Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory
International Nuclear Information System (INIS)
Ito, K.R.
1976-01-01
We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)
Test of quantum thermalization in the two-dimensional transverse-field Ising model.
Blaß, Benjamin; Rieger, Heiko
2016-12-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.
Evidence of two-dimensional quantum Wigner Crystal in a zero magnetic field
Huang, Jian; Pfeiffer, Loren; West, Ken
2014-03-01
In disorder-dominated cases, Anderson localization occurs as a result of destructive interference effects caused by (short-ranged) random disorders. On the other hand, in interaction-dominated scenarios, striking manifestations of quantum physics emerge in response to strong inter-particle Coulomb energy (EC). The most prominent interaction-driven effect is the Wigner crystallization (WC) of electrons, an electron solid made up with spatially separated charges settling in a form of a lattice. The classical version of the crystallization, with the Debye temperature ΘD desired quantum version with the Fermi energy EF <
Extensions of conformal symmetry in two-dimensional quantum field theory
International Nuclear Information System (INIS)
Schoutens, C.J.M.
1989-01-01
Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs
Two-dimensional Quantum Gravity
Rolf, Juri
1998-10-01
This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).
Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM
2007-12-15
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)
Functional techniques in quantum field theory and two-dimensional models
International Nuclear Information System (INIS)
Souza, C. Farina de.
1985-03-01
Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)
Quantum computation with two-dimensional graphene quantum dots
International Nuclear Information System (INIS)
Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin
2012-01-01
We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Atom-field interaction in the single-quantum limit in a two dimensional travelling-wave cavity
International Nuclear Information System (INIS)
Youn, Sun Hyun; Chough, Young Tak; An, Kyung Won
2003-01-01
We analyze the interaction of an atom with two dimensional travelling-wave cavity modes in the strong coupling region, with the quantized atomic center of mass motion taken into account. Analytic and numerical calculation shows that the atom in two independent pairs of travelling wave modes can be made to interact only with a particular travelling mode by matching the initial momentum and the detuning of the cavities. We also numerically investigate the atomic momentum deflection in the cavities
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Quantum phase transitions in highly crystalline two-dimensional superconductors.
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2018-02-22
Superconductor-insulator transition is one of the remarkable phenomena driven by quantum fluctuation in two-dimensional (2D) systems. Such a quantum phase transition (QPT) was investigated predominantly on highly disordered thin films with amorphous or granular structures using scaling law with constant exponents. Here, we provide a totally different view of QPT in highly crystalline 2D superconductors. According to the magneto-transport measurements in 2D superconducting ZrNCl and MoS 2 , we found that the quantum metallic state commonly observed at low magnetic fields is converted via the quantum Griffiths state to the weakly localized metal at high magnetic fields. The scaling behavior, characterized by the diverging dynamical critical exponent (Griffiths singularity), indicates that the quantum fluctuation manifests itself as superconducting puddles, in marked contrast to the thermal fluctuation. We suggest that an evolution from the quantum metallic to the quantum Griffiths state is generic nature in highly crystalline 2D superconductors with weak pinning potentials.
On bosonization ambiguities of two dimensional quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Dias, S.A.; Silva Neto, M.B.
1996-02-01
We study bosonization ambiguities in two dimensional quantum electrodynamics in the presence and in the absence of topologically charged gauge fields. The computation of fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies, provided that we do not allow changes of sector as we evaluate functional integrals. This removes an infinite arbitrariness from the theory. In the case of trivial topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corresponding to the limiting cases of regularizations which preserve gauge or chiral symmetry. (author). 19 refs.
Stopping power of two-dimensional spin quantum electron gases
Zhang, Ya; Jiang, Wei; Yi, Lin
2015-04-01
Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.
Quantum phases of dipolar rotors on two-dimensional lattices.
Abolins, B P; Zillich, R E; Whaley, K B
2018-03-14
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Quantum phases of dipolar rotors on two-dimensional lattices
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Soliton nanoantennas in two-dimensional arrays of quantum dots
Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.
2015-06-01
We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....
Quantum wells physics and electronics of two-dimensional systems
Shik, A
1998-01-01
This invaluable book is devoted to the physics, technology and device applications of semiconductor structures with ultrathin layers where the electronic properties are governed by the quantum-mechanical laws. Such structures called quantum wells or structures with the two-dimensional electron gas, have become one of the most actively investigated objects in modern solid state physics. Electronic properties of quantum wells differ dramatically from those of bulk semiconductors, which allows one to observe new types of physical phenomena, such as the quantum Hall effect and many other so-far-un
Supersymmetric quantum mechanics for two-dimensional disk
Indian Academy of Sciences (India)
Supersymmetric quantum mechanics for two-dimensional disk. AKIRA SUZUKI1, RANABIR DUTT2 and RAJAT K BHADURI1,3. 1Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan. 2Department of Physics, Visva Bharati University, Santiniketan 731 235, India. 3Department of Physics and ...
Quantum melting of a two-dimensional Wigner crystal
Dolgopolov, V. T.
2017-10-01
The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid–solid phase interface are discussed.
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
A nonperturbative treatment of two-dimensional quantum gravity
International Nuclear Information System (INIS)
Gross, D.J.; Migdal, A.A.
1990-01-01
We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. (orig.)
On the Initial Singularity Problem in Two Dimensional Quantum Cosmology
Gamboa, J.
1995-01-01
The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters $(\\alpha, \\beta)$ satisfying the algebraic relation $2\\beta - \\alpha =2$ in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we...
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
Coding for Two Dimensional Constrained Fields
DEFF Research Database (Denmark)
Laursen, Torben Vaarbye
2006-01-01
a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....
Quantum algebras for two-dimensional Cayley-Klein Geometries
International Nuclear Information System (INIS)
Herranz, F.J.; Ballesteros, A.; Olmo, M.A. del; Santander, M.
1993-01-01
Simultaneous quantization of the quasi-simple groups of motions of the nine two-dimensional Cayley-Klein geometries is obtained by defining a deformed Hopf structure on their enveloping algebras. The spaces of points and lines of the classical CK geometries are homogeneous spaces of their motion groups. Both the well known classical non-euclidean geometries and the (1+1) kinematical geometries are included within this scheme. Their corresponding quantum algebras preserve a scheme of contractions, symmetries and dualities based on the classical one. (Author)
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
Types of two-dimensional N = 4 superconformal field theories
Indian Academy of Sciences (India)
Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
Covariance problem in two-dimensional quantum chromodynamics
International Nuclear Information System (INIS)
Hagen, C.R.
1979-01-01
The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered. Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved) current operator. The question of covariance is thus seen to reduce in all cases to a determination as to whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the non-Abelian theory, but one which is identical to that found for the U(1) case
Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence
Directory of Open Access Journals (Sweden)
Ashton S. Bradley
2012-10-01
Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.
Duality-invariant class of two-dimensional field theories
Sfetsos, K
1999-01-01
We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.
Topological field theories and two-dimensional instantons
International Nuclear Information System (INIS)
Schaposnik, F.A.
1990-01-01
In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model
Squeezed magnetobipolarons in two-dimensional quantum dot
International Nuclear Information System (INIS)
Zhang Yanmin; Wang Yunhua; Cheng Ze; Xu Qinfeng
2008-01-01
In this Letter, a different method was given for calculating the energies of the magnetobipolarons confined in a parabolic QD (quantum dot). We introduced single-mode squeezed states transformation, which are based on the Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations. This method can provide results not only for the ground state energy but also for the excited states energies. Moreover, it can be applied to the entire range of the electron-phonon coupling strength. Comparing with the results of the LLP-H transformations, we have obtained more accurate results for the ground state energy, excited states energies and binding energy of the bipolarons. It shows that the magnetic field and the quantum dot can facilitate the formation of the bipolarons when η is smaller than some value
Two-Dimensional Electron System in Electromagnetic Radiation Field
Lungu, Radu Paul; Manolescu, Andrei
We consider a two-dimensional electron gas in the presence of a monochromatic linear polarized electromagnetic field, within the Floquet formalism. The Floquet states have a simple relation with the energy eigenstates in the absence of the field. Therefore the single-particle and the two-particle Green functions of the many-body system with Coulomb interactions, in the radiation field, can be formally calculated by the standard diagrammatic techniques, as for the conservative system. We derive the elementary excitations of quasi-particle type, the plasma dispersion relation, and the ground state quasi-energy, and we relate them to the corresponding results for the conservative system.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Two-dimensional conformal field theory and beyond. Lessons from a continuing fashion
International Nuclear Information System (INIS)
Todorov, I.
2000-01-01
Two-dimensional conformal field theory (CFT) has several sources: the search for simple examples of quantum field theory, tile description of surface critical phenomena, the study of (super)string vacua (which made it particularly fashionable). In the present overview of tile subject we emphasize the role of CFT in bridging the gap between mathematics and quantum field theory and discuss some new physical concepts that emerged in the study of CFT models: anomalous dimensions, rational CFT, braid group statistics. In an aside, at tile end of the paper, we share tile misgivings, recently expressed by Penrose, about some dominant trends in fundamental theoretical physics. (author)
Eigenstate thermalization in the two-dimensional transverse field Ising model.
Mondaini, Rubem; Fratus, Keith R; Srednicki, Mark; Rigol, Marcos
2016-03-01
We study the onset of eigenstate thermalization in the two-dimensional transverse field Ising model (2D-TFIM) in the square lattice. We consider two nonequivalent Hamiltonians: the ferromagnetic 2D-TFIM and the antiferromagnetic 2D-TFIM in the presence of a uniform longitudinal field. We use full exact diagonalization to examine the behavior of quantum chaos indicators and of the diagonal matrix elements of operators of interest in the eigenstates of the Hamiltonian. An analysis of finite size effects reveals that quantum chaos and eigenstate thermalization occur in those systems whenever the fields are nonvanishing and not too large.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Two-dimensional topological field theories coupled to four-dimensional BF theory
International Nuclear Information System (INIS)
Montesinos, Merced; Perez, Alejandro
2008-01-01
Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level
Energy Technology Data Exchange (ETDEWEB)
Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-12-15
A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.
International Nuclear Information System (INIS)
Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.
2015-01-01
A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix
Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime
International Nuclear Information System (INIS)
Wi, H.P.
1986-01-01
This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials
Quantum vortex dynamics in two-dimensional neutral superfluids
Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.
2010-01-01
We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and
Two-dimensional Ising physics in quantum Hall ferromagnets
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.; Rezayi, E. H.
2002-01-01
Roč. 12, - (2002), s. 1-7 ISSN 1386-9477 R&D Projects: GA ČR GA202/01/0754; GA MŠk OC 514.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * higher Landau levels * domain walls Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002
Electron correlations in two-dimensional small quantum dots
Sloggett, C.; Sushkov, O. P.
2005-06-01
We consider circular and elliptic quantum dots with parabolic external confinement, containing 0-22 electrons and with values of rs in the range 0perturbation theory. We demonstrate that in many cases correlations qualitatively change the spin structure of the ground state from that obtained under Hartree-Fock and spin-density-functional calculations. In some cases the correlation effects destroy Hund’s rule. We also demonstrate that the correlations destroy static spin-density waves observed in Hartree-Fock and spin-density-functional calculations.
Exotic ferromagnetism in the two-dimensional quantum material C3N
Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong
2018-04-01
The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)
2016-08-15
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
International Nuclear Information System (INIS)
Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang
2016-01-01
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Yuste, A.; Moreno-Cardoner, M.; Sanpera, A.
2017-05-01
Disordered quantum antiferromagnets in two-dimensional compounds have been a focus of interest in the last years due to their exotic properties. However, with very few exceptions, the ground states of the corresponding Hamiltonians are notoriously difficult to simulate making their characterization and detection very elusive, both theoretically and experimentally. Here we propose a method to signal quantum disordered antiferromagnets by doing exact diagonalization in small lattices using random boundary conditions and averaging the observables of interest over the different disorder realizations. We apply our method to study the Heisenberg spin-1/2 model in an anisotropic triangular lattice. In this model, the competition between frustration and quantum fluctuations might lead to some spin-liquid phases as predicted from different methods ranging from spin-wave mean-field theory to 2D-DMRG or PEPS. Our method accurately reproduces the ordered phases expected of the model and signals quantum disordered phases by the presence of a large number of quasidegenerate ground states together with an undefined local order parameter. The method presents a weak dependence on finite-size effects.
On the connection between quantum mechanics and the geometry of two-dimensional strings
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1991-01-01
On the basis of an area-preserving symmetry in the phase space of a one-dimensional matrix model - believed to describe two-dimensional string theory in a black-hole background which also allows for space-time foam - we give a geometric interpretation of the fact that two-dimensional stringy black holes are consistent with conventional quantum mechanics due to the infinite gauged `W-hair' property that characterises them.
Two-dimensional hole systems in indium-based quantum well heterostructures
Energy Technology Data Exchange (ETDEWEB)
Loher, Josef
2016-08-01
The complex spin-orbit interaction (SOI) of two-dimensional hole gas (2DHG) systems - the relativistic coupling of the hole spin degree of freedom to their movement in an electric field - is of fundamental interest in spin physics due to its key role for spin manipulation in spintronic devices. In this work, we were able to evaluate the tunability of Rashba-SOI-related parameters in the 2DHG system of InAlAs/InGaAs/InAs:Mn quantum well heterostructures experimentally by analyzing the hole density evolution of quantum interference effects at low magnetic fields. We achieved to cover a significant range of hole densities by the joint action of the variation of the manganese modulation doping concentration during molecular beam epitaxy and external field-effect-mediated manipulation of the 2D carrier density in Hall bar devices by a metallic topgate. Within these magnetotransport experiments, a reproducible phenomenon of remarkable robustness emerged in the transverse Hall magnetoresistivity of the indium 2DHG systems which are grown on a special InAlAs step-graded metamorphic buffer layer structure to compensate crystal lattice mismatch. As a consequence of the strain relaxation process, these material systems are characterized by anisotropic properties along different crystallographic directions. We identify a puzzling offset phenomenon in the zero-field Hall magnetoresistance and demonstrate it to be a universal effect in systems with spatially anisotropic transport properties.
Critical behavior in two-dimensional quantum gravity and equations of motion of the string
International Nuclear Information System (INIS)
Das, S.R.; Dhar, A.; Wadia, S.R.
