) at 5 microg/kg in green coffee beans. The analytical method consisted of extracting OTA by shaking the beans with a mixture of methanol and aqueous sodium bicarbonate solution, which was then purified by liquid-liquid partition into toluene. OTA was separated by normal-phase two-dimensional thin-layer chromatography and detected by visual estimation of fluorescence intensity under a UV lamp at 365 nm. The chromatography solvents were toluene-methanol-formic acid (8:2:0.03) for the first development and petroleum ether-ethyl acetate-formic acid (8:10:1) for the second dimension development. This method was tested with uncontaminated green coffee bean samples spiked with an OTA standard at four different concentrations (5, 10, 20, and 30 microg/kg). The method is rapid, simple, and very easy to implement in coffee-producing countries. It is highly selective and does not involve the use of chlorinated solvents in the sample extraction step. This inexpensive method has been applied to different types of green coffee samples from various countries (Zimbabwe, Brazil, India, Uganda, Colombia, and Indonesia) and different manufacturers, and no OTA below the detection limit of 5 microg/kg was detected in any samples analyzed.

  4. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    Science.gov (United States)

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-12-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of as a conceptual model. This suggests that introductory physics students need to understand the nature of the ray model more profoundly. In this paper, we show how a virtual ray tracing model can be used as a tool for image formation in more complex and unconventional cases. We believe that this tool has potential in helping students to better appreciate the nature of the ray model.

  5. Real-space and plane-wave hybrid method for electronic structure calculations for two-dimensional materials

    Science.gov (United States)

    Do, V. Nam; Le, H. Anh; Vu, V. Thieu

    2017-04-01

    We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.

  6. Validation of Three-Dimensional Ray-Tracing Algorithm for Indoor Wireless Propagations

    OpenAIRE

    Majdi Salem; Mahamod Ismail; Norbahiah Misran

    2011-01-01

    A 3D ray tracing simulator has been developed for indoor wireless networks. The simulator uses geometrical optics (GOs) to propagate the electromagnetic waves inside the buildings. The prediction technique takes into account multiple reflections and transmissions of the propagated waves. An interpolation prediction method (IPM) has been proposed to predict the propagated signal and to make the ray-tracing algorithm faster, accurate, and simple. The measurements have been achieved by using a s...

  7. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-04-01

    Full Text Available With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS and vehicular ad hoc networks (VANETs. Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  8. Reduction study of oxidized two-dimensional graphene-based materials by chemical and thermal reduction methods

    Science.gov (United States)

    Douglas, Amber M.

    Graphene is a two-dimensional (2D) sp2-hybridized carbon-based material possessing properties which include high electrical conductivity, ballistic thermal conductivity, tensile strength exceeding that of steel, high flexural strength, optical transparency, and the ability to adsorb and desorb atoms and molecules. Due to the characteristics of said material, graphene is a candidate for applications in integrated circuits, electrochromic devices, transparent conducting electrodes, desalination, solar cells, thermal management materials, polymer nanocomposites, and biosensors. Despite the above mentioned properties and possible applications, very few technologies have been commercialized utilizing graphene due to the high cost associated with the production of graphene. Therefore, a great deal of effort and research has been performed to produce a material that provides similar properties, reduced graphene oxide due (RGO) to the ease of commercial scaling of the production processes. This material is typically prepared through the oxidation of graphite in an aqueous media to graphene oxide (GO) followed by reduction to yield RGO. Although this material has been extensively studied, there is a lack of consistency in the scientific community regarding the analysis of the resulting RGO material. In this dissertation, a study of the reduction methods for GO and an alternate 2D carbon-based material, humic acid (HA), followed by analysis of the materials using Raman spectroscopy and Energy Dispersive X-ray Spectroscopy (EDS). Means of reduction will include chemical and thermal methods. Characterization of the material has been carried out on both before and after reduction.

  9. Sample Preparation and Staining Methods for Two-Dimensional Polyacrylamide Gel Electrophoresis of Proteins from Animal Tissues

    Directory of Open Access Journals (Sweden)

    Levente Czegledi

    2010-05-01

    Full Text Available Proteomics in animal science as well as in other biological sciences is a significant tool in the post-genomic era. In proteomic studies the presence and relative abundance of expressed proteins of a cell, tissue or biological fluid is studied. Recently, the whole genome of more and more domestic animal species is known, but genes and the transcribed mRNA have no direct effect on biological systems as they are regulated by proteins, which explain the importance of proteomics. The most common tool in proteomic approach is the two-dimensional polyacrylamide gel electrophoresis (2D PAGE, when proteins are separated by their isoelectric point followed by their mass separation as a second dimension. In this study authors used different sample preparation and protein staining methods on meat,  liver and blood plasma and carried out 2D PAGE experiments. The most appropriate sample preparation methods are described in this paper. We concluded that depletion of major proteins in plasma is required but not necessary for meat and liver samples.

  10. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  11. A benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method

    CERN Document Server

    Qin, Mingpu; Zhang, Shiwei

    2016-01-01

    Ground state properties of the Hubbard model on a two-dimensional square lattice are studied by the auxiliary-field quantum Monte Carlo method. Accurate results for energy, double occupancy, effective hopping, magnetization, and momentum distribution are calculated for interaction strengths of U/t from 2 to 8, for a range of densities including half-filling and n = 0.3, 0.5, 0.6, 0.75, and 0.875. At half-filling, the results are numerically exact. Away from half-filling, the constrained path Monte Carlo method is employed to control the sign problem. Our results are obtained with several advances in the computational algorithm, which are described in detail. We discuss the advantages of generalized Hartree-Fock trial wave functions and its connection to pairing wave functions, as well as the interplay with different forms of Hubbard-Stratonovich decompositions. We study the use of different twist angle sets when applying the twist averaged boundary conditions. We propose the use of quasi-random sequences, whi...

  12. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    Science.gov (United States)

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  13. A model of the AGS based on stepwise ray-tracing through the measured field maps of the main magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil Y.; Meot, F.; Tsoupas, N.

    2012-05-20

    Two-dimensional mid-plane magnetic field maps of two of the main AGS magnets were produced, from Hall probe measurements, for a series of different current settings. The analysis of these data yielded the excitation functions [1] and the harmonic coefficients [2] of the main magnets which have been used so far in all the models of the AGS. The constant increase of the computation power makes it possible today to directly use a stepwise raytracing through these measured field maps with a reasonable computation time. We describe in detail how these field maps have allowed the generation of models of the 6 different types of AGS main magnets, and how they are being handled with the Zgoubi ray-tracing code [3]. We give and discuss a number of results obtained regarding both beam and spin dynamics in the AGS, and we provide comparisons with other numerical and analytical modelling methods.

  14. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    Science.gov (United States)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  15. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  16. Two-Dimensional UV Absorption Correlation Spectroscopy as a Method for the Detection of Thiamethoxam Residue in Tea

    Science.gov (United States)

    Zhang, J.; Zhao, Zh.; Wang, L.; Zhu, X.; Shen, L.; Yu, Y.

    2015-05-01

    Two-dimensional correlation spectroscopy (2D-COS) combined with UV absorption spectroscopy was evaluated as a technique for the identification of spectral regions associated with the residues of thiamethoxam in tea. There is only one absorption peak at 275 nm in the absorption spectrum of a mixture of thiamethoxam and tea, which is the absorption peak of tea. Based on 2D-COS, the absorption peak of thiamethoxam at 250 nm is extracted from the UV spectra of the mixture. To determine the residue of thiamethoxam in tea, 250 nm is selected as the measured wavelength, at which the fitting result is as follows: the residual sum of squares is 0.01375, standard deviation R2 is 0.99068, and F value is 426. Statistical analysis shows that there is a significant linear relationship between the concentration of thiamethoxam in tea and the absorbance at 250 nm in the UV spectra of the mixture. Moreover, the average prediction error is 0.0033 and the prediction variance is 0.1654, indicating good predictive result. Thus, the UV absorption spectrum can be used as a measurement method for rapid detection of thiamethoxam residues in tea.

  17. A method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

    CERN Document Server

    Buitink, S; Enriquez, J E; Halcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G

    2014-01-01

    The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation me...

  18. Semiquantitative Proteomic Analysis of the Human Spliceosome via a Novel Two-Dimensional Gel Electrophoresis Method ▿ §

    Science.gov (United States)

    Agafonov, Dmitry E.; Deckert, Jochen; Wolf, Elmar; Odenwälder, Peter; Bessonov, Sergey; Will, Cindy L.; Urlaub, Henning; Lührmann, Reinhard

    2011-01-01

    More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, Bact, and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, Bact, and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing. PMID:21536652

  19. Uncertainty propagation by using spectral methods: A practical application to a two-dimensional turbulence fluid model

    Science.gov (United States)

    Riva, Fabio; Milanese, Lucio; Ricci, Paolo

    2017-10-01

    To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.

  20. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning.

    Science.gov (United States)

    Fox, Christopher; Romeijn, H Edwin; Dempsey, James F

    2006-05-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  1. Classification of cancer cell lines using an automated two-dimensional liquid mapping method with hierarchical clustering techniques.

    Science.gov (United States)

    Wang, Yanfei; Wu, Rong; Cho, Kathleen R; Shedden, Kerby A; Barder, Timothy J; Lubman, David M

    2006-01-01

    A two-dimensional liquid mapping method was used to map the protein expression of eight ovarian serous carcinoma cell lines and three immortalized ovarian surface epithelial cell lines. Maps were produced using pI as the separation parameter in the first dimension and hydrophobicity based upon reversed-phase HPLC separation in the second dimension. The method can be reproducibly used to produce protein expression maps over a pH range from 4.0 to 8.5. A dynamic programming method was used to correct for minor shifts in peaks during the HPLC gradient between sample runs. The resulting corrected maps can then be compared using hierarchical clustering to produce dendrograms indicating the relationship between different cell lines. It was found that several of the ovarian surface epithelial cell lines clustered together, whereas specific groups of serous carcinoma cell lines clustered with each other. Although there is limited information on the current biology of these cell lines, it was shown that the protein expression of certain cell lines is closely related to each other. Other cell lines, including one ovarian clear cell carcinoma cell line, two endometrioid carcinoma cell lines, and three breast epithelial cell lines, were also mapped for comparison to show that their protein profiles cluster differently than the serous samples and to study how they cluster relative to each other. In addition, comparisons can be made between proteins differentially expressed between cell lines that may serve as markers of ovarian serous carcinomas. The automation of the method allows reproducible comparison of many samples, and the use of differential analysis limits the number of proteins that might require further analysis by mass spectrometry techniques.

  2. Simplifying numerical ray tracing for characterization of optical systems.

    Science.gov (United States)

    Gagnon, Yakir Luc; Speiser, Daniel I; Johnsen, Sönke

    2014-07-20

    Ray tracing, a computational method for tracing the trajectories of rays of light through matter, is often used to characterize mechanical or biological visual systems with aberrations that are larger than the effect of diffraction inherent in the system. For example, ray tracing may be used to calculate geometric point spread functions (PSFs), which describe the image of a point source after it passes through an optical system. Calculating a geometric PSF is useful because it gives an estimate of the detail and quality of the image formed by a given optical system. However, when using ray tracing to calculate a PSF, the accuracy of the estimated PSF directly depends on the number of discrete rays used in the calculation; higher accuracies may require more computational power. Furthermore, adding optical components to a modeled system will increase its complexity and require critical modifications so that the model will describe the system correctly, sometimes necessitating a completely new model. Here, we address these challenges by developing a method that represents rays of light as a continuous function that depends on the light's initial direction. By utilizing Chebyshev approximations (via the chebfun toolbox in MATLAB) for the implementation of this method, we greatly simplified the calculations for the location and direction of the rays. This method provides high precision and fast calculation speeds that allow the characterization of any symmetrical optical system (with a centered point source) in an analytical-like manner. Next, we demonstrate our methods by showing how they can easily calculate PSFs for complicated optical systems that contain multiple refractive and/or reflective interfaces.

  3. 二维Arimoto熵直线型阈值分割法%Two-Dimensional Arimoto Entropy Linear-type Threshold Segmentation Method

    Institute of Scientific and Technical Information of China (English)

    张弘; 范九伦

    2013-01-01

    Arimoto熵是一种广义熵形式.本文首先指出了已提出的二维Arimoto熵阈值分割法的表述错误,给出了正确的二维Arimoto熵阈值分割法;然后提出了二维Arimoto熵直线型阈值分割法,并给出了快速递推公式;对Arimoto熵公式中参量的选择进行了探讨,并基于标准图像进行了分割性能评估.大量分割实验表明,二维Arimoto熵直线型阈值法至少与二维Arimoto熵和二维Renyi熵直线型阈值法分割效果相当;在图像边缘和噪音信息丰富的情况下,二维Arimoto熵直线型阈值法的分割效果优于二维Arimoto熵和二维Renyi熵直线型阈值法,是一种有效的图像阈值方法.%Arimoto entropy is a general form of entropy. Firstly, a representation error on the two-dimensional Arimoto entropy is pointed out. and a correct two-dimensional Arimoto entropy thresholding method is given; a two-dimensional Arimoto entropy linear-type thresholding method and its fast recursive formula are proposed; Arimoto entropy formula parameter selection and the segmentation performance assessment according to the ground truth images are discussed. A large number of segmentation experiment results show that the two-dimensional Arimoto entropy linear-type thresholding method has at least a similar effect with the two-dimensional Arimoto entropy & the two-dimensional Renyi entropy linear-type thresholding; in the cases of the more image edge and noise information, the two-dimensional Arimoto entropy linear-type method is better than the two-dimensional Arimoto entropy & the two-dimensional Renyi entropy linear-type method, is a effective thresholding method.

  4. Two dimensional finite element method for metabolic effect in thermoregulation on human males and females skin layers

    Directory of Open Access Journals (Sweden)

    Saraswati Acharya

    2015-08-01

    Full Text Available Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.

  5. Two dimensional finite element method for metabolic effect in thermoregulation on human males and females skin layers

    Institute of Scientific and Technical Information of China (English)

    SaraswatiAcharya; Dil Bahadur Gurung; Vinod Prakash Saxena

    2015-01-01

    Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.

  6. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    Science.gov (United States)

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  7. IL RAY-TRACING NELLA IONOSFERA

    OpenAIRE

    Azzarone, A.; Bianchi, C.; Settimi, A

    2010-01-01

    Il pacchetto applicativo “IONORT” per il calcolo del ray-tracing può essere utilizzato dagli utenti che impiegano il sistema operativo Windows. È un programma la cui interfaccia grafica con l’utente è realizzata in MATLAB. In realtà, il programma lancia un eseguibile che integra il sistema d’equazioni differenziali scritto in linguaggio Fortran e ne importa l’output nel programma MATLAB, il quale genera i grafici e altre informazioni sul raggio. A completamento di questa premessa va detto che...

  8. Shear viscosity of a two-dimensional emulsion of drops using a multiple-relaxation-time-step lattice Boltzmann method.

    Science.gov (United States)

    Halliday, I; Xu, X; Burgin, K

    2017-02-01

    An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990)EULEEJ0295-507510.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992)PRPLCM0370-157310.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002)1063-651X10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c, the variation of effective shear viscosity, η_{eff}=η_{1}[1+f(η_{1},η_{2})c], with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η_{1} (η_{2}) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f(η_{i},η_{2}), and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932)1364-502110.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.

  9. Shear viscosity of a two-dimensional emulsion of drops using a multiple-relaxation-time-step lattice Boltzmann method

    Science.gov (United States)

    Halliday, I.; Xu, X.; Burgin, K.

    2017-02-01

    An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990), 10.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992), 10.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002), 10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c , the variation of effective shear viscosity, ηeff=η1[1 +f (η1,η2) c ] , with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η1 (η2) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f (ηi,η2) , and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932), 10.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.

  10. The ray-tracing mapping operator in an asymmetric atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In a spherically symmetric atmosphere, the refractive index profile is retrieved from bending angle measurements through Abel integral transform. As horizontal refractivity inhomogeneity becomes significant in the moist low atmosphere, the error in refractivity profile obtained from Abel inversion reaches about 10%. One way to avoid this error is to directly assimilate bending angle profile into numerical weather models. This paper discusses the 2D ray-tracing mapping operator for bending angle in an asymmetric atmosphere. Through simulating computations, the retrieval error of the refractivity in horizontal inhomogeneity is assessed. The step length of 4 rank Runge-Kutta method is also tested.

  11. Ray tracing study for non-imaging daylight collectors

    Energy Technology Data Exchange (ETDEWEB)

    Wittkopf, Stephen [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), 7 Engineering Drive 1, Block E3A, 06-01, Singapore 117574 (Singapore); Solar Energy and Building Physics Laboratory (LESO), Swiss Federal Institute of Technology Lausanne (EPFL) (Switzerland); Oliver Grobe, Lars; Geisler-Moroder, David [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), 7 Engineering Drive 1, Block E3A, 06-01, Singapore 117574 (Singapore); Compagnon, Raphael [College of Engineering and Architecture of Fribourg (EIA-FR), University of Applied Sciences of Western Switzerland (HES-SO) (Switzerland); Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO), Swiss Federal Institute of Technology Lausanne (EPFL) (Switzerland)

    2010-06-15

    This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)

  12. Microseismic network design assessment based on 3D ray tracing

    Science.gov (United States)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  13. RayTrace: A Simplified Ray Tracing Software for use in AutoCad

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Tang, C.K.

    2005-01-01

    A design aid tool for testing and development of daylighting systems was developed. A simplified ray tracing software was programmed in Lisp for AutoCad. Only fully specularly reflective, fully transparent and fully absorbant surfaces can be defined in the software. The software is therefore best...

  14. RayTrace: A Simplified Ray Tracing Software for use in AutoCad

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Tang, C.K.

