WorldWideScience

Sample records for two-dimensional radon transform

  1. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  2. GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    Cai Lian; Du Sidan; Gao Duntang

    2005-01-01

    The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.

  3. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  4. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  5. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  6. Fractional Radon Transform and Transform of Wigner Operator

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; CHEN Jun-Hua

    2003-01-01

    Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.

  7. From Complex Fractional Fourier Transform to Complex Fractional Radon Transform

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2004-01-01

    We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.

  8. A Fuzzy Radon Transform for Track Recognition

    CERN Document Server

    De Laat, C T A M; CERN. Geneva; Lourens, W; Kamermans, R

    1993-01-01

    In this contribution a fuzzy Radon transform is shown for application in ALICE and ATLAS (typical track density of 8000 in one unit of rapidity). Resolution is introduced by the "broadening" of the matching tracks in the Radon transform, which is obtained by making a convolution of the matching tracks with Gaussian kernel. In a good approximation, an analytical expression for the fuzzy Radon transform is given. An example of two track separation with noisy input is added.

  9. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  10. Two-dimensional Fourier transform ESR correlation spectroscopy

    Science.gov (United States)

    Gorcester, Jeff; Freed, Jack H.

    1988-04-01

    We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.

  11. Radon Transform and Light-Cone Distributions

    Science.gov (United States)

    Teryaev, O. V.

    2016-08-01

    The relevance of Radon transform for generalized and transverse momentum dependent parton distributions is discussed. The new application for conditional (fracture) parton distributions and dihadron fragmentation functions is suggested.

  12. Certain theorems on two dimensional Laplace transform and non-homogeneous parabolic partial differential equations

    Directory of Open Access Journals (Sweden)

    A. Aghili

    2011-12-01

    Full Text Available In this work,we present new theorems on two-dimensional Laplace transformation. We also develop some applications based on these results. The two-dimensional Laplace transformation is useful in the solution of non-homogeneous partial differential equations. In the last section a boundary value problem is solved by using the double Laplace-Carson transform.

  13. Radon Transform for Finite Dimensional Hilbert Space

    CERN Document Server

    Revzen, M

    2012-01-01

    Finite dimensional, d, Hilbert space operators are underpinned with ?nite geometry. The analysis emphasizes a central role for mutual unbiased bases (MUB) states projectors. Interrelation among the Hilbert space operators revealed via their (?nite) dual a?ne plane geometry (DAPG) underpin- ning is studied and utilized in formulating a ?nite dimensional Radon transformation. The ?nite geometry required for our study is outlines.

  14. Efficient blind image restoration using discrete periodic radon transform.

    Science.gov (United States)

    Lun, Daniel P K; Chan, Tommy C L; Hsung, Tai-Chiu; Feng, David Dagan; Chan, Yuk-Hee

    2004-02-01

    Restoring an image from its convolution with an unknown blur function is a well-known ill-posed problem in image processing. Many approaches have been proposed to solve the problem and they have shown to have good performance in identifying the blur function and restoring the original image. However, in actual implementation, various problems incurred due to the large data size and long computational time of these approaches are undesirable even with the current computing machines. In this paper, an efficient algorithm is proposed for blind image restoration based on the discrete periodic Radon transform (DPRT). With DPRT, the original two-dimensional blind image restoration problem is converted into one-dimensional ones, which greatly reduces the memory size and computational time required. Experimental results show that the resulting approach is faster in almost an order of magnitude as compared with the traditional approach, while the quality of the restored image is similar.

  15. Discrete fractional Radon transforms and quadratic forms

    CERN Document Server

    Pierce, Lillian B

    2010-01-01

    We consider discrete analogues of fractional Radon transforms involving integration over paraboloids defined by positive definite quadratic forms. We prove sharp results for this class of discrete operators in all dimensions, providing necessary and sufficient conditions for them to extend to bounded operators from $\\ell^p$ to $\\ell^q$. The method involves an intricate spectral decomposition according to major and minor arcs, motivated by ideas from the circle method of Hardy and Littlewood. Techniques from harmonic analysis, in particular Fourier transform methods and oscillatory integrals, as well as the number theoretic structure of quadratic forms, exponential sums, and theta functions, play key roles in the proof.

  16. The Harmonic Decomposition Reconstruction for the Exponential Radon Transform

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The exponential Radon transform, a generalization of the Radon transform, is defined andstudied as a mapping of function spaces. It is represented in terms of Fourier transform of its domain andrange, and this leads to the harmonic decomposition reconstruction. The results are similar results of Tre-tiak and Metz.

  17. A generalization of the Funk-Radon transform

    Science.gov (United States)

    Quellmalz, Michael

    2017-03-01

    The Funk-Radon transform assigns to a function on the two-sphere its mean values along all great circles. We consider the following generalization: we replace the great circles by the small circles being the intersection of the sphere with planes containing a common point {\\boldsymbol{\\zeta }} inside the sphere. If {\\boldsymbol{\\zeta }} is the origin, this is just the classical Funk-Radon transform. We find two mappings from the sphere to itself that enable us to represent the generalized Radon transform in terms of the Funk-Radon transform. This representation is utilized to characterize the nullspace and range as well as to prove an inversion formula of the generalized Radon transform.

  18. The generalized radon transform: Sampling, accuracy and memoryconsiderations

    Energy Technology Data Exchange (ETDEWEB)

    Luengo Hendriks, Cris L.; van Ginkel, Michael; Verbeek, Piet W.; van Vliet, Lucas J.

    2004-09-23

    The generalized Radon (or Hough) transform is a well-known tool for detecting parameterized shapes in an image. The Radon transform is a mapping between the image space and a parameter space. The coordinates of a point in the latter correspond to the parameters of a shape in the image. The amplitude at that point corresponds to the amount of evidence for that shape. In this paper we discuss three important aspects of the Radon transform. The first aspect is discretization. Using concepts from sampling theory we derive a set of sampling criteria for the generalized Radon transform. The second aspect is accuracy. For the specific case of the Radon transform for spheres, we examine how well the location of the maxima matches the true parameters. We derive a correction term to reduce the bias in the estimated radii. The third aspect concerns a projection-based algorithm to reduce memory requirements.

  19. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  20. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  1. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  2. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  3. A Two-Dimensional Cloud Model for Condition Assessment of HVDC Converter Transformers

    Directory of Open Access Journals (Sweden)

    Linjie Zhao

    2012-01-01

    Full Text Available Converter transformers are the key and the most important components in high voltage direct current (HVDC power transmission systems. Statistics show that the failure rate of HVDC converter transformers is approximately twice of that of transformers in AC power systems. This paper presents an approach integrated with a two-dimensional cloud model and an entropy-based weight model to evaluate the condition of HVDC converter transformers. The integrated approach can describe the complexity of HVDC converter transformers and achieve an effective assessment of their condition. Data from electrical testing, DGA, oil testing, and visual inspection were chosen to form the double-level assessment index system. Analysis results show that the integrated approach is capable of providing a relevant and effective assessment which in turn, provides valuable information for the maintenance of HVDC converter transformers.

  4. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    Science.gov (United States)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  5. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  6. Radon transforms and Gegenbauer-Chebyshev integrals, II; examples

    Science.gov (United States)

    Rubin, Boris

    2016-08-01

    We transfer the results of Part I related to the modified support theorem and the kernel description of the hyperplane Radon transform to totally geodesic transforms on the sphere and the hyperbolic space, the spherical slice transform, and the spherical mean transform for spheres through the origin. The assumptions for functions are formulated in integral terms and close to minimal.

  7. Detection of earthquake induced radon precursors by Hilbert Huang Transform

    Science.gov (United States)

    Barman, Chiranjib; Ghose, Debasis; Sinha, Bikash; Deb, Argha

    2016-10-01

    Continuous measurement of radon-222 concentration in soil was carried out across duration of one year at a geologically faulted area having high regional heat flow to detect anomalies caused by seismic activities. The data reveals a range of periodicities present in the radon time series. To identify seismic induced radon changes we treat the time series data through various filtering methods to remove inherent periodicities. The Ensemble Empirical Mode Decomposition (EEMD) is deployed to decompose the signal into its characteristic modes. Hilbert Huang Transform (HHT) is applied for the first time on the physically significant modes obtained by EEMD to represent time-energy-frequency of the recorded soil radon time series. After removing the periodic and quasi-periodic constituents from the original time series, the simulated result shows a forceful correlation in recorded radon-222 anomalies with regional and local seismic events.

  8. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  9. Mathematical description of the two-dimensional Gabor transform. Application to image encryption

    Science.gov (United States)

    Perez, Ronal; Vilardy, Juan M.; Torres, Cesar O.

    2017-01-01

    Information security with optical processing, such as the double random phase encoding and the Gabor transform (GT) has been investigated by various researchers. We present a two-dimensional (2-D) generalization of the one-dimensional GT. This 2-D GT is applied to encrypt digital images in this paper. The scaling factors of the GT can be used as new keys, providing a new encryption system with a high security characteristics. This method can encrypt and protect the information of the digital images with a high security for information processing systems.

  10. Two-dimensional cylindrical thermal cloak designed by implicit transformation method

    Science.gov (United States)

    Yuan, Xuebo; Lin, Guochang; Wang, Youshan

    2016-07-01

    As a new-type technology of heat management, thermal metamaterials have attracted more and more attentions recently and thermal cloak is a typical case. Thermal conductivity of thermal cloak designed by coordinate transformation method is usually featured by inhomogeneity, anisotropy and local singularity. Explicit transformation method, which is commonly used to design thermal cloak with the coordinate transformation known in advance, has insufficient flexibility, making it hard to proactively reduce the difficulty of device fabrication. In this work, we designed the thermal conductivity of two-dimensional (2D) cylindrical thermal cloak using the implicit transformation method without knowledge of the coordinate transformation in advance. With two classes of generation functions taken into consideration, this study adopted full-wave simulations to analyze the thermal cloaking performances of designed thermal cloaks. Material distributions and simulation results showed that the implicit transformation method has high flexibility. The form of coordinate transformation not only influences the homogeneity and anisotropy but also directly influences the thermal cloaking performance. An improved layered structure for 2D cylindrical thermal cloak was put forward based on the generation function g(r) = r15, which reduces the number of the kinds of constituent materials while guaranteeing good thermal cloaking performance. This work provides a beneficial guidance for reducing the fabrication difficulty of thermal cloak.

  11. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    Science.gov (United States)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  12. Rotation-invariant texture analysis using Radon and Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Songshan Xiao; Yongxing Wu

    2007-01-01

    @@ Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.

  13. APPLICATION OF TWO-DIMENSIONAL WAVELET TRANSFORM IN NEAR-SHORE X-BAND RADAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    FENG Xiang-bo; YAN Yi-xin; ZHANG Wei

    2011-01-01

    Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields,and spatial wave information could be obtained from the radar images.Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images.However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms.When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain.In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images.The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves.Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW).To verify the results of2-D WT, wave shoaling in radar images is calculated based on dispersion relation.The theoretical calculation results agree with the results of 2-D WT on the whole.The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.

  14. Two-dimensional discrete wavelets transform for optical phase extraction: application on speckle correlation fringes

    Science.gov (United States)

    Ghlaifan, Abdulatef; Tounsi, Yassine; Zada, Sara; Muhire, Desire; Nassim, Abdelkrim

    2016-12-01

    A method for optical phase extraction based on two-dimensional discrete wavelets transform (2-DWT) decomposition is shown. From modulated fringe pattern, phase distribution is extracted by the ratio between detail and approximation. Modulation process is realized digitally by introducing high-frequency spatial carrier, and this process needs two π/2-shifted fringe patterns. We propose to use only single fringe and generate its quadrature by spiral phase transform (SPT). After validation by computer simulation, we apply the 2-DWT algorithm on experimental speckle fringe correlation taken for hard disk surface. The extracted phase using SPT quadrature was compared with that given using this time experimental quadrature, and we show a good performance by multiscale structural similarity metric.

  15. Phase reconstruction of digital holography with the peak of the two-dimensional Gabor wavelet transform.

    Science.gov (United States)

    Weng, Jiawen; Zhong, Jingang; Hu, Cuiying

    2009-06-20

    We describe a numerical reconstruction technique for digital holography by means of the two-dimensional Gabor wavelet transform (2D-GWT). Applying the 2D-GWT to digital holography, the object wave can be reconstructed by calculating the wavelet coefficients of the hologram at the peak of the 2D-GWT automatically. At the same time the effect of the zero-order diffraction image and the twin image are eliminated without spatial filtering. Comparing the numerical reconstruction of a holographic image by the analysis of the one-dimensional Gabor wavelet transform (1D-GWT) with the 2D-GWT, we show that the 2D-GWT method is superior to the 1D-GWT method, especially when the fringes of the hologram are not just along the y direction. The theory and the results of a simulation and experiments are shown.

  16. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei

    2013-06-21

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm for the hyperbolic Radon transform. The basic idea is to reformulate the transform as an oscillatory integral operator and to construct a blockwise lowrank approximation of the kernel function. The overall structure follows the Fourier integral operator butterfly algorithm. For 2D data, the algorithm runs in complexity O(N2 log N), where N depends on the maximum frequency and offset in the data set and the range of parameters (intercept time and slowness) in the model space. From a series of studies, we found that this algorithm can be significantly more efficient than the conventional time-domain integration. © 2013 Society of Exploration Geophysicists.

  17. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  18. Seismic Shear Energy Reflection By Radon-Fourier Transform

    Directory of Open Access Journals (Sweden)

    Malik Umairia

    2016-01-01

    Full Text Available Seismic waves split in an anisotropic medium, instead of rotating horizontal component to principal direction, Radon-Fourier is derived to observe the signature of shear wave reflection. Synthetic model with fracture is built and discretized using finite difference scheme for spatial and time domain. Common depth point (CDP with single shot gives traces and automatic gain is preprocessed before Radon Transform (RT, a filtering technique gives radon domain. It makes easier to observe fractures at specific incidence and improves its quality in some way by removing the noise. A comparison of synthetic data and BF-data is performed on the basis of root means square error (RMS values. The RMS error is minimum at the 10th trace in radon domain.

  19. Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media

    CERN Document Server

    Liu, Yan; Guenneau, Sebastien

    2015-01-01

    We analyse wave propagation in two-dimensional bianisotropic media with the Finite Element Method (FEM). We start from the Maxwell-Tellegen's equations in bianisotropic media, and derive some system of coupled Partial Difference Equations (PDEs) for longitudinal electric and magnetic field components. Perfectly Matched Layers (PMLs) are discussed to model such unbounded media. We implement these PDEs and PMLs in a finite element software. We apply transformation optics in order to design some bianisotropic media with interesting functionalities, such as cloaks, concentrators and rotators. We propose a design of metamaterial with concentric layers made of homogeneous media with isotropic permittivity, permeability and magneto-electric parameters that mimic the required effective anisotropic tensors of a bianisotropic cloak in the long wavelength limit (homogenization approach). Our numerical results show that well-known metamaterials can be transposed to bianisotropic media.

  20. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  1. Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer.

    Science.gov (United States)

    Anzai, Hiroshi; Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2015-01-01

    A Fourier transform two-dimensional fluorescence excitation spectrometer (FT-2DFES) was developed based on the multiplex technique using a tandem Fabry-Pérot interferometer (tandem FPI). In addition to the advantage of the multiplex technique, the main advantage of the tandem FPI is applicable to the modulation of transition with a large absorption bandwidth (larger than 100 nm) and is thus applicable to the modulation of the excitation of molecules in the condensed phase. As a demonstration of the effectiveness of FT-2DFES, we succeeded in separately observing the fluorescence excitation peaks from a mixed methanol solution of laser dyes (coumarin 480, rhodamine 6G, DCM (4-dicyanomethylene-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran), and LDS750). Furthermore, the energy transfer from rhodamine 6G to LDS750 was observed.

  2. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    CERN Document Server

    Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  3. Compton scattered imaging based on the V-line radon transform and its medical imaging applications.

    Science.gov (United States)

    Nguyen, M K; Regniery, R; Truong, T T; Zaidi, H

    2010-01-01

    The Radon transform (RT) on straight lines deals as mathematical foundation for many tomographic modalities (e.g. Xray scanner, Positron Emission Tomography), using only primary radiation. In this paper, we consider a new RT defined on a pair of half-lines forming a letter V, arising from the modeling a two-dimensional emission imaging process by Compton scattered gamma rays. We establish its analytic inverse, which is shown to support the feasibility of the reconstruction of a two-dimensional image from scattered radiation collected on a one-dimensional collimated camera. Moreover, a filtered back-projection inversion method is also constructed. Its main advantages are algorithmic efficiency and computational rapidity. We present numerical simulations to illustrate the working. To sum up, the V-line RT leads not only to a new imaging principle, but also to a new concept of detector with high energetic resolution capable to collect the scattered radiation.

  4. Transformation diffusion reconstruction of three-dimensional histology volumes from two-dimensional image stacks.

    Science.gov (United States)

    Casero, Ramón; Siedlecka, Urszula; Jones, Elizabeth S; Gruscheski, Lena; Gibb, Matthew; Schneider, Jürgen E; Kohl, Peter; Grau, Vicente

    2017-05-01

    Traditional histology is the gold standard for tissue studies, but it is intrinsically reliant on two-dimensional (2D) images. Study of volumetric tissue samples such as whole hearts produces a stack of misaligned and distorted 2D images that need to be reconstructed to recover a congruent volume with the original sample's shape. In this paper, we develop a mathematical framework called Transformation Diffusion (TD) for stack alignment refinement as a solution to the heat diffusion equation. This general framework does not require contour segmentation, is independent of the registration method used, and is trivially parallelizable. After the first stack sweep, we also replace registration operations by operations in the space of transformations, several orders of magnitude faster and less memory-consuming. Implementing TD with operations in the space of transformations produces our Transformation Diffusion Reconstruction (TDR) algorithm, applicable to general transformations that are closed under inversion and composition. In particular, we provide formulas for translation and affine transformations. We also propose an Approximated TDR (ATDR) algorithm that extends the same principles to tensor-product B-spline transformations. Using TDR and ATDR, we reconstruct a full mouse heart at pixel size 0.92µm×0.92µm, cut 10µm thick, spaced 20µm (84G). Our algorithms employ only local information from transformations between neighboring slices, but the TD framework allows theoretical analysis of the refinement as applying a global Gaussian low-pass filter to the unknown stack misalignments. We also show that reconstruction without an external reference produces large shape artifacts in a cardiac specimen while still optimizing slice-to-slice alignment. To overcome this problem, we use a pre-cutting blockface imaging process previously developed by our group that takes advantage of Brewster's angle and a polarizer to capture the outline of only the topmost layer of wax

  5. Radon transforms and Gegenbauer-Chebyshev integrals, I

    Science.gov (United States)

    Rubin, Boris

    2017-06-01

    We suggest new modifications of the Helgason's support theorem and description of the kernel for the hyperplane Radon transform and its dual. The assumptions for functions are formulated in integral terms and close to minimal. The proofs rely on the properties of the Gegenbauer-Chebyshev integrals which generalize Abel type fractional integrals on the positive half-line.