1990-01-01
The authors show how consistent quantization determines the renormalization of couplings in a quantum field theory coupled to gravity in two dimensions. The special status of couplings corresponding to conformally invariant matter is discussed. In string theory, where the dynamical degree of freedom of the two-dimensional metric plays the role of time in target space, these renormalization group equations are themselves the classical equations of motion. Time independent solutions, like classical vacuua, correspond to the situation in which matter is conformally invariant. Time dependent solutions, like tunnelling configurations between vacuua, correspond to special trajectories in theory space. The authors discuss an example of such a trajectory in the space containing the c ≤ 1 minimal models. The authors also discuss the connection between this work and the recent attempts to construct non-pertubative string theories based on matrix models
A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2
Song, Xiang-Xiang; Liu, Di; Mosallanejad, Vahid; You, Jie; Han, Tian-Yi; Chen, Dian-Teng; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping
2015-10-01
Two-dimensional layered materials, such as transition metal dichalcogenides (TMDCs), are promising materials for future electronics owing to their unique electronic properties. With the presence of a band gap, atomically thin gate defined quantum dots (QDs) can be achieved on TMDCs. Herein, standard semiconductor fabrication techniques are used to demonstrate quantum confined structures on WSe2 with tunnel barriers defined by electric fields, therefore eliminating the edge states induced by etching steps, which commonly appear in gapless graphene QDs. Over 40 consecutive Coulomb diamonds with a charging energy of approximately 2 meV were observed, showing the formation of a QD, which is consistent with the simulations. The size of the QD could be tuned over a factor of 2 by changing the voltages applied to the top gates. These results shed light on a way to obtain smaller quantum dots on TMDCs with the same top gate geometry compared to traditional GaAs/AlGaAs heterostructures with further research.
Effective mass theory of a two-dimensional quantum dot in the ...
Indian Academy of Sciences (India)
We con- clude that the non-imposition of the BenDaniel–Duke boundary condition leads to erroneous results. We summarize our work and suggest directions for future work. 2. Basic formalism. We consider a two-dimensional quantum well of radius R [1]. An electron in this well is described using effective mass theory by ...
Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices
Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger
2016-01-01
Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to
Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.
Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang
2014-06-01
We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Chern-Simons field theory of two-dimensional electrons in the lowest Landau level
International Nuclear Information System (INIS)
Zhang, L.
1996-01-01
We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society
The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system
Akbari, M.; Rezaei, G.; Khordad, R.
2017-01-01
We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.
Entropy Bounds for Constrained Two-Dimensional Fields
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Justesen, Jørn
1999-01-01
The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived.......The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived....
First-principles engineering of charged defects for two-dimensional quantum technologies
Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan
2017-12-01
Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
Lattice formulation of a two-dimensional topological field theory
International Nuclear Information System (INIS)
Ohta, Kazutoshi; Takimi, Tomohisa
2007-01-01
We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)
Two-dimensional negative capacitance field-effect transistor with organic ferroelectric.
Zhang, Heng; Chen, Yan; Ding, Shi-Jin; Wang, Jianlu; Bao, Wen-Zhong; Zhang, David Wei; Zhou, Peng
2018-03-27
In the past fifty years, the complementary metal-oxide-semiconductor(CMOS) integrated circuits have got great development, but Moore's law will soon come to an end. In order to break through the physical limit of Moore's law, two-dimensional materials have been widely used in many electronic devices because of its high mobility and large quantum capacitances. And the emergence of negative capacitance field-effect transistor(FET) could not only break the thermal limit of conventional devices, but also reduce operating voltage and power consumption. This paper demonstrates a two-dimensional negative capacitance FET treating molybdenum disulfide(MoS2) as channel material and organic P(VDF-TrFE) as gate dielectric directly, which makes a new attempt for preparation of negative capacitance FETs and producing flexible electronic devices. It exhibited 10^6 on-/off-current ratio. And the minimum subthreshold swing(SS) of 21mV/decade and average subthreshold swing of 44mV/decade in four orders magnitude of drain current were also observed at room temperature of 300K. © 2018 IOP Publishing Ltd.
Energy Technology Data Exchange (ETDEWEB)
Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)
2017-06-15
Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.
Candidate Quantum Spin Liquid due to Dimensional Reduction of a Two-Dimensional Honeycomb Lattice
Zhang, Bin; Zhang, Yan; Wang, Zheming; Wang, Dongwei; Baker, Peter J.; Pratt, Francis L.; Zhu, Daoben
2014-09-01
As with quantum spin liquids based on two-dimensional triangular and kagome lattices, the two-dimensional honeycomb lattice with either a strong spin-orbital coupling or a frustrating second-nearest-neighbor coupling is expected to be a source of candidate quantum spin liquids. An ammonium salt [(C3H7)3NH]2[Cu2(C2O4)3](H2O)2.2 containing hexagonal layers of Cu2+ was obtained from solution. No structural transition or long-range magnetic ordering was observed from 290 K to 2 K from single crystal X-ray diffraction, specific heat and susceptibility measurements. The anionic layers are separated by sheets of ammonium and H2O with distance of 3.5 Å and no significant interaction between anionic layers. The two-dimensional honeycomb lattice is constructed from Jahn-Teller distorted Cu2+ and oxalate anions, showing a strong antiferromagnetic interaction between S = 1/2 metal atoms with θ = -120 (1) K. Orbital analysis of the Cu2+ interactions through the oxalate-bridges suggests a stripe mode pattern of coupling with weak ferromagnetic interaction along the b axis, and strong antiferromagnetic interaction along the a axis. Analysis of the magnetic susceptibility shows that it is dominated by a quasi-one-dimensional contribution with spin chains that are at least as well isolated as those of well-known quasi-one-dimensional spin liquids.
Types of two-dimensional N = 4 superconformal field theories
Indian Academy of Sciences (India)
Abstract. Various types of N = 4 superconformal symmetries in two dimensions are considered. It is proposed that apart from the well-known cases of SU(2) and SU(2)¢SU(2)¢U(1), their Kac–. Moody symmetry can also be SU(2) ¢(U(1))4. Operator product expansions for the last case are derived. A complete free field ...
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Berends, A.C.|info:eu-repo/dai/nl/411263986; de Mello-Donega, C.|info:eu-repo/dai/nl/125593899
2017-01-01
Research on ultrathin nanomaterials is one of the fastest developing areas in contemporary nanoscience. The field of ultrathin one- (1D) and two-dimensional (2D) colloidal nanocrystals (NCs) is still in its infancy, but offers the prospect of production of ultrathin nanomaterials in liquid-phase at
International Nuclear Information System (INIS)
Dakaloyannis, C.
2006-01-01
Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2010-01-01
We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.
Levanony, Dana; Ori, Amos
2010-05-01
We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.
International Nuclear Information System (INIS)
Getmanov, B.S.
1988-01-01
The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly
Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong
2017-12-11
We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity
International Nuclear Information System (INIS)
Ambjoern, J.; Makeenko, Yu.M.
1990-05-01
We study properties of the loop equations for the NxN Hermitean matrix model with arbitrary (even) interaction as well as of their continuum limit, associated with the two-dimensional quantum gravity. We apply the general procedure of iterative solution proposed recently by David. We relate the specific heat to the singular behavior of the connected correlator of two loops. We solve the continuum equation to a few lower orders in the string coupling constant, obtaining results for macroscopic loops, including the case of a multicritical fixed point. (orig.)
Luukko, P. J. J.; Räsänen, E.
2013-03-01
We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy. Catalogue identifier: AENR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 11310 No. of bytes in distributed program, including test data, etc.: 97720 Distribution format: tar.gz Programming language: C++ and Python. Computer: Tested on x86 and x86-64 architectures. Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice. Has the code been vectorised or parallelized?: Yes, with OpenMP. RAM: 1 MB or more, depending on system size. Classification: 7.3. External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/) Nature of problem: Numerical calculation
A Parameter-Free Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems.
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-03-26
The method of constructing semilocal density functional for exchange in two dimensions using one of the premier approaches, i.e., density matrix expansion, is revisited, and an accurate functional is constructed. The form of the functional is quite simple and includes no adjustable semiempirical parameters. In it, the kinetic energy dependent momentum is used to compensate nonlocal effects of the system. The functional is then examined by considering the very well-known semiconductor quantum dot systems. And despite its very simple form, the results obtained for quantum dots containing a higher number of electrons agrees pretty well with that of the standard exact exchange theory. Some of the desired properties relevant for the two-dimensional exchange functional and the lower bound associated with it are also discussed. It is observed that the above parameter-free semilocal exchange functional satisfies most of the discussed conditions.
Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model
Lima, L. S.
2018-04-01
We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.
Jana, Subrata; Patra, Abhilash; Samal, Prasanjit
2018-03-01
Semilocal exchange-correlation functionals are frequently used to accurately describe the complex many-electron effects of two-dimensional quantum systems. Most of these functionals are designed using the reduced density gradient as the main ingredient. A semilocal functional for the exchange and the corresponding enhancement factor is constructed using the inhomogeneity parameter of the generalized gradient approximations by analyzing the small and large-density gradient expansion of the exchange hole. This exchange functional significantly reduces the error compared to the existing gradient approximations. Performance of the proposed semilocal functional is demonstrated by considering parabolic and Gaussian quantum dots with varying particle number and confinement strength. The results are also compared with that of the exact exchange formalism by considering it as the standard.
Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems
Bachsoliani, N.; Platonov, S.; Wieck, A. D.; Ludwig, S.
2017-12-01
Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs /(Al ,Ga )As heterostructure enable a large variety of applications ranging from fundamental research to high-speed transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates, and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric-field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. We present a first exploration of this method pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and coherent properties.
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Columbia Univ., New York; Chudnovsky, G.V.; Columbia Univ., New York
1980-01-01
General algebraic and analytic formalism for derivation and solution of general two dimensional field theory equations of Zakharov-Shabat-Mikhailov type is presented. The examples presented show that this class of equations covers most of the known two-dimensional completely integrable equations. Possible generalizations for four dimensional systems require detailed analysis of Baecklund transformation of these equations. Baecklund transformation is presented in the form of Riemann problem and one special case of dual symmetry is worked out. (orig.)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission
Yang, Zhenyu
2017-03-13
Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.
Geometrical aspects of quantum walks on random two-dimensional structures.
Anishchenko, Anastasiia; Blumen, Alexander; Mülken, Oliver
2013-12-01
We study the transport properties of continuous-time quantum walks (CTQWs) over finite two-dimensional structures with a given number of randomly placed bonds and with different aspect ratios (ARs). Here, we focus on the transport from, say, the left side to the right side of the structure where absorbing sites are placed. We do so by analyzing the long-time average of the survival probability of CTQWs. We compare the results to the classical continuous-time random walk case (CTRW). For small ARs (landscape configurations) we observe only small differences between the quantum and the classical transport properties, i.e., roughly the same number of bonds is needed to facilitate the transport. However, with increasing ARs (portrait configurations) a much larger number of bonds is needed in the CTQW case than in the CTRW case. While for CTRWs the number of bonds needed decreases when going from small ARs to large ARs, for CTQWs this number is large for small ARs, has a minimum for the square configuration, and increases again for increasing ARs. We explain our findings by analyzing the average eigenstates of the corresponding structures: The participation ratios allow us to distinguish between localized and nonlocalized (average) eigenstates. In particular, for large ARs we find for CTQWs that the eigenstates are localized for bond numbers exceeding the bond numbers needed to facilitate transport in the CTRW case. Thus, a rather large number of bonds is needed in order for quantum transport to be efficient for large ARs.
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Energy Technology Data Exchange (ETDEWEB)
Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)
2017-03-18
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.
International Nuclear Information System (INIS)
Sedrakian, D.M.; Badalyan, D.H.; Sedrakian, L.R.
2015-01-01
Quasi-one-dimensional quantum particle scattering on two-dimensional δ-potential is considered. Analytical expressions for the amplitudes of the multi-channel transmission and reflection are given. The problem for the case when the number of channels is finite and equal N, and the particle falls on the potential moving through the channel l is solved. The case of a three channel scattering is studied in details. It is shown that under conditions k 2 → 0 and k 3 → 0 'overpopulation' of particles on the second and third channels occurs. The points of δ-potential location which provide a full 'overpopulation' of particles is also found
International Nuclear Information System (INIS)
Frishman, Y.; Zakrewski, W.J.
1989-07-01
We derive explicit expressions for the masses and the binding energies of k-baryons states in two dimensional (one space and one time) Quantum Chromodynamics (QCD(2)). The expressions are given using the parameters n 1 ,n 2 ,...,nN f -1 which characterize the representation of SU(N f ), where N f is the number of flavours, in terms of its Young tableau description. We find that the difference between the mass of the k-baryon state and the sum of masses of any combination of its constituents, is independent of the value N f (ie the number of flavors). These results hold within a certain bosonized form of QCD(2) and within the strong coupling limit of (G/m) → ∞, where G is the gauge coupling constant and m the quark mass. (authors)
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, Aleksei A.
2017-05-15
We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.
Magnetoresistance of a two-dimensional electron gas in a random magnetic field
DEFF Research Database (Denmark)
Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil
1994-01-01
We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf......We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed...
Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.
Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L
2013-03-10
An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.
Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan
2017-06-01
A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.
Series expansion of two-dimensional fields produced by iron-core magnets
International Nuclear Information System (INIS)
Satoh, Kotaro.
1997-02-01
This paper discusses the validity of a series expansion of two-dimensional magnetic fields with harmonic functions, and suggests that the series may not converge outside of the pole gap. It also points out that this difficulty may appear due to a slow convergence of the series near to the pole edge, even within the convergent area. (author)
Two-Dimensional Interactions in a Class of Tensor Gauge Fields from Local BRST Cohomology
Babalic, E M; Cioroianu, E M; Negru, I; Sararu, S C
2003-01-01
Lagrangian interactions in a class of two-dimensional tensor gauge field theory are derived by means of deforming the solution to the master equation with specific cohomological techniques. Both the gauge transformations and their algebra are deformed. The gauge algebra of the coupled model is open.
Fields with generalized statistics : an exercise in order and disorder in two dimensional systems
International Nuclear Information System (INIS)
Swieca, J.A.
1980-06-01
Fields with generalized statistics are introduced and their relation with order and disorder variables in two dimensional systems exposed. This leads to a Feynman path formulation for their Euclidean Correlation functions. Applications are made to the Thirring. Schwinger and coupled Schwinger-chiral Gross-Neveu models. (Author) [pt
2017-01-01
Research on ultrathin nanomaterials is one of the fastest developing areas in contemporary nanoscience. The field of ultrathin one- (1D) and two-dimensional (2D) colloidal nanocrystals (NCs) is still in its infancy, but offers the prospect of production of ultrathin nanomaterials in liquid-phase at relatively low costs, with versatility in terms of composition, size, shape, and surface control. In this Perspective, the state of the art in the field is concisely outlined and critically discussed to highlight the essential concepts and challenges. We start by presenting a brief overview of the ultrathin colloidal 1D and 2D semiconductor NCs prepared to date, after which the synthesis strategies and formation mechanisms of both 1D and 2D NCs are discussed. The properties of these low-dimensional materials are then reviewed, with emphasis on the optical properties of luminescent NCs. Finally, the future prospects for the field are addressed. PMID:28799764
Two-dimensional neural field simulator with parameter interface and 3D visualization
Nichols, Eric; Hutt, Axel
2014-01-01
International audience; A simulator calculating two-dimensional dynamic neural fields with multiple order derivatives is presented in this work. The simulated neural fields are of the type ... where I, L and S are respectively a field's input, spatial delay kernel with axonal transmission speed c and nonlinear firing rate function S = S0 / (1 + exp(-α(V-Θ)). A Fast Fourier Transform in space is used to accelerate the integral calculation. The stochastic differential equation is useful for stu...