    2005-01-01

    A design aid tool for testing and development of daylighting systems was developed. A simplified ray tracing software was programmed in Lisp for AutoCad. Only fully specularly reflective, fully transparent and fully absorbant surfaces can be defined in the software. The software is therefore best...

  15. Stability of three methods for two-dimensional sociometric status determination based on the procedure of Asher, Singleton, Tinsley and Hymel

    NARCIS (Netherlands)

    Maassen, G.H; Steenbeek, H.W.; Van Geert, P. L. C.

    2004-01-01

    This study aimed at comparing the stability of three methods for two-dimensional sociometric status determination, including (1) the recently developed SSrat technique (Maassen, Akkermans, & Van der Linden, 1996), as well as (2) the procedure of Howes (1988), which is based on the algorithm and clas

  16. Two-dimensional electrophoresis of urinary mucopolysaccharides on cellulose acetate after f-cetylpyridiniumchloride (CPC) precipitation: A method suitable for the routine laboratory

    NARCIS (Netherlands)

    Abeling, N.G.G.M.; Wadman, S.K.; Gennip, A.H. van

    1974-01-01

    A technique for two-dimensional electrophoresis of urinary mucopolysaccharides (MPS) is described. The method allows differentiation of a number of mucopolysaccharidoses and is suitable for application in the routine laboratory. This technique should be used to evaluate urines from patients who

  17. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    Science.gov (United States)

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.

  18. Powerful scriptable ray tracing package xrt

    Science.gov (United States)

    Klementiev, Konstantin; Chernikov, Roman

    2014-09-01

    We present an open source python based ray tracing tool that offers several useful features in graphical presentation, material properties, advanced calculations of synchrotron sources, implementation of diffractive and refractive elements, complex (also closed) surfaces and multiprocessing. The package has many usage examples which are supplied together with the code and visualized on its web page. We exemplify the present version by modeling (i) a curved crystal analyzer, (ii) a quarter wave plate, (iii) Bragg-Fresnel optics and (iv) multiple reflective and non-sequential optics (polycapillary). The present version implements the use of OpenCL framework that executes calculations on both CPUs and GPUs. Currently, the calculations of an undulator source on a GPU show a gain of about two orders of magnitude in computing time. The development version is successful in modelling the wavefront propagation. Two examples of diffraction on a plane mirror and a plane blazed grating are given for a beam with a finite energy band.

  19. A meshless method using radial basis functions for numerical solution of the two-dimensional KdV-Burgers equation

    Science.gov (United States)

    Zabihi, F.; Saffarian, M.

    2016-07-01

    The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.

  20. An efficient, direct finite difference method for computing sound propagation in arbitrarily shaped two-dimensional and axisymmetric ducts without flow

    Science.gov (United States)

    Chakravarthy, S.

    1978-01-01

    An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.

  1. IONORT: IONOsphere Ray-Tracing - Ray-tracing program in ionospheric magnetoplasma

    OpenAIRE

    Bianchi, Cesidio; Settimi, Alessandro; Azzarone, Adriano

    2010-01-01

    The application package "IONORT" for the calculation of ray-tracing can be used by customers using the Windows operating system. It is a program whose interface with the user is created in MATLAB. In fact, the program launches an executable that integrates the system of differential equations written in Fortran and importing the output in the MATLAB program, which generates graphics and other information on the ray. This work is inspired mainly by the program of Jones and Stephenson, widespre...

  2. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.

    Science.gov (United States)

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2013-08-15

    In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.

  3. Surfactant-thermal method to prepare two novel two-dimensional Mn–Sb–S compounds for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lina [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Ceantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Xiong, Wei-Wei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Peizhou [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Han, Jianyu [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhang, Guodong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Shengming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhao, Yanli [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xu, Rong, E-mail: RXu@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); SinBeRISE CREATE, National Research Foundation, CREATE Tower level 11, 1 Create Way, University Town, National University of Singapore, 138602 Singapore (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-12-15

    Two novel two-dimensional crystalline chalcogenidoantimonates, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions through using PEG-400 and sodium dodecyl sulfate as reaction media, respectively. In compound 1, [MnS{sub 2}N{sub 4}]{sub n}{sup 2n−} species connect [SbS{sub 2}]{sub n}{sup n−} chains via vertex-sharing S atoms to form neutral layered frameworks, while in compound 2, 8-membered windows [Sb{sub 4}S{sub 8}]{sub n}{sup 4n−}, 24-membered windows [Sb{sub 12}S{sub 24}]{sub n}{sup 12n−} and Mn atoms are connected together to form neutral 2D-[MnSb{sub 6}S{sub 10}] layers. All Sb atoms in both complexes form [Sb{sup ⍰}S{sub 3}]{sup 3−} trigonal-pyramid by coordinating with three S atoms. The steep UV–vis absorption edges indicate that 1 and 2 have the band gaps of 1.96 eV and 2.12 eV, respectively. Both compound 1 and 2 show active visible-light-driven photocatalytic properties for hydrogen production. - Graphiacl abstract: Two novel 2D framework sulfides, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions and show active visible-light-driven photocatalytic properties for hydrogen production. - Highlights: • Two novel two-dimensional Mn–Sb–sulfide frameworks. • Synthesis through surfactant-thermal condition. • Photocatalytic properties for hydrogen generation.

  4. A numerical method for three-dimensional vortical structure of spiral vortex in wind turbine with two-dimensional velocity data at plural azimuthal angles

    Science.gov (United States)

    Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao

    2016-06-01

    A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.

  5. Implementation of Refined Ray Tracing inside a Space Module

    Directory of Open Access Journals (Sweden)

    Balamati Choudhury

    2012-08-01

    Full Text Available Modern space modules are susceptible to EM radiation from both external and internal sources within the space module. Since the EM waves for various operations are frequently in the high-frequency domain, asymptotic raytheoretic methods are often the most optimal choice for deterministic EM field analysis. In this work, surface modeling of a typical manned space module is done by hybridizing a finite segment of right circular cylinder and a general paraboloid of revolution (GPOR frustum. A transmitting source is placed inside the space module and test rays are launched from the transmitter. The rays are allowed to propagate inside the cavity. Unlike the available ray-tracing package, that use numerical search methods, a quasi-analytical ray-propagation model is developed to obtain the ray-path details inside the cavity which involves the ray-launching, ray-bunching, and an adaptive cube for ray-reception.

  6. Approximate Solutions of Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method

    Institute of Scientific and Technical Information of China (English)

    宋丽娜; 王维国

    2012-01-01

    By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.

  7. Approximate Solutions of Nonlinear Fractional Kolmogorov—Petrovskii—Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method

    Science.gov (United States)

    Song, Li-Na; Wang, Wei-Guo

    2012-08-01

    By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.

  8. Solution to non-steady two-dimensional hydrofoil problems by using a simple panel method; Kantanna panel ho ni yoru hiteijo nijigen`yoku mondai no kaiho

    Energy Technology Data Exchange (ETDEWEB)

    Maita, S.; Ando, J.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-01

    A simple panel method, the source and quasi continuous vortex lattice method (SQCM) was expanded to two-dimensional non-steady hydrofoil problems. Discussions were given on the results of calculations on two-dimensional hydrofoils making a simple non-steady motion. In calculating hydrofoils which move suddenly from a still state with angle of elevation {alpha} at a velocity U, the following results were obtained: the time differential item in a pressure equation gives a considerably strong effect on lifting power; and the lifting power converges to a steady state with lapse of time, and the lifting power coefficient in that state shows that the lifting power increases as hydrofoil thickness increases. This result agrees with the hydrofoil thickness effect in the two-dimensional steady problem, proving the reasonability of this calculation method. In the calculations of time history of the lifting power acting on hydrofoils passing a sinusoidal gust and hydrofoils in a pitching motion, the calculated values from the SQCM were found to approach analysis solution to thin hydrofoils as the hydrofoil thickness becomes thinner for both cases. This result also proves the result of calculations on non-steady state by using the SQCM reasonable. 11 refs., 10 figs.

  9. Coupling Green-Ampt infiltration method and two-dimensional kinematic wave theory for flood forecast in semi-arid catchment

    Directory of Open Access Journals (Sweden)

    L.-L. Wang

    2011-08-01

    Full Text Available Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM. Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.

  10. Coupling Green-Ampt infiltration method and two-dimensional kinematic wave theory for flood forecast in semi-arid catchment

    Science.gov (United States)

    Wang, L.-L.; Chen, D.-H.; Li, Z.-J.; Zhao, L.-N.

    2011-08-01

    Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model) coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM). Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.

  11. Evaluation of different protein extraction methods for banana (Musa spp.) root proteome analysis by two-dimensional electrophoresis.

    Science.gov (United States)

    Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M

    2015-02-01

    Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.

  12. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  13. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media.

    Science.gov (United States)

    Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning

    2012-02-01

    This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.

  14. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  15. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  16. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  17. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

  18. Evaluation of left ventricular rotation by two-dimensional speckle tracking method and real-time three-dimensional echocardiography: comparison with MRI tagging method.

    Science.gov (United States)

    Hayashi, Hidetaka; Izumi, Chisato; Takahashi, Shuichi; Uchikoshi, Masato; Yamazaki, Ryou; Asanuma, Toshihiko; Ishikura, Fuminobu; Beppu, Shintaro; Nakatani, Satoshi

    2011-09-01

    Recently, it has become possible to evaluate left ventricular (LV) torsion by two-dimensional (2D) speckle tracking images. However, LV torsion is a three-dimensional (3D) performance, which per se cannot be assessed by the 2D speckle tracking method. The present study investigated the accuracy of the 2D speckle tracking method and real-time 3D echocardiography in measuring LV rotation, comparing with the MRI tagging method. We assessed LV apical rotation using the 2D speckle tracking method, real-time 3D echocardiography, and MRI tagging method in 26 normal subjects, and compared the results of these three methods. LV apical rotation was measured just before the level in which the posterior papillary muscle was absorbed into the free wall. The degree of LV apical rotation evaluated by the 2D speckle tracking method (Δθ 2D) was significantly smaller than that evaluated by 3D echocardiography (Δθ 3D) and the MRI tagging method (Δθ MRI) (Δθ 2D 7.3 ± 2.8°; Δθ 3D 8.8 ± 3.4°; Δθ MRI 9.0 ± 3.4°; Δθ 2D vs. Δθ 3D, p = 0.0001; Δθ 2D vs. Δθ MRI, p speckle tracking method compared with the MRI tagging method, whereas it could be precisely measured by 3D echocardiography.

  19. A new method for the determination of peak distribution across a two-dimensional separation space for the identification of optimal column combinations.

    Science.gov (United States)

    Leonhardt, Juri; Teutenberg, Thorsten; Buschmann, Greta; Gassner, Oliver; Schmidt, Torsten C

    2016-11-01

    For the identification of the optimal column combinations, a comparative orthogonality study of single columns and columns coupled in series for the first dimension of a microscale two-dimensional liquid chromatographic approach was performed. In total, eight columns or column combinations were chosen. For the assessment of the optimal column combination, the orthogonality value as well as the peak distributions across the first and second dimension was used. In total, three different methods of orthogonality calculation, namely the Convex Hull, Bin Counting, and Asterisk methods, were compared. Unfortunately, the first two methods do not provide any information of peak distribution. The third method provides this important information, but is not optimal when only a limited number of components are used for method development. Therefore, a new concept for peak distribution assessment across the separation space of two-dimensional chromatographic systems and clustering detection was developed. It could be shown that the Bin Counting method in combination with additionally calculated histograms for the respective dimensions is well suited for the evaluation of orthogonality and peak clustering. The newly developed method could be used generally in the assessment of 2D separations. Graphical Abstract ᅟ.

  20. A sound ray tracing algorithm in three-dimensional heterogeneous media based on wavefront traveltimes interpolation

    Institute of Scientific and Technical Information of China (English)

    HUANG Yueqin; ZHANG Jianzhong

    2008-01-01

    A kind of three-dimensional(3-D) sound ray tracing algorithm in heterogeneous media is studied. This algorithm includes two steps: the first step computes the wavefront traveltimes forward; the second step traces the sound rays backward. In the first step, the computation of wavefront traveltimes at discrete grid points from the sound source, was found on Eikonal equation solutions and carried out by GMM (Group marching method) wavefront marching method based on level set. In the second step, sound ray tracing was proceeded gradually from the receiver to each cell towards the sound source, with wavefront traveltimes computed in the first step. Time values on arbitrary positions in each cuboid cell can be expressed by linear interpolation of wavefront traveltimes at the same cell's grid points. Thus,an algorithm of 3-D sound ray tracing in heterogeneous media is put forward. The simulation results indicate that this method can improve both the accuracy and the efficiency of 3-D sound ray tracing greatly.

  1. A belief-propagation-based decoding method for two-dimensional barcodes with monochrome auxiliary lines robust against non-uniform geometric distortion

    Science.gov (United States)

    Kamizuru, Kohei; Nakamura, Kazuya; Kawasaki, Hiroshi; Ono, Satoshi

    2017-03-01

    Two-dimensional (2D) codes are widely used for various fields such as production, logistics, and marketing thanks to their larger capacity than one-dimensional barcodes. However, they are subject to distortion when printed on non-rigid materials, such as papers and clothes. Although general 2D code decoders correct uniform distortion such as perspective distortion, it is difficult to correct non-uniform and irregular distortion of the 2D code itself. This paper proposes a decoding method for the 2D code, which models monochrome auxiliary line recognition as Markov random field, and solves it using belief propagation.

  2. Solution of Two-dimensional Parabolic Equation Subject to Non-local Boundary Conditions Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Puskar Raj SHARMA

    2012-01-01

    Full Text Available Aim of the paper is to investigate solution of twodimensional linear parabolic partial differential equation with non-local boundary conditions using Homotopy Perturbation Method (HPM. This method is not only reliable in obtaining solution of such problems in series form with high accuracy but it also guarantees considerable saving of the calculation volume and time as compared to other methods. The application of the method has been illustrated through an example

  3. Evaluation of protein extraction methods suitable for two-dimensional gel electrophoresis of the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean (Glycine max (L.) Merr.) worldwide. In this study, three different protein extraction methods including phenol/ammonium acetate (phenol method), thiourea/urea solublization (lysis method) and trichloroaceti...

  4. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  5. Computing a numerical solution of two dimensional non-linear Schrödinger equation on complexly shaped domains by RBF based differential quadrature method

    Science.gov (United States)

    Golbabai, Ahmad; Nikpour, Ahmad

    2016-10-01

    In this paper, two-dimensional Schrödinger equations are solved by differential quadrature method. Key point in this method is the determination of the weight coefficients for approximation of spatial derivatives. Multiquadric (MQ) radial basis function is applied as test functions to compute these weight coefficients. Unlike traditional DQ methods, which were originally defined on meshes of node points, the RBFDQ method requires no mesh-connectivity information and allows straightforward implementation in an unstructured nodes. Moreover, the calculation of coefficients using MQ function includes a shape parameter c. A new variable shape parameter is introduced and its effect on the accuracy and stability of the method is studied. We perform an analysis for the dispersion error and different internal parameters of the algorithm are studied in order to examine the behavior of this error. Numerical examples show that MQDQ method can efficiently approximate problems in complexly shaped domains.

  6. Projectile Two-dimensional Coordinate Measurement Method Based on Optical Fiber Coding Fire and its Coordinate Distribution Probability

    Science.gov (United States)

    Li, Hanshan; Lei, Zhiyong

    2013-01-01

    To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.

  7. In situ analysis of size distribution of nano-particles in reactive plasmas using two dimensional laser light scattering method

    Science.gov (United States)

    Kamataki, K.; Morita, Y.; Shiratani, M.; Koga, K.; Uchida, G.; Itagaki, N.

    2012-04-01

    We have developed a simple in-situ method for measuring the size distribution (the mean size (mean diameter) and size dispersion) of nano-particles generated in reactive plasmas using the 2 dimensional laser light scattering (2DLLS) method. The principle of the method is based on thermal coagulation of the nano-particles, which occurs after the discharge is turned off, and the size and density of the nano-particles can then be deduced. We first determined the 2D spatial distribution of the density and size of the nano-particles in smaller particle size (a few nm) range than ones deduced from the conventional 2DLLS method. From this 2D dataset, we have for the first time been able to determine the size distribution of nano-particles generated in a reactive plasma without ex-situ measurements.

  8. [An improvement on the two-dimensional convolution method of image reconstruction and its application to SPECT].

    Science.gov (United States)

    Suzuki, S; Arai, H

    1990-04-01

    In single-photon emission computed tomography (SPECT) and X-ray CT one-dimensional (1-D) convolution method is used for their image reconstruction from projections. The method makes a 1-D convolution filtering on projection data with a 1-D filter in the space domain, and back projects the filtered data for reconstruction. Images can also be reconstructed by first forming the 2-D backprojection images from projections and then convoluting them with a 2-D space-domain filter. This is the reconstruction by the 2-D convolution method, and it has the opposite reconstruction process to the 1-D convolution method. Since the 2-D convolution method is inferior to the 1-D convolution method in speed in reconstruction, it has no practical use. In the actual reconstruction by the 2-D convolution method, convolution is made on a finite plane which is called convolution window. A convolution window of size N X N needs a 2-D discrete filter of the same size. If better reconstructions are achieved with small convolution windows, the reconstruction time for the 2-D convolution method can be reduced. For this purpose, 2-D filters of a simple function form are proposed which can give good reconstructions with small convolution windows. They are here defined on a finite plane, depending on the window size used, although a filter function is usually defined on the infinite plane. They are however set so that they better approximate the property of a 2-D filter function defined on the infinite plane. Filters of size N X N are thus determined. Their value varies with window size. The filters are applied to image reconstructions of SPECT.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Optimal protein extraction methods from diverse sample types for protein profiling by using Two-Dimensional Electrophoresis (2DE).

    Science.gov (United States)

    Tan, A A; Azman, S N; Abdul Rani, N R; Kua, B C; Sasidharan, S; Kiew, L V; Othman, N; Noordin, R; Chen, Y

    2011-12-01

    There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample.