  6. The Numerical Method of Inversion for the Interior Radon Transform

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The interior Radon transform arises from a limited data problem in computerized tomography.The corresponding operator R is investigated as a mapping between weightedL2- spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.

  7. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance

    Science.gov (United States)

    Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  8. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    Science.gov (United States)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  9. POLYNOMIAL RADON TRANSFORM%多项式Radon变换

    Institute of Scientific and Technical Information of China (English)

    牛滨华; 孙春岩; 张中杰; 沈操; 李英才; 吕景贵; 王宏语

    2001-01-01

    Radon变换是数据处理中广泛应用的一种方法技术. 本文介绍了次数为“2”的多项式Radon变换. 讨论了多项式正反Radon变换的公式、实现方法和有关计算参数的选择. 通过理论模型试算,对多项式、线性、抛物线三种Radon变换进行了比较. 对实际资料进行了多项式Radon变换处理,给出了消除地震反射记录中线性干扰的算例.%The Radon transform is a mathematical technique widely used in seismic data processing and analysis. This paper presents a method of general Radon transform with2-order polynomial. We present the forward and inverse transform formulas and discuss how to choose the best parameters to avoid aliasing. Using some model data,we compare polynomial Radon with linear Radon and parabolic can be built up to process data having a uniform geometry. Examples on field data demonstrate clearly the robustness of the method.

  10. Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica

    Science.gov (United States)

    Chen, Cao; Chu, Xinzhao

    2017-09-01

    Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several

  11. Spindle extraction method for ISAR image based on Radon transform

    Science.gov (United States)

    Wei, Xia; Zheng, Sheng; Zeng, Xiangyun; Zhu, Daoyuan; Xu, Gaogui

    2015-12-01

    In this paper, a method of spindle extraction of target in inverse synthetic aperture radar (ISAR) image is proposed which depends on Radon Transform. Firstly, utilizing Radon Transform to detect all straight lines which are collinear with these line segments in image. Then, using Sobel operator to detect image contour. Finally, finding all intersections of each straight line and image contour, the two intersections which have maximum distance between them is the two ends of this line segment and the longest line segment of all line segments is spindle of target. According to the proposed spindle extraction method, one hundred simulated ISAR images which are respectively rotated 0 degrees, 10 degrees, 20 degrees, 30 degrees and 40 degrees in counterclockwise are used to do experiment and the proposed method and the detection results are more close to the real spindle of target than the method based on Hough Transform .

  12. Multifrequency Two-Dimensional Fourier Transform ESR: An X/Ku Band Spectrometer

    Science.gov (United States)

    Borbat, Petr P.; Crepeau, Richard H.; Freed, Jack H.

    1997-08-01

    A two-dimensional Fourier Transform ESR (2D FT ESR) spectrometer operating at 9.25 and 17.35 GHz is described. The Ku-band bridge uses an efficient heterodyne technique wherein 9.25 GHz is the intermediate frequency. At Ku-band the sensitivity is increased by almost an order of magnitude. One may routinely collect a full 2D ELDOR spectrum in less than 20 min for a sample containing 0.5-5 nmol of nitroxide spin-probe in the slow-motional regime. Broad spectral coverage at Ku-band is obtained by use of a bridged loop-gap resonator (BLGR) and of a dielectric ring resonator (DR). It is shown that an even more uniform spectral excitation is obtained by using shorter microwave pulses of about 3 ns duration. The dead-time at Ku-band is just 30-40 ns, yielding an improved SNR in 2D ELDOR spectra of nitroxide spin-probes withT2as short as 20-30 ns. A comparison of 2D ELDOR spectra obtained at 9.25 and 17.35 GHz for spin-labeled phospholipid probes (16PC) in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) membrane vesicles showed that both spectra could be satisfactorily simulated using the same set of model parameters even though they are markedly different in appearance. The improved sensitivity and shorter dead-time at Ku-band made it possible to obtain orientation-dependent 2D ELDOR spectra of the Cholestane (CSL) spin-probe in macroscopically aligned lipid bilayers of egg yolk PC using samples containing only 1 mg of lipid and just 5 nmol of spin-probe.

  13. A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements

    Science.gov (United States)

    Hindley, Neil P.; Smith, Nathan D.; Wright, Corwin J.; Rees, D. Andrew S.; Mitchell, Nicholas J.

    2016-06-01

    Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.

  14. Determination of grain-size distribution function using two-dimensional Fourier transforms of tone-pulse-encoded images

    Science.gov (United States)

    Generazio, E. R.

    1988-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain-size distribution function from which the mean grain shape, size, and orientation can be obtained.

  15. Determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images

    Science.gov (United States)

    Generazio, E. R.

    1986-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

  16. Radon-Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection (Preprint)

    Science.gov (United States)

    2014-10-09

    Radon -Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection Xiaolong Chen*, Fuqing Cai, Yu Cong, Jian Guan...unit (ARU) and Doppler frequency migration (DFM) effects. In this paper, a novel transform called the Radon -fractional Fourier transform (RFRFT) is...are carried out and the performances of different methods including MTD, FRFT, and the Radon -Fourier transform (RFT) are compared, which demonstrate

  17. Robust Image Hashing Using Radon Transform and Invariant Features

    Directory of Open Access Journals (Sweden)

    Y.L. Liu

    2016-09-01

    Full Text Available A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  18. A parallel-pipeline architecture of the fast polynomial transform for computing a two-dimensional cyclic convolution

    Science.gov (United States)

    Truong, T. K.; Liu, K. Y.; Reed, I. S.

    1983-01-01

    It is pointed out that the two-dimensional cyclic convolution is a useful tool for many two-dimensional digital signal processing applications. Two important applications are related to spaceborne high-resolution synthetic aperture radar (SAR) processing and image processing. Nussbaumer and Quandalle (1978) showed that a radix-2 polynomial transform analogous to the conventional radix-2 FFT algorithm can be used to compute a two-dimensional cyclic convolution. On the basis of results reported by Arambepola and Rayner (1979), a radix-2 polynomial transform can be defined to compute a multidimensional cyclic convolution. Truong et al. (1981) used the considered ideas together with the Chinese Theorem to further reduce the complexity of the radix-2 fast polynomial transform (FPT). Reed et al. (1981) demonstrated that such a new FPT algorithm is significantly faster than the FFT algorithm for computing a two-dimensional convolution. In the present investigation, a parallel-pipeline architecture is considered for implementing the FPT developed by Truong et al.

  19. Attenuated radon transform: theory and application in medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, G.T.

    1979-06-01

    A detailed analysis is given of the properties of the attenuated Radon transform and of how increases in photon attenuation influence the numerical accuracy and computation efficiency of iterative and convolution algorithms used to determine its inversion. The practical applications for this work involve quantitative assessment of the distribution of injected radiopharmaceuticals and radionuclides in man and animals for basic physiological and biochemical studies as well as clinical studies in nuclear medicine. A mathematical structure is developed using function theory and the theory of linear operators on Hilbert spaces which lends itself to better understanding the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform reduces to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For the situation of variable attenuation coefficient frequently found in nuclear medicine applications of imaging the heart and chest, the procedure developed in this thesis involves iterative techniques of performing the generalized inverse. For constant attenuation coefficient less than 0.15 cm/sup -1/, convolution methods can reliably reconstruct a 30 cm object with 0.5 cm resolution. However, for high attenuation coefficients or for the situation where there is variable attenuation such as reconstruction of distribution of isotopes in the heart, iterative techniques developed in this thesis give the best results. (ERB)

  20. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam

    DEFF Research Database (Denmark)

    Kretschmer, Silvan; Komsa, Hannu-Pekka; Bøggild, Peter

    2017-01-01

    The polymorphism of two-dimensional (w2D) transition-metal dichalcogenides (TMDs) and different electronic properties of the polymorphs make TMDs particularly promising materials in the context of applications in electronics. Recently, local transformations from the semiconducting trigonal prisma...... development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution.......The polymorphism of two-dimensional (w2D) transition-metal dichalcogenides (TMDs) and different electronic properties of the polymorphs make TMDs particularly promising materials in the context of applications in electronics. Recently, local transformations from the semiconducting trigonal...... prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [Nat. Nanotech. 2014, 9, 391], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D...

  1. On artifacts in limited data spherical Radon transform: curved observation surface

    DEFF Research Database (Denmark)

    Barannyk, Lyudmyla L.; Frikel, Jürgen; Nguyen, Linh V.

    2015-01-01

    We study the limited data problem of the spherical Radon transform in two and three-dimensional spaces with general acquisition surfaces. In such situations, it is known that the application of filtered-backprojection reconstruction formulas might generate added artifacts and degrade the quality...... of reconstructions. In this article, we explicitly analyze a family of such inversion formulas, depending on a smoothing function that vanishes to order k on the boundary of the acquisition surfaces. We show that the artifacts are k orders smoother than their generating singularity. Moreover, in two......-dimensional space, if the generating singularity is conormal satisfying a generic condition then the artifacts are even orders smoother than the generating singularity. Our analysis for three-dimensional space contains an important idea of lifting up space. We also explore the theoretical findings in a series...

  2. Radon

    Science.gov (United States)

    Exposure to radon is the second leading cause of lung cancer after smoking. Radon is a colorless, odorless, tasteless and invisible gas produced by the decay of naturally occurring uranium in soil and water.

  3. Radon

    Science.gov (United States)

    ... can move to air, groundwater, and surface water. Radon-222 has a radioactive half-life of about 4 ... concerns. The main isotope of health concern is radon-222 ( 222 Rn). Many scientists believe that the alpha ...

  4. Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids

    Science.gov (United States)

    Lee, Sanghyuk; Budil, David E.; Freed, Jack H.

    1994-10-01

    A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a

  5. Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR

    Science.gov (United States)

    Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.

    1990-12-01

    The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.

  6. Radon变换和衰减Radon变换的分析研究%THE ANALYTIC STUDY ON THE RADON TRANSFORM AND THEATTENUATED RADON TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    王金平; 杜金元

    2002-01-01

    衰减Radon变换出现在单光子放射型计算机层析成像中.本文首先回顾和研究了Radon变换和衰减Radon变换及其反演的有关结论,进而提出了Tretiak-Metz结果的一种新证明方法,对于一般对象,本文用变换方法非滤子背投影法导出了衰减Radon变换的反演公式.%The attenuated Radon transform arises in single photon emission computedtomography (SPECT). The Radon transform and attenuated Radon transform are reviewed,and a new method of proof of the Tretiak-Metz results is presented. For a general object theinverse attenuated Radon transform is derived by means of transform techniques but nonfilt ered-backprojection method.

  7. Multi-resolution inversion algorithm for the attenuated radon transform

    KAUST Repository

    Barbano, Paolo Emilio

    2011-09-01

    We present a FAST implementation of the Inverse Attenuated Radon Transform which incorporates accurate collimator response, as well as artifact rejection due to statistical noise and data corruption. This new reconstruction procedure is performed by combining a memory-efficient implementation of the analytical inversion formula (AIF [1], [2]) with a wavelet-based version of a recently discovered regularization technique [3]. The paper introduces all the main aspects of the new AIF, as well numerical experiments on real and simulated data. Those display a substantial improvement in reconstruction quality when compared to linear or iterative algorithms. © 2011 IEEE.

  8. Radon transforms of the Wigner operator on hyperplanes

    Institute of Scientific and Technical Information of China (English)

    Chen Jun-Hua; Fan Hong-Yi

    2009-01-01

    The generalization of tomographic maps to hyperplanes is considered. We find that the Radon transform of the Wigner operator in multi-dimensional phase space leads to a normally ordered operator in binomial distribution-amixed-state density operator. Reconstruction of the Wigner operator is also feasible. The normally ordered form and the Weyl ordered form of the Wigner operator are used in our derivation. The operator quantum tomography theory is expressed in terms of some operator identities,with the merit of revealing the essence of the theory in a simple and concise way.

  9. Mixed Norm Estimate for Radon Transform on Weighted $L^p$ Spaces

    Indian Academy of Sciences (India)

    Ashisha Kumar; Swagato K Ray

    2010-09-01

    We will discuss about the mapping property of Radon transform on $L^p$ spaces with power weight. It will be shown that the Pitt’s inequality together with the weighted version of Hardy–Littlewood–Sobolev lemma imply weighted inequality for the Radon transform.

  10. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  11. Face Feature Extraction for Recognition Using Radon Transform

    Directory of Open Access Journals (Sweden)

    Justice Kwame Appati

    2016-07-01

    Full Text Available Face recognition for some time now has been a challenging exercise especially when it comes to recognizing faces with different pose. This perhaps is due to the use of inappropriate descriptors during the feature extraction stage. In this paper, a thorough examination of the Radon Transform as a face signature descriptor was investigated on one of the standard database. The global features were rather considered by constructing a Gray Level Co-occurrences Matrices (GLCMs. Correlation, Energy, Homogeneity and Contrast are computed from each image to form the feature vector for recognition. We showed that, the transformed face signatures are robust and invariant to the different pose. With the statistical features extracted, face training classes are optimally broken up through the use of Support Vector Machine (SVM whiles recognition rate for test face images are computed based on the L1 norm.

  12. A two dimensional optical input to one dimensional serial pulse transformation using confocal reflectors.

    Science.gov (United States)

    Hulse, George

    2014-01-01

    An optical approach using confocal parabolic reflectors is used to transform 2D input data based on spatial position to a 1D sequenced serial string. The optical input data are set up as a 2D array. Individual channels are established between the input array and the final output detector, which reads the data as a time based serial data. The transformation is achieved by changing the optical path length associated with each pixel and its channel to the output detector. The 2D data can be images or individual sources but the light must be parallel. This paper defines how to establish the channels and the calculations required to achieve the desired transformation.

  13. Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers.

    Science.gov (United States)

    Tao, Xin; Gu, Yi

    2013-08-14

    We report, for the first time, the fabrication of single-crystal In2Se3 thin layers using mechanical exfoliation and studies of crystalline-crystalline (α → β) phase transformations as well as the corresponding changes of the electrical properties in these thin layers. Particularly, using electron microscopy and correlative in situ micro-Raman and electrical measurements, we show that, in contrast to bulk single crystals, the β phase can persist in single-crystal thin layers at room temperature (RT). The single-crystal nature of the layers before and after the phase transition allows for unambiguous determination of changes in the electrical resistivity. Specifically, the β phase has an electrical resistivity about 1-2 orders of magnitude lower than the α phase. Furthermore, we find that the temperature of the α → β phase transformation increases by as much as 130 K with the layer thickness decreasing from ~87 nm to ~4 nm. These single-crystal thin layers are ideal for studying the scaling behavior of the phase transformations and associated changes of the electrical properties. For these In2Se3 thin layers, the accessibility of the β phase at RT, with distinct electrical properties than the α phase, provides the basis for multilevel phase-change memories in a single material system.

  14. 3D Face Recognition based on Radon Transform, PCA, LDA using KNN and SVM

    Directory of Open Access Journals (Sweden)

    P. S. Hiremath

    2014-06-01

    Full Text Available Biometrics (or biometric authentication refers to the identification of humans by their characteristics or traits. Bio-metrics is used in computer science as a form of identification and access control. It is also used to identify individuals in groups that are under surveillance. Biometric identifiers are the distinctive, measurable characteristics used to label and describe individuals. Three dimensional (3D human face recognition is emerging as a significant biometric technology. Research interest into 3D face recognition has increased during recent years due to the availability of improved 3D acquisition devices and processing algorithms. Three dimensional face recognition also helps to resolve some of the issues associated with two dimensional (2D face recognition. In the previous research works, there are several methods for face recognition using range images that are limited to the data acquisition and pre-processing stage only. In the present paper, we have proposed a 3D face recognition algorithm which is based on Radon transform, Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. The Radon transform (RT is a fundamental tool to normalize 3D range data. The PCA is used to reduce the dimensionality of feature space, and the LDA is used to optimize the features, which are finally used to recognize the faces. The experimentation has been done using three publicly available databases, namely, Bhosphorus, Texas and CASIA 3D face databases. The experimental results are shown that the proposed algorithm is efficient in terms of accuracy and detection time, in comparison with other methods based on PCA only and RT+PCA. It is observed that 40 Eigen faces of PCA and 5 LDA components lead to an average recognition rate of 99.20% using SVM classifier.

  15. A NOTE ON SINGULAR VALUE DECOMPOSITION FOR RADON TRANSFORM IN Rn

    Institute of Scientific and Technical Information of China (English)

    王金平; 杜金元

    2002-01-01

    The singular value decomposition is derived when the Radon transform is restricted to functions which are square integrable on the unit ball in Rn with respect to the weight Wλ(x). It fulfilles mainly by means of the projection-slice theorem. The range of the Radon transform is spanned by products of Gegenbauer polynomials and spherical harmonics. The inverse transform of the those basis functions are given. This immediately leads to an inversion formula by series expansion and range characterizations.

  16. Two-Parameter Radon Transformation of the Wigner Operator and Its Inverse

    Institute of Scientific and Technical Information of China (English)

    范洪义; 程海凌

    2001-01-01

    Using the technique of integration within an ordered product of operators, we reveal that a new quantum mechanical representation |x, μ,v〉exists, the eigenvector of operator μQ + νP (linear combination of coordinate Q and momentum P) with eigenvalue x, which is inherent to the two-parameter (μ, ν) Radon transformation of the Wigner operator. It turns out that the projection operator |x,μ,ν> Radon transformation of the Wigner operator. The inverse of operator Radon transformation is also derived which indicates tomography in operator version.