In-plane g factor of low-density two-dimensional holes in a Ge quantum well.
Energy Technology Data Exchange (ETDEWEB)
Lu, Tzu-Ming [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Shih-Hsien [National Taiwan Univ., Taipei (Taiwan); Chuang, Yen [National Taiwan Univ., Taipei (Taiwan); Li, Jiun-Yun [National Taiwan Univ., Taipei (Taiwan); Liu, CheeWee [National Taiwan Univ., Taipei (Taiwan)
2017-12-01
High-mobility two-dimensional (2D) holes residing in a Ge quantum well are a new electronic system with potentials in quantum computing and spintronics. Since for any electronic material, the effective mass and the g factor are two fundamental material parameters that determine the material response to electric and magnetic fields, measuring these two parameters in this material system is thus an important task that needs to be completed urgently. Because of the quantum confinement in the crystal growth direction (z), the biaxial strain of epitaxial Ge on SiGe, and the valance band nature, both the effective mass and the g factor can show very strong anisotropy. In particular, the in-plane g factor (g_{ip}) can be vanishingly small while the perpendicular g factor (g_{z}) can be much larger than 2. Here we report the measurement of g_{ip} at very low hole densities using in-plane magneto-resistance measurement performed at the NHMFL.
Two Dimensional Modeling of III-V Heterojunction Gate All Around Tunnel Field Effect Transistor
Manjula Vijh; R.S. Gupta; Sujata Pandey
2017-01-01
Tunnel Field Effect Transistor is one of the extensively researched semiconductor devices, which has captured attention over the conventional Metal Oxide Semiconductor Field Effect Transistor. This device, due to its varied advantages, is considered in applications where devices are scaled down to deep sub-micron level. Like MOSFETs, many geometries of TFETs have been studied and analyzed in the past few years. This work, presents a two dimensional analytical model for a III-V Heterojunction ...
Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra
Mcleod, M. G.
1983-01-01
Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.
Quantum confinement effect of two-dimensional all-inorganic halide perovskites
Cai, Bo
2017-09-07
Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.
Foster, Samuel; Thesberg, Mischa; Neophytou, Neophytos
2017-11-01
Nanocomposites are promising candidates for the next generation of thermoelectric materials since they exhibit extremely low thermal conductivities as a result of phonon scattering on the boundaries of the various material phases. The nanoinclusions, however, should not degrade the thermoelectric power factor, and ideally should increase it, so that benefits to the ZT figure of merit can be achieved. In this work we employ the nonequilibrium Green's function quantum transport method to calculate the electronic and thermoelectric coefficients of materials embedded with nanoinclusions. For computational effectiveness we consider two-dimensional nanoribbon geometries, however, the method includes the details of geometry, electron-phonon interactions, quantization, tunneling, and the ballistic to diffusive nature of transport, all combined in a unified approach. This makes it a convenient and accurate way to understand electronic and thermoelectric transport in nanomaterials, beyond semiclassical approximations, and beyond approximations that deal with the complexities of the geometry. We show that the presence of nanoinclusions within a matrix material offers opportunities for only weak energy filtering, significantly lower in comparison to superlattices, and thus only moderate power factor improvements. However, we describe how such nanocomposites can be optimized to limit degradation in the thermoelectric power factor and elaborate on the conditions that achieve the aforementioned mild improvements. Importantly, we show that under certain conditions, the power factor is independent of the density of nanoinclusions, meaning that materials with large nanoinclusion densities which provide very low thermal conductivities can also retain large power factors and result in large ZT figures of merit.
Mondaini, Rubem; Rigol, Marcos
2017-07-01
We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the quantum chaotic regime. Furthermore, we explore the behavior of the off-diagonal matrix elements of observables as a function of the eigenstate energy differences and show that it is in accordance with the eigenstate thermalization hypothesis ansatz.
An, Taeyang; Cha, Min-Chul
2013-03-01
We study the superfluid-insulator quantum phase transition in a disordered two-dimensional quantum rotor model with random on-site interactions in the presence of particle-hole symmetry. Via worm-algorithm Monte Carlo calculations of superfluid density and compressibility, we find the dynamical critical exponent z ~ 1 . 13 (2) and the correlation length critical exponent 1 / ν ~ 1 . 1 (1) . These exponents suggest that the insulating phase is a incompressible Mott glass rather than a Bose glass.
Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons
Davoyan, Arthur R.; Popov, Vyacheslav V.; Nikitov, Sergei A.
2012-03-01
We suggest a novel possibility for electrically tunable terahertz near-field enhancement in flatland electronic materials supporting two-dimensional plasmons, including recently discovered graphene. We employ electric-field effect modulation of electron density in such materials and induce a periodic plasmonic lattice with a defect cavity. We demonstrate that the plasmons resonantly excited in such a periodic plasmonic lattice by an incident terahertz radiation can strongly pump the cavity plasmon modes leading to a deep subwavelength concentration of terahertz energy, beyond λ/1000, with giant electric-field enhancement factors up to 104, which is 2 orders of magnitude higher than achieved previously in metal-based terahertz field concentrators.
String field theory in minimal model backgrounds and non-perturbative two-dimensional gravity
International Nuclear Information System (INIS)
Imbimbo, C.; Mukhi, S.
1991-01-01
The classical phase space of free closed-string field theory in the background of (p,q) minimal models is studied. It is shown that in the limit q→∞ for fixed p, this becomes the phase space of p-1 massless chiral bosons on a two-dimensional target space, twisted by Z p . It is argued that in the interacting theory, the bosons remain free and massless in the limit, but the non-linear gauge symmetries of string field theory require the imposition of W p -algebra conditions on the Hilbert space, allowing a single physical state. The wave function for this state is the KdV τ-function associated to non-perturbative two-dimensional gravity in the matrix-model approach. (orig.)
Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System
Directory of Open Access Journals (Sweden)
Jen-Hsing Li
2014-01-01
Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
Measurement of switching field reduction of single domain particles in a two-dimensional array
Vértesy, G.; Pardavi-Horvath, M.
2001-12-01
The mechanism of switching of uniaxial, single domain, single crystalline epitaxial garnet particles on a two-dimensional square array was investigated, and the reason for the wide distribution of switching fields was studied. In spite that the particles were found very uniform, the existence of soft magnetic defects, not connected to visible crystalline or manufacturing defects of the material, was found to be responsible for the broad distribution of the switching field, Hc=280±85 Oe, as measured on a large number of individual particles. Very good quantitative correlation was found between the strength of the these defects and the switching field.
Spin transport in the two-dimensional quantum disordered anisotropic Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Lima, L.S. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); Pires, A.S.T.; Costa, B.V. [Departamento de Física ICEx, UFMG, CP 702, 31270-901 Belo Horizonte, MG (Brazil)
2014-12-15
We use the self consistent harmonic approximation together with the Linear Response Theory to study the effect of nonmagnetic disorder on spin transport in the quantum diluted two-dimensional anisotropic Heisenberg model with spin S=1 in a square lattice. The model has a BKT transition at zero dilution. We calculate the regular part of the spin conductivity σ{sup reg}(ω) and the Drude weight D{sub S}(T) as a function of the non-magnetic concentration, x. Our calculations show that the spin conductivity drops abruptly to zero at x{sub c}{sup SCHA}≈0.5 indicating that the system changes from an ideal spin conductor state to an insulator. This value is far above the site percolation threshold x{sub c}{sup site}≈0.41. Although the SCHA fails in determining precisely the percolation threshold, both the spin conductivity and the Drude weight show a quite regular behavior inside 0≤x≤x{sub c}{sup SCHA} indicating that the transition stays in the same universality class all along the interval. - Highlights: • The site dilution generates a large influence on regular part of the spin conductivity, σ{sup reg}(ω), and in the Drude weight, D(T). • In a concentration of impurities about x≈0.5, the regular part of the spin conductivity and the Drude weight fall to zero. • In this point we have a change in the state of the system from an ideal spin conductor to a spin insulator.
Analysis of the Scramjet inlet flow field using two-dimensional Navier-Stokes equations
Kumar, A.; Tiwari, S. N.
1982-01-01
A computer code was developed to solve the full two dimensional Navier-Stokes equations in a scramjet inlet. The analysis uses a numerical coordinate transformation which generates a set of boundary-fitted curvilinear coordinates. The explicit finite difference algorithm of MacCormack is used to solve the governing equations. A two-layer eddy viscosity model is used for the turbulent flow. The code can analyze both inviscid and viscous flows with multiple struts in the flow field. Detailed results are presented for two model problems and two scramjet inlets with one and two struts. The application of the two dimensional analysis in the preliminary design of the actual scramjet inlet is briefly discussed.
Perturbation theory and coupling constant analyticity in two-dimensional field theories
International Nuclear Information System (INIS)
Simon, B.
1973-01-01
Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2015-02-01
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.
Outline of a theory of the two-dimensional hall effect in the quantum limit
Energy Technology Data Exchange (ETDEWEB)
Tosatti, E. (Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy); Consiglio Nazionale delle Ricerche, Trieste (Italy). Gruppo Nazionale di Struttura della Materia); Parrinello, M. (International Centre for Theoretical Physics, Trieste (Italy); Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Consiglio Nazionale delle Ricerche, Trieste (Italy). Gruppo Nazionale di Struttura della Materia)
1983-03-05
The ground state of two-dimensional electrons of density N/L/sup 2/ in a strong transverse magnetic field B is discussed in terms of localized magnetic functions. For all ''commensurate'' fractional fillings of the n=0 Landau level, occurring at Bsub(st)=(s/sup 2/+t/sup 2/+st)2..pi..(h/2..pi..)cN/eL/sup 2/, with s, t integers, it is found that the ground state is a triangular lattice. This lattice has unusual properties, because it is tied to the magnetic functions. In particular, it has a finite Hall conductivity sigmasub(xy)=e/sup 2//2..pi..(h/2..pi..)(s/sup 2/+t/sup 2/+st) and it also exhibits perfect diamagnetism relative to Bsub(st). It does, however, display no proper Meissner effect, because the London depth is macroscopically large. The excess field B-Bsub(st) gives rise instead to defects in the lattice, where the extra electrons (holes) become ''interstitials'' (''vacancies''). If the defects are free to move, the Hall conductivity will not stay quantized. On the other hand, if all defects are pinned by inhomogeneities, Hall plateaux are expected around each Bsub(st). This picture, while providing a natural explanation for the quantized Hall effect at both integer and fractional filling, leads to a simple understanding of the plateau width vs. temperature and simple quality, and can also explain, at finite temperatures, the behaviour of the longitudinal conductivity sigmasub(yy) and its observed asymmetry for integer filling.
International Nuclear Information System (INIS)
Daskaloyannis, C.
2000-01-01
The integrals of motion of the classical two-dimensional superintegrable systems close in a restrained polynomial Poisson algebra, whose general form is discussed. Each classical superintegrable problem has a quantum counterpart, a quantum superintegrable system. The polynomial Poisson algebra is deformed to a polynomial associative algebra, the finite-dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. It is conjectured that the finite-dimensional representations of the polynomial algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the solution of algebraic equations, which are universal for a large number of two-dimensional superintegrable systems. (author)
Steady state bifurcations for phase field crystal equations with underlying two dimensional kernel
Directory of Open Access Journals (Sweden)
Appolinaire Abourou Ella
2015-10-01
Full Text Available This paper is concerned with the study of some properties of stationary solutions to phase field crystal equations bifurcating from a trivial solution. It is assumed that at this trivial solution, the kernel of the underlying linearized operator has dimension two. By means of the multiparameter method, we give a second order approximation of these bifurcating solutions and analyse their stability properties. The main result states that the stability of these solutions can be described by the variation of a certain angle in a two dimensional parameter space. The behaviour of the parameter curve is also investigated.
Roslyak, O.; Gumbs, Godfrey; Mukamel, S.
2012-05-01
We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.
Study of Landau spectrum for a two-dimensional random magnetic field
International Nuclear Information System (INIS)
Furtlehner, C.
1997-01-01
This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)
Flow of a two-dimensional liquid metal jet in a strong magnetic field
International Nuclear Information System (INIS)
Reed, C.B.; Molokov, S.
2002-01-01
Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, while gravity is shown to be not important. The main aim of the study is to evaluate the importance of the inertial effects. It has been shown that for gradually varying fields characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, where N is the interaction parameter. Thus the inertialess flow model is expected to give good results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet thickness and velocity have been derived. The results show that the jet becomes thicker if the field increases along the flow and thinner if it decreases
Feng, Yan; Lin, Wei; Murillo, M S
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data
Directory of Open Access Journals (Sweden)
J. Dedkova
2012-09-01
Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.
International Nuclear Information System (INIS)
Krapchev, V.
1976-01-01
In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory
International Nuclear Information System (INIS)
Xu Wen; Guo Yong
2005-01-01
We investigate the influence of the Rashba and Dresselhaus spin-orbit coupling interactions on tunnelling through two-dimensional magnetic quantum systems. It is showed that not only Rashba spin-orbit coupling but also Dresselhaus one can affect spin tunnelling properties greatly in such a quantum system. The transmission possibility, the spin polarization and the conductance are obviously oscillated with both coupling strengths. High spin polarization, conductance and magnetic conductance of the structure can be obtained by modulating either Rashba or Dresselhaus coupling strength
Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1981-03-01
The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description
Quantum mechanical treatment of a constrained particle on two dimensional sphere
Energy Technology Data Exchange (ETDEWEB)
Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com; Panahi, H., E-mail: t-panahi@guilan.ac.ir
2016-12-15
In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen–Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky–Winternitz potential model.
Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field
International Nuclear Information System (INIS)
Oh, G.Y.; Lee, M.H.
1996-01-01
The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society
Magnetic field line random walk in two-dimensional dynamical turbulence
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.