  10. Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method.

    Science.gov (United States)

    Noguchi, Kyotaro; Tanikawa, Toko; Inagaki, Yoshiyuki; Ishizuka, Shigehiro

    2017-06-01

    Several recent studies have used the net sheet method to estimate fine root production rates in forest ecosystems, wherein net sheets are inserted into the soil and fine roots growing through them are observed. Although this method has advantages in terms of its easy handling and low cost, there are uncertainties in the estimates per unit soil volume or unit stand area, because the net sheet is a two-dimensional material. Therefore, this study aimed to establish calculation procedures for estimating fine root production rates from two-dimensional fine root data on net sheets. This study was conducted in a hinoki cypress (Chamaecyparis obtusa (Sieb. & Zucc.) Endl.) stand in western Japan. We estimated fine root production rates in length and volume from the number (RN) and cross-sectional area (RCSA) densities, respectively, for fine roots crossing the net sheets, which were then converted to dry mass values. For these calculations, we used empirical regression equations or theoretical equations between the RN or RCSA densities on the vertical walls of soil pits and fine root densities in length or volume, respectively, in the soil, wherein the theoretical equations assumed random orientation of the growing fine roots. The estimates of mean fine root (diameter sheets using these calculation procedures, with the empirical regression equations reflecting fine root orientation in the study site. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method.

    Science.gov (United States)

    Halliday, I; Lishchuk, S V; Spencer, T J; Pontrelli, G; Evans, P C

    2016-08-01

    We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.

  12. Three-dimensional structural damage localization system and method using layered two-dimensional array of capacitance sensors

    Science.gov (United States)

    Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)

    2010-01-01

    A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.

  13. Two-dimensional Length Extraction of Ballistic Target from ISAR Images Using a New Scaling Method by Affine Registration

    Directory of Open Access Journals (Sweden)

    Jin Guanghu

    2014-09-01

    Full Text Available The length of ballistic target is one of the most important features for target recognition. It can be extracted from ISAR Images. Unlike from the optical image, the length extraction from ISAR image has two difficulties. The first one is that it is hard to get the actual position of scattering centres by the traditional target extraction method. The second one is that the ISAR image’s cross scale is not known because of the target’s complex rotation. Here we propose two methods to solve these problems. Firstly, we use clustering method to get scattering centers. Secondly we propose to get cross scale of the ISAR images by affine registration. Experiments verified that our approach is realisable and has good performance.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.458-463, DOI:http://dx.doi.org/10.14429/dsj.64.5001

  14. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  15. Robust Image Denoising using a Virtual Flash Image for Monte Carlo Ray Tracing

    DEFF Research Database (Denmark)

    Moon, Bochang; Jun, Jong Yun; Lee, JongHyeob

    2013-01-01

    parameters. To highlight the benefits of our method, we apply our method to two Monte Carlo ray tracing methods, photon mapping and path tracing, with various input scenes. We demonstrate that using virtual flash images and homogeneous pixels with a standard denoising method outperforms state-of-the-art......We propose an efficient and robust image-space denoising method for noisy images generated by Monte Carlo ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels. Inspired by recent developments in flash photography, virtual flash images emulate...... values. While denoising each pixel, we consider only homogeneous pixels—pixels that are statistically equivalent to each other. This makes it possible to define a stochastic error bound of our method, and this bound goes to zero as the number of ray samples goes to infinity, irrespective of denoising...

  16. Comparison of alveolar ridge preservation method using three dimensional micro-computed tomographic analysis and two dimensional histometric evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2014-06-15

    This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.

  17. A new numerical method for solving two-dimensional variable-order anomalous sub-diffusion equation

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2016-01-01

    Full Text Available The novelty and innovativeness of this paper are the combination of reproducing kernel theory and spline, this leads to a new simple but effective numerical method for solving variable-order anomalous sub-diffusion equation successfully. This combination overcomes the weaknesses of piecewise polynomials that can not be used to solve differential equations directly because of lack of the smoothness. Moreover, new bases of reproducing kernel spaces are constructed. On the other hand, the existence of any ε-approximate solution is proved and an effective method for obtaining the ε-approximate solution is established. A numerical example is given to show the accuracy and effectiveness of theoretical results.

  18. Natural position of the head: review of two-dimensional and three-dimensional methods of recording.

    Science.gov (United States)

    Cassi, D; De Biase, C; Tonni, I; Gandolfini, M; Di Blasio, A; Piancino, M G

    2016-04-01

    Both the correct position of the patient's head and a standard system for the acquisition of images are essential for objective evaluation of the facial profile and the skull, and for longitudinal superimposition. The natural position of the head was introduced into orthodontics in the late 1950s, and is used as a postural basis for craniocervical and craniofacial morphological analysis. It can also have a role in the planning of the surgical correction of craniomaxillofacial deformities. The relatively recent transition in orthodontics from 2-dimensional to 3-dimensional imaging, and from analogue to digital technology, has renewed attention in finding a versatile method for the establishment of an accurate and reliable head position during the acquisition of serial records. In this review we discuss definition, clinical applications, and procedures to establish the natural head position and their reproducibility. We also consider methods to reproduce and record the position in two and three planes.

  19. Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)

    2008-03-17

    We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.

  20. Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity.

    Science.gov (United States)

    Shahriari, S; Kadem, L; Rogers, B D; Hassan, I

    2012-11-01

    This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o)  = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.

  1. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    Science.gov (United States)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  2. Growth of two-dimensional KGd(WO 4) 2 nanorods by modified sol-gel Pechini method

    Science.gov (United States)

    Thangaraju, D.; Samuel, P.; Moorthy Babu, S.

    2010-08-01

    KGd (WO 4) 2 nanocrystalline powder was obtained by modified sol-gel Pechini method. The synthesis procedure was optimized with TGA and DTA analyses. Synthesized polymeric resin was calcinated at 550 and 700 °C using resistive furnace in an open atmosphere. Crystallinity of annealed powder was confirmed using X-ray diffraction. Absorption peaks of FT-IR for gel and the annealed samples, at two different temperatures show the decomposition of citrate-ethylene glycol complex and formation of KGW particles. Raman analysis confirms that the derived particles have well constructed bridges of W-O-O-W. External morphology of the particles was analysed through SEM.

  3. An innovative method for quality control of conjugated Haemophilus influenzae vaccines: A short review of two-dimensional nanoparticle electrophoresis.

    Science.gov (United States)

    Tietz, Dietmar

    2009-12-25

    This article provides an overview of a 2D agarose electrophoretic procedure for the characterization of semi-synthetic Haemophilus influenzae type b meningitis vaccines that were prepared for the immunization of small children. The analysis of such vaccines has been particularly challenging because the vaccine particles (i) are highly negatively charged, (ii) are as large as or even larger than intact viruses, and (iii) have a continuous (polydisperse) size distribution because of randomizing steps in the vaccine production (sonification and crosslinking). As a result of these characteristics, 1D electrophoresis of the vaccines produced smears without discernable peaks, but with a second dimension of separation a characteristic vaccine fingerprint was obtained. Whereas O'Farrell gels can accomplish a 2D separation according to size and charge for samples with protein-sized particles, nondenaturing 2D agarose electrophoresis achieves a similar result for much larger virus-sized particles. The separation principle, however, is different. Even though the 2D electrophoretic method was developed from 1983 to 1995, it remains a promising tool for vaccine quality control and for predicting vaccine effectiveness. Modern technology makes the analysis significantly more practical and affordable than it was more than 10 years ago, and the method is applicable to a variety of conjugated vaccines and complex mixtures of virus-sized particles.

  4. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.

    Science.gov (United States)

    Cheng, Jianlin; Saigo, Hiroto; Baldi, Pierre

    2006-03-15

    The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to predict whether a given protein chain contains intrachain disulphide bridges or not, and recursive neural networks to predict the bonding probabilities of each pair of cysteines in the chain. These probabilities in turn lead to an accurate estimation of the total number of disulphide bridges and to a weighted graph matching problem that can be addressed efficiently to infer the global disulphide bridge connectivity pattern. This approach can be applied both in situations where the bonded state of each cysteine is known, or in ab initio mode where the state is unknown. Furthermore, it can easily cope with chains containing an arbitrary number of disulphide bridges, overcoming one of the major limitations of previous approaches. It can classify individual cysteine residues as bonded or nonbonded with 87% specificity and 89% sensitivity. The estimate for the total number of bridges in each chain is correct 71% of the times, and within one from the true value over 94% of the times. The prediction of the overall disulphide connectivity pattern is exact in about 51% of the chains. In addition to using profiles in the input to leverage evolutionary information, including true (but not predicted) secondary structure and solvent accessibility information yields small but noticeable improvements. Finally, once the system is trained, predictions can be computed rapidly on a proteomic or protein-engineering scale. The disulphide bridge prediction server (DIpro), software, and datasets are available through www.igb.uci.edu/servers/psss.html.

  5. Fast Ray Tracing of Lunar Digital Elevation Models

    Science.gov (United States)

    McClanahan, Timothy P.; Evans, L. G.; Starr, R. D.; Mitrofanov, I.

    2009-01-01

    Ray-tracing (RT) of Lunar Digital Elevation Models (DEM)'s is performed to virtually derive the degree of radiation incident to terrain as a function of time, orbital and ephemeris constraints [I- 4]. This process is an integral modeling process in lunar polar research and exploration due to the present paucity of terrain information at the poles and mission planning activities for the anticipated spring 2009 launch of the Lunar Reconnaissance Orbiter (LRO). As part of the Lunar Exploration Neutron Detector (LEND) and Lunar Crater Observation and Sensing Satellite (LCROSS) preparations RI methods are used to estimate the critical conditions presented by the combined effects of high latitude, terrain and the moons low obliquity [5-7]. These factors yield low incident solar illumination and subsequently extreme thermal, and radiation conditions. The presented research uses RT methods both for radiation transport modeling in space and regolith related research as well as to derive permanently shadowed regions (PSR)'s in high latitude topographic minima, e.g craters. These regions are of scientific and human exploration interest due to the near constant low temperatures in PSRs, inferred to be < 100 K. Hydrogen is thought to have accumulated in PSR's through the combined effects of periodic cometary bombardment and/or solar wind processes, and the extreme cold which minimizes hydrogen sublimation [8-9]. RT methods are also of use in surface position optimization for future illumination dependent on surface resources e.g. power and communications equipment.

  6. A method for modifying two-dimensional adaptive wind-tunnel walls including analytical and experimental verification

    Science.gov (United States)

    Everhart, J. L.

    1983-01-01

    The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.

  7. Two-Dimensional Boundary Element Method Application for Surface Deformation Modeling around Lembang and Cimandiri Fault, West Java

    Science.gov (United States)

    Mahya, M. J.; Sanny, T. A.

    2017-04-01

    Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.

  8. Ray-tracing simulations of spherical Johann diffraction spectrometer for in-beam X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jagodziński, P., E-mail: jagodzin@tu.kielce.pl [Department of Physics, Kielce University of Technology, Tysiaclecia PP 7, 25-314 Kielce (Poland); Pajek, M.; Banaś, D. [Institute of Physics, Jan Kochanowski University, Świȩtokrzyska 15, 25-406 Kielce (Poland); Beyer, H.F. [GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Trassinelli, M. [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, 4 Place Jussieu, 75015 Paris (France); Stoehlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Helmholtz-Insitut Jena, D-07743 Jena (Germany); Institut für Optic und Quantenelektronik, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany)

    2014-07-01

    The results of the Monte-Carlo ray-tracing simulations for a Johann-type Bragg spectrometer with spherically curved-crystal designed to detect the X-rays from a fast-moving source are reported. These calculations were performed to optimize the X-ray spectrometer to be used at the gas-target installed at ion storage ring for high-resolution X-ray experiments. In particular, the two-dimensional distributions of detected photons were studied using the Monte-Carlo method both for the stationary and moving X-ray sources, taking into account a detailed description of X-ray source and X-ray diffraction on the crystal as well as a role of the Doppler effect for in-beam experiments. The origin of the asymmetry of observed X-ray profiles was discussed in detail and the procedure to derive a precise (sub-eV) X-ray transition energy for such asymmetric profiles was proposed. The results are important for the investigations of 1s2p{sup 3}P{sub 2}→1s2s{sup 3}S{sub 1} intrashell transition in excited He-like uranium ions in in-beam X-ray experiments.

  9. Ray Tracing RF Field Prediction: An Unforgiving Validation

    Directory of Open Access Journals (Sweden)

    E. M. Vitucci

    2015-01-01

    Full Text Available The prediction of RF coverage in urban environments is now commonly considered a solved problem with tens of models proposed in the literature showing good performance against measurements. Among these, ray tracing is regarded as one of the most accurate ones available. In the present work, however, we show that a great deal of work is still needed to make ray tracing really unleash its potential in practical use. A very extensive validation of a state-of-the-art 3D ray tracing model is carried out through comparison with measurements in one of the most challenging environments: the city of San Francisco. Although the comparison is based on RF cellular coverage at 850 and 1900 MHz, a widely studied territory, very relevant sources of error and inaccuracy are identified in several cases along with possible solutions.

  10. Simplification of vector ray tracing by the groove function.

    Science.gov (United States)

    Hu, Zhongwen; Liu, Zuping; Wang, Qiuping

    2005-01-01

    Tracing rays through arbitrary diffraction gratings (including holographic gratings of the second generation fabricated on a curved substrate) by the vector form is somewhat complicated. Vector ray tracing utilizes the local groove density, the calculation of which highly depends on how the grooves are generated. Characterizing a grating by its groove function, available for almost arbitrary gratings, is much simpler than doing so by its groove density, essentially being a vector. Applying the concept of Riemann geometry, we give an expression of the groove density by the groove function. The groove function description of a grating can thus be incorporated into vector ray tracing, which is beneficial especially at the design stage. A unified explicit grating ray-tracing formalism is given as well.

  11. Three-dimensional polarization ray-tracing calculus II: retardance.

    Science.gov (United States)

    Yun, Garam; McClain, Stephen C; Chipman, Russell A

    2011-06-20

    The concept of retardance is critically analyzed for ray paths through optical systems described by a three-by-three polarization ray-tracing matrix. Algorithms are presented to separate the effects of retardance from geometric transformations. The geometric transformation described by a "parallel transport matrix" characterizes nonpolarizing propagation through an optical system, and also provides a proper relationship between sets of local coordinates along the ray path. The proper retardance is calculated by removing this geometric transformation from the three-by-three polarization ray-tracing matrix. Two rays with different ray paths through an optical system can have the same polarization ray-tracing matrix but different retardances. The retardance and diattenuation of an aluminum-coated three fold-mirror system are analyzed as an example.

  12. Assessing the accuracy and reliability of ultrasonographic three-dimensional parathyroid volume measurement in a patient with secondary hyperparathyroidism: a comparison with the two-dimensional conventional method

    Directory of Open Access Journals (Sweden)

    Sung-Hye You

    2017-01-01

    Full Text Available Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL, for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D and three-dimensional (3D methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.

  13. Assessing the accuracy and reliability of ultrasonographic three-dimensional parathyroid volume measurement in a patient with secondary hyperparathyroidism: a comparison with the two-dimensional conventional method

    Science.gov (United States)

    2017-01-01

    Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism. PMID:27457337

  14. Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens

    Science.gov (United States)

    Le, Zichun; Wu, Xiang; Sun, Yunli; Du, Ying

    2017-07-01

    In this paper, a two-dimensional liquid gradient refractive index (L-GRIN) microlens is designed which can be used in adjusting focusing direction and focal spot of light beam. Finite element method (FEM) is used to simulate the convection diffusion process happening in core inlet flow and cladding inlet flow. And the ray tracing method shows us the light beam focusing effect including the extrapolation of focal length and output beam spot size. When the flow rates of the core and cladding fluids are held the same between the internal and external, left and right, and upper and lower inlets, the focal length varied from 313 μm to 53.3 μm while the flow rate of liquids ranges from 500 pL/s to 10,000 pL/s. While the core flow rate is bigger than the cladding inlet flow rate, the light beam will focus on a light spot with a tunable size. By adjusting the ratio of cladding inlet flow rate including Qright/Qleft and Qup/Qdown, we get the adjustable two-dimensional focus direction rather than the one-dimensional focusing. In summary, by adjusting the flow rate of core inlet and cladding inlet, the focal length, output beam spot and focusing direction of the input light beam can be manipulated. We suppose this kind of flexible microlens can be used in integrated optics and lab-on-a-chip system.

  15. High performance dosimetry calculations using adapted ray-tracing

    Science.gov (United States)

    Perrotte, Lancelot; Saupin, Guillaume

    2010-11-01

    When preparing interventions on nuclear sites, it is interesting to study different scenarios, to identify the most appropriate one for the operator(s). Using virtual reality tools is a good way to simulate the potential scenarios. Thus, taking advantage of very efficient computation times can help the user studying different complex scenarios, by immediately evaluating the impact of any changes. In the field of radiation protection, people often use computation codes based on the straight line attenuation method with build-up factors. As for other approaches, geometrical computations (finding all the interactions between radiation rays and the scene objects) remain the bottleneck of the simulation. We present in this paper several optimizations used to speed up these geometrical computations, using innovative GPU ray-tracing algorithms. For instance, we manage to compute every intersectionbetween 600 000 rays and a huge 3D industrial scene in a fraction of second. Moreover, our algorithm works the same way for both static and dynamic scenes, allowing easier study of complex intervention scenarios (where everything moves: the operator(s), the shielding objects, the radiation sources).