  17. Using the generalized Radon transform for detection of curves in noisy images

    DEFF Research Database (Denmark)

    Toft, Peter Aundal

    1996-01-01

    In this paper the discrete generalized Radon transform will be investigated as a tool for detection of curves in noisy digital images. The discrete generalized Radon transform maps an image into a parameter domain, where curves following a specific parameterized curve form will correspond to a peak...... in the parameter domain. A major advantage of the generalized Radon transform is that the curves are allowed to intersect. This enables a thresholding algorithm in the parameter domain for simultaneous detection of curve parameters. A threshold level based on the noise level in the image is derived. A numerical...

  18. The Radon Transform and Inverse Radon Transform on the Product Laguerre Hypergroup%乘积拉盖尔超群上的Radon变换及其反演

    Institute of Scientific and Technical Information of China (English)

    刘沛; 孙庆文; 熊林平

    2011-01-01

    The inversion Radon transform on the product Laguerre hypergroup Kn is discussed. At first, the the-ory of continuous wavelet analysis on Kn is given, then the Plancherel theory and Parseval formula on Kn are ob-tained. Furthermore,the expression of Radon transform on Kn is provided. At last, using the generalized wavelet transform the inversion formula of Radon transform on Kn is established.%主要讨论乘积Laguerre超群Kn上的Radon反演公式.首先定义Kn上的广义平移算子,其次研究Kn上的广义Fourier变换,得到Kn上的Plancherel定理及Parseval等式.在此基础上,给出Kn上Radon变换具体表达式.最后利用广义小波变换得到Radon变换的反演公式.

  19. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian

    2013-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.

  20. Limited Data Problems for the Generalized Radon Transform in Rn

    DEFF Research Database (Denmark)

    Frikel, Jürgen; Quinto, Eric Todd

    2016-01-01

    We consider the generalized Radon transform (defined in terms of smooth weight functions) on hyperplanes in Rn. We analyze general filtered backprojection type reconstruction methods for limited data with filters given by general pseudodifferential operators. We provide microlocal characterizatio...

  1. Single-lens Fourier-transform-based optical color image encryption using dual two-dimensional chaotic maps and the Fresnel transform.

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue

    2017-01-20

    We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.

  2. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    Science.gov (United States)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total

  3. Multiple attenuation using λ-f domain high-resolution Radon transform

    Science.gov (United States)

    Li, Zhi-Na; Li, Zhen-Chun; Wang, Peng; Xu, Qiang

    2013-12-01

    The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed the λ-f domain high-resolution Radon transform based on the fast and modified parabolic Radon transform presented by Abbad. The introduction of a new variable λ makes the transform operator frequency-independent. Thus, we need to calculate the transform operator and its inverse operator only once, which greatly improves the computational efficiency. Besides, because the primaries and multiples are distributed on straight lines with different slopes in the λ-f domain, we can easily choose the filtering operator to suppress the multiples. At the same time, the proposed method offers the advantage of high-resolution Radon transform, which can greatly improve the precision of attenuating the multiples. Numerical experiments suggest that the multiples are well suppressed and the amplitude versus offset characteristics of the primaries are well maintained. Real data processing results further verify the effectiveness and feasibility of the method.

  4. Multiple attenuation usingλ-f domain high-resolution Radon transform

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Na; Li Zhen-Chun; Wang Peng; Xu Qiang

    2013-01-01

    The parabolic Radon transform has been widely used in multiple attenuation. To further improve the accuracy and efficiency of the Radon transform, we developed theλ-f domain high-resolution Radon transform based on the fast and modified parabolic Radon transform presented by Abbad. The introduction of a new variable λ makes the transform operator frequency-independent. Thus, we need to calculate the transform operator and its inverse operator only once, which greatly improves the computational efficiency. Besides, because the primaries and multiples are distributed on straight lines with different slopes in theλ-f domain, we can easily choose the filtering operator to suppress the multiples. At the same time, the proposed method offers the advantage of high-resolution Radon transform, which can greatly improve the precision of attenuating the multiples. Numerical experiments suggest that the multiples are well suppressed and the amplitude versus offset characteristics of the primaries are well maintained. Real data processing results further verify the effectiveness and feasibility of the method.

  5. Relation between Fresnel transform of input light field and the two-parameter Radon transform of Wigner function of the field

    Institute of Scientific and Technical Information of China (English)

    Fan Hong-Yi; Hu Li-Yun

    2009-01-01

    This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, I.e., when an input field ψ(x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C 7.

  6. Singularities of the Radon Transform of a Class of Piecewise Smooth Functions in R2

    Institute of Scientific and Technical Information of China (English)

    渠刚荣

    2008-01-01

    @@ The Radon transform is the mathematical foundation of Computerized Tomography[1](CT).Its important applications includes medical CT,noninvasive test and etc.If one is specially interested in the places at which the image function changed largely such as the interfaces of two different tissues,tissue and ill tissue and the interfaces of two difierent matters,and want to reconstruct the outlines of the interfaces,one should reconstruct the singularities of the image function.The exact inversion of the Radon transform is valid only for smooth function[2].The singularity places of the reconstructed function should be studied specially.The research includes the propagation and inversion of singularity of the Radon transform.If one use convolutionbackprojection method to reconstruct the image function,the reconstructed function become blurring at the singularity places of the original function.M.Jiang and etc[3]developed a blind deconvolution method deblurring reconstructed image.By[4]and following research,we see that one can use a neighborhood data of the singularities of the Radon transform to inverse the singularity of the Radon transform,and therefore the reconstruction is available for some incomplete data reconstructions.

  7. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  8. On the injectivity of the generalized Radon transform arising in a model of mathematical economics

    Science.gov (United States)

    Agaltsov, A. D.

    2016-11-01

    In the present article we consider the uniqueness problem for the generalized Radon transform arising in a mathematical model of production. We prove uniqueness theorems for this transform and for the profit function in the corresponding model of production. Our approach is based on the multidimensional Wiener’s approximation theorems.

  9. A new method for classification of Brachiopods based on the radon transformation

    Directory of Open Access Journals (Sweden)

    Youssef Ait khouya

    2011-09-01

    Full Text Available Brachiopods have a lateral outline which is quite important in systematic studies. It is often assessed by a qualitative evaluation and linear measurements, which are not clear enough and precise for describing the shape of the shell and its changes In this paper we propose a new method for classification of fossils based on the radon transform from their greyscale image. We take the case of brachiopods which has Complex shapes. We use an adaptation of Radon transform called R-transform which is invariant to common geometrical transformations. Each shape is described by R3D transform. We consider the grayscale image as a set of cuts obtained from successive binarization for each gray level in image, and for each segmentation we compute the R-transform then we obtained the R3D transform. The advantages of the proposed method are robustness to noise, and invariant to common geometrical transformations scale, translation and rotation.

  10. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  11. Approximate Solutions of Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method

    Institute of Scientific and Technical Information of China (English)

    宋丽娜; 王维国

    2012-01-01

    By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.

  12. Approximate Solutions of Nonlinear Fractional Kolmogorov—Petrovskii—Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method

    Science.gov (United States)

    Song, Li-Na; Wang, Wei-Guo

    2012-08-01

    By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.

  13. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera

    Science.gov (United States)

    Moon, Sunghwan

    2017-06-01

    A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.

  14. An Optimal Method For Wake Detection In SAR Images Using Radon Transformation Combined With Wavelet Filters

    CERN Document Server

    Krishnaveni, M; Subashini, P

    2009-01-01

    A new fangled method for ship wake detection in synthetic aperture radar (SAR) images is explored here. Most of the detection procedure applies the Radon transform as its properties outfit more than any other transformation for the detection purpose. But still it holds problems when the transform is applied to an image with a high level of noise. Here this paper articulates the combination between the radon transformation and the shrinkage methods which increase the mode of wake detection process. The latter shrinkage method with RT maximize the signal to noise ratio hence it leads to most optimal detection of lines in the SAR images. The originality mainly works on the denoising segment of the proposed algorithm. Experimental work outs are carried over both in simulated and real SAR images. The detection process is more adequate with the proposed method and improves better than the conventional methods.

  15. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    Science.gov (United States)

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  16. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  17. Design and implementation in VHDL code of the two-dimensional fast Fourier transform for frequency filtering, convolution and correlation operations

    Energy Technology Data Exchange (ETDEWEB)

    Vilardy, Juan M; Giacometto, F; Torres, C O; Mattos, L, E-mail: vilardy.juan@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)

    2011-01-01

    The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.

  18. Fast Computation of Radon-Wigner Transform & Radon-Ambiguity Transform and its Application in SAR/GMTI%Radon-Wigner和Radon-Ambiguity快速算法及其在SAR/GMTI中的应用

    Institute of Scientific and Technical Information of China (English)

    盛蔚; 毛士艺

    2003-01-01

    本文针对Radon-Wigner Transform、Radon-Ambiguity Transform检测线性调频信号中的若干问题进行研究.Radon-Wigner Transform和Radon-Ambiguity Transform保留了Wigner-Ville分布和模糊函数时频聚集性高的优点,克服了它们在检测多分量信号时存在严重的交叉项问题.本文首先分析并证明了Wigner-Ville分布和模糊函数中交叉项与自主项的不同,指出该"不同"即是Radon-Wigner Transform和Radon-Ambiguity Transform能够抑制交叉项的根本原因;其次,本文证明了Radon-Wigner Transform的一种快速计算方法,并且以分数阶傅利叶变换为桥梁,给出了Radon-Ambiguity Transform的快速计算方法;最后,本文将Radon-Wigner Transform和Radon-Ambiguitiy Transform快速计算方法用于合成孔径雷达对地面运动目标的检测和参数估计中,取得了预期的较好的检测结果.

  19. Prestack seismic data regularization using a time-variant anisotropic Radon transform

    Science.gov (United States)

    Gong, Xiangbo; Yu, Shuang; Wang, Shengchao

    2016-08-01

    The Radon transform (RT) has been widely used in seismic data processing. In this paper, we develop a sparse time-variant anisotropic Radon transform (ART) to regularize and interpolate the prestack seismic data. By introducing the anelliptical parameter η, the ART has a more accurate integral path than other widely used RTs, which produces a better energy-focused Radon panel in the case of a vertical transverse isotropy VTI medium or seismic gather with a large moveout. To promote the sparsity of the Radon panel, the RT is realized as a l 1-l 2 norm inversion problem, and the fast iterative shrinkage thresholding algorithm is imposed to solve this sparsity-constrained inversion problem. Compared with the time-invariant parabolic RT in the mixed frequency-time domain and time-variant hyperbolic RT, the reconstructed result of the ART has the best performance and the least reconstruction error in a general synthetic VTI medium. Another field marine example further demonstrates that the ART is effective and robust for prestack seismic data regularization.

  20. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture.

  1. Micro-Doppler Frequency Estimation Based on Radon-Wigner Transform

    Directory of Open Access Journals (Sweden)

    Sun Huixia

    2014-01-01

    Full Text Available A nonparametric computationally efficient algorithm is proposed for micro-Doppler frequency estimation, assuming that this non-linear micro-Doppler frequency is approximate linear frequency in short-time intervals. In this algorithm, we use Radon-Wigner transform in short-time intervals to estimate micro-Doppler frequency. Simulation results confirm the effectiveness of the proposed method.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.2980

  2. A Two-dimensional Genetic Algorithm Based on the Eno-Haar Wavelet Transform%一种基于Eno-Haar小波变换二维遗传算法

    Institute of Scientific and Technical Information of China (English)

    宋锦萍; 赵晨萍; 李登峰

    2007-01-01

    A two-dimensional genetic algorithm of wavelet coefficient is presented by using the ENO wavelet transform and the decomposed characterization of the two-dimensional Haar wavelet. And simulated by the ENO interpolation the article shows the affectivity and the superiority of this algorithm.

  3. Superfast algorithms of multidimensional discrete k-wave transforms and Volterra filtering based on superfast radon transform

    Science.gov (United States)

    Labunets, Valeri G.; Labunets-Rundblad, Ekaterina V.; Astola, Jaakko T.

    2001-12-01

    Fast algorithms for a wide class of non-separable n-dimensional (nD) discrete unitary K-transforms (DKT) are introduced. They need less 1D DKTs than in the case of the classical radix-2 FFT-type approach. The method utilizes a decomposition of the nD K-transform into the product of a new nD discrete Radon transform and of a set of parallel/independ 1D K-transforms. If the nD K-transform has a separable kernel (e.g., the case of the discrete Fourier transform) our approach leads to decrease of multiplicative complexity by the factor of n comparing to the classical row/column separable approach. It is well known that an n-th order Volterra filter of one dimensional signal can be evaluated by an appropriate nD linear convolution. This work describes new superfast algorithm for Volterra filtering. New approach is based on the superfast discrete Radon and Nussbaumer polynomial transforms.

  4. Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates

    Science.gov (United States)

    Nikitin, Viktor V.; Andersson, Fredrik; Carlsson, Marcus; Duchkov, Anton A.

    2017-08-01

    The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with different moveouts is computationally expensive for large data sets. In this paper we present a new method for fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the main computational parts reduce to computing convolutions. This allows for fast implementations by means of FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a computational platform for this purpose, due to the hardware supported interpolation routines as well as optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using this approach.

  5. Focus measurement in 3D focal stack using direct and inverse discrete radon transform

    Science.gov (United States)

    Gómez-Cárdenes, Óscar; Marichal-Hernández, José G.; Trujillo-Sevilla, Juan M.; Carmona-Ballester, David; Rodríguez-Ramos, José M.

    2017-05-01

    The discrete Radon transform, DRT, calculates, with linearithmic complexity, the sum of pixels through a set of discrete lines covering all possible slopes and intercepts in an image. In 2006, a method was proposed to compute the inverse DRT that remains exact and fast, in spite of being iterative. In this work the DRT pair is used to propose a Ridgelet and a Curvelet transform that perform focus measurement of an image. Then the shape from focus approach based on DRT pair is applied to a focal stack to create a depth map of a scene.

  6. Feature extraction Based on Reassignment Gabor Transform and Radon Transform%基于重排Gabor变换和Radon变换的特征提取技术∗

    Institute of Scientific and Technical Information of China (English)

    严辉容; 李兴慧; 覃才友

    2015-01-01

    基于重排Gabor变换和Radon变换理论,提出了基于重排Gabor变换和Radon变换的故障诊断技术。文章首先利用重排Gabor变换时频聚集性特点,对含噪信号进行重排Gabor变换,再将Gabor展开系数进行Radon变换,在Radon变换平面上提取像点,再进行Radon逆变换,实现信号降噪。仿真结果表明,该方法有效地抑制了噪声的干扰,成功地提取了故障特征信号。%According to the reassignment Gabor transform and Radon transform, and a feature extraction method based on the reassignment Gabor transform and Radon transform is proposed. Firstly, the reassign-ment Gabor transform is applied to the noise signal on the basis of its characteristics, and the Gabor coeffi-cients Gabor transform are processed by the Radon transform, and the image point in Radon transform plane is selected, Then the de-noised Gabor coefficients could be obtained by the Radon inverse transform. The simulated results indicate that this method can effectively reduce the noise interference, and the fault features are extracted successfully for mechanical diagnosis.

  7. A compressive sensing approach to the high-resolution linear Radon transform: application on teleseismic wavefields

    Science.gov (United States)

    Aharchaou, M.; Levander, A.

    2016-11-01

    We propose a new approach to the linear Radon transform (LRT) based on compressive sensing (CS) theory. This method can be used to extract signals of interest embedded in teleseismic measurements recorded by regional seismic arrays. We pose the problem of enhancing the resolution of the LRT as an inverse problem formulated in the frequency domain and solved according to a CS framework. We show how irregularity in the measurements along with sparsity constraints can be used to reach very compact and meaningful representations in the Radon domain, offering a benefit for both signal isolation and spatial interpolation during data reconstruction. We demonstrate the effectiveness of our approach and its benefits on both synthetic and USArray seismograms. This CS-based version of the LRT presents a valuable tool relevant for both global and exploration seismic processing, and which can be used as a basis for signal enhancement techniques exploiting irregularly sampled data.

  8. A Two-Dimensional Double Dispersed Hadamard Transform Spectrometer%双色散二维阿达玛变换光谱仪

    Institute of Scientific and Technical Information of China (English)

    刘佳; 石磊; 李凯; 郑信文; 曾立波; 吴琼水

    2012-01-01

    设计了一种双色散二维调制的阿达玛变换光谱仪,利用光栅在水平方向的谱级色散和棱镜在垂直方向的谱线色散进行二维分光.与传统的二维光谱CCD探测方法不同,该设计独辟蹊径,采用面阵数字微镜对二维光谱进行阿达玛调制,并利用单点式检测器进行光信号的检测.理论计算及光学仿真表明,与传统的二维光谱探测仪器相比,该光谱仪不仅具有高的分辨率,同时还具有很高的信噪比.%A kind of two-dimensional hadamard transform spectrometer was developed. A grating was used for chromatic dispersion of orders and a prism was used for spectral dispersion. Quite different from traditional CCD detection method, a digital micromirror device (DMD) was applied for optical modulation, and a simple point detector was used as the sensor. Compared with traditional two-dimensional spectrometer, it has the advantage of high resolution and signal-noise-ratio, which was proved by theoretical calculation and computer simulation.

  9. 仿射变换对二维蕨类形状控制的研究%Affine Transformation for Two-dimensional Fern Shape Control

    Institute of Scientific and Technical Information of China (English)

    包晔

    2012-01-01

    通过对仿射变换矩阵系数进行调节分析,研究仿射变换矩阵对二维蕨类形状控制的作用,并分析仿射变换矩阵的各个系数对二维蕨类植物生成的形状和弯曲方向的影响,给出了蕨类植物形状控制方法,证明能较好地控制蕨类植物叶片的生长方向和形状,但还不能够控制叶片生成的精确角度和叶片的精确大小.%In this paper, affine transformation matrix of two-dimensional fern shape control is analyzed, and the affine trans- formation matrix coefficients on the shape generated by the two-dimensional ferns are adjusted and the bending directions are given. Better controlling approaches to the direction and shape of fern leaves are put forward in detail.

  10. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    thus obtained can be extended to a large class of distributions containing the rapidly decreasing smooth functions and the compactly supported distributions. For these transforms we derive support theorems in which the support of ϕ is (partially) characterized in terms of the support of RPϕ. The proof...

  11. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Science.gov (United States)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  12. Performance analysis of a finite radon transform in OFDM system under different channel models

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  13. Depth profiling of SBS/PET layered materials using step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy and two-dimensional correlation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.