Exactly solvable models of two-dimensional dilaton cosmology with quantum backreaction
International Nuclear Information System (INIS)
Zaslavskii, O B
2003-01-01
We consider a general approach to exactly solvable 2D dilaton cosmology with one-loop backreaction from conformal fields taken into account. It includes as particular cases previous models discussed in the literature. We list different types of solutions and investigate their properties for simple models, typical for string theory. We find a rather rich class of everywhere-regular solutions, which exist practically in every type of analysed solution. They exhibit different kinds of asymptotic behaviour in the past and future, including inflation, superinflation, deflation, power expansion or contraction. In particular, for some models the dS spacetime with a time-dependent dilaton field is the exact solution of the field equations. For some kinds of solution the weak-energy condition is violated independently of a specific model. We also find the solutions with a singularity which is situated in an infinite past (or future), so at any finite moment of a comoving time the universe is singularity-free. It is pointed out that for some models the spacetime may be everywhere regular even in spite of infinitely large quantum backreaction in an infinite past
Formation and frequency response of two-dimensional nanowire lattices in an applied electric field.
Boehm, Sarah J; Lin, Lan; Guzmán Betancourt, Kimberly; Emery, Robyn; Mayer, Jeffrey S; Mayer, Theresa S; Keating, Christine D
2015-06-02
Ordered two-dimensional (2D) lattices were formed by assembling silica-coated solid and segmented Au nanowires between coplanar electrodes using alternating current (ac) electric fields. Dielectrophoretic forces from the ac field concentrated wires between the electrodes, with their long axis aligned parallel to the field lines. After reaching a sufficient particle density, field-induced dipolar interactions resulted in the assembly of dense 2D lattices that spanned the electrodes, a distance of at least ten wire lengths. The ends of neighboring Au wires or segments overlapped a fraction of their length to form lattice structures with a "running bond" brickwork-like pattern. The observed lattice structures were tunable in three distinct ways: (1) particle segmentation pattern, which fixed the lattice periodicity for a given field condition; (2) ac frequency, which varied lattice periodicity in real time; and (3) switching the field on/off, which converted between lattice and smectic particle organizations. Electric field simulations were performed to understand how the observed lattice periodicity depends on the assembly conditions and particle segmentation. Directed self-assembly of well-ordered 2D metallic nanowire lattices that can be designed by Au striping pattern and reconfigured by changes in field conditions could enable new types of switchable optical or electronic devices.
International Nuclear Information System (INIS)
Knighton, Talbot; Tarquini, Vinicio; Wu, Zhe; Huang, Jian; Pfeiffer, Loren; West, Ken
2014-01-01
Quantum Hall measurements are performed for a two-dimensional hole system (2DHS) confined to a 20 nm quantum well in 〈100〉 GaAs. Quantum oscillations reveal a density of 4 - 5×10 10 cm −2 with mobility μ = 1 × 10 6 cm 2 /V s. For temperatures less than ∼350 mK, anomalous insulating peaks are observed between integer fillings 1-2, 2-3, and 3-4. A large out-of-phase signal appears at these peaks, which indicates a substantial inductance inherent to the charge carriers
Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression
Bressloff, Paul C.
2011-01-01
We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.
1999-01-01
In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks
Graphene-based field effect transistor in two-dimensional paper networks
Energy Technology Data Exchange (ETDEWEB)
Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Hu, Jie; Xu, Feng [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); Luo, Zhengtang, E-mail: keztluo@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)
2016-04-21
We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm{sup 2} V{sup −1} s{sup −1} and ∼2298 cm{sup 2} V{sup −1} s{sup −1} respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.
Q-deformed Grassmann field and the two-dimensional Ising model
International Nuclear Information System (INIS)
Bugrij, A.I.; Shadura, V.N.
1994-01-01
In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs
Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases
Olsen, Ben A.; Luciuk, Chris; Smale, Scott; Böttcher, Florian; Sharum, Haille; Trotzky, Stefan; Enss, Tilman; Thywissen, Joseph H.
2017-04-01
Conjectured quantum bounds on transport appear to be respected in many strongly interacting many-body systems. Since transport occurs as a system relaxes to equilibrium, many such bounds can be recast as an upper bound on the local relaxation rate kB T / ℏ . Systems saturating this ``Planckian'' bound lack well defined quasiparticles promoting transport. We measure the transport properties of 2D ultracold Fermi gases of 40K during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of spin current around the local magnetization. When the 2D scattering length is tuned near an s-wave Feshbach resonance to be comparable to the inverse Fermi wave vector kF- 1 , we find that the bare transverse spin diffusivity reaches a minimum of 1 . 7(6) ℏ / m . Demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved rf spectroscopy. At unitarity, the contact rises to 0 . 28(3) kF2 per particle, measuring the breaking of scaling symmetry. Our observations support the conjecture that under strong scattering, the local relaxation rate is bounded from above by kB T / ℏ .
Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity
Westra, W.
2007-01-01
Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical
Quantum spin-glass transition in the two-dimensional electron gas
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic ﬁeld offers a natural explanation of some features of recent ...
International Nuclear Information System (INIS)
den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.
1997-01-01
We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society
Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy
Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.
2014-01-01
Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226
Field computation for two-dimensional array transducers with limited diffraction array beams.
Lu, Jian-Yu; Cheng, Jiqi
2005-10-01
A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.
Investigations on field-effect transistors based on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Finge, T.; Riederer, F.; Grap, T.; Knoch, J. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Mueller, M.R. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Infineon Technologies, Villach (Austria); Kallis, K. [Intelligent Microsystems Chair, TU Dortmund University (Germany)
2017-11-15
In the present article, experimental and theoretical investigations regarding field-effect transistors based on two-dimensional (2D) materials are presented. First, the properties of contacts between a metal and 2D material are discussed. To this end, metal-to-graphene contacts as well to transition metal dichalcogenides (TMD) are studied. Whereas metal-graphene contacts can be tuned with an appropriate back-gate, metal-TMD contacts exhibit strong Fermi level pinning showing substantially limited maximum possible drive current. Next, tungsten diselenide (WSe{sub 2}) field-effect transistors are presented. Employing buried-triple-gate substrates allows tuning source, channel and drain by applying appropriate gate voltages so that the device can be reconfigured to work as n-type, p-type and as so-called band-to-band tunnel field-effect transistor on the same WSe{sub 2} flake. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Two-dimensional distributed-phase-reference protocol for quantum key distribution
DEFF Research Database (Denmark)
Bacco, Davide; Christensen, Jesper Bjerge; Usuga Castaneda, Mario A.
2016-01-01
Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the las...... coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.......Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last...
2015-12-04
with remarkable efficiency despite their exposure to “hot and wet” environmental conditions. This proposal seeks to develop instrumentation tailored...on solution processing. 1.1.2. Autonomous Systems. The systems described here are incredibly robust to a host of environmental conditions, both...static and dynamic. Since feedback can perturb the fragile quantum state of the system, a robust quantum dynamical system must avoid direct
Two-dimensional models as testing ground for principles and concepts of local quantum physics
Schroer, Bert
2006-02-01
In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff( S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular "Euclideanization" is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an "Encyclopedia of Mathematical Physics" contribution hep-th/0502125.
Two-dimensional models as testing ground for principles and concepts of local quantum physics
International Nuclear Information System (INIS)
Schroer, Bert
2005-04-01
In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)
Two-dimensional models as testing ground for principles and concepts of local quantum physics
International Nuclear Information System (INIS)
Schroer, Bert
2006-01-01
In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125
Two-dimensional models as testing ground for principles and concepts of local quantum physics
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik
2005-04-15
In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)
One- and two-dimensional reductions of the mean-field description of degenerate Fermi gases
Díaz, Pablo; Laroze, David; Schmidt, Iván; Malomed, Boris A.
2012-07-01
We study collective behaviour of Fermi gases trapped in various external potentials, including optical lattices (OLs), in the framework of the mean-field (hydrodynamic) description. Using the variational method, we derive effective dynamical equations for the one- and two-dimensional (1D and 2D) settings from the general 3D mean-field equation. The respective confinement is provided by trapping potentials with the cylindrical and planar symmetries, respectively. The resulting equations are nonpolynomial Schrödinger equations coupled to equations for the local transverse size of the trapped states. Numerical simulations demonstrate close agreement of results produced by the underlying 3D equation and the effective low-dimensional ones. We consider the ground state in these settings. In particular, analytical solutions are obtained for the effectively 2D non-interacting Fermi gas. Differences between the 1D and 2D configurations are highlighted. Finally, we analyse the dependence of the 1D and 2D density patterns of the trapped gas, in the presence of the OL, on the strengths of the confining and OL potentials, and on the scattering length which determines the strength of interactions between non-identical fermions.
Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system
International Nuclear Information System (INIS)
Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre
2007-01-01
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram
High-precision two-dimensional atom localization via quantum interference in a tripod-type system
International Nuclear Information System (INIS)
Wang, Zhiping; Yu, Benli
2014-01-01
A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)
Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event
Directory of Open Access Journals (Sweden)
K. A. McWilliams
2000-12-01
Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions
Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event
Directory of Open Access Journals (Sweden)
K. A. McWilliams
Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.
Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions
Is there a delocalization transition in a two-dimensional model for quantum percolation
International Nuclear Information System (INIS)
Dasgupta, I.; Saha, T.; Mookerjee, A.; Chakrabarti, B.K.
1992-01-01
In this paper, the authors estimate the transmittance of the quantum percolation model of Eggarter and Kirkpatrick on the square lattice of various sizes using the vector recursion method. The authors note from finite size scaling that there is no delocalization transition for any degree of disorder in two dimensions
Quantum spin-glass transition in the two-dimensional electron gas
Indian Academy of Sciences (India)
An average ferromagnetic moment may also be present, and the spin-glass order then resides in the plane orthogonal to the ferromagnetic moment. We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic ﬁeld offers a natural explanation of some features of recent ...
Czech Academy of Sciences Publication Activity Database
Méndez-Bermúdez, J. A.; Luna-Acosta, G. A.; Šeba, Petr; Pichugin, K. N.
2002-01-01
Roč. 66, č. 4 (2002), 046207/1-046207/7 ISSN 1063-651X Grant - others:CONACyT(MX) 26163-E Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum transport * resonance Subject RIV: BE - Theoretical Physics Impact factor: 2.397, year: 2002
Breakup of a Stoner model for the two-dimensional ferromagnetic quantum critical point
Dzero, M.; Gor'kov, L. P.
2004-03-01
Generalization of the results by A. V. Chubukov et al. [Phys. Rev. Lett. 90, 077002 (2003)] leads to the conclusion that the ferromagnetic quantum critical point cannot be described by a Stoner model because of a strong interplay between the paramagnetic fluctuations and the Cooper channel, at least in two dimensions.
Directory of Open Access Journals (Sweden)
Yuchen Du
2014-09-01
Full Text Available Layered two-dimensional (2D semiconducting transition metal dichalcogenides (TMDs have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future thin film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.
Two-dimensional inversion of resistivity monitoring data from the Cerro Prieto geothermal field
Energy Technology Data Exchange (ETDEWEB)
Goldstein, N.E.; Sasaki, Y.; Wilt, M.J.
1985-03-01
Two-dimensional iterative, least-squares inversions were performed on dc resistivity data obtained over the Cerro Prieto geothermal field at five successive times during the 1979-1983 period. The data were taken on a 20-km-long control line centered over the production region. Inversions were performed on the apparent resistivities after they were converted to percent changes in apparent resistivity relative to the base year data of 1979. The resulting solutions gave the percent change in resistivity within each of 47 rectangular blocks representing the reservoir and recharge regions. These changes are compared to and found consistent with hydrogeologic and recharge models proposed by other workers on the basis of geophysical well logs, well cuttings, well production, geochemical and reservoir engineering data. The solutions support the model of a reservoir that is being recharged mainly by cooler, less saline water, causing changes in both pore fluid resistivity and the extent of boiling near the wells. There may be a component of high-temperature recharge from below and to the east, but flow may be impeded by a two-phase zone. Notwithstanding the various sources of error and uncertainty in the data acquisition and 2-D inversions, repetitive, high precision dc resistivity monitoring seems to be a useful method for assessing reservoir conditions when used in conjunction with production and reservoir engineering data and analyses. 17 refs., 6 figs.
Microbunching instability in a chicane: Two-dimensional mean field treatment
Directory of Open Access Journals (Sweden)
Gabriele Bassi
2009-08-01
Full Text Available We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case.
International Nuclear Information System (INIS)
Piraud, M; Pezzé, L; Sanchez-Palencia, L
2013-01-01
The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)
Energy Technology Data Exchange (ETDEWEB)
Christodoulakis, T; Doulis, G; Terzis, Petros A [Nuclear and Particle Physics Section, Physics Department, University of Athens, GR 157-71, Athens (Greece); Melas, E [Technological Educational Institution of Lamia, Electrical Engineering Department, GR 35-100, Lamia (Greece); Grammenos, Th [Department of Civil Engineering, University of Thessaly, GR 383-34, Volos (Greece); Papadopoulos, G O [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Spanou, A, E-mail: tchris@phys.uoa.g, E-mail: gdoulis@phys.uoa.g, E-mail: pterzis@phys.uoa.g, E-mail: evangelosmelas@yahoo.co.u, E-mail: thgramme@uth.g, E-mail: gopapad@mathstat.dal.c, E-mail: aspanou@central.ntua.g [School of Applied Mathematics and Physical Sciences, National Technical University of Athens, GR 157-80, Athens (Greece)
2010-07-21
The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.
Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout
Jochym-O'Connor, Tomas; Bartlett, Stephen D.
2016-02-01
We introduce a class of three-dimensional color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked codes and back. The stacked code allows for the transversal implementation of a non-Clifford π /8 logical gate, which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set that is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented transversally for 2D topological stabilizer codes, a nonlocal operation must be incorporated in order to allow for this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the nonlocal operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large overheads caused by magic state distillation.
Hidden Uq (sl(2)) Uq (sl(2)) Quantum Group Symmetry in Two Dimensional Gravity
Cremmer, Eugène; Gervais, Jean-Loup; Schnittger, Jens
1997-02-01
In a previous paper, the quantum-group-covariant chiral vertex operators in the spin 1/2 representation were shown to act, by braiding with the other covariant primaries, as generators of the well known Uq(sl(2)) quantum group symmetry (for a single screening charge). Here, this structure is transformed to the Bloch wave/Coulomb gas operator basis, thereby establishing for the first time its quantum group symmetry properties. A Uq(sl(2)) otimes Uq(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (Vermamodules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of the operator product. This hidden symmetry possesses a novel Hopf-like structure compatible with these conditions. At roots of unity it gives the right truncation. Its (non-linear) connection with the Uq(sl(2)) previously discussed is disentangled.