  16. Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system

    CERN Document Server

    Sibley, David N; Kalliadasis, Serafim

    2012-01-01

    We consider the spreading of a thin two-dimensional droplet on a planar substrate as a prototype system to compare the contemporary model for contact line motion based on interface formation of Shikhmurzaev [Int. J. Multiphas. Flow 19, 589 (1993)], to the more commonly used continuum fluid dynamical equations augmented with the Navier-slip condition. Considering quasistatic droplet evolution and using the method of matched asymptotics, we find that the evolution of the droplet radius using the interface formation model reduces to an equivalent expression for a slip model, where the prescribed microscopic dynamic contact angle has a velocity dependent correction to its static value. This result is found for both the original interface formation model formulation and for a more recent version, where mass transfer from bulk to surface layers is accounted for through the boundary conditions. Various features of the model, such as the pressure behaviour and rolling motion at the contact line, and their relevance, ...

  17. Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods

    Science.gov (United States)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    2016-04-01

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.

  18. IONORT: IONOsphere Ray-Tracing - Ray-tracing program in ionospheric magnetoplasma

    CERN Document Server

    Bianchi, Cesidio; Azzarone, Adriano

    2010-01-01

    The application package "IONORT" for the calculation of ray-tracing can be used by customers using the Windows operating system. It is a program whose interface with the user is created in MATLAB. In fact, the program launches an executable that integrates the system of differential equations written in Fortran and imports the output in the MATLAB program, which generates graphics and other information on the ray. This work is inspired mainly by the program of Jones and Stephenson, widespread in the scientific community that is interested in radio propagation via the ionosphere. The program is written in FORTRAN 77, a mainframe CDC-3800. The code itself, as well as being very elegant, is highly efficient and provides the basis for many programs now in use mainly in the Coordinate Registration (CR) of Over The Horizon (OTH) radar. The input and output of this program require devices no longer in use for several decades and there are no compilers that accept instructions written for that type of mainframe. For ...

  19. Assessing the accuracy and reliability of ultrasonographic three-dimensional parathyroid volume measurement in a patient with secondary hyperparathyroidism: a comparison with the two-dimensional conventional method

    Energy Technology Data Exchange (ETDEWEB)

    You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Suh, Sangil; Ryoo, In Seon; Seol, Hae Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2017-01-15

    The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.

  20. GPU-based Ray Tracing of Dynamic Scenes

    Directory of Open Access Journals (Sweden)

    Christopher Lux

    2010-08-01

    Full Text Available Interactive ray tracing of non-trivial scenes is just becoming feasible on single graphics processing units (GPU. Recent work in this area focuses on building effective acceleration structures, which work well under the constraints of current GPUs. Most approaches are targeted at static scenes and only allow navigation in the virtual scene. So far support for dynamic scenes has not been considered for GPU implementations. We have developed a GPU-based ray tracing system for dynamic scenes consisting of a set of individual objects. Each object may independently move around, but its geometry and topology are static.

  1. Microcellular propagation prediction model based on an improved ray tracing algorithm.

    Science.gov (United States)

    Liu, Z-Y; Guo, L-X; Fan, T-Q

    2013-11-01

    Two-dimensional (2D)/two-and-one-half-dimensional ray tracing (RT) algorithms for the use of the uniform theory of diffraction and geometrical optics are widely used for channel prediction in urban microcellular environments because of their high efficiency and reliable prediction accuracy. In this study, an improved RT algorithm based on the "orientation face set" concept and on the improved 2D polar sweep algorithm is proposed. The goal is to accelerate point-to-point prediction, thereby making RT prediction attractive and convenient. In addition, the use of threshold control of each ray path and the handling of visible grid points for reflection and diffraction sources are adopted, resulting in an improved efficiency of coverage prediction over large areas. Measured results and computed predictions are also compared for urban scenarios. The results indicate that the proposed prediction model works well and is a useful tool for microcellular communication applications.

  2. Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics

    CERN Document Server

    Halimeh, Jad C

    2012-01-01

    The design rules of transformation optics generally lead to spatially inhomogeneous and anisotropic impedance-matched magneto-dielectric material distributions for, e.g., free-space invisibility cloaks. Recently, simplified anisotropic non-magnetic free-space cloaks made of a locally uniaxial dielectric material (calcite) have been realized experimentally. In a two-dimensional setting and for in-plane polarized light propagating in this plane, the cloaking performance can still be perfect for light rays. However, for general views in three dimensions, various imperfections are expected. In this paper, we study two different purely dielectric uniaxial cylindrical free-space cloaks. For one, the optic axis is along the radial direction, for the other one it is along the azimuthal direction. The azimuthal uniaxial cloak has not been suggested previously to the best of our knowledge. We visualize the cloaking performance of both by calculating photorealistic images rendered by ray tracing. Following and complemen...

  3. Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: a two-dimensional predictor-corrector method.

    Science.gov (United States)

    Law, A D; Buzza, D M A

    2009-09-07

    The structure and stability of colloidal monolayers depend crucially on the effective pair potential u(r) between colloidal particles. In this paper, we develop a two-dimensional (2D) predictor-corrector method for extracting u(r) from the pair correlation function g(r) of dense colloidal monolayers. The method is based on an extension of the three-dimensional scheme of Rajagopalan and Rao [Phys. Rev. E 55, 4423 (1997)] to 2D by replacing the unknown bridge function B(r) with the hard-disk bridge function B(d)(r); the unknown hard-disk diameter d is then determined using an iterative scheme. We compare the accuracy of our predictor-corrector method to the conventional one-step inversion schemes of hypernetted chain closure (HNC) and Percus-Yevick (PY) closure. Specifically we benchmark all three schemes against g(r) data generated from Monte Carlo simulation for a range of 2D potentials: exponential decay, Stillinger-Hurd, Lennard-Jones, and Derjaguin-Landau-Verwey-Overbeek. We find that for all these potentials, the predictor-corrector method is at least as good as the most accurate one-step method for any given potential, and in most cases it is significantly better. In contrast the accuracy of the HNC and PY methods relative to each other depends on the potential studied. The proposed predictor-corrector scheme is therefore a robust and more accurate alternative to these conventional one-step inversion schemes.

  4. Protein Extraction Methods for Two-Dimensional Electrophoresis from Baphicacanthus cusia (Nees) Bremek Leaves-A Medicinal Plant with High Contents of Interfering Compounds

    Institute of Scientific and Technical Information of China (English)

    XIANG Xiao-liang; NING Shu-ju; JIANG Xia; GONG Xiao-gui; ZHU Ren-lei; WEI Dao-zhi

    2010-01-01

    Protein extraction is a critical step for two-dimensional electrophoresis (2-DE). Different plant samples require different and adaptive protein extraction protocols. The leaves of medicinal plant, Baphicacanthus cusia (Nees) Bremek are notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds (especially the secondary metabolites and pigments). This study was aimed to establish a routine procedure for the proteomic analysis of B. cusia leaves, and a new protocol for the protein extraction was developed by optimizing tfichloroacetic acid (TCA)/acetone extraction method. The efficiency of this protocol was demonstrated by comparison with 3 published protein extraction methods (chloroform/acetone, Mg/NP-40, Tris-base/acetone). The results showed that the optimized TCA/acetone precipitation extraction method gave a relatively high protein yield (9.263 mg g fresh weight), high-resolution separation, clear protein profiles, the highest proteins spots (1 311 protein spots), and displayed less contamination in 2DE gels. Therefore, the results suggested that the optimized TCA/acetone method was the most effective among the 4 methods for B. cusia leaves.

  5. Approximate P-wave ray tracing and dynamic ray tracing in weakly orthorhombic media of varying symmetry orientation

    KAUST Repository

    Masmoudi, Nabil

    2014-01-01

    We present an approximate, but efficient and sufficiently accurate P-wave ray tracing and dynamic ray tracing procedure for 3D inhomogeneous, weakly orthorhombic media with varying orientation of symmetry planes. In contrast to commonly used approaches, the orthorhombic symmetry is preserved at any point of the model. The model is described by six weak-anisotropy parameters and three Euler angles, which may vary arbitrarily, but smoothly, throughout the model. We use the procedure for the calculation of rays and corresponding two-point traveltimes in a VSP experiment in a part of the BP benchmark model generalized to orthorhombic symmetry.

  6. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...

  7. Ray tracing and refraction in the modified US1976 atmosphere

    NARCIS (Netherlands)

    van der Werf, SY

    2003-01-01

    A new and flexible ray-tracing procedure for calculating astronomical refraction is outlined and applied to the US1976 standard atmosphere. This atmosphere is generalized to allow for a free choice of the temperature and pressure at sea level, and in this form it has been named the modified US1976

  8. Peak purity assessment in a triple-active fixed-dose combination drug product related substances method using a commercial two-dimensional liquid chromatography system.

    Science.gov (United States)

    Shackman, Jonathan G; Kleintop, Brent L

    2014-10-01

    Pharmaceutical formulations containing multiple active components challenge the development of analytical methods, especially as the individual active ingredients diverge in their physicochemical properties. Establishing specificity, especially peak purity, is one of the major evaluation criteria when developing a related substances method for drug substances or products. Fixed-dose combination products may not be amenable to common strategies for assessing peak purity, such as performing orthogonal separations, due to the complexity of the separation and/or diversity of the active ingredients. An alternate approach to evaluating peak purity is demonstrated for a triple-active component fixed-dose combination product under development. A commercially available automated two-dimensional liquid chromatography system was used to perform a selective comprehensive multidimensional separation of an active ingredient peak. The first dimension performed the drug product impurity/degradant profiling method; the second dimension assayed these fractions using the drug substance profiling method, which was pseudo-orthogonal to the first dimension. A total of 14 targeted fractions were sampled across the first dimension main peak, with 11 containing detectable analytes and the remaining fractions bracketing the main peak. This degree of sampling allowed profiling of a coeluting degradant present at a 0.2% w/w level throughout the main peak.

  9. Application of adjustment calculus in the nodeless Trefftz method for a problem of two-dimensional temperature field of the boiling liquid flowing in a minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.

  10. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    Directory of Open Access Journals (Sweden)

    Ruijie Hao

    Full Text Available Longissimus dorsi muscle (LD proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  11. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    Science.gov (United States)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  12. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    Science.gov (United States)

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  13. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  14. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  15. Validation of a prefractionation method followed by two-dimensional electrophoresis – Applied to cerebrospinal fluid proteins from frontotemporal dementia patients

    Directory of Open Access Journals (Sweden)

    Sjögren Magnus

    2004-11-01

    Full Text Available Abstract Background The aim of this study was firstly, to improve and validate a cerebrospinal fluid (CSF prefractionation method followed by two-dimensional electrophoresis (2-DE and secondly, using this strategy to investigate differences between the CSF proteome of frontotemporal dementia (FTD patients and controls. From each subject three ml of CSF was prefractionated using liquid phase isoelectric focusing prior to 2-DE. Results With respect to protein recovery and purification potential, ethanol precipitation of the prefractionated CSF sample was found superior, after testing several sample preparation methods. The reproducibility of prefractionated CSF analyzed on 2-D gels was comparable to direct 2-DE analysis of CSF. The protein spots on the prefractionated 2-D gels had an increased intensity, indicating a higher protein concentration, compared to direct 2-D gels. Prefractionated 2-DE analysis of FTD and control CSF showed that 26 protein spots were changed at least two fold. Using mass spectrometry, 13 of these protein spots were identified, including retinol-binding protein, Zn-α-2-glycoprotein, proapolipoproteinA1, β-2-microglobulin, transthyretin, albumin and alloalbumin. Conclusion The results suggest that the prefractionated 2-DE method can be useful for enrichment of CSF proteins and may provide a new tool to investigate the pathology of neurodegenerative diseases. This study confirmed reduced levels of retinol-binding protein and revealed some new biomarker candidates for FTD.

  16. Applying a new computational method for biological tissue optics based on the time-dependent two-dimensional radiative transfer equation.

    Science.gov (United States)

    Asllanaj, Fatmir; Fumeron, Sebastien

    2012-07-01

    Optical tomography is a medical imaging technique based on light propagation in the near infrared (NIR) part of the spectrum. We present a new way of predicting the short-pulsed NIR light propagation using a time-dependent two-dimensional-global radiative transfer equation in an absorbing and strongly anisotropically scattering medium. A cell-vertex finite-volume method is proposed for the discretization of the spatial domain. The closure relation based on the exponential scheme and linear interpolations was applied for the first time in the context of time-dependent radiative heat transfer problems. Details are given about the application of the original method on unstructured triangular meshes. The angular space (4πSr) is uniformly subdivided into discrete directions and a finite-differences discretization of the time domain is used. Numerical simulations for media with physical properties analogous to healthy and metastatic human liver subjected to a collimated short-pulsed NIR light are presented and discussed. As expected, discrepancies between the two kinds of tissues were found. In particular, the level of light flux was found to be weaker (inside the medium and at boundaries) in the healthy medium than in the metastatic one.

  17. Validated Method for the Quantification of Buprenorphine in Postmortem Blood Using Solid-Phase Extraction and Two-Dimensional Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Nahar, Limon Khatun; Andrews, Rebecca; Paterson, Sue

    2015-09-01

    A highly sensitive and fully validated method was developed for the quantification of buprenorphine in postmortem blood. After a two-step protein precipitation process using acetonitrile, buprenorphine was purified using mixed-mode (C8/cation exchange) solid-phase extraction cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted, concentrated and derivatized using N-methyl-N-trimethylsilyltrifluoroacetamide. The samples were analyzed using two-dimensional gas chromatography-mass spectrometry (2D GC-MS) in selective ion-monitoring mode. A low polarity Rxi(®)-5MS (30 m × 0.25 mm I.D. × 0.25 µm) was used as the primary column and the secondary column was a mid-polarity Rxi(®) -17Sil MS (15 m × 0.32 mm I.D. × 0.25 µm). The assay was linear from 1.0 to 50.0 ng/mL (r(2) > 0.99; n = 6). Intraday (n = 6) and interday (n = 9) imprecisions (percentage relative standard deviation, % RSD) were selective with no interference from endogenous compounds or from 62 commonly encountered drugs. To prove method applicability to forensic postmortem cases, 14 authentic postmortem blood samples were analyzed.

  18. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, En-Yu [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Chawla, Nikhilesh [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jing, Tao [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Torquato, Salvatore [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (United States); Jiao, Yang, E-mail: yang.jiao.2@asu.edu [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  19. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    Science.gov (United States)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  20. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    CERN Document Server

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu

    2016-01-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conv...

  1. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2016-08-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  2. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin

    2016-08-01

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  3. A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures

    Science.gov (United States)

    Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-05-01

    A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.

  4. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Science.gov (United States)

    Santiago, Juan Agustin Calama; Utrilla, Miguel Angel Infante; Rodriguez, Maria Elisa Lavado

    2015-01-01

    This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose–volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose–distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data. PMID:26150681

  5. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Directory of Open Access Journals (Sweden)

    Juan Agustin Calama Santiago

    2015-01-01

    Full Text Available This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC positions and used as input to the treatment planning system (TPS to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D phantom gamma test (3% local dose - 3 mm for all of the treatment verifications, but in some dose-volume histogram (DVH comparisons, we note sensitive differences for the planning target volume (PTV coverage and for the maximum doses in at-risk organs (up to 3.5%. In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.

  6. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method

    Science.gov (United States)

    Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat

    2017-06-01

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  7. Validation of a PicoGreen-based DNA quantification integrated in an RNA extraction method for two-dimensional and three-dimensional cell cultures.

    Science.gov (United States)

    Chen, Yantian; Sonnaert, Maarten; Roberts, Scott J; Luyten, Frank P; Schrooten, Jan

    2012-06-01

    DNA measurement and RNA extraction are two frequently used methods for cell characterization. In the conventional protocols, they require similar, but separate samples and in most cases, different pretreatments. The few combined protocols that exist still include time-consuming steps. Hence, to establish an efficient combined RNA extraction and DNA measurement protocol for two-dimensional (2D) and three-dimensional (3D) cell cultures, a PicoGreen-based DNA measurement was integrated in an existing RNA extraction protocol. It was validated by analysis of the influence of different lysis buffers, RLT, RA1, or Trizol, used for RNA extraction on the measured DNA concentration. The DNA cell yield was evaluated both in cell suspensions (2D) and on 3D cell-seeded scaffolds. Results showed that the different RNA lysis buffers caused a concentration-dependent perturbation of the PicoGreen signal. The measured DNA concentrations in 2D and 3D using RLT and RA1 buffer were comparable, also to the positive control. We, therefore, concluded that RNA extraction protocols using RA1 or RLT buffer allow the integration of a DNA quantification step without the buffer influencing the results. Hence, the combined DNA measurement and RNA extraction offer an alternative for DNA measurement techniques that is time and sample saving, for both 2D cell cultures and specific 3D constructs.

  8. Evaluation of an effective sample prefractionation method for the proteome analysis of breast cancer tissue using narrow range two-dimensional gel electrophoresis.

    Science.gov (United States)

    Lee, KiBeom

    2008-06-01

    One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.

  9. A one-step method for priority compounds of concern in tar from former industrial sites: trimethylsilyl derivatisation with comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Gauchotte-Lindsay, C; Richards, P; McGregor, L A; Thomas, R; Kalin, R M

    2012-08-31

    A dense non-aqueous phase liquid sample formed by release of coal tar into the environment was derivatised by trimethylsilylation using the reagent N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and extracted in hexane using accelerated solvent extraction. This procedure enables comprehensive extraction of an extensive suite of organic compounds from tar, which has not previously been described. Comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) was used for the analysis of the sample for concurrent evaluation of -OH functional group-containing compounds along with aliphatics, polycyclic aromatic hydrocarbons and other typical tar compounds normally determined via classic gas chromatography. Using statistically designed experiments, a range of conditions were tested for complete recovery of four different surrogates. The robustness and repeatability of the optimised derivatisation/extraction method was demonstrated. Finally, more than a hundred and fifty derivatised compounds were identified using mass spectra elucidation and GC×GC logical order of elution. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Novel Driving Method for Two-Dimensional and Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode Displays for Emission and Programming Time Extension

    Science.gov (United States)

    In, Hai-Jung; Kwon, Oh-Kyong

    2012-03-01

    A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.