  14. RECURSIVE FILTERING RADON-AMBIGUITY TRANSFORM ALGORITHM FOR DETECTING MULTI-LFM SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Yingxiang; Xiao Xianci

    2003-01-01

    In multi-LFM signal condition, Radon-Ambiguity Transform (RAT) of the strongLFM component has strong suppression effect on that of the weak LFM component. A methodnamed as Recursive Filtering RAT (RFRAT) Mgorithm is proposed for solving this problem. Byfully using of the Maximum Likelihood (ML) estimation value of the frequency modulation rategot by RAT. RFRAT can detect the noisy multi-LFM signals out step by step. The merit of thisnew method is validated by an illustrative example in low Signal-to-Noise-Ratio (SNR) condition.

  15. On a problem of reconstruction of a discontinuous function by its Radon transform

    Science.gov (United States)

    Derevtsov, Evgeny Yu.; Maltseva, Svetlana V.; Svetov, Ivan E.; Sultanov, Murat A.

    2016-08-01

    A problem of reconstruction of a discontinuous function by its Radon transform is considered. One of the approaches to the numerical solution for the problem consists in the next sequential steps: a visualization of a set of breaking points; an identification of this set; a determination of jump values; an elimination of discontinuities. We consider three of listed problems except the problem of jump values. The problems are investigated by mathematical modeling using numerical experiments. The results of simulation are satisfactory and allow to hope for the further development of the approach.

  16. Note on the Exponential Radon Transform%关于指数型Radon变换的注记

    Institute of Scientific and Technical Information of China (English)

    万静雯; 王金平

    2011-01-01

    讨论了实函数指数型Radon变换的一些性质,并将其推广到复函数的情形,最后给出了参数为纯虚数时指数型Radon变换的反演公式.%In this paper, we discuss some properties about the exponential Radon transform of the real functions and extend the results to the complex functions, and obtain an inversion formula of the exponential Radon transform when the parameter is an imaginary.

  17. On the Radon transform over isotropic d-planes%关于迷向d-平面上的Radon变换

    Institute of Scientific and Technical Information of China (English)

    康倩倩

    2012-01-01

    研究了速降函数在R2n中迷向d-平面上的Radon变换,d<n,并分别给出d=1,d=2的情况下,此Radon变换的像满足的二阶偏微分方程组.%The paper investigates the Radon transform of rapidly decreasing functions on R2n over isotropic d-planes, d < n. For d = 1, and d = 2, it is proved that the range of this Radon transform satisfies a system of partial differential equations of the second order respectively.

  18. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    Science.gov (United States)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  19. Topochemical Transformations of CaX2 (X=C, Si, Ge) to Form Free-Standing Two-Dimensional Materials.

    Science.gov (United States)

    Pratik, Saied Md; Nijamudheen, A; Datta, Ayan

    2015-12-01

    Topochemical transformations of layered materials CaX2 (X=Si, Ge) are the method of choice for the high-yield synthesis of pristine, defect-free two-dimensional systems silicane and germanane, which have advanced electronic properties. Based on solid-state dispersion-corrected calculations, mechanisms for such transformations are elucidated that provide an in-depth understanding of phase transition in these layered materials. While formation of such layered materials is highly favorable for silicane and germanane, a barrier of 1.2 eV in the case of graphane precludes its synthesis from CaC2 topochemically. The energy penalty required for distorting linear acetylene into a trans-bent geometry accounts for this barrier. In contrast it is highly favorable in the heavier analogues, resulting in barrierless topochemical generation of silicane and germanane. Photochemical generation of the trans-bent structure of acetylene in its first excited state (S1 ) can directly generate graphane through a barrierless condensation. Unlike the buckled structure of silicene, the phase-h of CaSi2 with perfectly planar silicene layers exhibits the Dirac cones at the high symmetry points K and H. Interestingly, topochemical acidification of the cubic phase of calcium carbide is predicted to generate the previously elusive platonic hydrocarbon, tetrahedrane.

  20. Nonlinear Radon Transform and Its Application to Face Recognition%非线性Radon变换及其在人脸识别中的应用

    Institute of Scientific and Technical Information of China (English)

    甘俊英; 何思斌

    2011-01-01

    Three nonlinear Radon transforms, including parabola, hyperbola, and ellipse Radon transform, are studied respectively, and the relationships among them are analyzed. Then, the three nonlinear Radon transforms are applied to face recognition. When shape parameters of parabola, hyperbola, and ellipse are approximately infinite, linear Radon transform of image is equal to parabola Radon transform and hyperbola Radon transform is equal to ellipse Radon transform. Nonlinear Radon transform possesses the characters of reducing noise and can be used to represent texture features of image. Moreover, polluted face images are represented by feature matrix via three nonlinear Radon transforms, and then combined with principal component analysis in face recognition. Experimental results demonstrate the validity of nonlinear Radon transform in face recognition.%探讨抛物线、双曲线、椭圆3种非线性Radon变换及其性质,分析它们之间的关系,并将所述3种非线性Radon变换应用于人脸识别.通过对这3种非线性Radon变换及其性质研究得出,当抛物线、双曲线及椭圆的形状参数趋于无穷大时,图像抛物线Radon变换与线性Radon变换相等,双曲线Radon变换与椭圆Radon变换相等;同时,非线性Radon变换具有降噪功能和表达图像纹理特征的特点.文中将受噪声污染的人脸图像分别表示为3种非线性Radon变换下的特征矩阵,并结合PCA算法应用于人脸识别.实验结果表明非线性Radon变换在人脸识别中的有效性.

  1. Deblending using an improved apex-shifted hyperbolic radon transform based on the Stolt migration operator

    Science.gov (United States)

    Gong, Xiangbo; Feng, Fei; Jiao, Xuming; Wang, Shengchao

    2017-10-01

    Simultaneous seismic source separation, also known as deblending, is an essential process for blended acquisition. With the assumption that the blending noise is coherent in the common shot domain but is incoherent in other domains, traditional deblending methods are commonly performed in the common receiver, common midpoint or common offset domain. In this paper, we propose an improved apex-shifted hyperbolic radon transform (ASHRT) to deblend directly in the common shot domain. A time-axis stretch strategy named Stolt-stretch is introduced to overcome the limitation of the constant velocity assumption of Stolt-based operators. To improve the sparsity in the transform domain, a total variation (TV) norm inversion is implemented to enhance the energy convergence in the radon panel. Because of highly efficient Stolt migration and the demigration operator in the frequency-wavenumber domain, as well as the flexible geometry condition of the source-receiver, this approach is quite suitable for quality control (QC) during streamer acquisition. The synthetic and field examples demonstrate that our proposition is robust and efficient.

  2. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  3. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  4. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  5. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    Science.gov (United States)

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds.

  6. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  7. Focus projection of the parabolic radon transform and multiple waves separator, elimination

    Institute of Scientific and Technical Information of China (English)

    张建贵; 宋守根; 袁修贵

    2002-01-01

    Based on the scalar wave equation, making use of the ray approximation of the reflected seismic data (CMP or CSP gathers), the authors derive respectively the projection function of the primary waves and multiple waves at the near-offset (CMP or CSP gathers) in the parabolic Radon transform(PRT)domain. From the geometric point, the authors prove that the energy of the reflection still distributes along hyperbola which has higher curvature in the PRT domain and becomes some energy masses. So the primary waves and the multiple waves which interweave each other in (x, t) domain can be completely separated, which helps the multiple waves eliminated by filtering or muting. It is important for the analysis of velocity and the separator and elimination of multiple waves.

  8. Radon型广义变换的反演及性态研究%Inversion and Property Characterization on Generalized Transforms of Radon Type

    Institute of Scientific and Technical Information of China (English)

    王金平

    2011-01-01

    该文主要研究Radon型广义变换的反演公式和数值解法的改进以及一些性质特征.把在平面情形下Radon变换及指数型Radon变换的相应结果推广到任意维欧氏空间的情形.%In this paper, the inversion formula and properties of generalized transforms of Radon type are discussed. Moreover, the numerical inversion is developed. Furthermore, the results of Radon transform and exponential Radon transform in R2 are extended to Rn.

  9. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  10. Inversion of Radon Transform and Wavelet%基于小波变换的Radon变换反演

    Institute of Scientific and Technical Information of China (English)

    陈东方

    2000-01-01

    采用小波取样定理和共轭正交小波变换两种方法进行了Radon变换的反演计算,并对不光滑函数的反演计算进行了深入讨论。理论和实例证明,基于小波变换的Radon变换反演算法便于计算并能高精度重构原信号。%The wavelet theory is used for the analysis of inversion of Radon transform. In this paper, the theory of Sampling theorem by wavelet and the theory of conjugate orthogonal wavelet transform are studied in the calculation of inversion problem of Radon transform, and more accurate results are obtained.

  11. Pulse processing in optical fibers using the temporal Radon-Wigner transform

    Energy Technology Data Exchange (ETDEWEB)

    Bulus-Rossini, L A; Costanzo-Caso, P A; Duchowicz, R [Centro de Investigaciones Opticas, CONICET La Plata - CIC, Camino Parque Centenario y 506, C.C. 3 (1897) La Plata (Argentina); Sicre, E E, E-mail: lbulus@ing.unlp.edu.ar [Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Lima 717, C1073AAO Buenos Aires (Argentina)

    2011-01-01

    It is presented the use of the temporal Radon-Wigner transform (RWT), which is the squared modulus of the fractional Fourier transform (FRT) for a varying fractional order p, as a processing tool for pulses with FWHM of ps-tens of ps. For analysis purposes, the complete numerical generation of the RWT with 0 < p < 1 is proposed to select a particular pulse shape related to a determined value of p. To this end, the amplitude and phase of the signal to be processed are obtained using a pulse characterization technique. To synthesize the processed pulse, the selected FRT irradiance is optically produced employing a photonic device that combines phase modulation and dispersive transmission. The practical implementation of this device involves a scaling factor that depends on the modulation and dispersive parameters. It is explored the variation of this factor in order to obtain an enhancement of the particular characteristic sought in the pulse to be synthesized. To illustrate the implementation of the proposed method, numerical simulations of its application to compress signals commonly found in fiber optic transmission systems, are performed. The examples presented consider chirped Gaussian pulses and pulses distorted by group velocity dispersion and self-phase modulation.

  12. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of

  13. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of sty

  14. Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media using a polarization method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.

  15. Ground-roll noise extraction and suppression using high-resolution linear Radon transform

    Science.gov (United States)

    Hu, Yue; Wang, Limin; Cheng, Feng; Luo, Yinhe; Shen, Chao; Mi, Binbin

    2016-05-01

    Ground-roll is a main type of strong noises in petroleum seismic exploration. Suppression of this kind of noise is essential to improve the signal-to-noise ratio of seismic data. In the time-offset (t-x) domain, the ground-roll noise and the effective waves (e.g., direct waves, reflections) overlap with each other in terms of time and frequency, which make it difficult to suppress ground roll noise in exploration seismic data. However, significant different features shown in the frequency-velocity (f-v) domain make it possible to separate ground roll noise and effective waves effectively. We propose a novel method to separate them using high-resolution linear Radon transform (LRT). Amplitude and phase information is preserved during the proposed quasi-reversible transformation. The reversibility and linearity of LRT provide a foundation for ground-roll noise suppression in the f-v domain. We extract the energy of ground-roll noise in the f-v domain, and transform the extracted part back to the t-x domain to obtain the ground-roll noise shot gather. Finally, the extracted ground-roll noise is subtracted from the original data arithmetically. Theoretical tests and a real world example have been implemented to illustrate that the ground-roll noise suppression can be achieved with negligible distortion of the effective signals. When compared with the adaptive ground-roll attenuation method and the K-L transform method, the real world example shows the superiority of our method in suppressing the ground-roll noise and preserving the amplitude and phase information of effective waves.

  16. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  17. A Fast Algorithm of Generalized Radon-Fourier Transform for Weak Maneuvering Target Detection

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2016-01-01

    Full Text Available The generalized Radon-Fourier transform (GRFT has been proposed to detect radar weak maneuvering targets by realizing coherent integration via jointly searching in motion parameter space. Two main drawbacks of GRFT are the heavy computational burden and the blind speed side lobes (BSSL which will cause serious false alarms. The BSSL learning-based particle swarm optimization (BPSO has been proposed before to reduce the computational burden of GRFT and solve the BSSL problem simultaneously. However, the BPSO suffers from an apparent loss in detection performance compared with GRFT. In this paper, a fast implementation algorithm of GRFT using the BSSL learning-based modified wind-driven optimization (BMWDO is proposed. In the BMWDO, the BSSL learning procedure is also used to deal with the BSSL phenomenon. Besides, the MWDO adjusts the coefficients in WDO with Levy distribution and uniform distribution, and it outperforms PSO in a noisy environment. Compared with BPSO, the proposed method can achieve better detection performance with a similar computational cost. Several numerical experiments are also provided to demonstrate the effectiveness of the proposed method.

  18. Cone-beam local reconstruction based on a Radon inversion transformation

    Institute of Scientific and Technical Information of China (English)

    Wang Xian-Chao; Yan Bin; Li Lei; Hu Guo-En

    2012-01-01

    The local reconstruction from truncated projection data is one area of interest in image reconstruction for computed tomography (CT),which creates the possibility for dose reduction.In this paper,a filtered-backprojection (FBP)algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local reconstruction in the circular geometry.The algorithm achieves the data filtering in two steps.The first step is the derivative of projections,which acts locally on the data and can thus be carried out accurately even in the presence of data truncation.The second step is the nonlocal Hilbert filtering.The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm.Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT),not only it has a comparable ability to restrain truncation artifacts,but also its reconstruction efficiency is improved.It is about twice as fast as that of the ATRACT.Therefore,this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.

  19. Tomography of homogenized laser-induced plasma by Radon transform technique

    Science.gov (United States)

    Eschlböck-Fuchs, S.; Demidov, A.; Gornushkin, I. B.; Schmid, T.; Rössler, R.; Huber, N.; Panne, U.; Pedarnig, J. D.

    2016-09-01

    Tomography of a laser-induced plasma in air is performed by inverse Radon transform of angle-resolved plasma images. Plasmas were induced by single laser pulses (SP), double pulses (DP) in collinear geometry, and by a combination of single laser pulses with pulsed arc discharges (SP-AD). Images of plasmas on metallurgical steel slags were taken at delay times suitable for calibration-free laser-induced breakdown spectroscopy (CF-LIBS). Delays ranged from few microseconds for SP and DP up to tens of microseconds for SP-AD excitation. The white-light and the spectrally resolved emissivity ε(x,y,z) was reconstructed for the three plasma excitation schemes. The electron number density Ne(x,y,z) and plasma temperature Te(x,y,z) were determined from Mg and Mn emission lines in reconstructed spectra employing the Saha-Boltzmann plot method. The SP plasma revealed strongly inhomogeneous emissivity and plasma temperature. Re-excitation of plasma by a second laser pulse (DP) and by an arc discharge (SP-AD) homogenized the plasma and reduced the spatial variation of ε and Te. The homogenization of a plasma is a promising approach to increase the accuracy of calibration-free LIBS analysis of complex materials.

  20. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    Science.gov (United States)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  1. 几种Radon变换方法压制表面多次波的对比分析研究%The Comparative Analysis of Several Radon Transform

    Institute of Scientific and Technical Information of China (English)

    孔祥琦; 张炬; 吕遥远; 田东升; 邢小林

    2012-01-01

    In seismic prospecting data processing, the surface-related multiple is a coherent noise, this is particularly evident in ocean exploration. Radon transform is an effective method of surface-related multiples attenuation. Several commonly used Radon transform;r-p transform, parabolic Radon transform, hyperbolic Radon transform is refer to. According to the formula and principles, these types of Radon transform analysis to explain these types of transformations have their respective advantages and disadvantages.%在地震勘探数字处理中,表面多次波是一种干扰波.这种情况在海洋勘探中尤为明显,Radon变换是压制表面多次波的一个有效的方法.引用了几种常用的Radon变换:T-P变换、抛物Radon变换、双曲Radon变换,根据其公式和原理,对这几种Radon变换进行分析,阐述这几种变换各自所具有的优缺性.

  2. Detection of linear features in synthetic-aperture radar images by use of the localized Radon transform and prior information.

    Science.gov (United States)

    Onana, Vincent-de-Paul; Trouvé, Emmanuel; Mauris, Gilles; Rudant, Jean-Paul; Tonyé, Emmanuel

    2004-01-10

    A new linear-features detection method is proposed for extracting straight edges and lines in synthetic-aperture radar images. This method is based on the localized Radon transform, which produces geometrical integrals along straight lines. In the transformed domain, linear features have a specific signature: They appear as strongly contrasted structures, which are easier to extract with the conventional ratio edge detector. The proposed method is dedicated to applications such as geographical map updating for which prior information (approximate length and orientation of features) is available. Experimental results show the method's robustness with respect to poor radiometric contrast and hidden parts and its complementarity to conventional pixel-by-pixel approaches.

  3. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  4. Rayleigh-wave mode separation by high-resolution linear radon transform

    Science.gov (United States)

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  5. Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Lei, Yu; Zhou, Qun; Zhang, Yan-ling; Chen, Jian-bo; Sun, Su-qin; Noda, Isao

    2010-06-01

    Infrared (IR) spectroscopy is used in combination with two-dimensional (2D) correlation IR spectroscopy to conduct rapid non-destructive quantitative research in milk powder without additional separation steps. The experiments conducted in both FT-IR and 2D FT-IR spectra suggest that characteristic spectroscopic features of milk powder containing different carbohydrate can be detected, and then determine the type of carbohydrate. To predict the approximate content of lactose while the carbohydrate is lactose, different amount of crystallized lactose has been added to the reference milk powder. The correlation coefficient could be used to determine the content of crystallized lactose in milk powder. The method provides a rapid and convenient means for assessing the quality of milk powder.

  6. [Study on the identification of radix scutellariae and extract using Fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy].