DEFF Research Database (Denmark)
da Lio, Beatrice; Bacco, Davide; Ding, Yunhong
2017-01-01
We experimentally prove a novel two-dimensional QKD scheme, relying on differential phasetime shifting (DPTS) of strongly attenuated weak coherent pulses. We demonstrate QKD transmission up to 170 km standard fiber, and even include a classical channel up to 90 km....
International Nuclear Information System (INIS)
Friedan, D.H.; Martinec, E.J.; Shenker, S.H.
1988-12-01
The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics
Energy Technology Data Exchange (ETDEWEB)
Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W. [Groupe d`Etudes des Semiconducteurs, Universite de Montpellier II, Montpellier (France)
1995-12-31
Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B{sub tr} where B is the magnetic field, B{sub tr}=h/4e{tau}D, D is the diffusion constant and {tau} is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B{sup -1/2}) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author). 5 refs, 2 figs.
International Nuclear Information System (INIS)
Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W.
1995-01-01
Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B tr where B is the magnetic field, B tr =h/4eτD, D is the diffusion constant and τ is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B -1/2 ) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author)
International Nuclear Information System (INIS)
Zashkvara, V.V.; Bok, A.A.
1992-01-01
Two components of the spatial dispersion of particles with respect to kinetic energy can be distinguished of the motion of charged particle beams in electrostatic mirros with a two-dimensional field φ(x,y) ans xz symmetry plane. The first is the longitudinal dispersion, which is along the z axis perpendicular to the field; the second is the transverse dispersion, along the x axis parallel to the field vector in the plane of symmetry. The longitudinal dispersion is a basic characteristic of electrostatic mirrors used as energy analyzers. It has been shown that for first-order angular focusing, the longitudinal dispersion, divided by the focal length, is independent of the structure of the two-dimensional field and is a function only of the angle at which the charged particle beam enters the mirror. The transverse dispersion stems from the energy dependence of the penetration depth of the beam as it is decelerated, and it plays an important role when the energy of a charged particle beam is analyzed by the filtering principle, making use of the property of an electrostatic mirror to transmit or reflect charged particles with kinetic energy in a specified interval. This type of dispersion in electrostatic mirrors with two-dimensional fields has not been analyzed systematically. In the present note the authors consider a particular type of two-dimensional electrostatic field which is characterized by a large transverse dispersion, many times larger than in existing electrostatic reflecting filters employing planar and cylindrical fields
Exact integrability in quantum field theory
International Nuclear Information System (INIS)
Thacker, H.B.
1980-08-01
The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here
Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders
DEFF Research Database (Denmark)
Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden
2010-01-01
for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...
Wigner quantum systems. Two particles interacting via a harmonic potential-1: two-dimensional space
International Nuclear Information System (INIS)
Kamupingene, A.H.; Tsaneva, S.P.
1985-08-01
A non-canonical quantum system, consisting of two non-relativistic particles, interacting via a harmonic potential, is considered. The centre-of-mass position and momentum operators obey the canonical commutation relations, whereas the internal variables are assumed to be the odd generators of the Lie superalgebra sl(1,2). This assumption implies a set of constraints in the phase space, which are explicitly written in the paper. All finite dimensional irreducible representations of sl(1,2) are considered. Particular attention is paid to the physical representations, i.e. the representations, corresponding to Hermitian position and momentum operators. The properties of the physical observables are investigated. In particular, the operators of the internal Hamiltonian, the relative distance, the internal momentum and the orbital momentum commute with each other. The spectrum of these operators is finite. The distance between the constituents is preserved in time. It can take no more than three different values. For any non-negative integer or half-integer l there exists a representation, where the orbital momentum is l (in unit 2 slash-h). The position of any one of the particles cannot be localized, since the operators of the coordinates do not commute with each other. The constituents are smeared with a certain probability within a finite surface, which moves with a constant velocity together with the centre of mass. (author)
Conte, Robert; Gandarias, Maria Luz
2005-02-01
The WDVV equations of associativity arising in two-dimensional topological field theory can be represented, in the simplest nontrivial case, by a single third-order equation of the Monge-Ampère type. By investigating its Lie point symmetries, we reduce it to various nonlinear ordinary differential equations, and obtain several new explicit solutions.
Energy Technology Data Exchange (ETDEWEB)
Dasgupta, Shivaji
2009-02-15
In this work two-dimensional electron systems (2DESs) based on AlAs/AlGaAs heterostructures doped with Si are investigated. The electrons are confined in AlAs quantum wells (QWs) sandwiched between AlGaAs buffers. Analytical calculations and simulations for AlAs QWs are presented in the first chapter. The results show a cross-over width, above which the wide (001)-oriented QWs show double valley occupancy and wide (110)-oriented QWs show single valley occupancy. We solve the Schroedinger equation analytically for anisotropic masses. The solution shows the orientation dependence of the elliptical cyclotron orbit due to the anisotropic mass. We also present an introduction to the Landau level crossings based on g{sup *}m{sup *} product. In the next chapter, we present experimental results for the double-valley (001)-oriented AlAs QWs. We present the different structures of the deep AlAs QWs along with the low temperature magnetotransport data for these QWs. Thereafter, we present the results on shallow AlAs QWs. We achieved a mobility of 4.2 x 10{sup 5} cm{sup 2}/Vs at 330 mK for the deep backside doped AlAs QW. For the shallow QWs, we achieved a mobility of2.3 x 10{sup 5} cm{sup 2}/Vs at 330 mK, for a density of 2.9 x 10{sup 11} cm{sup -2}. From the magneto-transport data, we see evidence of the double-valley occupation for the (001)-oriented AlAs wide QWs. In the next chapter, we present experimental results for the single-valley (110)-oriented AlAs QWs. We deduced the donor binding energy and the doping efficiency for this facet from a doping series of double-sided doped QWs. Thereafter, we designed different structures for the (110)-oriented AlAs QWs, which we present along with their respective low temperature magneto-transport data. We measured one of the double-sided doped AlAs QWs at very high magnetic fields and low temperatures, down to 60 mK. At the end of the chapter, we present a spike feature observed in the magneto-transport data of these QWs. This
TWO-DIMENSIONAL LOCALIZATION OF ATOMIC POPULATIONS IN FOUR-LEVEL QUANTUM SYSTEMS
Directory of Open Access Journals (Sweden)
E. A. Efremova
2014-07-01
Full Text Available The paper deals with investigation of one aspect of fundamental problem of laser radiation interaction with the matter. This problem is spatial localization of atomic populations due to fields impact of few running waves. We are the first to propose in our work two–dimensional spatial localization of atomic populations in medium with tripod–like configuration of levels under the field influence of running waves only. Three running waves, propagating along one plane 120o angle-wise to each other, form the system of standing waves in this plane. Atomic populations can be localized in the field of these standing waves. Moreover, the degree of such localization can make up hundredth parts of the wavelength of the incident optical radiation. It is shown that an excitation of the central transition of the tripod-like system using a field of multidirectional linearly polarized running waves is the necessary condition of the population dependence from spatial coordinates in the XY – plane. The two–dimensional shapes that appear in this system can have very complicated structure such as “double – craters”.
International Nuclear Information System (INIS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2011-01-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.
Mean-field description of ultracold bosons on disordered two-dimensional optical lattices
International Nuclear Information System (INIS)
Buonsante, Pierfrancesco; Massel, Francesco; Penna, Vittorio; Vezzani, Alessandro
2007-01-01
In the present communication, we describe the properties induced by disorder on an ultracold gas of bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centred on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence. (fast track communication)
A two-dimensional detector with delay line readout for slow neutron fields measurements
International Nuclear Information System (INIS)
Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.
1992-01-01
This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs
Quasi-two-dimensional quantum states of H2 in stage-2 Rb-intercalated graphite
International Nuclear Information System (INIS)
Smith, A.P.; Benedek, R.; Trouw, F.R.; Minkoff, M.; Yang, L.H.
1995-01-01
Inelastic-incoherent-neutron scattering can be a valuable nanostructural probe of H 2 -doped porous materials, provided the spectral peaks can be interpreted in terms of crystal-field-split hydrogen-molecule energy levels, which represent a signature of the local symmetry. Inelastic-neutron-scattering measurements as well as extensive theoretical analyses have been performed on stage-2 Rb-intercalated graphite (Rb-GIC), with physisorbed H 2 , HD, and D 2 , a layered porous system with abundant spectral peaks, to assess whether the crystal-field-state picture enables a quantitative understanding of the observed structure. Potential-energy surfaces for molecular rotational and translational motion, as well as the intermolecular interactions of hydrogen molecules in Rb-GIC, were calculated within local-density-functional theory (LDFT). Model potentials, parameterized using results of the LDFT calculations, were employed in schematic calculations of rotational and translational excited state spectra of a single physisorbed H 2 molecule in Rb-GIC. Results of the analysis are basically consistent with the assignment by Stead et al. of the lowest-lying peak at 1.4 meV to a rotational-tunneling transition of an isotropic hindered-rotor oriented normal to the planes, but indicate a small azimuthal anisotropy and a lower barrier than for the isotropic case. Based on the experimental isotope shifts and the theoretically predicted states, they conclude that spectral peaks at 11 and 22 meV are most likely related to center of mass excitations
Phase diagram of a two-dimensional liquid in GaAs/AlxGa1-xAs biased double quantum wells
DEFF Research Database (Denmark)
Timofeev, V. B.; Larionov, A. V.; Alessi, M. G.
2000-01-01
densities, P, and temperatures, T. For increasing P or decreasing T, a sharp transition from two gases of photoexcited electrons and holes, spatially separated and confined in the two wells, to two two-dimensional (2D) liquids has been observed. The gas-to-2D-liquid transition is evidenced by a strong...... screening of applied biases and by major changes in the optical spectra. The phase diagram in the (P,T) plane of the e-h system has been determined. Time-resolved FL, cw FL, and PLE in the presence of a magnetic field normal to the quantum wells support the presence of e- and h-liquid phases in the two...... wells with a critical density equal to 8.8 x 10(10) cm(-2) and a binding energy of 2.5 meV....
Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors
Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching-Hwa; Huang, Ying-Sheng; Cao, Zhengyi; Wang, Laiguo; Li, Aidong; Zeng, Junwen; Song, Fengqi; Wang, Xinran; Shi, Yi; Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi; Miao, Feng; Xing, Dingyu
2015-01-01
Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼107) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications. PMID:25947630
A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes
International Nuclear Information System (INIS)
Bravyi, Sergey; Terhal, Barbara
2009-01-01
We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of size O(1). Our first result concerns the optimal scaling of the distance d with the linear size of the lattice L. We prove an upper bound d=O(L D-1 ) which is tight for D=1, 2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1, 2, different logical states can be mapped into each other by a sequence of single-qubit Pauli errors such that the energy of all intermediate states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as 'gauge qubits'. It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1, 2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional (2D) ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.
Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field
International Nuclear Information System (INIS)
Villalba, V.M.
1998-01-01
We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.)
Two-dimensional atom localization via two standing-wave fields in a four-level atomic system
International Nuclear Information System (INIS)
Zhang Hongtao; Wang Hui; Wang Zhiping
2011-01-01
We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.
Energy Technology Data Exchange (ETDEWEB)
Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear
2016-11-01
Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)
The far field migration of radionuclides in two dimensional groundwater flows though geologic media
International Nuclear Information System (INIS)
Ting, D.K.S.; Chambre, P.
1985-01-01
An analytical method to model the radionuclides migration in a two dimensional groundwater flor through geologic media has been developed and implemented into the computer code UCBNE21. Using this method, the potential hazard to the biosphere posed by the accidental release of radionuclides from a candidate repository site (WIPP) is determined. I-129 and Ra-226 are potentially the most hazardous nuclides in these sites but their discharge into the biosphere will not result in concentrations larger than their maximum permissible concentrations. (Author) [pt
Heida, J.P.; Wees, B.J. van; Kuipers, J.J.; Klapwijk, T.M.; Borghs, G.
1998-01-01
We present experiments on the tuning of the spin-orbit interaction in a two-dimensional electron gas in an asymmetric InAs/AlSb quantum well using a gate. The observed dependence of the spin splitting energy on the electron density can be attributed solely to the change in the Fermi wave vector. The
Khouri, T; Zeitler, U; Reichl, C; Wegscheider, W; Hussey, N E; Wiedmann, S; Maan, J C
2016-12-16
We report a high-field magnetotransport study of an ultrahigh mobility (μ[over ¯]≈25×10^{6} cm^{2} V^{-1} s^{-1}) n-type GaAs quantum well. We observe a strikingly large linear magnetoresistance (LMR) up to 33 T with a magnitude of order 10^{5}% onto which quantum oscillations become superimposed in the quantum Hall regime at low temperature. LMR is very often invoked as evidence for exotic quasiparticles in new materials such as the topological semimetals, though its origin remains controversial. The observation of such a LMR in the "simplest system"-with a free electronlike band structure and a nearly defect-free environment-excludes most of the possible exotic explanations for the appearance of a LMR and rather points to density fluctuations as the primary origin of the phenomenon. Both, the featureless LMR at high T and the quantum oscillations at low T follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1 that likely originate from a different transport mechanism for the composite fermions.
A plausible two-dimensional vertical model of the East Mesa Geothermal Field, California
Energy Technology Data Exchange (ETDEWEB)
Goyal, K. P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Kassoy, D. R. [Univ. of Colorado, Boulder, CO (United States). Mechanical Engineering Dept.
1981-11-10
For this study, a two-dimensional conceptual model of the East Mesa Geothermal system is developed on the basis of existing geological, geophysical, geochemical, heat flux, and borehole logging data. Hot water rising in a set of faults is assumed to charge the reservoir, which is overlaid by a clay-rich cap. The temperature-depth distribution observed at the site implies that the liquid is converting at a high Rayleigh number. In this approximation, liquid rises up the fault and spreads isothermally into the nearby sections of the reservoir. The cooling effect of the surface on the flow in the reservoir is confined to a thin layer adjacent to the cap-reservoir interface near the fault. This layer grows with the distance from the fault. Eventually, the entire depth of the reservoir is cooled by the surface. The mathematical model is based on the flow of liquid water in a saturated porous medium. Results are obtained for the velocities, pressures, and temperatures in the entire system consisting of fault zone, aquifer, and clay cap. Finally we compare the predicted surface heat flux to that measured at the site in shallow wells. We conclude that the model represents a plausible description of fault zone controlled systems like that at East Mesa.
Pakmehr, Mehdi; McCombe, B. D.; Bruene, C.; Buhmann, H.; Molenkamp, L. W.