  11. Non-contrast-enhanced hepatic MR angiography: Do two-dimensional parallel imaging and short tau inversion recovery methods shorten acquisition time without image quality deterioration?

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Kotaro, E-mail: kotaro@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kamae, Toshikazu, E-mail: toshi13@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Hirokawa, Yuusuke, E-mail: yuusuke@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Shibata, Toshiya, E-mail: ksj@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-01-15

    Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 {+-} 1.0 min (mean {+-} standard deviation), 5.9 {+-} 0.8 min, and 5.8 {+-} 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.

  12. Depth Map Generation Method of Two-dimensional Image Sequence%一种二维图像序列的深度图像生成方法

    Institute of Scientific and Technical Information of China (English)

    罗莎莎; 郭太良

    2012-01-01

    This paper proposes a depth map generation method based on motion object. First, the paper uses improved cumulative mean square deviation algorithm to extract background model, then background subtraction method is used to obtain motion object figure. After artificially drawing the depth map of the background model, with motion object figure of each frame, the depth maps of the image sequence are automatically synthesized, which can be directly used in two-dimensional (2D) to three-dimensional (3D) conversion. Experimental results show that compared with conventional depth map generation methods, depth map obtained by this method is true and reliable, thus more comfortable for 3D visualization.%针对二维图像序列提出一种基于运动对象的深度图像生成方法.采用改进的均方差累加算法提取背景模型,并利用背景差分法提取运动对象图形,将人工绘制的背景模型的深度图像,结合每帧运动对象图形深度赋值,自动合成用于二维视频到三维视频转换的图像序列的深度图像.实验结果证明,相对于传统的仅仅依靠计算机视觉获取深度图像的方法,它获得的深度图像,不仅画面的深度信息真实、可靠,而且转换后的三维场景更立体化.

  13. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  14. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  15. 3D ultrasonic ray tracing in AutoCAD®

    Science.gov (United States)

    Reilly, D.; Leggat, P.; McNab, A.

    2001-04-01

    To assist with the design and validation of testing procedures for NDT, add-on modules have been developed for AutoCAD® 2000. One of the modules computes and displays ultrasonic 3D ray tracing. Another determines paths between two points, for instance a probe and a target or two probes. The third module displays phased array operational modes and calculates element delays for phased array operation. The modules can be applied to simple or complex solid model components.

  16. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  17. Parallel Ray Tracing Using the Message Passing Interface

    Science.gov (United States)

    2007-09-01

    efficiency of 97.9% and a normalized ray-tracing rate of 6.95 ?106 rays ? surfaces/(s ? processor) in a system with 22 planar surfaces, two paraboloid ...with 22 planar surfaces, two paraboloid reflectors, and one hyperboloid refractor. The need for a load-balancing software was obviated by the use of a...specified for each type of optical surface—planar, spherical, paraboloid , hyperboloid, aspheric—and whether it applies for reflection or refraction. The

  18. The Search for Efficiency in Arboreal Ray Tracing Applications

    Science.gov (United States)

    van Leeuwen, M.; Disney, M.; Chen, J. M.; Gomez-Dans, J.; Kelbe, D.; van Aardt, J. A.; Lewis, P.

    2016-12-01

    Forest structure significantly impacts a range of abiotic conditions, including humidity and the radiation regime, all of which affect the rate of net and gross primary productivity. Current forest productivity models typically consider abstract media to represent the transfer of radiation within the canopy. Examples include the representation forest structure via a layered canopy model, where leaf area and inclination angles are stratified with canopy depth, or as turbid media where leaves are randomly distributed within space or within confined geometric solids such as blocks, spheres or cones. While these abstract models are known to produce accurate estimates of primary productivity at the stand level, their limited geometric resolution restricts applicability at fine spatial scales, such as the cell, leaf or shoot levels, thereby not addressing the full potential of assimilation of data from laboratory and field measurements with that of remote sensing technology. Recent research efforts have explored the use of laser scanning to capture detailed tree morphology at millimeter accuracy. These data can subsequently be used to combine ray tracing with primary productivity models, providing an ability to explore trade-offs among different morphological traits or assimilate data from spatial scales, spanning the leaf- to the stand level. Ray tracing has a major advantage of allowing the most accurate structural description of the canopy, and can directly exploit new 3D structural measurements, e.g., from laser scanning. However, the biggest limitation of ray tracing models is their high computational cost, which currently limits their use for large-scale applications. In this talk, we explore ways to more efficiently exploit ray tracing simulations and capture this information in a readily computable form for future evaluation, thus potentially enabling large-scale first-principles forest growth modelling applications.

  19. A two-dimensional method of manufactured solutions benchmark suite based on variations of Larsen's benchmark with escalating order of smoothness of the exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Azmy, Yousry Y., E-mail: snschune@ncsu.edu, E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC (United States)

    2011-07-01

    The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)

  20. A TWO-DIMENSIONAL METHOD OF MANUFACTURED SOLUTIONS BENCHMARK SUITE BASED ON VARIATIONS OF LARSEN'S BENCHMARK WITH ESCALATING ORDER OF SMOOTHNESS OF THE EXACT SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Schunert; Yousry Y. Azmy

    2011-05-01

    The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally fine mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite first eliminates the aforementioned limitation of fine mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme.

  1. Comprehensive two-dimensional gas chromatography-mass spectrometry analysis of volatile constituents in Thai vetiver root oils obtained by using different extraction methods.

    Science.gov (United States)

    Pripdeevech, Patcharee; Wongpornchai, Sugunya; Marriott, Philip J

    2010-01-01

    Vetiver root oil is known as one of the finest fixatives used in perfumery. This highly complex oil contains more than 200 components, which are mainly sesquiterpene hydrocarbons and their oxygenated derivatives. Since conventional GC-MS has limitation in terms of separation efficiency, the comprehensive two-dimensional GC-MS (GC x GC-MS) was proposed in this study as an alternative technique for the analysis of vetiver oil constituents. To evaluate efficiency of the hyphenated GC x GC-MS technique in terms of separation power and sensitivity prior to identification and quantitation of the volatile constituents in a variety of vetiver root oil samples. METHODOLOGY. Dried roots of Vetiveria zizanioides were subjected to extraction using various conditions of four different methods; simultaneous steam distillation, supercritical fluid, microwave-assisted, and Soxhlet extraction. Volatile components in all vetiver root oil samples were separated and identified by GC-MS and GC x GC-MS. The relative contents of volatile constituents in each vetiver oil sample were calculated using the peak volume normalization method. Different techniques of extraction had diverse effects on yield, physical and chemical properties of the vetiver root oils obtained. Overall, 64 volatile constituents were identified by GC-MS. Among the 245 well-resolved individual components obtained by GC x GC-MS, the additional identification of 43 more volatiles was achieved. In comparison with GC-MS, GC x GC-MS showed greater ability to differentiate the quality of essential oils obtained from diverse extraction conditions in terms of their volatile compositions and contents.

  2. Study of the two-dimensional Hubbard model at half-filling through constructive methods; Etude du modele de Hubbard bidimensionnel a demi remplissage par des methodes constructives

    Energy Technology Data Exchange (ETDEWEB)

    Afchain, St

    2005-02-15

    The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  5. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2016-05-01

    Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.

  6. The Intra-observer Variability of Volumetric Measurement of Pulmonary Nodules: 
Comparison of Two-dimensional and Three-dimensional Method

    Directory of Open Access Journals (Sweden)

    XiaoWan GUO

    2014-04-01

    Full Text Available Background and objective Software oriented three-dimensional (3D volumetric measurement of pulmonary nodules has been feasible in the follow-up of indeterminate pulmonary nodules, however, its value need a further validation. The purpose of this study is to retrospectively analyze the chest CT data of patients with pulmonary nodules to compare the intra-observer variability of 3D and two-dimensional (2D volumetric measurement. Methods Eighty-six pulmonary nodules in chest CT scans of 79 subjects were retrospectively analyzed. One radiologist measured the nodules twice with a 7 days interval using 2D and 3D methods respectively. The maximal diameter (X, the perpendicular diameter (Y on maximal cross sectional area of the nodule and the caudo-cranial diameter (Z were measured and the volume was calculated by two models: spherical and elliptical model. The 3D measurements were acquired with semi-automated software with manual adjustment on unsatisfied nodule segmentation. Logistic regression analysis was performed to evaluate the effect of nodule location and morphology on 3D nodule segmentation. ANOVA and correlation test were used to evaluate the difference among three methods. Bland-Altman method was applied to quantify the intra-observer variability. Results Software achieved satisfied segmentation for 86.4% nodules. The irregular and juxtavacular nodules have significantly high odds rations (OR of unsatisfied segmentation as 4.0, 4.5, respectively. The volume measured by three method was significantly different (F=6.5, P=0.012, while the repeated measurements did not led to significant difference (F=1.813, P=0.182. The Spearman correlation efficient between 3D volume and 2D volume with sphere and ellipsoid model was 0.97, 0.88. The 95% limits of agreement of RD between two repeated measurements were -14%-11.6%, -37.7%-39.9% and -39.8%-45.8% for 3D, 2D with elliptical model and spherical model, respectively. Conclusion The 3D volume measurement

  7. 二维三温能量方程的Krylov子空间迭代求解%APPLICATION OF KRYLOV ITERATIVE METHODS IN TWO DIMENSIONAL THREE TEMPERATURES ENERGY EQUATION

    Institute of Scientific and Technical Information of China (English)

    莫则尧; 符尚武

    2003-01-01

    Two dimensional three temperatures energy equation is a kind of very impor-tant partial differential equation. In general, we discrete such equation with full implicit nine points stencil on Lagrange structured grid and generate a non-linear sparse algebraic equation including nine diagonal lines. This paper will discuss the iterative solver for such non-linear equations. We linearize the equations by fixing the coefficient matrix, and iteratively solve the linearized algebraic equation with Krylov subspace iterative method. We have applied the iterative method presented in this paper to the code Lared-Ⅰ for numerical simulation of two dimensional threetemperatures radial fluid dynamics, and have obtained efficient results.

  8. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Dongming [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Hou, Peipei; Liu, Chang [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuerong [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Luodong [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.

  9. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  10. Statistical threshold determination method through noise map generation for two dimensional amplitude and time-of-flight mapping of guided waves

    Science.gov (United States)

    Yenn Chong, See; Lee, Jung-Ryul; Yik Park, Chan

    2013-03-01

    Conventional threshold crossing technique generally encounters the difficulty in setting a common threshold level in the extraction of the respective time-of-flights (ToFs) and amplitudes from the guided waves obtained at many different points by spatial scanning. Therefore, we propose a statistical threshold determination method through noise map generation to automatically process numerous guided waves having different propagation distances. First, a two-dimensional (2-D) noise map is generated using one-dimensional (1-D) WT magnitudes at time zero of the acquired waves. Then, the probability density functions (PDFs) of Gamma distribution, Weibull distribution and exponential distribution are used to model the measured 2-D noise map. Graphical goodness-of-fit measurements are used to find the best fit among the three theoretical distributions. Then, the threshold level is automatically determined by selecting the desired confidence level of the noise rejection in the cumulative distribution function of the best fit PDF. Based on this threshold level, the amplitudes and ToFs are extracted and mapped into a 2-D matrix array form. The threshold level determined by the noise statistics may cross the noise signal after time zero. These crossings are represented as salt-and-pepper noise in the ToF and amplitude maps but finally removed by the 1-D median filter. This proposed method was verified in a thick stainless steel hollow cylinder where guided waves were acquired in an area of 180 mm×126 mm of the cylinder by using a laser ultrasonic scanning system and an ultrasonic sensor. The Gamma distribution was estimated as the best fit to the verification experimental data by the proposed algorithm. The statistical parameters of the Gamma distribution were used to determine the threshold level appropriate for most of the guided waves. The ToFs and amplitudes of the first arrival mode were mapped into a 2-D matrix array form. Each map included 447 noisy points out of 90

  11. Effective algorithm for ray-tracing simulations of lobster eye and similar reflective optical systems

    Science.gov (United States)

    Tichý, Vladimír; Hudec, René; Němcová, Šárka

    2016-06-01

    The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.

  12. Trans-Ionospheric High Frequency Signal Ray Tracing

    Science.gov (United States)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  13. Photorealistic ray tracing to visualize automobile side mirror reflective scenes.

    Science.gov (United States)

    Lee, Hocheol; Kim, Kyuman; Lee, Gang; Lee, Sungkoo; Kim, Jingu

    2014-10-20

    We describe an interactive visualization procedure for determining the optimal surface of a special automobile side mirror, thereby removing the blind spot, without the need for feedback from the error-prone manufacturing process. If the horizontally progressive curvature distributions are set to the semi-mathematical expression for a free-form surface, the surface point set can then be derived through numerical integration. This is then converted to a NURBS surface while retaining the surface curvature. Then, reflective scenes from the driving environment can be virtually realized using photorealistic ray tracing, in order to evaluate how these reflected images would appear to drivers.

  14. Adaptive image ray-tracing for astrophysical simulations

    CERN Document Server

    Parkin, E R

    2010-01-01

    A technique is presented for producing synthetic images from numerical simulations whereby the image resolution is adapted around prominent features. In so doing, adaptive image ray-tracing (AIR) improves the efficiency of a calculation by focusing computational effort where it is needed most. The results of test calculations show that a factor of >~ 4 speed-up, and a commensurate reduction in the number of pixels required in the final image, can be achieved compared to an equivalent calculation with a fixed resolution image.

  15. Ray-tracing optical modeling of negative dysphotopsia

    Science.gov (United States)

    Hong, Xin; Liu, Yueai; Karakelle, Mutlu; Masket, Samuel; Fram, Nicole R.

    2011-12-01

    Negative dysphotopsia is a relatively common photic phenomenon that may occur after implantation of an intraocular lens. The etiology of negative dysphotopsia is not fully understood. In this investigation, optical modeling was developed using nonsequential-component Zemax ray-tracing technology to simulate photic phenomena experienced by the human eye. The simulation investigated the effects of pupil size, capsulorrhexis size, and bag diffusiveness. Results demonstrated the optical basis of negative dysphotopsia. We found that photic structures were mainly influenced by critical factors such as the capsulorrhexis size and the optical diffusiveness of the capsular bag. The simulations suggested the hypothesis that the anterior capsulorrhexis interacting with intraocular lens could induce negative dysphotopsia.

  16. Nondestructive measurement of two-dimensional refractive index profiles by deflectometry

    Science.gov (United States)

    Lin, Di; Leger, James R.

    2015-06-01

    We present a method for calculating a two-dimensional refractive index field from measured boundary values of beam position and slope. By initially ignoring the dependence of beam trajectories on the index field and using cubic polynomials to approximate these trajectories, we show that the inverse problem can be reduced to set of linear algebraic equations and solved using a numerical algorithm suited for inverting sparse, ill-conditioned linear systems. The beam trajectories are subsequently corrected using an iterative ray trace procedure so that they are consistent with the ray equation inside the calculated index field. We demonstrate the efficacy of our method through computer simulation, where a hypothetical test index field is reconstructed on a 15 × 15 discrete grid using 800 interrogating rays and refractive index errors (RMS) less than 0.5% of the total index range (nmax-nmin) are achieved. In the subsequent error analysis, we identify three primary sources of error contributing to the reconstruction of the index field and assess the importance of data redundancy. The principles developed in our approach are fully extendable to three-dimensional index fields as well as more complex geometries.

  17. Numerical ray-tracing approach with laser intensity distribution for LIDAR signal power function computation

    Science.gov (United States)

    Shi, Guangyuan; Li, Song; Huang, Ke; Li, Zile; Zheng, Guoxing

    2016-10-01

    We have developed a new numerical ray-tracing approach for LIDAR signal power function computation, in which the light round-trip propagation is analyzed by geometrical optics and a simple experiment is employed to acquire the laser intensity distribution. It is relatively more accurate and flexible than previous methods. We emphatically discuss the relationship between the inclined angle and the dynamic range of detector output signal in biaxial LIDAR system. Results indicate that an appropriate negative angle can compress the signal dynamic range. This technique has been successfully proved by comparison with real measurements.

  18. L型阵列的二维DOA估计方法%Method of two-dimensional DOA estimation for L-shaped array

    Institute of Scientific and Technical Information of China (English)

    景小荣; 刘雪峰

    2016-01-01

    低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用 L 型阵列接收数据的自、互相关信息,提出一种适用于低 SNR 及小接收快拍数环境下的2D DOA 估计新方法。该方法首先通过解析优化2D 谱峰搜索问题,获得方位角与仰角之间的特定约束关系,进而将包含2D 角度参量的目标函数转化为只包含一维(one-di-mensional,1 D)角度参量,即可通过1 D 谱峰搜索获得方位角(或仰角)估计值,最后再次利用该约束关系求得与之对应的仰角(或方位角)估计值。该方法只需1 D 谱峰搜索,而且所得2D 角度估计参数可自动实现配对。计算机仿真验证了该方法在低 SNR 及小接收快拍数情况下的有效性。%Under low SNR region or with the small number of the snapshots,the classic two-dimensional (2D)direction-of-arrival (DOA)algorithms have the drawback of low estimation accuracy.To resolve the problem,the paper presents a new method of 2D DOA estimation suitable for low signal-to-noise (SNR)region and small number of the snapshots by fully tak-ing advantage of the autocorrelation and cross-correlation information of the received snapshots of L-shape sensor arrays. Analytically optimizing the problem of 2D spectrum peak search,we obtain the specific constraint relationship between the azimuth and elevation.On the basis of it,the method firstly converts the objective function with 2D angle parameter into the one with one-dimensional (1 D)angle parameter.Then the azimuth (or elevation)is obtained by 1 D searching.Finally, the elevation (or azimuth)can be estimated according to the specific constraint relationship between the azimuth and eleva-tion.The method only needs 1 D spectrum peak searching,and the estimated azimuth and elevation can be

  19. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  20. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  1. Computation and validation of two-dimensional PSF simulation based on physical optics

    CERN Document Server

    Tayabaly, K; Sironi, G; Canestrari, R; Lavagna, M; Pareschi, G

    2016-01-01

    The Point Spread Function (PSF) is a key figure of merit for specifying the angular resolution of optical systems and, as the demand for higher and higher angular resolution increases, the problem of surface finishing must be taken seriously even in optical telescopes. From the optical design of the instrument, reliable ray-tracing routines allow computing and display of the PSF based on geometrical optics. However, such an approach does not directly account for the scattering caused by surface microroughness, which is interferential in nature. Although the scattering effect can be separately modeled, its inclusion in the ray-tracing routine requires assumptions that are difficult to verify. In that context, a purely physical optics approach is more appropriate as it remains valid regardless of the shape and size of the defects appearing on the optical surface. Such a computation, when performed in two-dimensional consideration, is memory and time consuming because it requires one to process a surface map wit...