    Science.gov (United States)

    Zhang, Chun-hui; Zhang, Gui-jun; Sun, Su-qin; Tu, Ya

    2010-07-01

    2D-IR correlation spectroscopy was used to do the research on crude and prepared drug of radix scutellariae and the extracts of them. The results show that the holistic shape of peaks among them are similar in the FTIR spectra. In second derivative spectra, the two absorption peaks: 1,745 and 1,411 cm(-1) of processed products move to the bigger wavenumber direction, while 1,357 cm(-1) of processed products moves to the smaller wavenumber direction; There are conspicuous differences in Two-dimensional infrared correlation spectroscopy among them: Four characteristic peaks are shown between 1,300 and 1,800 cm(-1). The intensity of peak at 1,575 cm(-1) is the strongest. There are three main districts about the autopeaks of sliced scutellariae. Wine-fried scutellariae has two auto-peak districts, in which all the auto-peaks are positively correlated. The FTIR spectra of total glycoside extract of different samples present characteristic peaks at 1,615, 1,585, 1,450 cm(-1) (vibration of phenyl framework) and 1,658 cm(-1) (=C-O ) respectively, therefore, the authors speculated that their mutual component is the compound of phenolic glycoside. The two-dimensional infrared correlation spectra present five automatic peaks (vibration of phenyl framework) in 800-1,800 cm(-1) (1,366, 1,420, 1,508, 1,585, 1,669 cm(-1)). So the authors can conclude that a lot of information can be provided by macro-fingerprint technology of infrared spectroscopy which can evaluate overall quality of radix scutellariae accurately and be used to study the characteristics of relevance of crude and prepared scutellariae.

  7. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    Science.gov (United States)

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language

  8. An Algorithm for Ship Wake Detection from the SAR Images Using the Radon Transform and Morphological Image Processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the Rador transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linesr texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size.

  9. Radon Transform and its Application to Image Recognition%Radon变换及其在图像识别中的应用

    Institute of Scientific and Technical Information of China (English)

    王耀明; 王昊

    2005-01-01

    介绍了图像的Radon变换和在Radon变换下的几何矩计算方法.利用Radon变换的抗干扰特性,给出了图像在Radon变换下矩特征的提取及组成矩特征矩阵的方法.最后,介绍了利用矩阵的奇异值(SV)用作图像识别的方法.%The article introduces radon transform of image as well as a method to calculate geometric moments under radon transform. By making use of the anti-interference character of Radontransform, this paper presents a method of extracting image's moment feature, which can get a moment feature matrix of image under Radon transform, as well as a method to recognize image by using the SV of this matrix.

  10. The methyl C-H blueshift in N,N-dimethylformamide-water mixtures probed by two-dimensional Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Xu, Zheng; Li, Haoran; Wang, Congmin; Pan, Haihua; Han, Shijun

    2006-06-28

    Two-dimensional correlation spectroscopy was used to study the composition-dependent spectral variations of the CH-stretching bands of N,N-dimethylformamide (DMF)-water mixtures with X(DMF) ranging from 0.98 to 0.60. By a detailed correlation analysis of the spectral changes of the CH- and OH-stretching bands, it is found that the intensities of the CH and OH bands change in different ways when the water content is increased. It is also found that two different regions of the water content can be distinguished, in which the intensity changes have different signatures. A tentative explanation for how these phenomena might be related to structural changes in the mixture is proposed. The structural change of DMF induced by the water hydrogen bonded on the carbonyl group is supposed to be the possible origin of the methyl C-H blueshift instead of the direct C-H...O interactions before the hydrophobic hydration takes place.

  11. ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT-SQUARED RADON TRANSFORM IN IMAGE SPACE

    Directory of Open Access Journals (Sweden)

    Alvarez Gabriel

    2006-12-01

    Full Text Available In this paper, we propose a method to attenuate diffracted multiples with an apex-shifted tangent-squared Radon transform in angle domain common image gathers (ADCIG . Usually, where diffracted multiples are a problem, the wave field propagation is complex and the moveout of primaries and multiples in data space is irregular. The method handles the complexity of the wave field propagation by wave-equation migration provided that migration velocities are reasonably accurate. As a result, the moveout of the multiples is well behaved in the ADCIGs. For 2D data, the apex-shifted tangent-squared Radon transform maps the 2D space image into a 3D space-cube model whose dimensions are depth, curvature and apex-shift distance.
    Well-corrected primaries map to or near the zero curvature plane and specularly-reflected multiples map to or near the zero apex-shift plane. Diffracted multiples map elsewhere in the cube according to their curvature and apex-shift distance. Thus, specularly reflected as well as diffracted multiples can be attenuated simultaneously. This approach is illustrated with a segment of a 2D seismic line over a large salt body in the Gulf of Mexico. It is shown that ignoring the apex shift compromises the attenuation of the diffracted multiples, whereas the approach proposed attenuates both the specularly-reflected and the diffracted multiples without compromising the primaries.

  12. Radon metrology

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, S.; Howarth, C. [National Radiological Protection Board, Chilton (United Kingdom)

    1996-09-01

    NRPB carries out calibrations of various types of radon and radon decay product measurement systems for its own purposes and for laboratories throughout Europe. There are currently two radon calibration facilities at NRPB: a 43 m{sup 3} radon chamber and the Fast Radon Exposure Device (FRED), a sealed steel drum. The radon chamber is used for active radon detection systems and the calibration of large numbers of passive detectors. Fred has a high radon concentration and is used to calibrate small numbers of passive radon gas detectors in a short period. (Author).

  13. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    Science.gov (United States)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  14. Combining Radon-ambiguity transform with second-order difference to improve detection probability of LFM signals in low SNR

    Institute of Scientific and Technical Information of China (English)

    Tan Xiaogang; Wei Ping; Li Liping

    2009-01-01

    The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modu-lated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A second-order difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, hut not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.

  15. SOME ESTIMATE RESULTS OF THE RADON TRANSFORM%Radon变换的一些估计结果

    Institute of Scientific and Technical Information of China (English)

    王金平; 杜金元

    2002-01-01

    Certain prior inequalities are established. Some estimates of the Radon transform between the spaces Lp(R") (1 ≤ p ≤ 2) and certain Lebesgue spaces with mixed norm on a vec- tor bundle are also obtained. Finally the projection-slice theorem is extended by use of the above results.%本文得到Radon变换的一些先验不等式结果;当视Radon变换为函数空间Lp(p≤2)到带混合范数的Lebesgue空间的算子时,本文还建立了一些估计式并把投影切片定理推广到更一般函数类.

  16. 基于Radon变换的图象矩特征抽取及其在图象识别中的应用%Moment Feature Extraction of Image Based on Radon Transform and Its Application in Image Recognition

    Institute of Scientific and Technical Information of China (English)

    王耀明; 严炜; 俞时权

    2001-01-01

    his article introduces Radon transform of image and calculating method of moments under radon transform. Using the anti-interference character of Radon transform, this article puts forward a method of extracting image's moment feature which can get a moment feature matrix of image under Radon transform. At last this article gives us a method recognizing image by using the SV of this matrix.%介绍了图象的Radon变换以及在Radon变换下图象矩的计算方法;利用Radon变换的抗干扰特性,提出一种图象矩特征的抽取方法,以得到图象在Radon变换下的矩特征矩阵;进而提出了一种利用该矩阵的奇异值进行图象识别的方法.

  17. Robust Hydraulic Fracture Monitoring (HFM) of Multiple Time Overlapping Events Using a Generalized Discrete Radon Transform

    CERN Document Server

    Ely, Gregory

    2013-01-01

    In this work we propose a novel algorithm for multiple-event localization for Hydraulic Fracture Monitoring (HFM) through the exploitation of the sparsity of the observed seismic signal when represented in a basis consisting of space time propagators. We provide explicit construction of these propagators using a forward model for wave propagation which depends non-linearly on the problem parameters - the unknown source location and mechanism of fracture, time and extent of event, and the locations of the receivers. Under fairly general assumptions and an appropriate discretization of these parameters we first build an over-complete dictionary of generalized Radon propagators and assume that the data is well represented as a linear superposition of these propagators. Exploiting this structure we propose sparsity penalized algorithms and workflow for super-resolution extraction of time overlapping multiple seismic events from single well data.

  18. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  19. Crossing and Radon Tomography for Generalized Parton Distributions

    CERN Document Server

    Teryaev, O V

    2001-01-01

    The crossing properties of the matrix elements of non-local operators, parameterized by Generalized Parton Distribution, are considered. They are especially simple in terms of the Double Distributions which are common for the various kinematical regions. As a result, Double Distributions may be in principle extracted from the combined data in these regions by making use of the inverse Radon transform, known as a standard method in tomography. The ambiguities analogous to the ones for the vetor potential in the two-dimensional magneto-statics are outlined. The possible generalizations are discussed.

  20. 基于二维小波变换的圆形算子虹膜定位算法%Circular Operator Iris Localization Algorithm Based on Two-dimensional Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    赵静

    2013-01-01

    An improved iris localization algorithm of circular operator based on two-dimensional wavelet transform is proposed to im-prove the accuracy and the speed of the iris localization. Firstly,the algorithm segments the pupil area of the iris by the threshold. Second-ly it locates the iris inner edge by the edge detection operator in the pupil area. Thirdly the human eye iris image is processed by the two-dimensional wavelet transform to reduce the image resolution instead of the smoothing function in the Daugman circular operator. Finally it gets the circular edge of the sliding window by the circular edge detection operator,and compares the circle inside mean gray with the circle outside mean gray to locate the iris outer edge. The simulation results show that the algorithm locates the iris inner and outer edge with 1. 85s average time and 99. 6% accuracy rate. The algorithm has a higher practical value in the iris recognition system.%  为了提高虹膜定位的准确率和速度,提出了一种基于二维小波变换的Daugman圆形算子虹膜定位改进算法。首先采用阈值法分割瞳孔,使用边缘检测算子检测瞳孔区域边缘定位虹膜内边缘,然后采用二维小波变换对人眼图像处理以降低图像分辨率,以代替Daugman圆形算子中的平滑函数处理,最后采用圆形边缘检测算子计算滑动窗内的圆形边缘,比较滑动窗口的圆内区域与圆外区域的灰度均值来定位虹膜外边缘。仿真结果表明该算法定位虹膜内外边界的平均时间为1.85s,准确率为99.6%,在虹膜识别系统中有较高的实际应用价值。

  1. Iris Localization Algorithm Based on Two-dimensional Wavelet Transform and Neighborhood Average Filter%基于二维小波变换及邻域均值滤波的虹膜定位算法

    Institute of Scientific and Technical Information of China (English)

    赵静

    2013-01-01

    为了提高虹膜定位的准确率和速度,提出了一种基于二维小波变换及邻域均值滤波的虹膜定位算法.采用阈值法分割瞳孔,使用边缘检测算子检测瞳孔区域边缘,定位虹膜内边缘;然后对人眼图像进行二维小波处理降低虹膜图像的分辨率,以减少虹膜本身的纹理对判断外边缘点时所产生的影响;最后采用邻域均值滤波进行虹膜外边缘点提取,根据所得虹膜外边缘点确定虹膜外边界.仿真结果表明:该算法定位虹膜内外边界的平均时间为1.75s,准确卒为99.7%,其中虹膜外边缘定位误差小于4.2%,在虹膜识别系统中有较高的实际应用价值.%An iris localization algorithm based on two-dimensional wavelet transform and neighborhood average filter is proposed to improve the accuracy and the speed of the iris localization. Firstly, the algorithm segments the pupil area of the iris by the threshold. Secondly, it locates the iris inner edge by the edge detection operator in the pupil area. Thirdly, the human eye iris images is processed by the two-dimensional wavelet transform to reduce the image resolution, In order to reduce the impact of the iris texture on the judgment of the iris outer edge points. Fourthly, the algorithm extracts the iris outer edge points by the neighborhood average filter. Finally, it locates the iris outer edge by the outer edge points. The simulation results show that the algorithm locates the iris inner and outer edge with average time of 1. 75 s and accuracy of 99. 7%, the error of iris outer edge localization is less than 4. 2%, The algorithm has a higher practical value in the iris recognition system.

  2. An Algebraic Model for the Pion's Valence-Quark GPD: A Probe for a Consistent Extension Beyond DGLAP Region Via Radon Transform Inversion

    Science.gov (United States)

    Chouika, Nabil; Mezrag, Cédric; Moutarde, Hervé; Rodríguez-Quintero, José

    2017-07-01

    We briefly report on a recent computation, with the help of a fruitful algebraic model, sketching the pion valence dressed-quark generalized parton distribution. Then, preliminary, we introduce on a sensible procedure to get reliable results in both Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Efremov-Radyushkin-Brodsky-Lepage kinematical regions, grounded on the GPD overlap representation and its parametrization of a Radon transform of the so-called double distribution.

  3. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  4. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  5. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  6. From bola-amphiphiles to supra-amphiphiles: the transformation from two-dimensional nanosheets into one-dimensional nanofibers with tunable-packing fashion of n-type chromophores.

    Science.gov (United States)

    Liu, Kai; Yao, Yuxing; Wang, Chao; Liu, Yu; Li, Zhibo; Zhang, Xi

    2012-07-09

    With a rational design of the supra-amphiphiles, we have successfully demonstrated that not only the dimension of the self-assembled nanostructures, but also the packing fashion of the functional naphthalene diimide (a typical n-type chromophore), can be tuned in a noncovalent way in aqueous solution. Naphthalene diimide is incorporated into a bola-amphiphile as the rigid core, whereas viologen derivatives are used as the hydrophilic head. The bola-amphiphile self-assembles into two-dimensional nanosheets, in which naphthalene diimide adopts a "J-type" aggregation. Water-soluble supramolecular complexation between viologen derivatives and the 8-hydroxypyrene-1, 3, 6-trisulfonic acid trisodium salt is used as a driving force for the formation of the supra-amphiphiles. Upon formation of the supra-amphiphiles, the nanosheets transform into ultralong nanofibers with a close packing of naphthalene diimide. Notably, just by mixing the two building blocks of the supra-amphiphiles in aqueous solution, a dimension-controlled evolution of the nanostructures is formed that leads to a different packing fashion of the n-type functional chromophores, which is facile and environmental friendly.

  7. In situ orientation studies of a poly(3-hydroxybutyrate)/poly(epsilon-caprolactone) blend by rheo-optical fourier transform infrared spectroscopy and two-dimensional correlation spectroscopic analysis.

    Science.gov (United States)

    Unger, Miriam; Siesler, Heinz W

    2009-12-01

    In the present study, the orientation of a poly(3-hydroxybutyrate) (PHB)/poly(epsilon-caprolactone) (PCL) blend was monitored during uniaxial elongation by rheo-optical Fourier transform infrared (FT-IR) spectroscopy and analyzed by generalized two-dimensional correlation spectroscopy (2D-COS). The dichroism of the delta(CH(2)) absorption bands of PHB and PCL was employed to determine the polymer chain orientation in the PHB/PCL blend during the elongation up to 267% strain. From the PHB and PCL specific orientation functions it was derived that the PCL chains orient into the drawing direction while the PHB chains orient predominantly perpendicular to the applied strain. To extract more detailed information about the polymer orientation during uniaxial elongation, 2D-COS analysis was employed for the dichroic difference of the polarization spectra recorded during the drawing process. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands characteristic of the crystalline and amorphous regions of PHB and PCL were separated. Furthermore, the 2D-COS analysis revealed that during the mechanical treatment the PCL domains orient before the PHB domains.

  8. 二维离散小波变换滤波在医学图像去噪的应用研究%Research on Two Dimensional Discrete Wavelet Transform Denoising in Medical Image

    Institute of Scientific and Technical Information of China (English)

    王静

    2016-01-01

    医学图像降噪必须做到既降低图像噪声又保留图像细节。通过对二维离散小波变换滤波去噪的研究以及实验表明。采用硬阈值法时,在去噪过程中如果阈值选取太小,降噪后的图像仍然有噪声,如果阈值太大,重要图像特性被滤掉,会引起偏差。因此对于不同尺度的小波系数应该选取不同的阈值进行医学图像处理。%Medical image denoising must do both to reduce image noise and retain image details. Research based on the two-dimensional discrete wavelet transform denoising filter and experiment. The hard threshold method in denoising process, if the threshold is too small, the denoised image is still noise, if the threshold is too large, an important characteristic of image is filtered out, will cause the deviation. The wavelet coefficients of different scales should select different thresholds for medical image processing.

  9. Radon Optical Processing in Radon Space.

    Science.gov (United States)

    1986-06-15

    yields one line through the three-dimensional Fourier transform 1. Radon, J., " Uber die Bestimmung von Funktiontn of the three-dimensional function (3...Alamos, New Mexico , April 11-15. 1983.a 6. W. G. Wee, "Application of projection techniques to image image. Figure 1(a) has approximately 8.0 bits/pixel

  10. Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. II. Perdeuterated-tempone in butoxy benzylidene octylaniline and dynamic cage effects

    Science.gov (United States)

    Sastry, V. S. S.; Polimeno, Antonino; Crepeau, Richard H.; Freed, Jack H.

    1996-10-01

    Two-dimensional Fourier transform (2D-FT)-electron spin resonance (ESR) studies on the small globular spin probe perdeuterated tempone (PDT) in the liquid crystal solvent 4O,8 (butoxy benzylidene octylaniline) are reported. These experiments, over the temperature range of 95 °C to 24 °C, cover the isotropic (I), nematic (N), smectic A (SA), smectic B (SB), and crystal (C) phases. The 2D-ELDOR (two-dimensional electron-electron double resonance) spectra confirm the anomalously rapid reorientation of PDT, especially in the lower temperature phases. The model of a slowly relaxing local structure (SRLS) leads to generally very good non-linear least squares (NLLS) global fits to the sets of 2D-ELDOR spectra obtained at each temperature. These fits are significantly better than those achieved by the standard model of Brownian reorientation in a macroscopic orienting potential. The SRLS model is able to account for anomalies first observed in an earlier 2D-ELDOR study on PDT in a different liquid crystal in its smectic phases. Although it is instructional to extract the various spectral densities from the COSY (correlation spectroscopy) and 2D-ELDOR spectra, the use of NLLS global fitting to a full set of 2D-ELDOR spectra is shown to be more reliable and convenient for obtaining optimum model parameters, especially in view of possible (incipient) slow motional effects from the SRLS or dynamic cage. The cage potential is found to remain fairly constant at about kBT over the various phases (with only a small drop in the SB phase), but its asymmetry increases with decreasing temperature T. This value is significantly larger than the weak macroscopic orienting potential which increases from 0.1 to 0.3kBT with decreasing T. The cage relaxation rate, given by Rc is about 3×107 s-1 in the I phase, but increases to about 108 s-1 in the SA, SB, and C phases. The rotational diffusion tensor for PDT shows only a small T-independent asymmetry, and its mean rotational diffusion

  11. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  12. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  13. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  14. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  15. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  16. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  17. Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. I. Cholestane in butoxy benzylidene-octylaniline and dynamic cage effects

    Science.gov (United States)

    Sastry, V. S. S.; Polimeno, Antonino; Crepeau, Richard H.; Freed, Jack H.