2015-10-01
HgTe quantum wells (QWs) have shown a number of interesting phenomena, recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of two-dimensional electrons in a 6.1 nm wide HgTe QW induced by cyclotron resonance absorption ( B = 2 to 5 T) of a THz laser beam. We have estimated thermopower coefficients by detailed analysis of the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. The photovoltage signals are washed out at bath temperature of 18 K.
Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity
Cremmer, E; Schnittger, J
1997-01-01
In a previous paper, we proposed a construction of U_q(sl(2)) quantum group symmetry generators for 2d gravity, where we took the chiral vertex operators of the theory to be the quantum group covariant ones established in earlier works. The basic idea was that the covariant fields in the spin 1/2 representation themselves can be viewed as generators, as they act, by braiding, on the other fields exactly in the required way. Here we transform this construction to the more conventional description of 2d gravity in terms of Bloch wave/Coulomb gas vertex operators, thereby establishing for the first time its quantum group symmetry properties. A U_q(sl(2))\\otimes U_q(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (bra/ket Verma-modules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of...
Migration transformation of two-dimensional magnetic vector and tensor fields
DEFF Research Database (Denmark)
Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn
2012-01-01
We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...
Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven
2018-01-01
Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.
Energy Technology Data Exchange (ETDEWEB)
Griesbeck, Michael
2012-11-22
Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.
Energy Technology Data Exchange (ETDEWEB)
Belouadah, R., E-mail: r_belouadah74@yahoo.f [Departement de physique, Universite de M' sila, PB 116 Ichebilia, M' sila (Algeria); Laboratoire des Systemes Integres a base de Capteurs, Ecole Normale Superieure B.P 92 Kouba, Alger (Algeria); Kendil, D.; Bousbiat, E. [Laboratoire des Systemes Integres a base de Capteurs, Ecole Normale Superieure B.P 92 Kouba, Alger (Algeria); Guyomar, D.; Guiffard, B. [Laboratoire de Genie Electrique et Ferroelectricite, INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, Villeurbanne (France)
2009-06-01
The study of the electrical properties of two-dimensional ferroelectric materials is very interesting because of the many possible applications relating to effects on their polarization properties. In this work we study the effect of a sinusoidal electric field on the dielectric and electrical properties of uni-axially and biaxially stretched polyvinylidene fluoride (PVDF) films. We have determined the polarization current, remanent polarization, maximal polarization, the hysteresis loop and coercive field as a function of applied electric field amplitude. The most interesting effects are the electric field (E) dependences of the resistivity. It is shown that for the biaxially stretched PVDF sample, the resistivity is almost constant, whereas for the uni-axially stretched specimen, a large decrease of resistivity is observed.
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
International Nuclear Information System (INIS)
Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan
2009-01-01
In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.
International Nuclear Information System (INIS)
Martin, P.; Rodriguez-Nunez, J.J.; Marquez, J.L.
1992-01-01
Two-point quasifractional approximations have been used to study the energy levels for a hydrogenic atom when a magnetic field is applied perpendicular to the x-y plane. Perturbation theory gives power-series expansions for weak magnetic fields and asymptotic expansions for very high magnetic fields. Using appropriate forms of the two-point quasifractional approximants, we recover both expansions and have found a better interpolation between the two limiting situations for the ground- and excited-state energies than those previously published
THE EFFECT OF MAGNETIC FIELD ON MEAN FLOW GENERATION BY ROTATING TWO-DIMENSIONAL CONVECTION
Energy Technology Data Exchange (ETDEWEB)
Currie, Laura K., E-mail: lcurrie@astro.ex.ac.uk [Department of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter (United Kingdom)
2016-11-20
Motivated by the significant interaction of convection, rotation, and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilize a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organizes them, leading to stronger time-averaged flows. Furthermore, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behavior is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even when the quenching of the overall flow velocity by the field is relatively strong.
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-05-15
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.
Directory of Open Access Journals (Sweden)
Pengshuai Sun
2017-09-01
Full Text Available Based on tunable diode laser absorption spectroscopy (TDLAS, two-dimensional (2D distribution reconstructions of gas concentration and temperature are realized using an algebraic reconstruction technique (ART. The influence of the beam distribution and grid size on combustion field reconstruction is investigated to attain optimal reconstruction results with a limited number of beams. Under limited optical-path numbers, it shows that a better spatial resolution is attainable only when the laser beam paths are vertical and parallel to the symmetry axis of the combustion field. Furthermore, experiments with 16 beam paths using one and two flat flame combustion fields are carried out in different fuel-air equivalence ratios under room temperature. The results are in agreement with the simulation results, and the time resolution is less than 1 s.
Energy Technology Data Exchange (ETDEWEB)
Cichy, Agnieszka, E-mail: cichy@th.physik.uni-frankfurt.de [Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt/Main (Germany); Cichy, Krzysztof, E-mail: kcichy@th.physik.uni-frankfurt.de [Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt/Main (Germany); NIC, DESY, Platanenallee 6, 15738 Zeuthen (Germany); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Polak, Tomasz P., E-mail: tppolak@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)
2015-03-15
The ground state of ultracold fermions in the presence of effects of orbital and Zeeman magnetic fields is analyzed. Five different states are found: unpolarized superconducting state, partially and fully polarized normal states and phase separated regions, partially or fully polarized. The system, in the presence of orbital synthetic magnetic field effects, shows non-monotonous changes of the phase boundaries when electron concentration is varied. We observe not only reentrant phenomena, but also density dependent oscillations of different areas of the phase diagram. Moreover the chemical potential shows oscillatory behavior and discontinuities with respect to changes in the number of fermions.
Cichy, Agnieszka; Cichy, Krzysztof; Polak, Tomasz P.
2015-03-01
The ground state of ultracold fermions in the presence of effects of orbital and Zeeman magnetic fields is analyzed. Five different states are found: unpolarized superconducting state, partially and fully polarized normal states and phase separated regions, partially or fully polarized. The system, in the presence of orbital synthetic magnetic field effects, shows non-monotonous changes of the phase boundaries when electron concentration is varied. We observe not only reentrant phenomena, but also density dependent oscillations of different areas of the phase diagram. Moreover the chemical potential shows oscillatory behavior and discontinuities with respect to changes in the number of fermions.
Wave functions and finite size effects in a two-dimensional lattice field theory
International Nuclear Information System (INIS)
Thacker, H.B.
1985-06-01
A study of finite size corrections to the masses of fermions and bound states in the Baxter/massive Thirring/sine Gordon lattice field theory is discussed. It is shown that information on bound tate wave functions may be used to extrapolate Monte Carlo mass calculations to infinite volume. 10 refs., 4 figs
Polarization monotones of two-dimensional and three-dimensional random electromagnetic fields
Bosyk, G. M.; Bellomo, G.; Luis, A.
2018-02-01
We propose a formal resource-theoretic approach to quantify the degree of polarization of two- and three-dimensional random electromagnetic fields. This endows the space of spectral polarization matrices with the orders induced by majorization or convex mixing that naturally recover the best-known polarization measures.
Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions
Energy Technology Data Exchange (ETDEWEB)
Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2018-01-15
Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Non-Abelian solitons in two-dimensional lattice field theories
Müller, V. F.
1993-12-01
For a class of self-interacting multicomponent scalar field theories with a global discrete non-Abelian symmetry group, mixed order-disorder correlation functions are defined in terms of Euclidean functional integrals. These correlation functions satisfy Osterwalder-Schrader positivity. From a representation of the correlation functions in terms of the transfer matrix, the dual algebra at fixed time is derived. This algebra implies parafermion operators showing non-Abelian braid group statistics. In a pure phase of spontaneous symmetry breaking for a related class of order-disorder correlation functions a convergent polymer representation is developed, emerging from a combined low- and high-temperature-type expansion. The infinite volume correlation functions of this class show exponential clustering in the disorder fields.
Two-Dimensional Far Field Source Locating Method with Nonprior Velocity
Directory of Open Access Journals (Sweden)
Qing Chen
2016-01-01
Full Text Available Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating accuracy of far field sources by isometric placed sensors in a straight line, a new locating method with nonprior velocity is proposed. After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and better stability.
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
One-and two-dimensional topological charge distributions in stochastic optical fields
CSIR Research Space (South Africa)
Roux, FS
2011-06-01
Full Text Available in terms of the kind of questions that are addressed ? p. 2/15 Definitions Vortex number density: Number of vortices per cross-section area. ? function of transverse coordinates (x, y) that can changes as a function of propagation distance z... . Positive vortex density np(x, y, z) ? 0 . Negative vortex density nn(x, y, z) ? 0 . Combined vortex density V (x, y, z) = np(x, y, z) + nn(x, y, z) ? 0 . Topological charge density T (x, y, z) = np(x, y, z)? nn(x, y, z) ? p. 3/15 Speckle fields...
Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements
Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli
2017-12-01
An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.
Gulin, O. E.; Yaroshchuk, I. O.
2017-03-01
The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
International Nuclear Information System (INIS)
Buechner, J.M.
1989-01-01
For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal
2016-01-01
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Pereira, Antonio
2003-12-01
Radionuclide releases from the near-field for the vaults of the SFR 1 repository are examined in this report. To model those releases we have developed four models, one for each of the vaults; 2BTF, 1BTF, BMA and BLA. The respective codes are based on the finite element method and are called FEMBTF2, FEMBTF1, FEMBMA and FEMBLA, respectively. These codes are two-dimensional representations of the cross sections of the vaults. The different barriers of the vaults have been modelled individually using the physical dimensions of the cross sections. The same conceptual model has been used to estimate the releases from the near-field. This conceptual model is implemented by four different FEM codes that solve the two-dimensional transport equation, e.g. the advective-diffusive-reactive equation that also includes radioactive decay. An interesting property of the codes is that they allow the use of time-dependent properties to represent for instance the evolution of water flow, porosities, distribution coefficients etc. This capability of the code has been used only in some cases because the FEM codes put heavy requirements on the computer's CPU. The nuclides studied here were chosen from a set representing the highest release rates from the near-field obtained by SKB during their project SAFE. Some of the results reported here are somewhat lower than SKBs, other higher. Uncertainties in the conceptual models and differences in the input data are the reasons for the numerical differences. For most cases, the differences between our results and those of SKB should be considered relatively small within present context of near-field calculations
Wentzel, Gregor
1949-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets.
Chen, Yantao; Ren, Ren; Pu, Haihui; Chang, Jingbo; Mao, Shun; Chen, Junhong
2017-03-15
A black phosphorous (BP)-based field-effect transistor (FET) biosensor was fabricated by using few-layer BP nanosheets labeled with gold nanoparticle-antibody conjugates. BP nanosheets were mechanically exfoliated and used as the sensing/conducting channel in the FET, with an Al 2 O 3 thin film as the dielectric layer for surface passivation. Antibody probes were conjugated with gold nanoparticles that were sputtered on the BP through surface functionalization. The sensor response was measured by the change in the BP's electrical resistance after antigens were introduced. The adsorbed antigens through specific antigen-antibody binding interactions induced a gate potential, thereby changing the drain-source current. The as-produced BP biosensor showed both high sensitivity (lower limit of detection ~10ng/ml) and selectivity towards human immunoglobulin G. Results from this study demonstrate the outstanding performance of BP as a sensing channel for FET biosensor applications. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.
2011-01-01
Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.
Directory of Open Access Journals (Sweden)
Pichet Pinit
2009-07-01
Full Text Available This paper describes the development of a Window-based framework for analyzing and visualizing two-dimensional stress field in digital photoelasticity. The program is implemented as stand-alone software. The program contains mainly two parts: computational part and visual part supplemented with several image-processing functions. The computation method used in the program for retrieval of photoelastic parameters (isoclinic and isochromatic parameters is the phase stepping method. The visualization links between the results and the user by a gray scale or color map of such parameters, which is very convenient to the user for physical interpretation. With the Windows-based framework, additional modules eithercomputation or visualization can be simply added to the program.
Euclidean quantum field theory
International Nuclear Information System (INIS)
Jaffe, A.
1985-01-01
In four seminal papers, written from 1963 to 1968, Kurt Symanzik laid the foundations for his euclidean quantum field theory program (EQFT). His original goal was to use EQFT as a tool to approach the existence question for interacting quantum fields. In 1968, when other methods appeared better suited for the existence question, Symanzik abandoned this heroic attempt and redirected his research toward different questions. (orig./HSI)
Surzhikov, S. T.
2017-08-01
The drift-diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift-diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5-5 Torr at a current source voltage of 200-500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.
DEFF Research Database (Denmark)
Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren
2008-01-01
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...
Li, Yongyao; Luo, Zhihuan; Liu, Yan; Chen, Zhaopin; Huang, Chunqing; Fu, Shenhe; Tan, Haishu; Malomed, Boris A.
2017-11-01
We study two-dimensional (2D) matter-wave solitons in spinor Bose-Einstein condensates under the action of the spin-orbit coupling and opposite signs of the self- and cross-interactions. Stable 2D two-component solitons of the mixed-mode type are found if the cross-interaction between the components is attractive, while the self-interaction is repulsive in each component. Stable solitons of the semi-vortex type are formed in the opposite case, under the action of competing self-attraction and cross-repulsion. The solitons exist with the total norm taking values below a collapse threshold. Further, in the case of the repulsive self-interaction and inter-component attraction, stable 2D self-trapped modes, which may be considered as quantum droplets (QDs), are created if the beyond-mean-field Lee-Huang-Yang terms are added to the self-repulsion in the underlying system of coupled Gross-Pitaevskii equations. Stable QDs of the mixed-mode type, of a large size with an anisotropic density profile, exist with arbitrarily large values of the norm, as the Lee-Huang-Yang terms eliminate the collapse. The effect of the spin-orbit coupling term on characteristics of the QDs is systematically studied. We also address the existence and stability of QDs in the case of SOC with mixed Rashba and Dresselhaus terms, which makes the density profile of the QD more isotropic. Thus, QDs in the spin-orbit-coupled binary Bose-Einstein condensate are for the first time studied in the present work.
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Ghosh, Samiran
2014-09-01
The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Munish, E-mail: munishsharmahpu@live.com, E-mail: pk-ahluwalia7@yahoo.com; Kumar, Ashok; Ahluwalia, P. K., E-mail: munishsharmahpu@live.com, E-mail: pk-ahluwalia7@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Pandey, Ravindra [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)
2014-08-14
Tunability of the electronic properties of two-dimensional bilayer hetero structures of transition-metal dichalcogenides (i.e., MX{sub 2}-M′X′{sub 2} with (M, M′ = Mo, W; X, X′ = S, Se) is investigated. Application of both strain and electric field is found to modify the band gap and carrier effective mass in the hybrid bilayers considered. The calculated results based on density functional theory suggest that the tensile strain considerably changes the band gap of semiconducting bilayers; it makes the band gap to be indirect, and later initiates the semiconductor-to-metal transition. Application of the external electric fields, on the other hand, shows asymmetric variation in the band gap leading to the closure of the gap at about 0.5–1.0 V/Å. Tuning of the band gap and carrier effective mass in such a controlled manner makes the hybrid bilayers of transition metal dichalcogenides to be promising candidates for application in electronic devices at nanoscale.