  2. [The features of myocardial deformation of left ventricle in patients with ischemic heart disease defined by the two dimensional strain method].

    Science.gov (United States)

    Galimskaia, V A; Donchenko, I A; Romanovskaia, E M; Oleĭnikov, V É

    2014-01-01

    Aim of this study was to assess qualitative and quantitative features of deformation parameters of left ventricular myocardium in patients with ischemic heart disease (IHD) with and without history of myocardial infarction (MI) using two-dimensional strain imaging. We examined 30 patients with clinical IHD with (group 1, n = 15) and without (group 2, n = 15) history of MI and 20 healthy volunteers. Compared with healthy subjects IHD patients of both groups had reduced longitudinal and circular myocardial deformation. There were no significant differences between patients with IHD and controls in parameters of radial, global, and regional deformation.

  3. TIM, a ray-tracing program for METATOY research and its dissemination

    Science.gov (United States)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  4. Ray tracing and ECRH absorption modeling in the HSX stellarator

    Science.gov (United States)

    Weir, G. M.; Likin, K. M.; Marushchenko, N. B.; Turkin, Y.

    2015-09-01

    To increase flexibility in ECRH experiments on the helically symmetric experiment (HSX), a second gyrotron and transmission line have been installed. The second antenna includes a steerable mirror for off-axis heating, and the launched power may be modulated for use in heat pulse propagation experiments. The extraordinary wave at the second harmonic of the electron gyrofrequency or the ordinary wave at the fundamental resonance are used for plasma start-up and heating on HSX. The tracing visualized ray tracing code (Marushchenko et al 2007 Plasma Fusion Res. 2 S1129) is used to estimate single-pass absorption and to model multi-pass wave damping in the three-dimensional HSX geometry. The single-pass absorption of the ordinary wave at the fundamental resonance is calculated to be as high as 30%, while measurements of the total absorption indicate that 45% of the launched power is absorbed. A multi-pass ray tracing model correctly predicts the experimental absorption and indicates that the launched power is absorbed within the plasma core (r/a≤slant 0.2 ).

  5. Ray-tracing software comparison for linear focusing solar collectors

    Science.gov (United States)

    Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice

    2016-05-01

    Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".

  6. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  7. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  8. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  9. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  10. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  11. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  12. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  13. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  14. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  15. The Verification and Validation of the Ray-tracing of Bag of Triangles (BoTs)

    Science.gov (United States)

    2015-02-01

    The Verification and Validation of the Ray-tracing of Bag of Triangles ( BoTs ) by Charith Ranawake ARL-CR-0761 February 2015...Ground, MD 22105 ARL-CR-0761 February 2015 The Verification and Validation of the Ray-tracing of Bag of Triangles ( BoTs ) Charith...and Validation of the Ray-tracing of Bag of Triangles ( BoTs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  16. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  17. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  18. OSPRay - A CPU Ray Tracing Framework for Scientific Visualization.

    Science.gov (United States)

    Wald, I; Johnson, G P; Amstutz, J; Brownlee, C; Knoll, A; Jeffers, J; Gunther, J; Navratil, P

    2017-01-01

    Scientific data is continually increasing in complexity, variety and size, making efficient visualization and specifically rendering an ongoing challenge. Traditional rasterization-based visualization approaches encounter performance and quality limitations, particularly in HPC environments without dedicated rendering hardware. In this paper, we present OSPRay, a turn-key CPU ray tracing framework oriented towards production-use scientific visualization which can utilize varying SIMD widths and multiple device backends found across diverse HPC resources. This framework provides a high-quality, efficient CPU-based solution for typical visualization workloads, which has already been integrated into several prevalent visualization packages. We show that this system delivers the performance, high-level API simplicity, and modular device support needed to provide a compelling new rendering framework for implementing efficient scientific visualization workflows.

  19. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  20. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  1. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  2. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    Science.gov (United States)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  3. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  4. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    Science.gov (United States)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  5. Tunable far-field acoustic imaging by two-dimensional sonic crystal with concave incident surface

    Science.gov (United States)

    Shen, Feng-Fu; Lu, Dan-Feng; Zhu, Hong-Wei; Ji, Chang-Ying; Shi, Qing-Fan

    2017-01-01

    An additional concave incident surface comprised of two-dimensional (2D) sonic crystals (SCs) is employed to tune the acoustic image in the far-field region. The tunability is realized through changing the curvature of the concave surface. To explain the tuning mechanism, a simple ray-trace analysis is demonstrated based on the wave-beam negative refractive law. Then, a numerical confirmation is carried out. Results show that both the position and the intensity of the image can be tuned by the introduced concave surface.

  6. An efficient inversion for two-dimensional direct current resistivity surveys based on the hybrid finite difference-finite element method

    Science.gov (United States)

    Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai

    2013-02-01

    For efficient inversion code, the forward modeling routine, the sensitivity calculation, and the inversion algorithm must be efficient. Here, the hybrid finite difference-finite element algorithm, which is fast and accurate even when the slope of the topography is greater than 45°, is used as the forward modeling routine to calculate the responses. The sensitivity calculation is adapted from the most efficient adjoint Green's function technique. Both of these algorithms are then driven with the data space Occam's inversion. This combination of modules makes it possible to obtain an efficient inversion code based on MATLAB for two-dimensional direct current (DC) resistivity data. To demonstrate its efficiency, numerical experiments with our code and with commercial software are performed on synthetic data and real field data collected in the western part of Thailand where limestone and cavities dominate the region. In general, our code takes substantially longer than the commercial code to run but converges to a solution with a lower misfit. The result shows that the efficiency of our code makes it practical for real field surveys.

  7. Two-Dimensional Field-Step ELDOR. A Method for Characterizing the Motion of Spin Probes and Spin Labels in Glassy Solids

    Science.gov (United States)

    Saalmueller, J. W.; Long, H. W.; Maresch, G. G.; Spiess, H. W.

    A practical route for obtaining two-dimensional electron double-resonance spectra of radicals in disordered solids is presented in detail. It involves narrow-band pulse excitation during a magnetic field step combined with echo detection after a mixing time. The equipment and experimental procedures are described, and factors affecting the performance of the field-jump coil, spectral resolution, and sensitivity are thoroughly discussed. Simulated spectra, which take into account distributions of correlation times, show the spectral features that can be observed with this technique. These simulations have been improved over previous work by taking into account g-tensor fluctuations, which is the dominant effect in determining the anisotropy of the electron spin-lattice relaxation. Data for nitroxide radicals in polycarbonate at 110 K are analyzed and an orientation averaged nuclear spin-lattice relaxation time of 82 ± 13 μs and an electron spin-lattice relaxation time for radicals oriented along the zdirection (slowest relaxation) of 23 ± 4 μs are measured. Simulations show that this relaxation is caused by highly restricted liberational motion with a distribution of correlation times having mean of 0.1 μs and a width of about 0.8 decades in combination with a very narrow mode having a correlation time of 10 ps.

  8. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; New, T. H.; Soria, Julio

    2017-07-01

    This paper presents a dense ray tracing reconstruction technique for a single light-field camera-based particle image velocimetry. The new approach pre-determines the location of a particle through inverse dense ray tracing and reconstructs the voxel value using multiplicative algebraic reconstruction technique (MART). Simulation studies were undertaken to identify the effects of iteration number, relaxation factor, particle density, voxel-pixel ratio and the effect of the velocity gradient on the performance of the proposed dense ray tracing-based MART method (DRT-MART). The results demonstrate that the DRT-MART method achieves higher reconstruction resolution at significantly better computational efficiency than the MART method (4-50 times faster). Both DRT-MART and MART approaches were applied to measure the velocity field of a low speed jet flow which revealed that for the same computational cost, the DRT-MART method accurately resolves the jet velocity field with improved precision, especially for the velocity component along the depth direction.

  9. Ray tracing simulation of aero-optical effect using multiple gradient index layer

    Science.gov (United States)

    Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa

    2016-10-01

    We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.

  10. Development of a two-dimensional high-performance liquid chromatography system coupled with on-line reduction as a new efficient analytical method of 3-nitrobenzanthrone, a potential human carcinogen.

    Science.gov (United States)

    Hasei, Tomohiro; Nakanishi, Haruka; Toda, Yumiko; Watanabe, Tetsushi

    2012-08-31

    3-Nitrobenzanthrone (3-NBA) is an extremely strong mutagen and carcinogen in rats inducing squamous cell carcinoma and adenocarcinoma. We developed a new sensitive analytical method, a two-dimensional HPLC system coupled with on-line reduction, to quantify non-fluorescent 3-NBA as fluorescent 3-aminobenzanthrone (3-ABA). The two-dimensional HPLC system consisted of reversed-phase HPLC and normal-phase HPLC, which were connected with a switch valve. 3-NBA was purified by reversed-phase HPLC and reduced to 3-ABA with a catalyst column, packed with alumina coated with platinum, in ethanol. An alcoholic solvent is necessary for reduction of 3-NBA, but 3-ABA is not fluorescent in the alcoholic solvent. Therefore, 3-ABA was separated from alcohol and impurities by normal-phase HPLC and detected with a fluorescence detector. Extracts from surface soil, airborne particles, classified airborne particles, and incinerator dust were applied to the two-dimensional HPLC system after clean-up with a silica gel column. 3-NBA, detected as 3-ABA, in the extracts was found as a single peak on the chromatograms without any interfering peaks. 3-NBA was detected in 4 incinerator dust samples (n=5). When classified airborne particles, that is, those 7.0 μm in size, were applied to the two-dimensional HPLC system after purified using a silica gel column, 3-NBA was detected in those particles with particle sizes NBA in airborne particles and the detection of 3-NBA in incinerator dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  12. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

    Science.gov (United States)

    Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

    2017-05-01

    Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

  13. DFT and two-dimensional correlation analysis methods for evaluating the Pu{sup 3+}–Pu{sup 4+} electronic transition of plutonium-doped zircon

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Liang, E-mail: bianliang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Fa-qin; Song, Mian-xin [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Hai-liang [Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056 (United States); Li, Wei-Min [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Duan, Tao; Xu, Jin-bao [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Zhang, Xiao-yan [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China)

    2015-08-30

    Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr{sub 1−c}Pu{sub c}SiO{sub 4} over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f{sub xy}-shell electron excites an inner-shell O-2s{sup 2} orbital to create an oxygen defect (V{sub O-s}) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p{sup 6}5s{sup 2} electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V{sub O-p} defect captures a high-angular-momentum Zr-4d{sub z} electron and two Si-p{sub z} electrons to create delocalized Si{sup 4+} → Si{sup 2+} charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO{sub 8} polyhedral and SiO{sub 4} tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.

  14. Enzo+Moray: Radiation Hydrodynamics Adaptive Mesh Refinement Simulations with Adaptive Ray Tracing

    CERN Document Server

    Wise, John H

    2010-01-01

    We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray tracing scheme, and its parallel implementation into the adaptive mesh refinement (AMR) cosmological hydrodynamics code, Enzo. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilised to study a broad range of astrophysical problems, such as stellar and black hole (BH) feedback. Inaccuracies can arise from large timesteps and poor sampling, therefore we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. (2006, 2009). We further test our method with more dynamical situations, for example, the propagation of an ionisation front through a Rayleigh-Taylor instability, time-varying luminosities, and collimated radiation. The test suite also includes an...

  15. A new hybrid algorithm using thermodynamic and backward ray-tracing approaches for modeling luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Ch. K.; Lim, Y. S.; Tan, S. G.; Rahman, F. A. [Faculty of Engineering and Science, University Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur (Malaysia)

    2010-12-15

    A Luminescent Solar Concentrator (LSC) is a transparent plate containing luminescent material with photovoltaic (PV) cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs. (authors)

  16. A New Hybrid Algorithm Using Thermodynamic and Backward Ray-Tracing Approaches for Modeling Luminescent Solar Concentrators

    Directory of Open Access Journals (Sweden)

    Chin Kim Lo

    2010-11-01

    Full Text Available A Luminescent Solar Concentrator (LSC is a transparent plate containing luminescent material with photovoltaic (PV cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs.

  17. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  18. Testing the validity of the ray-tracing code GYOTO

    CERN Document Server

    Grould, Marion; Perrin, Guy

    2016-01-01

    In the next few years, the near-infrared interferometer GRAVITY will be able to observe the Galactic center. Astrometric data will be obtained with an anticipated accuracy of 10 $\\mu$as. To analyze these future data, we have developed a code called GYOTO to compute orbits and images. We want to assess the validity and accuracy of GYOTO in a variety of contexts, in particular for stellar astrometry in the Galactic center. Furthermore, we want to tackle and complete a study made on the astrometric displacements that are due to lensing effects of a star of the central parsec with GYOTO. We first validate GYOTO in the weak-deflection limit (WDL) by studying primary caustics and primary critical curves obtained for a Kerr black hole. We compare GYOTO results to available analytical approximations and estimate GYOTO errors using an intrinsic estimator. In the strong-deflection limit (SDL), we choose to compare null geodesics computed by GYOTO and the ray-tracing code named Geokerr. Finally, we use GYOTO to estimate...

  19. Distance measurement based on light field geometry and ray tracing.

    Science.gov (United States)

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  20. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  1. Polarization property analysis of a periscopic scanner with three-dimensional polarization ray-tracing calculus.

    Science.gov (United States)

    Yang, Yufei; Yan, Changxiang

    2016-02-20

    The polarization properties of a two-axis periscopic optical scanner constituted by a pair of rotating planar mirrors have been studied by using the three-dimensional polarization ray-tracing matrix method. The separate and cumulative matrices that define the transformation of the polarization state are obtained and expressed in terms of the rotation angles of two mirrors. The variations of diattenuation and retardance are investigated and graphically shown as functions of the rotation angles. On this basis, a further investigation about the cumulative polarization aberrations of three different metal-coated periscopic scanners is accomplished. Finally, the output polarization states of the three metal-coated scanners are calculated with the input beam of the arbitrary polarization states, and the results show that aluminum film is more appropriate than gold film or silver film for the polarization-maintaining periscopic scanner.

  2. Stress optical path difference analysis of off-axis lens ray trace footprint

    Science.gov (United States)

    Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Wu, Kun-Huan; Chen, Chih-Wen; Chan, Shenq-Tsong; Huang, Ting-Ming

    2013-06-01

    The mechanical and thermal stress on lens will cause the glass refractive index different, the refractive index of light parallel and light perpendicular to the direction of stress. The refraction index changes will introduce Optical Path Difference (OPD). This study is applying Finite Element Method (FEM) and optical ray tracing; calculate off axis ray stress OPD. The optical system stress distribution result is calculated from finite element simulation, and the stress coordinate need to rotate to optical path direction. Meanwhile, weighting stress to each optical ray path and sum the ray path OPD. The Z-direction stress OPD can be fitted by Zernike polynomial, the separated to sag difference, and rigid body motion. The fitting results can be used to evaluate the stress effect on optical component.

  3. Construction of Virtual Tuming Scene Based on Local Ray Tracing Algorithm

    Institute of Scientific and Technical Information of China (English)

    王国锋; 王子良; 王太勇

    2003-01-01

    According to the features of the turning simulation, a simplified Whitted lighting model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lighting effects, local ray tracing algorithm is given to calculate the light intensity of every position during the course of the simulation. This method can calculate the refresh area before calculating the intersection line,simulate the machining environment accurately and reduce the calculating time. Finally, an example of the virtual cutting scene is shown to demonstrate the effects of the global illumination model. If the CUP is 1.3 G and the internal memory is 128 M, the refreshing time of virtual turning scene can be reduced by nine times. This study plays an important role in the enrichment of the virtual manufacturing theory and the promotion of the development of the advanced manufacturing technology.

  4. Ray trace algorithm description for the study of pump power absorption in double clad fibers

    Science.gov (United States)

    Narro, R.; Rodriguez, E.; Ponce, L.; de Posada, E.; Flores, T.; Arronte, M.

    2011-09-01

    An algorithm for the analysis of the double clad fiber design is presented. The algorithm developed in the MATLAB computing language, is based on ray tracing method applied to three-dimensional graphics figures which are composed of a set of plans. The algorithm can evaluate thousands of ray paths in sequence and its corresponding pump absorption in each of the elements of the fiber according to the Lambert-Beer law. The beam path is evaluated in 3 dimensions considering the losses by reflexion and refraction in the faces and within the fiber. Due to its flexibility, the algorithm can be used to study the ray propagation in single mode or multimode fibers, bending effects in fibers, variable geometries of the inner clad and the core, and could also be used to study tappers.

  5. Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2009-01-01

    We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.

  6. Eye-movements in a two-dimensional plane: A method for calibration and analysis using the vertical and horizontal EOG

    NARCIS (Netherlands)

    Slangen, J.L.; Woestenburg, J.C.; Verbaten, M.N.