    1996-10-01

    Two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) studies on the rigid rodlike cholestane (CSL) spin-label in the liquid crystal solvent 4O,8 (butoxy benzylidene octylaniline) are reported. These experiments were performed over a wide temperature range: 96 °C to 25 °C covering the isotropic (I), nematic (N), smectic A (SA), smectic B (SB), and crystal (C) phases. It is shown that 2D-FT-ESR, especially in the form of 2D-ELDOR (two-dimensional electron-electron double resonance) provides greatly enhanced sensitivity to rotational dynamics than previous cw-ESR studies on this and related systems. This sensitivity is enhanced by obtaining a series of 2D-ELDOR spectra as a function of mixing time, Tm, yielding essentially a three-dimensional experiment. Advantage is taken of this sensitivity to study the applicability of the model of a slowly relaxing local structure (SRLS). In this model, a dynamic cage of solvent molecules, which relaxes on a slower time scale than the CSL solute, provides a local orienting potential in addition to that of the macroscopic aligning potential in the liquid crystalline phase. The theory of Polimeno and Freed for SRLS in the ESR slow motional regime is extended by utilizing the theory of Lee et al. to include 2D-FT-ESR experiments, and it serves as the basis for the analysis of the 2D-ELDOR experiments. It is shown that the SRLS model leads to significantly improved non-linear least squares fits to experiment over those obtained with the standard model of Brownian reorientation in a macroscopic aligning potential. This is most evident for the SA phase, and the use of the SRLS model also removes the necessity of fitting with the unreasonably large CSL rotational asymmetries in the smectic phases that are required in both the cw-ESR and 2D-ELDOR fits with the standard model. The cage potential is found to vary from about kBT in the isotropic phase to greater than 2kBT in the N and SA phases, with an abrupt drop to

  18. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  19. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  20. Two-Dimensional Chirp-Z Transform Imaging Algorithm for General Airborne Bistatic High Squint SAR Data Focusing%一般构型机载双站大斜视SAR二维Chirp-Z变换成像算法

    Institute of Scientific and Technical Information of China (English)

    冉金和; 李修和

    2014-01-01

    A two-dimensional Chirp-Z Transform (CZT) imaging algorithm for general bistatic high squint SAR is proposed. To deal with the serious range-azimuth cross coupling of echo signal in bistatic high squint SAR, Linear Range Walk Correction (LRWC) is performed in range frequency-azimuth time domain to correct the large LRW induced by the high squint model of platforms, and then the expression of a modified bistatic point target reference spectrum is derived. Reference Function Multiplication (RFM) is firstly performed to finish the bulk focusing. With the track decoupling formulas, phase terms of spectrum are decomposed into two independent phase terms as range-variant phase terms and azimuth-variant phase terms, and their space variances are eliminated by CZT respectively to get the focusing result. The simulation tests validate the effectiveness of the proposed imaging algorithm to focus the data of general airborne bistatic high squint SAR.%该文提出一般构型机载双站大斜视SAR的2维Chirp-Z变换(CZT)成像算法。针对双站大斜视回波信号的距离-方位向强耦合,在距离频域-方位时域校正载机大斜视引起的大距离走动,然后推导改进点目标的频谱公式。成像时,先用参考函数相乘完成回波一致聚焦,然后借助于载机轨迹解耦合公式将频谱相位分解为距离移变和方位移变的两个独立相位项,再运用CZT分别消除其空变性得到成像结果。仿真验证了该算法处理一般构型机载双站大斜视SAR回波数据的有效性。

  1. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  2. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  3. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de inho

  4. Three-dimensional Kirchhoff-approximate generalized Radon transform imaging using teleseismic P-to-S scattered waves

    Science.gov (United States)

    Liu, Kaijian; Levander, Alan

    2013-03-01

    Teleseismic imaging techniques utilizing mode converted/scattered waves are gaining importance due to the deployment of increasingly dense broad-band seismograph arrays. Although common-conversion point (CCP) stacking is widely used to determine structure from Ps or Sp scattered wavefields isolated by receiver function (RF) processing, this method is limited due to its assumption of a layered medium: Dipping events and diffractions are not treated correctly. As an extension of previous 2-D generalized Radon transform (GRT) imaging methods, we present a 3-D Kirchhoff-approximate imaging technique to migrate scattered waves in 3-D. We first derive the 3-D migration formula for P-to-S conversions using the GRT solution to the linear inverse elastic wave scattering problem. Then we illustrate the Kirchhoff method using finite-difference synthetic seismograms from several 3-D models. Next, we apply the method to two portable broad-band array data sets in the western United States to image the Mendocino Triple Junction and the High Lava Plains (HLP) crust and uppermost mantle structures. From the HLP data, we construct the Ps transmission coefficient images with three-component Green's functions. The 1.0 and 0.5 Hz images show a continuous undulating Moho, as well as three negative upper-mantle events at 50-80 km depth. Compared to the CCP images, the Moho is more clearly imaged, particularly near 117.5°W-117.8°W at the western edge of the Owyhee Plateau. The three negative events in the upper mantle correlate well with the top of three low-Vs zones (-3 per cent contour) in the Rayleigh wave tomography model. The migrated Ps RF data from Mendocino clearly image the rapid decrease in depth of the lithosphere-asthenosphere boundary from ˜65 km beneath the subducting Gorda Plate to 30-50 km beneath the Coast Ranges slab window. The final image is consistent with, but has higher resolution than the Vs structure determined from joint receiver function/Rayleigh wave

  5. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  6. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  7. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  8. Non-linear relationship of cell hit and transformation probabilities in low dose of inhaled radon progenies

    CERN Document Server

    Balásházy, Imre; Madas, Balázs Gergely; Hofmann, Werner

    2013-01-01

    Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or in support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions, which are characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterize the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a funct...

  9. Probing the application of Fourier Transform Infrared (FTIR) spectroscopy for assessment of deposited flux of Radon and Thoron progeny in high exposure conditions

    Science.gov (United States)

    Mishra, R.; Sapra, B. K.; Rout, R. P.; Prajith, R.

    2016-12-01

    Direct measurement of Radon and Thoron progeny in the atmosphere and occupational environments such as Uranium mines, Uranium and Thorium handling facilities has gained importance because of its radiological significance in inhalation dose assessment. In this regard, Radon and Thoron Progeny sensors (DTPS and DRPS) are the only passive solid state nuclear track detector (SSNTD, LR115) based devices which are being extensively used for time integrated direct progeny measurements. An essential component of the analysis is the chemical etching of the detectors, followed by spark counting of tracks and then estimation of the inhalation dose using appropriate calibration factors. Alternatively, the tracks may be counted using image analysis techniques. However, under high exposure conditions, both these methods have inherent limitations and errors arising due to increased frequency of tracks. In the present work, we probe the use of Fourier Transform Infra Red (FTIR) spectroscopy to analyse the deposited fluence of the progeny particulates based on change in transmittance of the nitric group vibrational bands of the LR115. A linear relationship between the transmittance and the deposited fluence was observed, which can be used to estimate the deposited fluence rate and the inhalation dose. This alternative method of analysis will provide a faster and non-destructive technique for inhalation dose assessment, specially for routine large scale measurements.

  10. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  11. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  12. Detection and Inversion for Singularitie of Radon Transform in Two-dimensional Space%一维小波检测和反演二维空间中Radon变换的奇性

    Institute of Scientific and Technical Information of China (English)

    毕清华; 许琼; 渠刚荣

    2007-01-01

    在二维空间中,基于Radon变换的理论,以小波变换作为工具,及利用此分片光滑函数积分线旋转变化时得到的、Radon变换的奇性传播规律,得到Radon变换的奇性反演公式.检测分片光滑函数Radon变换的奇性曲线,并根据原函数与其Radon变换奇性的关系;利用Legendre变换的对合性质来反演出原函数的奇性曲线.

  13. 二维Radon变换在图像重建中的重要性质及定理%Important Properties and Theorems of Two-dimensional Radon Transform in Image Reconstruction

    Institute of Scientific and Technical Information of China (English)

    李静

    2015-01-01

    Radon变换及其逆变换作为图像重建的数学基础,在图像重建中有着特殊的意义.首先介绍了二维Radon变换定义的几种形式,然后总结了二维Radon变换的基本性质:线性、带线性、对称性、周期性、位移性等,最后给出了中心切片定理和二维Radon逆变换公式并给予证明.

  14. Texture analysis of clinical radiographs using radon transform on a local scale for differentiation between post-menopausal women with and without hip fracture

    Science.gov (United States)

    Boehm, Holger F.; Körner, Markus; Baumert, Bernhard; Linsenmaier, Ulrich; Reiser, Maximilian

    2011-03-01

    Osteoporosis is a chronic condition characterized by demineralization and destruction of bone tissue. Fractures associated with the disease are becoming an increasingly relevant issue for public health institutions. Prediction of fracture risk is a major focus research and, over the years, has been approched by various methods. Still, bone mineral density (BMD) obtained by dual-energy X-ray absorptiometry (DXA) remains the clinical gold-standard for diagnosis and follow-up of osteoporosis. However, DXA is restricted to specialized diagnostic centers and there exists considerable overlap in BMD results between populations of individuals with and without fractures. Clinically far more available than DXA is conventional x-ray imaging depicting trabecular bone structure in great detail. In this paper, we demonstrate that bone structure depicted by clinical radiographs can be analysed quantitatively by parameters obtained from the Radon Transform (RT). RT is a global analysis-tool for detection of predefined, parameterized patterns, e.g. straight lines or struts, representing suitable approximations of trabecular bone texture. The proposed algorithm differentiates between patients with and without fractures of the hip by application of various texture-metrics based on the Radon-Transform to standard x-ray images of the proximal femur. We consider three different regions-of-interest in the proximal femur (femoral head, neck, and inter-trochanteric area), and conduct an analysis with respect to correct classification of the fracture status. Performance of the novel approach is compared to DXA. We draw the conclusion that performance of RT is comparable to DXA and may become a useful supplement to densitometry for the prediction of fracture risk.

  15. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  16. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  17. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  18. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  19. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  20. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  1. Statistical study of approximations to two dimensional inviscid turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Glaz, H.M.

    1977-09-01

    A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.

  2. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  3. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  4. Study onβ-carotene under Thermal Treatment by Two-Dimensional Correlation Fourier Transform Infrared Spectroscopy%温度对β-胡萝卜素二维相关红外光谱的影响

    Institute of Scientific and Technical Information of China (English)

    卢明倩; 黄桂媛; 王巧贞; 许超; 黄庶识

    2016-01-01

    Abtract:[Objective]The aim of this study is to analyze the interaction between the different groups ofβ-carotene in the heating process.[Methods]Two-dimensional correlation spectrosco-py was applied to study the dynamic spectral changes ofβ-carotene from 30℃ to 100℃.[Re-sults]The changes of absorption characteristic peaks ofβ-carotene were inconspicuous in the conventional FTIR spectra and second derivative FTIR spectra during 30℃ to 100℃,which in-dicated that they had no oxidation reation.Two-dimensional correlation analysis showed that the changes of absorption peaks at 968 cm-1 ,1 442 cm-1 ,2 9 6 6 cm-1 and 3 0 1 2 cm-1 were more sen-sitive to temperature.Meanwhile,the order of different groups changes induced by temperature were as follows:the spectral changes of methyl-ene were faster than methyl,the spectral changes of methyl C-H symmetric stretching vibration in low wavenumber were faster than methyl anti-symmetric stretching vibration in high wavenumber,and olefin hydrocarbon symmetric stretching vibration were prior to olefin hydrocarbon anti-symmetric stretching vibration.[Con-clusion]This provides experimental basis for the mechanism of the conformational change ofβ-carotene in heating process.%【目的】了解在升温过程中β-胡萝卜素分子内不同基团之间的相互影响。【方法】采用二维相关红外光谱分析技术,研究β-胡萝卜素在30~100℃变温微扰过程中的动态光谱变化。【结果】β-胡萝卜素分子的吸收特征峰在一维红外光谱和二阶导数谱上变化不明显,表明其没有发生氧化反应。二维相关分析表明,反式共轭烯烃C—H 面外弯曲振动的968 cm-1,烯烃C—H 基团反对称弯曲振动的1442cm-1,甲基C—H 反对称伸缩振动的2966 cm-1和烯烃C—H 的对称伸缩振动的3012 cm-1,这些吸收峰的光谱变化对温度比较敏感。同时在微扰过程中,不同基团变化的先后顺序:亚甲基热运动引起的光谱变化快于

  5. 基于Radon变换的目标主体信号与微动信号的分离%The Separation of Main Body Signal and Micro-motion Signal Based on Radon Transformation

    Institute of Scientific and Technical Information of China (English)

    陈广锋

    2013-01-01

    针对微动特征的有效分析和提取,研究了基于Radon变换的目标主体信号与微动信号分离方法.首先对回波信号进行时频变换,然后在时频平面上通过Radon变换来分离目标主体信号与微动信号,再通过逆Radon变换得到分离信号的时频分布,最后通过仿真验证了方法的有效性.%For the effective extraction and analysis of the micro-Doppler feature,the separation method of the target main body signal and micro-motion signal based on the Radon transformation is discussed.Firstly,time-frequency transform of the echo signal is performed,and then the target main body signal and micro-motion signal is separated by the Radon transform in the time-frequency plane,furthermore the time-frequency distribution of separated signals is obtained by inverse Radon transform,finally,simulation demonstrates the validity of the method.

  6. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  7. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  8. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  9. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  10. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  11. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  12. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  13. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  14. The MRC-5 human embryonal lung fibroblast two-dimensional gel cellular protein database: quantitative identification of polypeptides whose relative abundance differs between quiescent, proliferating and SV40 transformed cells

    DEFF Research Database (Denmark)

    Celis, J E; Dejgaard, K; Madsen, Peder;

    1990-01-01

    (1323 with isoelectric focusing and 572 with nonequilibrium pH gradient electrophoresis) are recorded in this database, containing quantitative and qualitative data on the relative abundance of cellular proteins synthesized by quiescent, proliferating and SV40 transformed MRC-5 fibroblasts. Of the 592...... proteins quantitated so far, the levels of 138 were up- or down-regulated (51 and 87, respectively) by two times or more in the transformed cells as compared to their normal proliferating counterparts, while only 14 behaved similarly in quiescent cells. Seven MRC-5 SV40 proteins, including plastin and two...... cells (AMA) database (Celis et al., Electrophoresis 1990, 11, 989-1071) for those polypeptides of known and unknown identity that have been matched to AMA polypeptides. As more information is gathered in this and other laboratories, including data on oncogene proteins and transcription factors...

  15. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  17. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  18. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  19. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  20. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  1. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  2. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  3. Integral transformation of the Navier-Stokes equations for laminar flow in channels of arbitrary two-dimensional geometry; Transformacao integral das equacoes de Navier-Stokes para escoamento laminar em canais de geometria bidimensional arbitraria

    Energy Technology Data Exchange (ETDEWEB)

    Perez Guerrero, Jesus Salvador

    1995-12-31

    Laminar developing flow in channels of arbitrary geometry was studied by solving the Navier-Stokes equations in the stream function-only formulation through the Generalized Integral Transform Technique (GITT). The stream function is expanded in an infinite system based on eigenfunctions obtained by considering solely the diffusive terms of the original formulation. The Navier-Stokes equations are transformed into an infinite system of ordinary differential equations, by using the transformation and inversion formulae. For computational purposes, the infinite series is truncated, according to an automatic error control procedure. The ordinary differential is solved through well-established scientific subroutines from widely available mathematical libraries. The classical problem of developing flow between parallel-plates is analysed first, as for both uniform and irrotational inlet conditions. The effect of truncating the duct length in the accuracy of the obtained solution is studied. A convergence analysis of the results obtained by the GITT is performed and compared with results obtained by finite difference and finite element methods, for different values of Reynolds number. The problem of flow over a backward-facing step then follows. Comparisons with experimental results in the literature indicate an excellent agreement. The numerical co-validation was established for a test case, and perfect agreement is reached against results considered as benchmarks in the recent literature. The results were shown to be physically more reasonable than others obtained by purely numerical methods, in particular for situations where three-dimensional effects are identified. Finally, a test problem for an irregular by shoped duct was studied and compared against results found in the literature, with good agreement and excellent convergence rates for the stream function field along the whole channel, for different values of Reynolds number. (author) 78 refs., 24 figs., 14 tabs.

  4. On the distribution tests of the two-dimensional wavelet transform coefficients for image%图像二维小波变换系数分布的实验研究

    Institute of Scientific and Technical Information of China (English)

    张奇志

    2001-01-01

    Wavelet transform image coding scheme is the widest used one ofimage compression approaches. The quantization of wavelet transform coefficients is a key to obtain the compression image with low bit ratios and the reconstruction image with high signal to noise ratio. To obtain the optimal quantizer,the distributions of wavelet transform coefficients for image must be determined. The purpose of the experiment is to determine the distributions of wavelet transform coefficients for image. Four standard images, named “Face”, “Girl”, “Lena” and “Panda”, are selected to study the distribution rule. The “KS” statistical tests are applied to studying the distributions of wavelet transform coefficients for images. Utilizing the Vetterli biorthogonal wavelet (L=18), the images that have size of 256×256 pels with 256 gray levels are decomposed to three level and ten subimages. The results of tests of Rayleigh assumption, Laplacian assumption and Gaussian assumption are given. The results of tests have shown that the low-pass subimages are best approximated by a Gaussian distribution and the others are best approximated by a Laplacian distribution. A simulation indicates that the Laplacian assumption of coefficients yields a higher actual output signal-to-noise ratio than the Gaussian assumption.%小波变换编码是目前研究较多的图像压缩方法,变换系数的量化是获得低比特率、高信噪比压缩图像的关键步骤。为了设计最优量化器,必须确定变换系数的分布规律。选择“Face”、“Girl”、“Lena”和“Panda”4幅标准图像数据进行统计研究,用长度L=18的Vetterli双正交小波将256灰度级256×256图像分解为3层10个子带,使用“KS”测试统计方法确定图像小波变换系数的分布规律。给出了瑞利分布、高斯分布和拉普拉斯分布假设下的“KS”测试统计结果。统计结果表明,低频部分符合高斯分布,其余部分符合拉普

  5. a First Cryptosystem for Security of Two-Dimensional Data

    Science.gov (United States)

    Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen

    In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.