2012-01-01
this approach [6–14]. However, simulations of quantum magnetism allow- ing controlled, tunable interactions between spins localized on 2D and 3D ...antiferromagnetic Heisenberg interaction. The spin-liquid’s Figure 1. The Penning trap confines hundreds of spin-1/2 particles (qubits) on a two...simulations of quantum Ising and Heisenberg inter- actions with localized spins were done with neutral atoms in optical lattices [6, 11], atomic ions in Paul
Numerical evaluation of two-dimensional harmonic polylogarithms
Gehrmann, T
2002-01-01
The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Near-field optical spectroscopy of single quantum wires
Harris, T. D.; Gershoni, D.; Grober, R. D.; Pfeiffer, L.; West, K.; Chand, N.
1996-02-01
Low temperature near-field scanning optical microscopy is used for spectroscopic studies of single, nanometer dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two dimensional system and a single genuinely one dimensional quantum wire system, inaccessible to conventional far field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of 3 absorption enhancement for these wires compared to the wells is concluded from the photoluminescence excitation data.
Czech Academy of Sciences Publication Activity Database
Goncharuk, Natalya; Smrčka, Ludvík; Kučera, Jan
2004-01-01
Roč. 22, - (2004), s. 590-593 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : single layer * double layer * two-dimensional electron system * cyclotron resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004
Stoof, Henk T C; Gubbels, Koos
2009-01-01
Ultracold Quantum Fields provides a self-contained introduction to quantum field theory for many-particle systems, using functional methods throughout. The general focus is on the behaviour of so-called quantum fluids, i.e., quantum gases and liquids, but trapped atomic gases are always used as an example. Both equilibrium and non-equilibrium phenomena are considered. Firstly, in the equilibrium case, the appropriate Hartree-Fock theory for the properties of a quantum fluid in the normal phase is derived. The focus then turns to the properties in the superfluid phase, and the authors present a microscopic derivation of the Bogoliubov theory of Bose-Einstein condensation and the Bardeen-Cooper-Schrieffer theory of superconductivity. The former is applicable to trapped bosonic gases such as rubidium, lithium, sodium and hydrogen, and the latter in particular to the fermionic isotope of atomic lithium. In the non-equilibrium case, a few topics are discussed for which a field-theoretical approach is especially su...
Energy Technology Data Exchange (ETDEWEB)
Caselle, M.; Grinza, P. [Dipartimento di Fisica Teorica dell' Universita di Torino and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino (Italy)]. E-mails: caselle@to.infn.it; grinza@to.infn.it; Magnoli, N. [Dipartimento di Fisica, Universita di Genova and Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova (Italy)]. E-mail: magnoli@ge.infn.it
2001-10-26
We investigate the presence of irrelevant operators in the two-dimensional Ising model perturbed by a magnetic field, by studying the corrections induced by these operators in the spin-spin correlator of the model. To this end we perform a set of high-precision simulations for the correlator both along the axes and along the diagonal of the lattice. By comparing the numerical results with the predictions of a perturbative expansion around the critical point we find unambiguous evidence of the presence of such irrelevant operators. It turns out that among the irrelevant operators the one which gives the largest correction is the spin-4 operator T{sup 2}+T-bar{sup 2}, which accounts for the breaking of the rotational invariance due to the lattice. This result agrees with what was already known for the correlator evaluated exactly at the critical point and also with recent results obtained in the case of the thermal perturbation of the model. (author)
On the scaling limits in the Euclidean (quantum) field theory
International Nuclear Information System (INIS)
Gielerak, R.
1983-01-01
The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)
International Nuclear Information System (INIS)
Vetushka, A.; Karkari, S.K.; Bradley, J.W.
2004-01-01
Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Energy Technology Data Exchange (ETDEWEB)
Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)
2015-06-07
Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.
International Nuclear Information System (INIS)
Ramesh, S.
1985-01-01
This thesis constitutes the first precise, quantitative experimental study of layering transitions, two-dimensional critical temperatures, and their relation to surface roughening. The experiments used superfluid fourth sound to probe the liquid solid 4 He interface, by coupling with surface waves unique to this interface. An annular resonator with electric transducers was used to measure the fourth sound velocity c 4 in an exfoliated graphite (Grafoil) superleak. Measurements of the pressure dependence of the fourth sound resonance frequencies (and attenuation) from ∼6 bar to ∼26 bar were made along eight isotherms from 1.0 K to 1.7 K. Plots of fourth sound resonance frequency versus coverage clearly indicate layer-by-layer solid nucleation and epitaxal growth of hcp solid 4 He on the basal plane of graphite. Further analysis yielded solid adsorption isotherms and a kinetic growth coefficient for the 4 He crystal surface and also indicated the existence of a critical temperature region and also indicated the existence of a critical temperature region around 1.0-1.2 K (the region of a bulk roughening transition). The acoustical theory for the experimental system was worked out using a parallel waveguide model; Landau's thermohydrodynamic equations were reformulated by including the mass- and heat-exchange effects occurring in the system; the equations were solved to obtain expressions for the velocity of sound propagation and attenuation
Zharkikh, Y S; Tretyak, O V
2003-01-01
The electron scattering mechanisms in the dimensionally quantized channels of silicon MOS-structures are investigated. The conclusion of the Coulomb scattering mechanism prevailing is made from the ratio of transport and quantum lifetimes. The experimental transport mobility values are compared with the Born approximation calculations. It is shown that the agreement of the experimental and calculated mobility's values can be obtained by taking into account the interference effect of remote ion potentials.
Two Dimensional Near-field Calculations of Radionuclide Releases from the SFL 3 and SFL 5 Repository
International Nuclear Information System (INIS)
Pereira, Antonio
2004-08-01
A two dimensional finite-element model is developed for this work which aim is to simulate the near-field performance of the SFL 3 and the SFL 5 vaults of the planned repository for long-lived, low- and intermediate level waste, SFL 3-5. The model represents a 2D section of the vault's geometry. One of the new features in this model is that it allows the study of the migration of solubility limited radionuclides. In respect to the SFL 5 results the breakthrough curves obtained show peak releases and respective time of occurrences in relative good agreement with those obtained by SKB. The shape of those curves is different from those obtained by SKB and can be explained from the fact that we are using different models, which highlights the influence of conceptual uncertainties. The calculations for the SFL 3 vault show systematically higher values, with the exception of tritium, than those reported by SKB, which are due to the fact that we could not take into account the sorption capacity of the concrete in the cubic boxes of SFL 3. The reason is that the SKB reports do not explicitly give the information needed to calculate the amount of concrete in the cubic boxes containing the 80 litre drums for the LILW waste of SFL 3. That information is needed to include an 'equivalent barrier' to the concrete barrier in our model. It is also concluded that the distribution of the different types of waste along the vaults is needed to be able to develop a 3D model that more closely can represent the conceptual approach used by the SKB model. It is expected that such a 3D model could deliver more realistic results
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-08-15
Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.
International Nuclear Information System (INIS)
Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang
2013-01-01
Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-11-01
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.
The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State
Gan, Liyong
2015-10-07
We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the
Kleinert, Hagen
2016-01-01
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
International Nuclear Information System (INIS)
Igarashi, J.; Watabe, A.
1991-01-01
Quantum corrections to the longitudinal spin-correlation function and the spin-stiffness constant are calculated up to 1/(2S) 2 in a two-dimensional Heisenberg antiferromagnet at zero temperature by using the Holstein-Primakoff transformation. The equal-time longitudinal spin-correlation function is found to compensate almost entirely the reduction caused by the second-order correction in the transverse spin-correlation function, making the spherically averaged correlation function very close to the value given by linear spin-wave theory. In the spin-stiffness constant, a partial cancellation is found between the ''paramagnetic'' and ''diamagnetic'' terms, leading to a small second-order correction
DEFF Research Database (Denmark)
Petersen, Christian Leth; Hansen, Ole Per
1996-01-01
We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The diagonal...... conductivity is derived from magnetocapacitance measurements. It increases with increasing frequency according to a power law at integer filling factors. The exponent of the power law depends on both temperature and filling factor. Ratios between Hall conductivities at different filling factors are obtained...... by inductive measurements of the circulating current. They are found to agree with quantization in multipla of e2/h at the integer filling factors. ©1996 American Institute of Physics....
International Nuclear Information System (INIS)
Kurzmann, A.; Beckel, A.; Lorke, A.; Geller, M.; Ludwig, A.; Wieck, A. D.
2015-01-01
We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scattering on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility
International Nuclear Information System (INIS)
Shirkov, D.V.
1989-08-01
A comprehensive discussion of several topics vital for the structure of a modern Quantum Field Theory are discussed, namely: physical content of the notion of a Quantum Field; meaning of infinite renormalization; renormalizability as quantizability; the influence of several principles of quantum nature (quantizability, gauge dynamics, supersymmetry) on quantum fields dynamics; main trends of QFT evolution; present status of QFT and its frontier role in physics. (author). 15 refs, 1 fig
DEFF Research Database (Denmark)
Yura, Harold; Hanson, Steen Grüner
2012-01-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the......Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set...... with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...
Directory of Open Access Journals (Sweden)
Jian-Jun Zhu
2008-10-01
Full Text Available The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction, with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground. Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more
Gao, Qiqian; Sun, Shihan; Li, Xuesong; Zhang, Xueyu; Duan, Lianfeng; Lü, Wei
2016-12-01
In present work, two-dimensional g-C 3 N 4 was used to modify TiO 2 nanorod array photoanodes for CdS quantum dot-sensitized solar cells (QDSSCs), and the improved cell performances were reported. Single crystal TiO 2 nanorods are prepared by hydrothermal method on transparent conductive glass and spin-coated with g-C 3 N 4 . CdS quantum dots were deposited on the g-C 3 N 4 modified TiO 2 photoanodes via successive ionic layer adsorption and reaction method. Compared with pure TiO 2 nanorod array photoanodes, the g-C 3 N 4 modified photoanodes showed an obvious improvement in cell performances, and a champion efficiency of 2.31 % with open circuit voltage of 0.66 V, short circuit current density of 7.13 mA/cm 2 , and fill factor (FF) of 0.49 was achieved, giving 23 % enhancement in cell efficiency. The improved performances were due to the matching conduction bands and valence bands of g-C 3 N 4 and TiO 2 , which greatly enhanced the separation and transfer of the photogenerated electrons and holes and effectively suppressed interfacial recombination. Present work provides a new direction for improving performance of QDSSCs.
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Energy Technology Data Exchange (ETDEWEB)
Campbell, Philip M., E-mail: philip.campbell@gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Tarasov, Alexey; Joiner, Corey A.; Vogel, Eric M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Ready, W. Jud [Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States)
2016-01-14
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.
Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.
2016-01-01
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.
Parametrization-dependence of nonlinear quantum field theories
International Nuclear Information System (INIS)
Tyutin, I.
1982-01-01
It is shown that in an arbitrary quantum field theory a change of variables (transition to a different parametrization) leads only to a change of the field variables in the renormalized action and in the generating functional for the vertex functions. As a consequence of this it is shown that the beta-functions in two-dimensional chiral theories do not depend on the choice of parametrization. A remark on the uniqueness of the renormalized action concludes the paper
Near-field optical spectroscopy of semiconductor quantum wires
Gershoni, D.; Harris, T. D.; Pfeiffer, L. N.
1997-09-01
We discuss low temperature near-field scanning optical spectroscopical studies of single, nanometer dimension, cleaved edge overgrown quantum wires. We use the enhanced spatial resolution of near-field microscopy, to spectroscopically investigate these single wires, which are inaccessible to conventional far-field optical spectroscopy. We thus performed a direct experimental comparison between a two-dimensional quantum system and a single genuine one-dimensional quantum system. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of three enhancement in the optical absorption of a wire, in comparison with that of a similar well, is concluded from the photoluminescence excitation data.
Brugère, Jean-François; Cornillot, Emmanuel; Méténier, Guy; Vivarès, Christian P.
2000-01-01
International audience; A simple method for complete genome radiolabelling is described, involving long-wave UV exposure of agarose-embedded chromosomal DNA and [α-32 P]dCTP incorporation mediated by the Klenow fragment. Experiments on the budding yeast genome show that the labelling procedure can be coupled with two new two-dimensional pulsed field gel electrophoresis (2D-PFGE) protocols of genome analysis: (i) the KARD (karyotype and restriction display)-PFGE which provides a complete view ...
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2012-01-01
Very strongly interacting high-purity two-dimensional (2D) electron systems at temperatures T→0 demonstrate certain nonactivated insulating behaviors that are absent in more disordered systems. By measuring in dark the T dependence of the conductivity of ultrahigh-quality 2D holes with charge densities down to 7×108 cm-2, an approximate power-law behavior is identified. Moreover, the exponent exhibits a linearly decreasing density dependence which suggests an interaction-driven nature. Such an electron state is fragile to even a slight increase of disorder, which causes a crossover from nonactivated to activated conduction. The nonactivated conduction may well be a universal interaction-driven signature of an electron state of strongly correlated (semiquantum) liquid.
International Nuclear Information System (INIS)
Ovsiyu, E.M.
2012-01-01
Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)
Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru
2013-08-02
Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.
Quantum Ising chains with boundary fields
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea
2015-01-01
We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)
Energy Technology Data Exchange (ETDEWEB)
Harrison, N. [Katholieke Univ. Leuven, Heverlee (Belgium). Lab. voor Vaste-Stoffysica en Magnetisme; Caulfield, J. [Oxford Univ. (United Kingdom). Clarendon Lab.; Singleton, J. [Oxford Univ. (United Kingdom). Clarendon Lab.; Reinders, P.H.P. [Katholieke Univ. Leuven, Heverlee (Belgium). Lab. voor Vaste-Stoffysica en Magnetisme; Deckers, I. [Katholieke Univ. Leuven, Heverlee (Belgium). Lab. voor Vaste-Stoffysica en Magnetisme; Herlach, F. [Katholieke Univ. Leuven, Heverlee (Belgium). Lab. voor Vaste-Stoffysica en Magnetisme; Hayes, W. [Oxford Univ. (United Kingdom). Clarendon Lab.; Kurmoo, M. [Oxford Univ. (United Kingdom). Clarendon Lab.]|[Royal Institution of Great Britain, London (United Kingdom); Day, P. [Katholieke Univ. Leuven, Heverlee (Belgium). Lab. voor Vaste-Stoffysica en Magnetisme
1997-02-28
With the aid of numerical modelling and recent pulsed magnetic field experiments, we discuss the applicability of the established magnetic breakdown and quantum interference theories to {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}. We pay particular attention to the possible origin(s) of the `{beta}-{alpha}` frequency, which is forbidden in the classical breakdown picture. (orig.)