    1984-01-01

    A method for calibration, orthogonalization and standardization of eye movements is described. The method is based on linear transformation of the horizontal and vertical EOG. With this method it is possible to measure the locus of eye fixation on a TV screen and its associated fixation time.

  7. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  8. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  9. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  10. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-02-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  11. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  12. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  13. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  14. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  15. A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad. M.S. Thesis. Final Contractor Report

    Science.gov (United States)

    Wright, William B.

    1988-01-01

    Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  16. A Novel Method for the Numerical Solution of the Navier-Stokes Equations in Two-Dimensional Flow Using a Pressure Poisson Equation

    Science.gov (United States)

    Messaris, G. T.; Papastavrou, C. A.; Loukopoulos, V. C.; Karahalios, G. T.

    2009-08-01

    A new finite-difference method is presented for the numerical solution of the Navier-Stokes equations of motion of a viscous incompressible fluid in two (or three) dimensions and in the primitive-variable formulation. Introducing two auxiliary functions of the coordinate system and considering the form of the initial equation on lines passing through the nodal point (x0, y0) and parallel to the coordinate axes, we can separate it into two parts that are finally reduced to ordinary differential equations, one for each dimension. The final system of linear equations in n-unknowns is solved by an iterative technique and the method converges rapidly giving satisfactory results. For the pressure variable we consider a pressure Poisson equation with suitable Neumann boundary conditions. Numerical results, confirming the accuracy of the proposed method, are presented for configurations of interest, like Poiseuille flow and the flow between two parallel plates with step under the presence of a pressure gradient.

  17. Two-Dimensional Self-Propelled Fish Motion in Medium:An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG Yan; Wu Guan-Hao; YU Yong-Liang; TONG Bing-Gang

    2008-01-01

    We present(1)the dynamical equations of deforming body and(2)an integrated method for deforming body dynamics and unsteady fluid dynamics,to investigate a modelled freely serf-propelled fish.The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water,particularly of free self-propulsion.The present results behave more credibly than the previous numerical studies and are close to the experimental results,and the aligned vortices pattern is discovered in cruising swimming.

  18. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, Elke [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Claeys, Claus; Atak, Onur [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Groby, Jean-Philippe; Dazel, Olivier [Laboratiore d' Acoustique de l' Universiteé du Maine, L' Université Nantes Angers Le Mans, Université du Maine, CNRS, UMR-6613 CNRS, Avenue Olivier Messiaen, 72085 Le Mans (France); Desmet, Wim [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium)

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  19. Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensional Vlasov-Poisson equation with uniform strong magnetic field

    Science.gov (United States)

    Crouseilles, Nicolas; Lemou, Mohammed; Méhats, Florian; Zhao, Xiaofei

    2017-10-01

    In this work, we focus on the numerical resolution of the four dimensional phase space Vlasov-Poisson system subject to a uniform strong external magnetic field. To do so, we consider a Particle-in-Cell based method, for which the characteristics are reformulated by means of the two-scale formalism, which is well-adapted to handle highly-oscillatory equations. Then, a numerical scheme is derived for the two-scale equations. The so-obtained scheme enjoys a uniform accuracy property, meaning that its accuracy does not depend on the small parameter. Several numerical results illustrate the capabilities of the method.

  20. A hybrid wavelet-based adaptive immersed boundary finite-difference lattice Boltzmann method for two-dimensional fluid-structure interaction

    Science.gov (United States)

    Cui, Xiongwei; Yao, Xiongliang; Wang, Zhikai; Liu, Minghao

    2017-03-01

    A second generation wavelet-based adaptive finite-difference Lattice Boltzmann method (FD-LBM) is developed in this paper. In this approach, the adaptive wavelet collocation method (AWCM) is firstly, to the best of our knowledge, incorporated into the FD-LBM. According to the grid refinement criterion based on the wavelet amplitudes of density distribution functions, an adaptive sparse grid is generated by the omission and addition of collocation points. On the sparse grid, the finite differences are used to approximate the derivatives. To eliminate the special treatments in using the FD-based derivative approximation near boundaries, the immersed boundary method (IBM) is also introduced into FD-LBM. By using the adaptive technique, the adaptive code requires much less grid points as compared to the uniform-mesh code. As a consequence, the computational efficiency can be improved. To justify the proposed method, a series of test cases, including fixed boundary cases and moving boundary cases, are invested. A good agreement between the present results and the data in previous literatures is obtained, which demonstrates the accuracy and effectiveness of the present AWCM-IB-LBM.

  1. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  2. Extension of the two-dimensional mass channel cluster plot method to fast separations utilizing low thermal mass gas chromatography with time-of-flight mass spectrometry.

    Science.gov (United States)

    Fitz, Brian D; Synovec, Robert E

    2016-03-24

    Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc ∼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs ∼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.

  3. Seismic ray-tracing calculation based on parabolic travel-time interpolation

    Institute of Scientific and Technical Information of China (English)

    周竹生; 张赛民; 陈灵君

    2004-01-01

    A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method are used to compute seismic travel-time and ray-path in a 2-D grid cell model. Firstly, some basic concepts are introduced. The calculations of travel-time and ray-path are carried out only at cell boundaries. So, the ray-path is always straight in the same cells with uniform velocity. Two steps are applied in PTI and LTI method, step 1 computes travel-time and step 2 traces ray-path. Then, the derivation of LTI formulas is described. Because of the presence of refraction wave in shot cell, the formula aiming at shot cell is also derived. Finally, PTI method is presented. The calculation of PTI method is more complex than that of LTI method, but the error is limited. The results of numerical model show that PTI method can trace ray-path more accurately and efficiently than LTI method does.

  4. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

    Science.gov (United States)

    van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon

    2016-09-01

    We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices.

  5. Finite differences numerical method for two-dimensional superlattice Boltzmann transport equation and case comparison of CPU(C) and GPGPU(CUDA) implementations

    CERN Document Server

    Priimak, Dmitri

    2014-01-01

    We present finite differences numerical algorithm for solving 2D spatially homogeneous Boltzmann transport equation for semiconductor superlattices (SL) subject to time dependant electric field along SL axis and constant perpendicular magnetic field. Algorithm is implemented in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPUs. We compare performance and merits of one implementation versus another and discuss various methods of optimization.

  6. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    Science.gov (United States)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  7. Two-dimensional thin-layer chromatography with adsorbent gradient as a method of chromatographic fingerprinting of furanocoumarins for distinguishing selected varieties and forms of Heracleum spp.

    Science.gov (United States)

    Cieśla, Lukasz; Bogucka-Kocka, Anna; Hajnos, Michał; Petruczynik, Anna; Waksmundzka-Hajnos, Monika

    2008-10-17

    There are a lot of taxonomic classifications of the genus Heracleum, and many authors indicate they need revision. Morphological identification is difficult to perform, as there are only few characteristic differences between each Heracleum species, varieties and forms. Furanocoumarins are characteristic compounds for the Apiaceae family, and they can be found in the whole genus in large quantities. Despite this fact, it is difficult to use the furanocoumarin profiles of plants, for their discrimination, as furanocoumarins are difficult to separate, due to their similar chemical structures and physicochemical properties. In this paper, a new, simple method is proposed for the discrimination of selected species, varieties and forms of the genus Heracleum. Thin-layer chromatography (TLC) with an adsorbent gradient (unmodified silica gel+octadecylsilica wettable with water) enables complete separation of the structural analogues. The proposed method gives the possibility to distinguish selected species, varieties and forms of the Heracleum genus, as they produce distinctive furanocoumarin fingerprints. The method is characterised by high specificity, precision, reproducibility and stability values. It is for the first time that graft TLC is used for constructing fingerprints of herbs. The complete separation of ten structural analogues, by combining gradient TLC with the unidimensional multiple development technique, has not been reported yet.

  8. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  9. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  10. Two-dimensional longitudinal strain for the assessment of the left ventricular systolic function as compared with conventional echocardiographic methods in patients with acute coronary syndromes.

    Science.gov (United States)

    Ryczek, Robert; Krzesiński, Paweł; Krzywicki, Paweł; Smurzyński, Paweł; Cwetsch, Andrzej

    2011-01-01

    The evaluation of the left ventricular (LV) function is one of the most important elements of diagnosis in patients with cardiovascular (CV) diseases. A low LV ejection fraction (LVEF) is a strong and independent predictor of CV events. Traditionally, echocardiography characterises the LV systolic function by the estimation of LVEF with use of the Simpson method, supported by the wall motion score index (WMSI). Speckle tracking imaging is a new method of LV function imaging based on the estimation of longitudinal peak systolic strain (LPSS), by tracing of the automatically detected myocardial speckles. To evaluate the usefulness of global longitudinal peak systolic strain (GLPSS) and regional longitudinal peak systolic strain (r-LPSS) in LV systolic function assessment and to compare LPSS with conventional parameters such as LVEF, WMSI and regional wall motion score index (r-WMSI). The study was performed in a group of 44 patients with a clinical diagnosis of acute coronary syndrome (mean age 63.6 ± 12.2 years). The LVEF, WMSI, r-WMSI were estimated by echocardiography (VIVID 7 Dimension, GE Healthcare, USA). Moreover, LPSS (GLPSS and r-LPSS) with use of automated function imaging (AFI) were also estimated. In the study group mean LVEF was 43.1 ± 12.7%, mean WMSI: 1.68 ± 0.52, and GLPSS: -13.8 ± 5.6%. A very strong linear correlation between the conventional and new parameters was observed - for GLPSS and LVEF: r = -0.86 (p < 0.00001), for GLPSS and WMSI: r = 0.88 (p < 0.00001). The results of the regional myocardial contractility assessment (r-LPSS and r-WMSI) were also in agreement, especially for LV anterior wall (r = 0.87, p < 0.00001). These results suggest a considerable usefulness of LPSS - a new method of echocardiographical imaging - in the estimation of global and regional LV function in patients with acute coronary syndrome and its agreement with conventional parameters such as LVEF and WMSI.

  11. Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin

    2006-01-01

    By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.

  12. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M_sun star

    CERN Document Server

    Buras, R; Janka, H T; Kifonidis, K

    2005-01-01

    Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with t...

  13. Structural determination of oligosaccharides derived from lipooligosaccharide of Neisseria gonorrhoeae F62 by chemical, enzymatic, and two-dimensional NMR methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Ryohei; Nasholds, W.; Griffiss, J.M. (Univ. of California, San Francisco (United States) Veterans Administration Medical Center, San Francisco, CA (United States)); Bacon, B.E. (Veterans Administration Medical Center, San Francisco (United States)); Schneider, H. (Walter Reed Research Inst., Washington, DC (United States))

    1991-10-29

    F62 LOS of Neisseria gonorrhoeae consists of two major LOS components; the higher and smaller molecular weight (MW) components were recognized by MAbs 1-1-M and 3F11 respectively. Base-line separation of the two major oligosaccharide (OS) components from F62 LOS was achieved by Bio-Gel P-4 chromatography after dephosphorylation of the OS mixture. The structures of the two major OSs were studied by chemical, enzymatic, and 2D NMR methods as well as methylation followed by GC/MS analysis. The OS component derived from the MAb 1-1-M defined LOS component was determined to have a V{sup 3}-({beta}-N-acetylgalactosaminyl)neolactotetraose structure at one of its nonreducing termini. The OS component derived from the MAb 3F11 defined LOS component did not have a GalNAc residue. The rest of its structure was identical to that of the OS-1, and a neolactotetraose is exposed at its nonreducing terminus.

  14. An efficient and rapid method for enrichment of lipophilic proteins from Mycobacterium tuberculosis H37Rv for two-dimensional gel electrophoresis.

    Science.gov (United States)

    Sharma, Divakar; Bisht, Deepa

    2016-05-01

    Lipophilic proteome profiling is crucial because they have an anticipated role in biological processes and pathogenesis of Mycobacterium tuberculosis. These lipophilic proteins might be used as potential targets for the development of newer diagnostic markers and drug targets due to their association with membranes and drugs. We developed an efficient and rapid method to enrich the lipophilic proteins extraction from M. tuberculosis H37Rv for 2DE. In the extraction of lipophilic proteins, nonionic detergent (Triton X-100) was added in sonication buffer that augmented the solubilization of the proteins at the time of sonication. Enriched whole cell lysate was subjected to direct phase separation using Triton X-114, without the need for preisolation of membranes. In this study, we report that our optimized extraction buffer increased the lipophilic proteins extraction and their improved resolution on 2D gel up to two- to threefolds (quantitatively and qualitatively) as compared to standard extraction buffer. Some proteins were identified by MALDI-TOF/MS. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Numerical modeling of two-dimensional heat-transfer and temperature-based calibration using simulated annealing optimization method: Application to gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Bjelić Mišo B.

    2016-01-01

    Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020

  16. Methods for Autonomous Ground-based Real-Time Monitoring and Mapping of CO2 Concentrations Over Extended Two-Dimensional Fields of Interest

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.

    2015-12-01

    The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) combines real-time differential Laser Absorption Spectroscopy (LAS) measurements with a lightweight web-based data acquisition and product generation system to provide autonomous 24/7 monitoring of CO2. The current GreenLITE system is comprised of two transceivers and a series of retro-reflectors that continuously measure the differential transmission over a user-defined set of intersecting line-of-site paths or "chords" that form the plane of interest. These observations are first combined with in situ surface measurements of temperature (T), pressure (P) and relative humidity (RH) to compute the integrated CO2 mixing ratios based on an iterative radiative transfer modeling approach. The retrieved CO2 mixing ratios are then grouped based on observation time and employed in a sparse sample reconstruction method to provide a tomographic- like representation of the 2-D distribution of CO2 over the field of interest. This reconstruction technique defines the field of interest as a set of idealized plumes whose integrated values best match the observations. The GreenLITE system has been deployed at two primary locations; 1) the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions while utilizing a controlled release of CO2 into a segmented underground pipe, and 2) continuously at a carbon sequestration test facility in Feb-Aug 2015. The system demonstrated the ability to identify persistent CO2 sources at the ZERT test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, algorithm design and extended study results.

  17. Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus.

    Science.gov (United States)

    He, Wenjun; Fu, Yuegang; Zheng, Yang; Zhang, Lei; Wang, Jiake; Liu, Zhiying; Zheng, Jianping

    2013-07-01

    The output polarization states of corner cubes (for both uncoated and metal-coated surfaces) with an input beam of arbitrary polarization state and of arbitrary tilt angle to the cube have been analyzed by using the three-dimensional polarization ray-tracing matrix method. The diattenuation and retardance of the corner-cube retroreflector (CCR) for all six different ray paths are calculated, and the relationships to the tilt angle and the tilt orientation angle are shown. When the tilt angle is large, hollow metal-coated CCR is more appropriate than solid metal-coated CCR for the case that the polarization states of output beam should be controlled.

  18. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  19. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  20. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  1. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  2. Identification of gravity wave sources using reverse ray tracing over Indian region

    Directory of Open Access Journals (Sweden)

    M. Pramitha

    2014-07-01

    Full Text Available Reverse ray tracing method is successfully implemented for the first time in the Indian region for identification of the sources and propagation characteristics of the gravity waves observed using airglow emissions from Gadanki (13.5° N, 79.2° E and Hyderabad (17.5° N, 78.5° E. Wave amplitudes are also traced back for these wave events by including both radiative and diffusive damping. Background temperature and wind data obtained from MSISE-90 and HWM-07 models, respectively, are used for the ray tracing. For Gadanki region suitability of these models is tested. Further, a climatological model of background atmosphere for Gadanki region has been developed using a long-term of nearly 30 years of observations available from a variety of ground-based (MST radar, radiosonde, MF radar, rocket-, and satellite-borne measurements. For considering real-time atmospheric inputs, ERA-Interim products are utilized. By this reverse ray method, the source locations for nine wave events could be identified to be in the upper troposphere, whereas, for five other events the waves seem to have been ducted in the mesosphere itself. Uncertainty in locating the terminal points in the horizontal direction is estimated to be within 50–100 and 150–300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in tidal amplitudes. As no convection in-and-around the terminal points are noticed, it is unlikely to be the source. Interestingly, large (~9 m s−1 km−1 vertical shear in the horizontal wind is noted near the ray terminal points (at 10–12 km altitude and is identified to be the source for generating the nine wave events. Conditions prevailing at the terminal points for each of the 14 events are also provided. These events provide leads to a greater understanding of the tropical lower and upper atmospheric coupling through gravity waves.

  3. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing

    Science.gov (United States)

    Wise, John H.; Abel, Tom

    2011-07-01

    We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray-tracing scheme, and its parallel implementation into the adaptive mesh refinement cosmological hydrodynamics code ENZO. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilized to study a broad range of astrophysical problems, such as stellar and black hole feedback. Inaccuracies can arise from large time-steps and poor sampling; therefore, we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. We further test our method with more dynamical situations, for example, the propagation of an ionization front through a Rayleigh-Taylor instability, time-varying luminosities and collimated radiation. The test suite also includes an expanding H II region in a magnetized medium, utilizing the newly implemented magnetohydrodynamics module in ENZO. This method linearly scales with the number of point sources and number of grid cells. Our implementation is scalable to 512 processors on distributed memory machines and can include the radiation pressure and secondary ionizations from X-ray radiation. It is included in the newest public release of ENZO.