  6. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    Institute of Scientific and Technical Information of China (English)

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  7. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  8. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  9. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  10. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  11. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  12. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  13. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  14. Duality, Monodromy and Integrability of Two Dimensional String Effective Action

    CERN Document Server

    Das, A; Melikyan, A; Das, Ashok

    2002-01-01

    The monodromy matrix, ${\\hat{\\cal M}}$, is constructed for two dimensional tree level string effective action. The pole structure of ${\\hat{\\cal M}}$ is derived using its factorizability property. It is found that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effective action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, ${\\hat{\\cal M}}$ for the exactly solvable Nappi-Witten model, both when B=0 and $B\

  15. Two-Dimensional Change Detection Methods Remote Sensing Applications

    CERN Document Server

    Ilsever, Murat

    2012-01-01

    Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a

  16. 基于多尺度二维小波变换的静脉图像融合%Vein Image Fusion Based on Two-dimensional Wavelet Multi-scale Transform

    Institute of Scientific and Technical Information of China (English)

    欧锋; 黄丹飞

    2015-01-01

    Venous blood vessels visible image detail is rich but vascular hazy outline;Venous blood vessels infrared image contour obviously but lack of details;Aiming at the shortcomings of the single vein image, this paper proposes a vein image fusion method based on multi-scale wavelet transform,the fusion image retain the source image for more infor-mation,richer details,clearer outline,better visual effect,provide very good auxiliary effect for clinical venipuncture.%静脉可见光图像血管细节较丰富,但血管轮廓模糊;静脉红外图像血管轮廓明显,但细节欠缺。针对单一静脉图像存在的不足,提出了一种基于多尺度二维小波变换的静脉图像融合方法,通过实验证实融合后的静脉图像保留了源图像更多的信息,静脉血管细节丰富、轮廓清晰、视觉效果良好,为临床静脉穿刺提供辅助作用,具有很好的临床应用价值。

  17. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  18. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  19. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  20. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  1. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  3. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments

    CERN Document Server

    Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw

    2010-01-01

    This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...

  4. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  5. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  6. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  7. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  8. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  9. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  10. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  11. Analytical two-dimensional model of solar cell current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Caldararu, F.; Caldararu, M.; Nan, S.; Nicolaescu, D.; Vasile, S. (ICCE, Bucharest (RO). R and D Center for Electron Devices)

    1991-06-01

    This paper describes an analytical two-dimensional model for pn junction solar cell I-V characteristic. In order to solve the two-dimensional equations for the minority carrier concentration the Laplace transformation method is used. The model eliminates Hovel's assumptions concerning a one-dimensional model and provides an I-V characteristic that is simpler than those derived from the one-dimensional model. The method can be extended to any other device with two-dimensional symmetry. (author).

  12. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    Kuldip Singh; Dinesh Kumar Madan; Anita Goel; Nat Ram Garg

    2005-08-01

    The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular case of a normal line-load acting inside an orthotropic elastic half-space has been considered in detail and closed form expressions for the displacements and stresses are obtained. Further, the results for the displacements for a transversely isotropic as well as for an isotropic medium have also been derived in the closed form. The use of matrix notation is straightforward and avoids unwieldy mathematical expressions. To examine the effect of anisotropy, variations of dimensionless displacements for an orthotropic, transversely isotropic and isotropic elastic medium have been compared numerically and it is found that anisotropy affects the deformation significantly.

  13. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  14. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  15. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  16. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  17. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  18. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  19. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  20. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  1. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  2. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  3. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  4. 基于Radon变换的CT图像杯状伪影校正%Cupping Artifacts Calibration in CTImage Based on Radon Transform

    Institute of Scientific and Technical Information of China (English)

    张学松; 赵柏山

    2016-01-01

    目的:目前的射束硬化校正算法大多需要能谱、检测器特性等信息。针对硬化校正的复杂性,提出一种基于图像后处理的硬化校正方法。方法:首先将带有杯状伪影的水模体CT图像中水的部分分割出来并对其做 Radon 变换以获取水的投影信息,以此信息构建带有未知系数的校正模型;然后将校正模型与理想图像对比,当它们之间的差异最小时,确定出校正模型的未知系数。利用确定出来的系数和预校正图像软组织的投影信息组合成的校正模型校正实际CT图像,以此消除实际CT图像中的硬化杯状伪影。结果:通过模拟数据验证表明,该方法能去除医用CT中由于射束硬化而引起的杯状伪影。结论:本文提出的方法在不需要能谱信息及投影数据的情况下就能进行杯状伪影的校正,提高了硬化校正的灵活性。%Objective:At present, most of beam hardening calibrationalgorithms requiredspectrum,the detector characteristics and other information. Asthe beam hardening calibration algorithm’scomplexity,we propose a method based on image post-processing.Methods:Firstly, the waterportionwith cupping artifacts is segmentedin the waterphantomCT imageand doneRadon transform to obtain projection information.The calibration model with unknowncoefficientsis builtwith aboveprojectioninformation. Secondly,an ideal water phantom image without beam hardening artifacts is constructed and compared with calibration model. When the difference between them is minimal, the unknown coefficientsof correction model is determined.Finally,use the calibration model that combinedthe determined parameterandthe projection information of segmented soft tissue to correct thepracticalCT imagesso thateliminate the cupping artifacts.Results:The result of computer simulation shows thatthismethodcan efficiently remove the cupping beam hardening due to a medical CT beam-hardening caused

  5. Tilt correction method of license plate based on Sobel operator and Radon transform%基于Sobel算子和Radon变换的车牌倾斜校正方法

    Institute of Scientific and Technical Information of China (English)

    吴丽丽; 余春艳

    2013-01-01

    The tilt license plate is bad for license plate characters segmentation.A new approach for license plate tilt correction based on Sobel operator and Radon transform was presented.The horizontal edge and vertical edge of the binary image were detected by Sobel operator.On the basis of the results of edge detection,the horizontal tilt angle and vertical tilt angle were detected by Radon transform.Combined with tilt angle,the binary image was corrected by shear transformation.Experimental results show that the method offers robustness when dealing with dirty plates and license plates in variant lighting conditions.%倾斜的车牌不利于车牌字符的分割.基于Sobel算子和Radon变换,提出了一种新的车牌倾斜校正方法.利用Sobel算子对二值化后的车牌进行水平和垂直两个方向的边缘检测,在边缘检测结果的基础上用Radon变换测出车牌在水平和垂直两个方向上的倾斜角,结合倾斜角用剪切变换对二值化后的车牌进行校正.实验结果表明,该方法简单易行,对污迹、光照不敏感.

  6. Least-squares reverse time migration with radon preconditioning

    KAUST Repository

    Dutta, Gaurav

    2016-09-06

    We present a least-squares reverse time migration (LSRTM) method using Radon preconditioning to regularize noisy or severely undersampled data. A high resolution local radon transform is used as a change of basis for the reflectivity and sparseness constraints are applied to the inverted reflectivity in the transform domain. This reflects the prior that for each location of the subsurface the number of geological dips is limited. The forward and the adjoint mapping of the reflectivity to the local Radon domain and back are done through 3D Fourier-based discrete Radon transform operators. The sparseness is enforced by applying weights to the Radon domain components which either vary with the amplitudes of the local dips or are thresholded at given quantiles. Numerical tests on synthetic and field data validate the effectiveness of the proposed approach in producing images with improved SNR and reduced aliasing artifacts when compared with standard RTM or LSRTM.

  7. Radon Guide for Tenants

    Science.gov (United States)

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  8. Health Risk of Radon

    Science.gov (United States)

    ... Radon in Homes EPA 402-R-03-003. Summary Fact Sheet on the updated risk assessment . Top of Page Former U.S. Surgeon General ... WHO) launched an international radon project to help countries increase ... reduce radon-related risks. The U.S. EPA is one of several government ...

  9. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  10. Extension of the approximate two-dimensional electron gas formulation

    Science.gov (United States)

    Pierret, R. F.

    1985-07-01

    The functional two-dimensional electron gas (2DEG) formalism employed in the analysis of modulation-doped field-effect transistors is extended to properly account for the bulk charge and to more accurately model sub- and near-threshold behavior. The implemented changes basically transform the functional formulation from an above-threshold formalism for lightly doped structures to one of additional utility which automatically approaches expected limits under widely divergent conditions. Sample computations of the surface carrier concentration, relevant energy level positionings, and the semiconductor depletion width as a function of surface potential and doping are also presented and examined. These computations exhibit the general utility of the extended theory and provide an indirect evaluation of the standard two-level 2DEG theory.

  11. A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence

    Science.gov (United States)

    Liang, Wenli Z.; Diamond, P. H.

    1993-01-01

    The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.

  12. Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.

    Science.gov (United States)

    Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming

    2013-04-04

    Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.

  13. On the equivalence between stochastic baker's maps and two-dimensional spin systems

    Science.gov (United States)

    Lindgren, K.

    2010-05-01

    We show that there is a class of stochastic bakers transformations that is equivalent to the class of equilibrium solutions of two-dimensional spin systems with finite interaction. The construction is such that the equilibrium distribution of the spin lattice is identical to the invariant measure in the corresponding bakers transformation. We illustrate the equivalence by deriving two stochastic bakers maps representing the Ising model at a temperature above and below the critical temperature, respectively. A calculation of the invariant measure and the free energy in the baker system is then shown to be in agreement with analytic results of the two-dimensional Ising model.

  14. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  15. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  16. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  17. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  18. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  19. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  20. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  2. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  3. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  4. The radon indicator

    Science.gov (United States)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  5. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  6. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  7. SAR processing based on the exact two-dimensional transfer function

    Science.gov (United States)

    Chang, C. Y.; Jin, M. Y.; Curlander, J. C.

    1992-01-01

    The two-dimensional transfer functions of several synthetic aperture radar (SAR) focusing algorithms are derived considering the spaceborne SAR environments. The formulation includes the factors of the earth rotation and the antenna squint angles. The resultant transfer functions are explicitly expressed in terms of Doppler centroid frequency and Doppler frequency rate, which can be accurately estimated from the SAR data. Point target simulation results show that the algorithm based on the two-dimensional Fourier transformation outperforms the one-dimensional one for processing data acquired from high squint angles. The two-dimensional Fourier transformation approach appears to be a viable and simple solution for the processor design of future spaceborne SAR systems.

  8. Indoor radon; Le radon dans les batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies.

  9. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Radon Share Facebook Twitter Google+ Pinterest Contact Us Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  10. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  11. Two-dimensional metric and tetrad gravities as constrained second order systems

    CERN Document Server

    Kiriushcheva, N; Ghalati, R N

    2006-01-01

    Using the Gitman-Lyakhovich-Tyutin generalization of the Ostrogradsky method for analyzing singular systems, we consider the Hamiltonian formulation of metric and tetrad gravities in two-dimensional Riemannian spacetime treating them as constrained higher-derivative theories. The algebraic structure of the Poisson brackets of the constraints and the corresponding gauge transformations are investigated in both cases.

  12. A Robust Thermal Modulator for Comprehensive Two-Dimensional Gas Chromatography

    NARCIS (Netherlands)

    Geus, de H.J.; Boer, de J.

    1999-01-01

    In comprehensive two dimensional gas chromatography (GCxGC), two capillary columns are connected in series through an interface known as a 'thermal modulator'. This device transforms effluent from the first capillary column into a series of sharp injection-like chemical pulses suitable for high-spee

  13. Use of real Dirac matrices in two-dimensional coupled linear optics

    Science.gov (United States)

    Baumgarten, C.

    2011-11-01

    The Courant-Snyder theory for two-dimensional coupled linear optics is presented, based on the systematic use of the real representation of the Dirac matrices. Since any real 4×4 matrix can be expressed as a linear combination of these matrices, the presented ansatz allows for a comprehensive and complete treatment of two-dimensional linear coupling. A survey of symplectic transformations in two dimensions is presented. A subset of these transformations is shown to be identical to rotations and Lorentz boosts in Minkowski space-time. The transformation properties of the classical state vector are formulated and found to be analog to those of a Dirac spinor. The equations of motion for a relativistic charged particle—the Lorentz force equations—are shown to be isomorph to envelope equations of two-dimensional linear coupled optics. A universal and straightforward method to decouple two-dimensional harmonic oscillators with constant coefficients by symplectic transformations is presented, which is based on this isomorphism. The method yields the eigenvalues (i.e., tunes) and eigenvectors and can be applied to a one-turn transfer matrix or directly to the coefficient matrix of the linear differential equation.

  14. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  15. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  16. Soil gas and radon entry into a simple test structure: Comparison of experimental and modelling results

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1994-01-01

    A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...

  17. System identification of two-dimensional continuous-time systems using wavelets as modulating functions.

    Science.gov (United States)

    Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi

    2008-07-01

    In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.

  18. Novel Symmetries in Two Dimensional Proca Theory

    CERN Document Server

    Bhanja, T; Malik, R P

    2013-01-01

    By exploiting the Stueckelberg's approach, we obtain a gauge theory for the two (1+1)-dimensional (2D) Proca theory and demonstrate that this theory is endowed with, in addition to the usual Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries, the on-shell nilpotent (anti-)co-BRST symmetries, under which, the total gauge-fixing term remains invariant. The anticommutator of the BRST and co-BRST (as well as anti-BRST and anti-co-BRST) symmetries define a unique bosonic symmetry in the theory, under which, the ghost part of the Lagrangian density remains invariant. To establish connections of the above symmetries with the Hodge theory, we invoke a pseudo-scalar field in the theory. Ultimately, we demonstrate that the full theory provides a field theoretic example for the Hodge theory where the continuous symmetry transformations provide a physical realization of the de Rham cohomological operators and discrete symmetries of the theory lead to the physical realization of the Hodge duality operation of diffe...

  19. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  20. Radon and Cancer

    Science.gov (United States)

    ... exposure and lung cancer: the Iowa Radon Lung Cancer Study. American Journal of Epidemiology 2000; 151(11):1091–1102. [PubMed Abstract] Frumkin H, Samet JM. Radon. CA: A Cancer Journal for Clinicians 2001; 51(6):337–344. [ ...

  1. LARGE BUILDING RADON MANUAL

    Science.gov (United States)

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  2. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  3. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  4. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  5. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  6. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  7. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  8. Hybrid numerical scheme for nonlinear two-dimensional phase-change problems with the irregular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-09-01

    A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.

  9. Fast Mojette Transform for Discrete Tomography

    CERN Document Server

    Chandra, Shekhar S; Kingston, Andrew; Guédon, Jeanpierre; Svalbe, Imants

    2010-01-01

    A new algorithm for reconstructing a two dimensional object from a set of one dimensional projected views is presented that is both computationally exact and experimentally practical. The algorithm has a computational complexity of O(n log2 n) with n = N^2 for an NxN image, is robust in the presence of noise and produces no artefacts in the reconstruction process, as is the case with conventional tomographic methods. The reconstruction process is approximation free because the object is assumed to be discrete and utilizes fully discrete Radon transforms. Noise in the projection data can be suppressed further by introducing redundancy in the reconstruction. The number of projections required for exact reconstruction and the response to noise can be controlled without comprising the digital nature of the algorithm. The digital projections are those of the Mojette Transform, a form of discrete linogram. A simple analytical mapping is developed that compacts these projections exactly into symmetric periodic slice...

  10. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Science.gov (United States)

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  11. Hilbert Statistics of Vorticity Scaling in Two-Dimensional Turbulence

    CERN Document Server

    Tan, H S; Meng, Jianping

    2014-01-01

    In this paper, the scaling property of the inverse energy cascade and forward enstrophy cascade of the vorticity filed $\\omega(x,y)$ in two-dimensional (2D) turbulence is analyzed. This is accomplished by applying a Hilbert-based technique, namely Hilbert-Huang Transform, to a vorticity field obtained from a $8192^2$ grid-points direct numerical simulation of the 2D turbulence with a forcing scale $k_f=100$ and an Ekman friction. The measured joint probability density function $p(C,k)$ of mode $C_i(x)$ of the vorticity $\\omega$ and instantaneous wavenumber $k(x)$ is separated by the forcing scale $k_f$ into two parts, which corresponding to the inverse energy cascade and the forward enstrophy cascade. It is found that all conditional pdf $p(C\\vert k)$ at given wavenumber $k$ has an exponential tail. In the inverse energy cascade, the shape of $p(C\\vert k)$ does collapse with each other, indicating a nonintermittent cascade. The measured scaling exponent $\\zeta_{\\omega}^I(q)$ is linear with the statistical ord...

  12. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  13. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  14. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  15. 活断层上均匀盖层中氡浓度分布的数值模拟及反演拟合%The numerical simulation and inversion fitting of radon concentration distribution in homogeneous overburden above active fault zones

    Institute of Scientific and Technical Information of China (English)

    刘菁华; 王祝文; 王晓丽

    2008-01-01

    Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.

  16. Mutagenicity of radon and radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  17. Accelerated parabolic Radon domain 2D adaptive multiple subtraction with fast iterative shrinkage thresholding algorithm and its application in parabolic Radon domain hybrid demultiple method

    Science.gov (United States)

    Li, Zhong-xiao; Li, Zhen-chun

    2017-08-01

    Adaptive multiple subtraction is an important step for successfully conducting surface-related multiple elimination in marine seismic exploration. 2D adaptive multiple subtraction conducted in the parabolic Radon domain has been proposed to better separate primaries and multiples than 2D adaptive multiple subtraction conducted in the time-offset domain. Additionally, the parabolic Radon domain hybrid demultiple method combining parabolic Radon filtering and parabolic Radon domain 2D adaptive multiple subtraction can better remove multiples than the cascaded demultiple method using time-offset domain 2D adaptive multiple subtraction and the parabolic Radon transform method sequentially. To solve the matching filter in the optimization problem with L1 norm minimization constraint of primaries, traditional parabolic Radon domain 2D adaptive multiple subtraction uses the iterative reweighted least squares (IRLS) algorithm, which is computationally expensive for solving a weighted LS inversion in each iteration. In this paper we introduce the fast iterative shrinkage thresholding algorithm (FISTA) as a faster alternative to the IRLS algorithm for parabolic Radon domain 2D adaptive multiple subtraction. FISTA uses the shrinkage-thresholding operator to promote the sparsity of estimated primaries and solves the 2D matching filter with iterative steps. FISTA based parabolic Radon domain 2D adaptive multiple subtraction reduces the computation time effectively while achieving similar accuracy compared with IRLS based parabolic Radon domain 2D adaptive multiple subtraction. Additionally, the provided examples show that FISTA based parabolic Radon domain 2D adaptive multiple subtraction can better separate primaries and multiples than FISTA based time-offset domain 2D adaptive multiple subtraction. Furthermore, we introduce FISTA based parabolic Radon domain 2D adaptive multiple subtraction into the parabolic Radon domain hybrid demultiple method to improve its computation

  18. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  19. Canonical analysis of scalar fields in two-dimensional curved space

    Science.gov (United States)

    McKeon, D. G. C.; Patrushev, Alexander

    2011-12-01

    Scalar fields on a two-dimensional curved surface are considered and the canonical structure of this theory analyzed. Both the first- and second-order forms of the Einstein-Hilbert (EH) action for the metric are used (these being inequivalent in two dimensions). The Dirac constraint formalism is used to find the generator of the gauge transformation, using the formalisms of Henneaux, Teitelboim and Zanelli (HTZ) and of Castellani (C). The HTZ formalism is slightly modified in the case of the first-order EH action to accommodate the gauge transformation of the metric; this gauge transformation is unusual as it mixes the affine connection with the scalar field.

  20. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  1. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  2. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  3. Indoor radon in Slovenia

    Directory of Open Access Journals (Sweden)

    Vaupotič Janja

    2003-01-01

    Full Text Available The Slovenian Radon Programme started in 1990. Since then, radon and radon short-lived decay products have been surveyed in 730 kindergartens, 890 schools, 1000 randomly selected homes, 5 major spas, 26 major hospitals, 10 major municipal water supply plants, and 8 major wineries. Alpha scintillation cells, etched track detectors, electret-based detectors and various continuously measuring devices have been used. On the basis of estimated effective doses, decisions were made on appropriate mitigation. In total, 35 buildings have been appropriately modified. The programme is displayed and results reviewed chronologically and discussed.

  4. Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM

    Directory of Open Access Journals (Sweden)

    Reza Abazari

    2013-01-01

    Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.

  5. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  6. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  7. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  8. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  9. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  10. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  11. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  12. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  13. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  14. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  15. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  16. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  17. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  18. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  19. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  20. The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system

    Institute of Scientific and Technical Information of China (English)

    Sun Juying; Zhang Yanhua

    2008-01-01

    Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.

  1. TWO-DIMENSIONAL PLANE WATER FLOW AND WATER QUALITY DISTRIBUTION IN BOSTEN LAKE

    Institute of Scientific and Technical Information of China (English)

    Feng Min-quan; Zhou Xiao-de; Zheng Bang-min; Min Tao; Zhao Ke-yu

    2003-01-01

    The two-dimensional plane water flow and water quality was developed by using the techniques of coordinate transformation, alternating directions, staggered grid, linear recurrence, and implicit scheme in the study of large water body in lakes. The model was proved to be suitable for treating the irregular boundary and predicting quickly water flow and water quality. The application of the model to the Bosten Lake in Xinjiang Uygur Autonomous Region of China shows that it is reasonable and practicable.

  2. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  3. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  4. Indoor Radon Measurement in Van

    Science.gov (United States)

    Kam, E.; Osmanlioglu, A. E.; Dogan, I.; Celebi, N.

    2007-04-01

    In this study, indoor radon concentrations obtained from the radon surveys conducted in the Van. Radon monitoring was performed by applying a passive, time-integrating measuring technique. For this purpose, CR-39 nuclear track detectors were installed in dwellings for 2 months. After the monitoring period, detectors were collected. In order to make the alpha tracks visible, chemical etching was applied to the exposed detectors. Nuclear track numbers and the corresponding indoor radon concentrations were determined. Annual effective dose equivalents and the risk probabilities caused by indoor radon inhalation were calculated, and the found results compared with the indoor radon concentrations' data measured in different provinces of Turkey.

  5. ROE Radon Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The polygon dataset represents predicted indoor radon screening levels in counties across the United States. These data were provided by EPA’s Office of Radiation...

  6. Radon in Schools

    Science.gov (United States)

    ... strategy below. Top of Page Testing and Mitigation Standards for Schools Copies of the following Radon Standards ... control is a critical component of any comprehensive indoor air quality (IAQ) management program, l earn how to manage ...

  7. Radon i danske lejeboliger

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Skytte Clausen, Louise

    I denne undersøgelse kortlægges radonindholdet i indeluften og det undersøges, hvordan indholdet af radon i indeluften er fordelt og spredes i en ejendom, og om det er muligt at pege på en bygningsdel eller en bygningskomponent som en spredningsvej for radon i boliger. Boligerne er lejeboliger og...... ligger i etageejendomme, kæde- og rækkehuse tilhørende bygningstyper opført fra 1850 og frem. De udvalgte ejendomme ligger i områder af landet, hvor der ved tidligere undersøgelser har vist sig at være en stor andel af huse med et højt indhold af radon i indeluften. Koncentrationen af radon er målt over...

  8. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  9. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory

    CERN Document Server

    Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw

    2010-01-01

    We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...

  10. Radon in land use planning; Radon i arealplanlegging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Radon poses a health risk. Therefore, it is important that the municipality takes into account radon, in land use planning. This Radiation Info provides an overview of what makes an additional radon prone area and what tools are available to assess this. The background is the Planning and Building Act provisions on risk analysis (ROS) and zones. (eb)

  11. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  12. EXACT SOLUTION FOR A TWO-DIMENSIONAL LAMB'S PROBLEM DUE TO A STRIP IMPULSE LOADING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves,including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail.A few new conclusions have been drawn from currently available integral results or computational results.

  13. Eigen value approach to two dimensional problem in generalized magneto micropolar thermoelastic medium with rotation effect

    Directory of Open Access Journals (Sweden)

    Singh R.

    2016-02-01

    Full Text Available In this study an eigen value approach has been employed to examine the mechanical force applied along with a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space. Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain. Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical analysis has been done to described the study.

  14. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  15. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  16. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  17. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  18. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  19. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  20. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  1. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  2. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  3. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry;

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...... k, resembling the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum, E(k)~k−4. We have compared the analytical predictions with direct numerical solutions of the two...

  4. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  5. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  6. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  7. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  8. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  9. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  10. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  11. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  12. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  13. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  14. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  15. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  16. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  17. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  18. Error compensation of IQ modulator using two-dimensional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-06-01

    It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.

  19. A discussion of $Bl$ conservation on a two dimensional magnetic field plane in watt balances

    CERN Document Server

    Li, Shisong; Huang, Songling

    2015-01-01

    The watt balance is an experiment being pursued in national metrology institutes for precision determination of the Planck constant $h$. In watt balances, the $1/r$ magnetic field, expected to generate a geometrical factor $Bl$ independent to any coil horizontal displacement, can be created by a strict two dimensional, symmetric (horizontal $r$ and vertical $z$) construction of the magnet system. In this paper, we present an analytical understanding of magnetic field distribution when the $r$ symmetry of the magnet is broken and the establishment of the $Bl$ conservation is shown. By using either Gauss's law on magnetism with monopoles or conformal transformations, we extend the $Bl$ conservation to arbitrary two dimensional magnetic planes where the vertical magnetic field component equals zero. The generalized $Bl$ conservation allows a relaxed physical alignment criteria for watt balance magnet systems.

  20. Two Dimensional Spatial Independent Component Analysis and Its Application in fMRI Data Process

    Institute of Scientific and Technical Information of China (English)

    CHEN Hua-fu; YAO De-zhong

    2005-01-01

    One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image data and one-dimensional (1-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.

  1. Design of Stable Circularly Symmetric Two-Dimensional GIC Digital Filters Using PLSI Polynomials

    Directory of Open Access Journals (Sweden)

    K. Ramar

    2007-01-01

    Full Text Available A method for designing stable circularly symmetric two-dimensional digital filters is presented. Two-dimensional discrete transfer functions of the rotated filters are obtained from stable one-dimensional analog-filter transfer functions by performing rotation and then applying the double bilinear transformation. The resulting filters which may be unstable due to the presence of nonessential singularities of the second kind are stabilized by using planar least-square inverse polynomials. The stabilized rotated filters are then realized by using the concept of generalized immittance converter. The proposed method is simple and straight forward and it yields stable digital filter structures possessing many salient features such as low noise, low sensitivity, regularity, and modularity which are attractive for VLSI implementation.

  2. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  3. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  4. The radon EDM apparatus

    Science.gov (United States)

    Tardiff, E. R.; Rand, E. T.; Ball, G. C.; Chupp, T. E.; Garnsworthy, A. B.; Garrett, P.; Hayden, M. E.; Kierans, C. A.; Lorenzon, W.; Pearson, M. R.; Schaub, C.; Svensson, C. E.

    2014-01-01

    The observation of a permanent electric dipole moment (EDM) at current experimentally accessible levels would provide clear evidence of physics beyond the Standard Model. EDMs violate CP symmetry, making them a possible route to explaining the size of the observed baryon asymmetry in the universe. The Radon EDM Experiment aims to search for an EDM in radon isotopes whose sensitivity to CP-odd interactions is enhanced by octupole-deformed nuclei. A prototype apparatus currently installed in the ISAC hall at TRIUMF includes a gas handling system to move radon from a collection foil to a measurement cell and auxiliary equipment for polarization diagnostics and validation. The features and capabilities of the apparatus are described and an overview of the experimental design for a gamma-ray-anisotropy based EDM measurement is provided.

  5. Radon: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Lepman, S.R.; Boegel, M.L.; Hollowell, C.D.

    1981-01-01

    The Lawrence Berkeley Laboratory, with the support of the Department of Energy, has developed a computerized database to manage research information in the area of building ventilation and indoor air quality. This literature survey contains references pertaining to the physical properties of radon and its daughters, instrumentation for their measurement, health effects, surveys and measurements, and regulatory information. The references in the bibliography are sequenced in alphabetical order and abstracts are included when supplied by the author. The objective of this report is to disseminate the bibliographic references compiled at the laboratory relating to radon research portion of the program. Interested database users are encouraged to contact the laboratory to receive instructions for direct database acess. A flyer describing the database is supplied at the end of the bibliography and a brief overview of the Radon Research porgram is given.

  6. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  7. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  8. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  9. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  10. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  11. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  12. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  13. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  14. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  15. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  16. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  17. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  18. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  19. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  20. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  1. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  2. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  3. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  4. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  5. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  6. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  7. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  8. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  9. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  10. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  11. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  12. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  13. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  14. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  15. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  16. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  17. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  18. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  19. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  20. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  1. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  2. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  3. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  4. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  5. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  6. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  7. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  8. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  9. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  10. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  11. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  12. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  13. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  14. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  15. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  16. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  17. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  18. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  19. Two-Dimensional Depth-Averaged Beach Evolution Modeling: Case Study of the Kizilirmak River Mouth, Turkey

    DEFF Research Database (Denmark)

    Baykal, Cüneyt; Ergin, Ayşen; Güler, Işikhan

    2014-01-01

    transformation model, a two-dimensional depth-averaged numerical waveinduced circulation model, a sediment transport model, and a bottom evolution model. To validate and verify the numerical model, it is applied to several cases of laboratory experiments. Later, the model is applied to a shoreline change problem...

  20. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions

    DEFF Research Database (Denmark)

    Yura, Harold; Hanson, Steen Grüner

    2012-01-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the......Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set...... with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...

  1. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

    Science.gov (United States)

    Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-02-01

    A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (~1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

  2. Publications about Radon

    Science.gov (United States)

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  3. What Is Radon?

    Science.gov (United States)

    ... in both cigarette smoke and radon. In some animals, the risk of certain other cancers was also increased. In lab studies using human ... cancer grow is called a carcinogen .) The American Cancer Society looks to these ... laboratory, animal, and human research studies. Based on animal and ...

  4. The Chemistry of Radon

    Science.gov (United States)

    Avrorin, V. V.; Krasikova, R. N.; Nefedov, V. D.; Toropova, M. A.

    1982-01-01

    We shall review the discovery of this element, studies of its chemical nature, and modern ideas on its chemical and physical properties. Possible chemical and nuclear-chemical methods of synthesising new radon compounds and of determining their properties and their identity will be discussed, using information published up to May 1980. 121 references.

  5. Environmental radon studies in Mexico.

    Science.gov (United States)

    Segovia, N; Gaso, M I; Armienta, M A

    2007-04-01

    Radon has been determined in soil, groundwater, and air in Mexico, both indoors and outdoors, as part of geophysical studies and to estimate effective doses as a result of radon exposure. Detection of radon has mainly been performed with solid-state nuclear track detectors (SSNTD) and, occasionally, with active detection devices based on silicon detectors or ionization chambers. The liquid scintillation technique, also, has been used for determination of radon in groundwater. The adjusted geometric mean indoor radon concentration (74 Bq m-3) in urban developments, for example Mexico City, is higher than the worldwide median concentration of radon in dwellings. In some regions, particularly hilly regions of Mexico where air pollution is high, radon concentrations are higher than action levels and the effective dose for the general population has increased. Higher soil radon levels have been found in the uranium mining areas in the northern part of the country. Groundwater radon levels are, in general, low. Soil-air radon contributing to indoor atmospheres and air pollution is the main source of increased exposure of the population.

  6. Experimental study of two-dimensional turbulence properties in a plane duct in an azimuthal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Votsish, A.D.; Kolesnikov, Yu.B.

    1977-01-01

    Results are given for an experimental study of two-dimensional turbulent flow with shifts in a plane duct in an azimuthal magnetic field. The turbulent flow was shown to become practically equal to zero in a sufficiently strong field whereas the intensity of the pulsation rate has a finite value. This is explained by the fact that the magnetic field transforms the structure of turbulence into a two-dimensional structure whose maintenance merely requires an insignificant portion of medium flow energy. 4 illustrations, 8 references.

  7. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  8. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  9. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  10. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  11. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  12. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  13. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  14. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...

  15. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  16. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  17. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  18. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  19. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  20. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  1. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  2. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  3. Two-dimensional magnetostriction under vector magnetic characteristic

    Science.gov (United States)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  4. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  5. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  6. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  7. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  8. Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms.

    Science.gov (United States)

    Gopinath, T; Kumar, Anil

    2006-12-01

    Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.

  9. Instability of two-dimensional solitons and vortices in defocusing media

    Science.gov (United States)

    Kuznetsov, E. A.; Rasmussen, J. Juul

    1995-05-01

    In the framework of the three-dimensional nonlinear Schrödinger equation the instability of two-dimensional solitons and vortices is demonstrated. The soliton instability can be considered as the analog of the Kadomtsev-Petviashvili instability (Dokl. Akad. Nauk SSSR 192, 753 (1970) [Sov. Phys. Dokl. 15, 539 (1970)]) of one-dimensional acoustic solitons in media with positive dispersion. For large distances between the vortices, this instability transforms into the Crow instability [AIAA J. 8, 2172 (1970)] of two vortex filaments with opposite circulations.

  10. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  11. Two-dimensional Fibonacci grating for far-field super-resolution imaging

    Science.gov (United States)

    Wu, Kedi; Wang, Guo Ping

    2016-12-01

    A two-dimensional (2D) Fibonacci grating is used to transform evanescent waves into propagating waves for far-field super-resolution imaging. By detecting far-field intensity distributions of light field through objects in front of the 2D Fibonacci grating in free space at once, we can retrieve the image of objects with beyond λ/7 spatial resolution. We also find that the coherent illumination case can give a better resolution than incoherent illumination case by such 2D grating-assisted imaging system. The analytical results are verified by numerical simulation.

  12. Blow-up conditions for two dimensional modified Euler-Poisson equations

    Science.gov (United States)

    Lee, Yongki

    2016-09-01

    The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow-up for some initial configurations. This article strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional modified Euler-Poisson system with a modified Riesz transform where the singularity at the origin is removed. We identify upper-thresholds for finite time blow-up of solutions for the modified Euler-Poisson equations with attractive/repulsive forcing.

  13. Non-Hermitian engineering of single mode two dimensional laser arrays

    CERN Document Server

    Teimourpour, Mohammad H; Christodoulides, Demetrios N; El-Ganainy, Ramy

    2016-01-01

    A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and a lossy pseudo-isospectral chain of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays.

  14. Steady Heat Transfer through a Two-Dimensional Rectangular Straight Fin

    Directory of Open Access Journals (Sweden)

    Raseelo J. Moitsheki

    2011-01-01

    Full Text Available Exact solutions for models describing heat transfer in a two-dimensional rectangular fin are constructed. Thermal conductivity, internal energy generation function, and heat transfer coefficient are assumed to be dependent on temperature. We apply the Kirchoff transformation on the governing equation. Exact solutions satisfying the realistic boundary conditions are constructed for the resulting linear equation. Symmetry analysis is carried out to classify the internal heat generation function, and some reductions are performed. Furthermore, the effects of physical parameters such as extension factor (the purely geometric fin parameter and Biot number on temperature are analyzed. Heat flux and fin efficiency are studied.

  15. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  16. Conductivity of a two-dimensional guiding center plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1972-01-01

    The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.

  17. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  18. Cryptography Using Multiple Two-Dimensional Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Ibrahim S. I. Abuhaiba

    2012-08-01

    Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.

  19. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  20. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  1. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  2. Extraction of plant proteins for two-dimensional electrophoresis

    OpenAIRE

    Granier, Fabienne

    1988-01-01

    Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.

  3. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  4. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  5. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  6. А heuristic algorithm for two-dimensional strip packing problem

    OpenAIRE

    Dayong, Cao; Kotov, V.M.

    2011-01-01

    In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.

  7. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  8. SU(1,2) invariance in two-dimensional oscillator

    CERN Document Server

    Krivonos, Sergey

    2016-01-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.

  9. Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.

  10. Multiple Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  11. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  12. Thermal diode from two-dimensional asymmetrical Ising lattices.

    Science.gov (United States)

    Wang, Lei; Li, Baowen

    2011-06-01

    Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.

  13. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  14. Spirals and Skyrmions in two dimensional oxide heterostructures.

    Science.gov (United States)

    Li, Xiaopeng; Liu, W Vincent; Balents, Leon

    2014-02-14

    We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.

  15. Acoustic Bloch oscillations in a two-dimensional phononic crystal.

    Science.gov (United States)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  16. Exact analytic flux distributions for two-dimensional solar concentrators.

    Science.gov (United States)

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  17. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  18. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  19. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  20. Interior design of a two-dimensional semiclassic black hole

    CERN Document Server

    Levanony, Dana; 10.1103/PhysRevD.80.084008

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.