  4. Real-time ray tracing of implicit surfaces on the GPU.

    Science.gov (United States)

    Singh, Jag Mohan; Narayanan, P J

    2010-01-01

    Compact representation of geometry using a suitable procedural or mathematical model and a ray-tracing mode of rendering fit the programmable graphics processor units (GPUs) well. Several such representations including parametric and subdivision surfaces have been explored in recent research. The important and widely applicable category of the general implicit surface has received less attention. In this paper, we present a ray-tracing procedure to render general implicit surfaces efficiently on the GPU. Though only the fourth or lower order surfaces can be rendered using analytical roots, our adaptive marching points algorithm can ray trace arbitrary implicit surfaces without multiple roots, by sampling the ray at selected points till a root is found. Adapting the sampling step size based on a proximity measure and a horizon measure delivers high speed. The sign test can handle any surface without multiple roots. The Taylor test that uses ideas from interval analysis can ray trace many surfaces with complex roots. Overall, a simple algorithm that fits the SIMD architecture of the GPU results in high performance. We demonstrate the ray tracing of algebraic surfaces up to order 50 and nonalgebraic surfaces including a Blinn's blobby with 75 spheres at better than interactive frame rates.

  5. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  6. GPU-based four-dimensional general-relativistic ray tracing

    Science.gov (United States)

    Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel

    2012-10-01

    This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D

  7. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  8. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  9. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  10. Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load

  11. 基于高斯牛顿法的二维直流电阻率法的快速反演%Fast inversion for two-dimensional direct current resistivity method based on Gauss-Newton method

    Institute of Scientific and Technical Information of China (English)

    赵东东; 张钱江; 戴世坤; 陈龙伟; 李昆

    2015-01-01

    从二维线源问题出发,对二维直流电阻率法高效、高精度正反演方法进行研究。在正演数值模拟中,引入直接解法求解器求解线性方程组,既保证了起伏地形条件下有限元法正演数值模拟的计算精度和计算效率,又为反演算法中“拟正演”快速回代求解提供了条件。结合高效、高精度的正演算法,采用高斯牛顿法对电阻率进行反演成像。在弱非均匀介质前提下,基于近似海森矩阵主对角线元素严格占优的特点,采用舍弃海森矩阵非对角线元素的策略,提高整个反演计算的效率。最后,利用合成数据对反演算法的有效性进行检验。结果表明:给出的反演算法稳定、快速,结合偶极−偶极装置和三极装置,能有效地反演出异常体的形状、大小和位置。%Fast and high-precision inversion method for two-dimensional line source problem was studied. In the forward numerical simulation, linear equations solver was applied for direct solution, which not only improved the precision and the speed of numerical simulation of finite element method in the case of rugged topography, but also provided conditions for the “quasi forward” fast back substitution solution in the inversion algorithm. Combined with high efficient simulation method, Gauss-Newton method was adopted for inversion of resistivity. In the case of low inhomogeneity, the main diagonal elements of the approximated Hessen matrix possessed priority than others. Based on this, non-diagonal elements were deleted when Gauss-Newton iterative equations were solved. The whole process of inversion was made more efficient by this scheme. Finally, synthetic data were used to test the validity of the presented inversion method. The results show that the inversion method is stable and fast. Combine with dipole-dipole and pole-dipole arrays, the shape, size and the location of the anomalous body can be reflected

  12. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    Science.gov (United States)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  13. Using Stochastic Ray Tracing to Simulate a Dense Time Series of Gross Primary Productivity

    Directory of Open Access Journals (Sweden)

    Martin van Leeuwen

    2015-12-01

    Full Text Available Eddy-covariance carbon dioxide flux measurement is an established method to estimate primary productivity at the forest stand level (typically 10 ha. To validate eddy-covariance estimates, researchers rely on extensive time-series analysis and an assessment of flux contributions made by various ecosystem components at spatial scales much finer than the eddy-covariance footprint. Scaling these contributions to the stand level requires a consideration of the heterogeneity in the canopy radiation field. This paper presents a stochastic ray tracing approach to predict the probabilities of light absorption from over a thousand hemispherical directions by thousands of individual scene elements. Once a look-up table of absorption probabilities is computed, dynamic illumination conditions can be simulated in a computationally realistic time, from which stand-level gross primary productivity can be obtained by integrating photosynthetic assimilation over the scene. We demonstrate the method by inverting a leaf-level photosynthesis model with eddy-covariance and meteorological data. Optimized leaf photosynthesis parameters and canopy structure were able to explain 75% of variation in eddy-covariance gross primary productivity estimates, and commonly used parameters, including photosynthetic capacity and quantum yield, fell within reported ranges. Remaining challenges are discussed including the need to address the distribution of radiation within shoots and needles.

  14. A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; CHEN Lun-Jin; ZHENG Hui-Nan; WANG Shui; GUO Jun

    2008-01-01

    We further present a three-dimensional(3D)ray-tracing study on the propagation characteristic of the superluminous R-X mode waves during high geomagnetic activity following our recent two-dimensional results [J.Geophys.Res.112(2007)A10214].We perform numerical calculations for this mode which originates at specific altitude r=2.0RE in the souice cavity along a 70°night geomagnetic field line.We demonstrate that the ray path of the R-X mode is essentially governed by the azimuthal angle of the wave vector k.Ray paths starting with azimuthal angle 180°(or in the meridian plane)can reach the lowest latitude,but stay at relatively higher latitudes with the azimuthal anglas other than 180°(or off the meridian plane).The results further supports the previous finding that the R-X mode may be physically present in the radiation belts under appropriate conditions.

  15. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  16. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  17. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  18. Ray-Tracing studies in a perturbed atmosphere I- The initial value problem

    CERN Document Server

    Tannous, C

    2001-01-01

    We report the development of a new ray-tracing simulation tool having the potential of the full characterization of a radio link through the accurate study of the propagation path of the signal from the transmitting to the receiving antennas across a perturbed atmosphere. The ray-tracing equations are solved, with controlled accuracy, in three dimensions (3D) and the propagation characteristics are obtained using various refractive index models. The launching of the rays, the atmospheric medium and its disturbances are characterized in 3D. The novelty in the approach stems from the use of special numerical techniques dealing with so called stiff differential equations without which no solution of the ray-tracing equations is possible. Starting with a given launching angle, the solution consists of the ray trajectory, the propagation time information at each point of the path, the beam spreading, the transmitted (resp. received) power taking account of the radiation pattern and orientation of the antennas and ...

  19. Refined ray tracing inside single- and double-curvatured concave surfaces

    CERN Document Server

    Choudhury, Balamati

    2016-01-01

    This book describes the ray tracing effects inside different quadric surfaces. Analytical surface modeling is a priori requirement for electromagnetic (EM) analysis over aerospace platforms. Although numerically-specified surfaces and even non-uniform rational basis spline (NURBS) can be used for modeling such surfaces, for most practical EM applications, it is sufficient to model them as quadric surface patches and the hybrids thereof. It is therefore apparent that a vast majority of aerospace bodies can be conveniently modeled as combinations of simpler quadric surfaces, i.e. hybrid of quadric cylinders and quadric surfaces of revolutions. Hence the analysis of geometric ray tracing inside is prerequisite to analyzing the RF build-up. This book, describes the ray tracing effects inside different quadric surfaces such as right circular cylinder, general paraboloid of revolution (GPOR), GPOR frustum of different shaping parameters and the corresponding visualization of the ray-path details. Finally ray tracin...

  20. Three-dimensional ray tracing for refractive correction of human eye ametropies

    Science.gov (United States)

    Jimenez-Hernandez, J. A.; Diaz-Gonzalez, G.; Trujillo-Romero, F.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.; Santiago-Alvarado, A.

    2016-09-01

    Ametropies of the human eye, are refractive defects hampering the correct imaging on the retina. The most common ways to correct them is by means of spectacles, contact lenses, and modern methods as laser surgery. However, in any case it is very important to identify the ametropia grade for designing the optimum correction action. In the case of laser surgery, it is necessary to define a new shape of the cornea in order to obtain the wanted refractive correction. Therefore, a computational tool to calculate the focal length of the optical system of the eye versus variations on its geometrical parameters is required. Additionally, a clear and understandable visualization of the evaluation process is desirable. In this work, a model of the human eye based on geometrical optics principles is presented. Simulations of light rays coming from a punctual source at six meter from the cornea are shown. We perform a ray-tracing in three dimensions in order to visualize the focusing regions and estimate the power of the optical system. The common parameters of ametropies can be easily modified and analyzed in the simulation by an intuitive graphic user interface.

  1. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Glenn, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  2. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing

    Science.gov (United States)

    Zhu, Yang; Zhang, Xin; Liu, Tao; Wu, Yanxiong; Shi, Guangwei; Wang, Lingjie

    2015-07-01

    A long wave infrared imaging system operated for space exploration of faint target is highly sensitive to stray radiation. We present an integrative suppression process of internal and external stray radiation. A compact and re-imaging LWIR catadioptric telescope is designed as practical example and internal and external stray radiation is analyzed for this telescope. The detector is cryogenically cooled with 100% cold shield efficiency of Lyot stop. A non-sequential ray tracing technique is applied to investigate how the stray radiation propagates inside optical system. The simulation and optimization during initial design stage are proceeded to avoid subversive defect that the stray radiation disturbs the target single. The quantitative analysis of stray radiation irradiance emitted by lenses and structures inside is presented in detail. The optical elements, which operate at room-temperature due to the limitation of weight and size, turn to be the significant stray radiation sources. We propose a method combined infrared material selection and optical form optimization to reduce the internal stray radiation of lens. We design and optimize mechanical structures to achieve a further attenuation of internal stray radiation power. The point source transmittance (PST) is calculated to assess the external radiation which comes from the source out of view field. The ghost of bright target due to residual reflection of optical coatings is simulated. The results show that the performance of stray radiation suppression is dramatically improved by iterative optimization and modification of optomechanical configurations.

  3. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  4. Quality evaluation of Hypericum ascyron extract by two-dimensional high-performance liquid chromatography coupled with the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.

    Science.gov (United States)

    Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun

    2015-02-01

    In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were >0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines.

  5. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  6. Fast Computation Methods Research for Two Dimensional MUSIC Spectrum Based on Circular Array%圆阵二维 MUSIC 谱快速计算方法研究

    Institute of Scientific and Technical Information of China (English)

    杜政东; 魏平; 赵菲; 尹文禄

    2015-01-01

    针对二维波达方向估计时 MUSIC 谱的快速计算问题,研究了均匀圆阵变换到虚拟线阵的 MUSIC 算法(UCA-ULA-MUSIC)、流形分离 MUSIC 算法(MS-MUSIC)、傅立叶域线性求根 MUSIC 算法(FD-Line-Search-MU-SIC)、基于 FFT 的2n 元均匀圆阵 MUSIC 算法(2n-UCA-FFT-MUSIC)与基于 FFT 的任意圆阵 MUSIC 算法(ACA-FFT-MUSIC)。对各种算法快速计算二维 MUSIC 谱的实现步骤进行了总结。在此基础上,给出了各算法计算二维MUSIC 谱的计算复杂度表达式,并以传统方法为参考,对比了各种快速算法相对于传统方法的计算复杂度比值;同时,针对不同的阵列形式,对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果,指出 MS-MUSIC 算法与 ACA-FFT-MUSIC 算法具有更高的工程应用价值,由具体的情况单独或分频段联合使用 MS-MUSIC算法与 ACA-FFT-MUSIC 算法,可以使测向系统较好的兼顾测向性能与时效性。%According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied.The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized.Furthermore,expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented.With refer-ence to the conventional method,the ratio of computational complexity of discussed algorithms is compared.Meanwhile,for different circular arrays,the direction finding performance of applicable algorithms is compared by simulation.It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC)and Fast Fourier Transformation (FFT)which suits to arbitrary circular array (ACA-FFT-MUSIC)have higher engineering value according to the results of analysis and com-parison.The performance and

  7. Reflection formulae for ray tracing in uniaxial anisotropic media using Huygens's principle.

    Science.gov (United States)

    Alemán-Castañeda, Luis A; Rosete-Aguilar, Martha

    2016-11-01

    Ray tracing in uniaxial anisotropic materials is important because they are widely used for instrumentation, liquid-crystal displays, laser cavities, and quantum experiments. There are previous works regarding ray tracing refraction and reflection formulae using the common electromagnetic theory approach, but only the refraction formulae have been deduced using Huygens's principle. In this paper we obtain the reflection expressions using this unconventional approach with a specific coordinate system in which both refraction and reflection formulae are simplified as well as their deduction. We compute some numerical examples to compare them with the common expressions obtained using electromagnetic theory.

  8. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    Science.gov (United States)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  9. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  10. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  11. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  12. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  13. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  14. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  15. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  16. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  17. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  18. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  19. Evaluation method for scientific fund project selection based on two-dimensional semantics information%基于两维语义的科学基金立项评估方法

    Institute of Scientific and Technical Information of China (English)

    朱卫东; 张洪涛; 张晨; 王东鹏

    2012-01-01

    To overcome the disadvantages of existing evaluation methods for scientific fund project selection, a new evaluation approach based on two-dimensional semantics information was proposed. To handle the valuable linguistic information and the incomplete information in peer reviews adequately, the two-dimensional semantics information of the degree of familiarity and the evaluation grade were transformed into pieces of evidence, where the peer reviews can be expressed by evaluation grades with belief. Then the experts' weights were given by the degree of familiarity and the difference between evaluation grades given by peers. And then, the peer reviews were integrated by the evidence reasoning combination rules, and the evaluations of scientific fund projects were quantified and selected. Finally, an example was given to check the utility of this approach.%针对现行科学基金立项评估方法中存在的不足,提出基于两维语义的科学基金立项评估方法.将科学基金立项评估的同行评议表中专家提供的“熟悉程度”和“综合评价等级”作为两维语义评价信息,并将其转化为证据体,用评价等级和信度表示专家的评审意见,从而既能充分整合评审中有价值的信息,又能方便描述专家评价中的不完全信息;利用专家的“熟悉程度”和群体专家评价信息的差异性对专家进行组合赋权;然后利用证据推理算子将专家评估信息集结,并将不同项目进行量化排序择优;最后结合实例来检验该方法的有效性.

  20. Accounting for partiality in serial crystallography using ray-tracing principles.

    Science.gov (United States)

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  1. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  3. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  4. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  5. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  6. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  7. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  8. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  9. Emulating Ray-Tracing Channels in Multi-probe Anechoic Chamber Setups for Virtual Drive Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Llorente, Ines Carton; Kyösti, Pekka

    2016-01-01

    This paper discusses virtual drive testing (VDT) for multiple-input multiple-output (MIMO) capable terminals in multi-probe anechoic chamber (MPAC) setups. We propose to perform VDT, via reproducing ray tracing (RT) simulated channels with the field synthesis technique. Simulation results demonst...

  10. The Gaussian Laser Angular Distribution in HYDRA's 3D Laser Ray Trace Package

    Energy Technology Data Exchange (ETDEWEB)

    Sepke, Scott M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-10

    In this note, the angular distribution of rays launched by the 3D LZR ray trace package is derived for Gaussian beams (npower==2) with bm model=3±. Beams with bm model=+3 have a nearly at distribution, and beams with bm model=-3 have a nearly linear distribution when the spot size is large compared to the wavelength.

  11. Magnetospheric Whistler Mode Ray Tracing with the Inclusion of Finite Electron and Ion Temperature

    Science.gov (United States)

    Maxworth, A. S.; Golkowski, M.

    2015-12-01

    Ray tracing is an important technique for the study of whistler mode wave propagation in the Earth's magnetosphere. In numerical ray tracing the trajectory of a wave packet is calculated at each point in space by solving the Haselgrove equations, assuming a smooth, loss-less medium with no mode coupling. Previous work on ray tracing has assumed a cold plasma environment with negligible electron and ion temperatures. In this work we present magnetospheric whistler mode wave ray tracing results with the inclusion of finite ion and electron temperature. The inclusion of finite temperature effects makes the fourth order dispersion relation become sixth order. We compare our results with the work done by previous researchers for cold plasma environments, using two near earth space models (NGO and GCPM). Inclusion of finite temperature closes the otherwise open refractive index surface near the lower hybrid resonance frequency and affects the magnetospheric reflection of whistler waves. We also asses the main changes in the ray trajectory and implications for cyclotron resonance wave particle interactions including energetic particle precipitation.

  12. McXtrace: A modern ray-tracing package for X-ray instrumentation

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Prodi, A.; Willendrup, Peter Kjær

    2011-01-01

    we present the developments of the McXtrace project, a free, open source software package based on Monte Carlo ray tracing for simulations and optimisation of complete X-ray instruments. The methodology of building a simulation is presented through an example beamline, namely Beamline 811 at MAX-...

  13. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  14. GPU-based ray tracing algorithm for high-speed propagation prediction in typical indoor environments

    Science.gov (United States)

    Guo, Lixin; Guan, Xiaowei; Liu, Zhongyu

    2015-10-01

    A fast 3-D ray tracing propagation prediction model based on virtual source tree is presented in this paper, whose theoretical foundations are geometrical optics(GO) and the uniform theory of diffraction(UTD). In terms of typical single room indoor scene, taking the geometrical and electromagnetic information into account, some acceleration techniques are adopted to raise the efficiency of the ray tracing algorithm. The simulation results indicate that the runtime of the ray tracing algorithm will sharply increase when the number of the objects in the single room is large enough. Therefore, GPU acceleration technology is used to solve that problem. As is known to all, GPU is good at calculation operation rather than logical judgment, so that tens of thousands of threads in CUDA programs are able to calculate at the same time, in order to achieve massively parallel acceleration. Finally, a typical single room with several objects is simulated by using the serial ray tracing algorithm and the parallel one respectively. It can be found easily from the results that compared with the serial algorithm, the GPU-based one can achieve greater efficiency.

  15. A Sub-band Divided Ray Tracing Algorithm Using the DPS Subspace in UWB Indoor Scenarios

    DEFF Research Database (Denmark)

    Gan, Mingming; Xu, Zhinan; Hofer, Markus

    2015-01-01

    Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub-bands. A...

  16. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  17. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    Science.gov (United States)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-08-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  18. Ray tracing based path-length calculations for polarized light tomographic imaging

    Science.gov (United States)

    Manjappa, Rakesh; Kanhirodan, Rajan

    2015-09-01

    A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, di-attenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

  19. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  20. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.