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Two dimensional plasma simulation code
International Nuclear Information System (INIS)
Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.
1977-03-01
An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run
Edwards, Mark; Krygier, Michael; Seddiqi, Hadayat; Benton, Brandon; Clark, Charles W
2012-11-01
We present a method for approximating the solution of the three-dimensional, time-dependent Gross-Pitaevskii equation (GPE) for Bose-Einstein-condensate systems where the confinement in one dimension is much tighter than in the other two. This method employs a hybrid Lagrangian variational technique whose trial wave function is the product of a completely unspecified function of the coordinates in the plane of weak confinement and a Gaussian in the strongly confined direction having a time-dependent width and quadratic phase. The hybrid Lagrangian variational method produces equations of motion that consist of (1) a two-dimensional (2D) effective GPE whose nonlinear coefficient contains the width of the Gaussian and (2) an equation of motion for the width that depends on the integral of the fourth power of the solution of the 2D effective GPE. We apply this method to the dynamics of Bose-Einstein condensates confined in ring-shaped potentials and compare the approximate solution to the numerical solution of the full 3D GPE.
Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro
2012-05-01
A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography
Tarasov, Yu. V.
2005-03-01
The effect of an in-plane magnetic field upon open quasi-two-dimensional electron and hole systems is investigated in terms of the carrier ground-state spectrum. The magnetic field, classified as weak from the viewpoint of correlation between size parameters of classical electron motion and the gate potential spatial profile is shown to efficiently cutoff extended modes from the spectrum and to change singularly the mode density of states (MDOS). The reduction in the number of current-carrying modes, right up to zero in magnetic fields of moderate strength, can be viewed as the cause of magnetic-field-driven metal-to-insulator transition widely observed in two-dimensional systems. Both the mode number reduction and the MDOS singularity appear to be most pronounced in the mode states dephasing associated with their scattering by quenched-disorder potential. This sort of dephasing is proven to dominate the dephasing which involves solely the magnetic field whatever level of the disorder.
International Nuclear Information System (INIS)
Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro
2012-01-01
A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Quantum principles in field interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1986-01-01
The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Dirac, Jordan and quantum fields
International Nuclear Information System (INIS)
Darrigol, O.
1985-01-01
The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr
Integrable two dimensional supersystems
International Nuclear Information System (INIS)
Tripathy, K.C.; Tripathy, L.K.
1988-08-01
The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs
International Nuclear Information System (INIS)
Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi
2009-01-01
The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Czech Academy of Sciences Publication Activity Database
Smrčka, Ludvík
2016-01-01
Roč. 77, Mar (2016), s. 108-113 ISSN 1386-9477 Institutional support: RVO:68378271 Keywords : lateral superlattices * commensurability oscillations * in-plane magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 2.221, year: 2016
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
International Nuclear Information System (INIS)
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang
2013-01-01
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schrödinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.
Laser-sub-cycle two-dimensional electron-momentum mapping using orthogonal two-color fields
Zhang, Li; Xie, Xinhua; Roither, Stefan; Kartashov, Daniil; Wang, YanLan; Wang, ChuanLiang; Schöffler, Markus; Shafir, Dror; Corkum, Paul B.; Baltuška, Andrius; Ivanov, Igor; Kheifets, Anatoli; Liu, XiaoJun; Staudte, André; Kitzler, Markus
2014-12-01
We study laser-sub-cycle control over electron trajectories concomitantly in space and time using orthogonally polarized two-color laser fields. We compare experimental photoelectron spectra of neon recorded by coincidence momentum imaging with photoelectron spectra obtained by semiclassical and numerical solutions of the time-dependent Schrödinger equation. We find that a resolution of a quarter optical cycle in the photoelectron trajectories can be achieved. It is shown that depending on their sub-cycle birth time the trajectories of photoelectrons are affected differently by the ion's Coulomb field.
International Nuclear Information System (INIS)
Witalis, E.A.
1965-12-01
Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field
吉田, 欣二郎; 松田, 茂雄; 松本, 洋和
2000-01-01
High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...
International Nuclear Information System (INIS)
Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang
2015-01-01
Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler
Emergence of spin–orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide
Hupfauer, T.; Matos-Abiague, A.; Gmitra, M.; Schiller, F.; Loher, J.; Bougeard, D.; Back, C. H.; Fabian, J.; Weiss, D.
2015-01-01
The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces—the reduced structural symmetry creates emergent spin–orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin–orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin–orbit fields. PMID:26051594
Hupfauer, T; Matos-Abiague, A; Gmitra, M; Schiller, F; Loher, J; Bougeard, D; Back, C H; Fabian, J; Weiss, D
2015-06-08
The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces--the reduced structural symmetry creates emergent spin-orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin-orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin-orbit fields.
Embedding classical fields in quantum field theories
International Nuclear Information System (INIS)
Blaha, S.
1978-01-01
We describe a procedure for quantizing a classical field theory which is the field-theoretica analog of Sudarshan's method for embedding a classical-mechanical system in a quantum-mechanical system. The essence of the difference between our quantization procedure and Fock-space quantization lies in the choice of vacuum states. The key to our choice of vacuum is the procedure we outline for constructing Lagrangians which have gradient terms linear in the field varialbes from classical Lagrangians which have gradient terms which are quadratic in field variables. We apply this procedure to model electrodynamic field theories, Yang-Mills theories, and a vierbein model of gravity. In the case of electrodynamics models we find a formalism with a close similarity to the coherent-soft-photon-state formalism of QED. In addition, photons propagate to t = + infinity via retarded propagators. We also show how to construct a quantum field for action-at-a-distance electrodynamics. In the Yang-Mills case we show that a previously suggested model for quark confinement necessarily has gluons with principle-value propagation which allows the model to be unitary despite the presence of higher-order-derivative field equations. In the vierbein-gravity model we show that our quantization procedure allows us to treat the classical and quantum parts of the metric field in a unified manner. We find a new perturbation scheme for quantum gravity as a result
On a phase structure of a two-dimensional (Φ-vector2)2 field theory
International Nuclear Information System (INIS)
Efimov, G.V.
1989-01-01
Two models of scalar fields with the interaction Lagrangians gΦ 4 and g(Σ Φ 1 2 ) 2 are considered in R 2 . There are phase transitions in these models for a certain g=g c . It is shown that the spontaneous symmetry breaking takes place for g>g c . The descritpion of two phases for g c and g>g c is given. The effective coupling constants in perturbation series are less than unity for both the phases so that these models describe the systems with weak coupling. In the second model the Goldstone particles have nonzero masses in the phase g>g c . 7 refs.; 5 figs
Protected gates for topological quantum field theories
Beverland, Michael E.; Buerschaper, Oliver; Koenig, Robert; Pastawski, Fernando; Preskill, John; Sijher, Sumit
2016-02-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Protected gates for topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Buerschaper, Oliver [Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin (Germany); Koenig, Robert [Institute for Advanced Study and Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Sijher, Sumit [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2016-02-15
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
Ertaş, Mehmet
2015-09-01
Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.
Tarasov, Yu. V.
2006-01-01
The conductance of an open quench-disordered two-dimensional (2D) electron system subject to an in-plane magnetic field is calculated within the framework of conventional Fermi liquid theory actually applied to a three-dimensional system of spinless electrons confined to a highly anisotropic (planar) near-surface potential well. Using the calculation method suggested earlier [Phys. Rev. B 71, 125112 (2005)], the magnetic field piercing a finite range of an infinitely long laterally confined system of carriers is treated (technically) as introducing the additional highly nonlocal scattering region which separates the circuit thereby modeled into three parts—the system as such and two perfect leads. The transverse quantization spectrum of the inner part of the electron waveguide thus constructed can be effectively tuned by means of the magnetic field, even though the least transverse dimension of the waveguide is small compared to the magnetic length. The initially finite (metallic) value of the conductance, which is attributed to the existence of extended modes of the transverse quantization, decreases rapidly as the magnetic field grows. This decrease is due to the mode number reduction effect produced by the magnetic field. The closing of the last current-carrying mode, which is slightly sensitive to the disorder level, is suggested as the conceivable origin of the magnetic-field-driven metal-to-insulator transition widely observed in 2D systems.
International Nuclear Information System (INIS)
Tidwell, V.C.; Glass, R.J.
1992-01-01
Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project
Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen
2016-03-29
The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of -2 V and drain bias of -15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm(2)/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG.
Tanaka, Yuto; Obara, Go; Zenidaka, Akira; Nedyalkov, Nikolay N; Terakawa, Mitsuhiro; Obara, Minoru
2010-12-20
We describe theoretical and experimental results on near-field interaction of two-dimensionally (2D) arrayed, high-permittivity spherical particles on a substrate in the Mie resonance scattering domain for surface nano-patterning processing. When a touching particle pair of Mie resonance particles on the substrate is considered, an electromagnetic mode different from the single particle mode is excited inside the particles, resulting in an intensity enhancement in a gap between two hotspots at particle-substrate contact points. As for 2D hexagonal close-packed particle arrays on the substrate, the refractive index of particle exhibiting a maximal enhancement factor for the 2D particle arrays is found to be shifted from the Mie resonance conditions for the single particle system.
Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo
2009-10-01
The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.
Xu, Hui Fang; Gui Guan, Bang
2017-05-01
A two-dimensional analytical model for hetero-junction double-gate tunnel FETs (DG TFETs) with a stacked gate-oxide structure is proposed in this paper. The effects of both the channel mobile charges and source/drain depletion regions on the channel potential profile are considered for the higher accuracy of the proposed model. Poisson’s equation is solved using the superposition principle and Fourier series solution to model the channel potential. The band-to-band tunneling generation rate is expressed as a function of the channel electric field derived from the channel potential and then integrated analytically to derive the drain current of the hetero-junction DG TFETs with a stacked gate-oxide structure using the shortest tunneling path. The effects of device parameters on the channel potential, drain current, and transconductance are investigated. Very good agreements are observed between the model calculations and the simulated results.
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Observer dependence of quantum states in relativistic quantum field theories
International Nuclear Information System (INIS)
Malin, S.
1982-01-01
Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems
International Nuclear Information System (INIS)
Fan, Yu; Zou, Ying; Sun, Jizhong; Wang, Dezhen; Stirner, Thomas
2013-01-01
The influence of an applied magnetic field on plasma-related devices has a wide range of applications. Its effects on a plasma have been studied for years; however, there are still many issues that are not understood well. This paper reports a detailed kinetic study with the two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo collision method on the role of E×B drift in a capacitive argon discharge, similar to the experiment of You et al.[Thin Solid Films 519, 6981 (2011)]. The parameters chosen in the present study for the external magnetic field are in a range common to many applications. Two basic configurations of the magnetic field are analyzed in detail: the magnetic field direction parallel to the electrode with or without a gradient. With an extensive parametric study, we give detailed influences of the drift on the collective behaviors of the plasma along a two-dimensional domain, which cannot be represented by a 1 spatial and 3 velocity dimensions model. By analyzing the results of the simulations, the occurring collisionless heating mechanism is explained well
String-localized quantum fields
International Nuclear Information System (INIS)
Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de
2009-01-01
Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Directory of Open Access Journals (Sweden)
Fujita Shigetaka
2016-01-01
Full Text Available The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194 operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Electric fields and quantum wormholes
Engelhardt, D.; Freivogel, B.; Iqbal, N.
2015-01-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a
Parvini, Maryam; Parivar, Kazem; Safari, Fatemeh; Tondar, Mahdi
2015-03-01
Despite the enormous progress in studying retinal cell differentiation from human embryonic stem cells (hESCs), none of the reported protocols have produced a cost-effective eye field cells with the capability to further differentiate into retinal derivatives. In this study, by drawing chemicals on our four-step differentiation strategy, we demonstrated the ability of hESCs in assembling such qualifications to follow human retinogenesis in a serum- and feeder-free adherent condition. Two-dimensional (2D) populations of eye field cells arose within early forebrain progeny upon hESCs differentiation. Gene expression analysis showed that the treatment of hESCs with a combination of selected small molecules (SMs) gave rise to the higher expressions of eye field-specific genes, PAX6, RX, and SIX3. Thereafter, a subset of cells gained the transient features of advancing retinal differentiation, including optic vesicle (OV)-like structures, which expressed MITF and CHX10 in a manner imitated in vivo human retinal development. The competency of derived cells in differentiation to retinal derivatives was further investigated. The gene analysis of the cells showed more propensity for generating retinal pigment epithelial (RPE) than neural retina (NR). The generation of OV-like structures in 2D cultures can shed light on molecular events governing retinal specification. It can also facilitate the study of human retinal development.
International Nuclear Information System (INIS)
Park, Chan Wook; Lee, Sung Su
2008-01-01
Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
International Nuclear Information System (INIS)
Zhang Degang
2006-01-01
We study a two-dimensional electron system in the presence of both Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field. Defining two suitable boson operators and using the unitary transformations we are able to obtain the exact Landau levels in the range of all the parameters. When the strengths of the Rashba and Dresselhaus spin-orbit interactions are equal, a new analytical solution for the vanishing Zeeman energy is found, where the orbital and spin wavefunctions of the electron are separated. It is also shown that in this case the Zeeman and spin-orbit splittings are independent of the Landau level index n. Due to the Zeeman energy, new crossing between the eigenstates vertical bar n, k, s = 1, σ) and vertical bar n + 1, k, s' = -1, σ') is produced at a certain magnetic field for larger Rashba spin-orbit coupling. This degeneracy leads to a resonant spin Hall conductance if it happens at the Fermi level. (letter to the editor)
Directory of Open Access Journals (Sweden)
Dongjia Cao
2017-12-01
Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.
Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan
2012-08-01
In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo
2009-05-21
The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.
International Nuclear Information System (INIS)
Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong
2017-01-01
Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)
Raichev, O. E.
2018-04-01
It is shown that the classical commensurability phenomena in weakly modulated two-dimensional electron systems is a manifestation of the intrinsic properties of the correlation functions describing a homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in such systems.
Vacuum polarization in two-dimensional static spacetimes and dimensional reduction
Balbinot, Roberto; Fabbri, Alessandro; Nicolini, Piero; Sutton, Patrick J.
2002-07-01
We obtain an analytic approximation for the effective action of a quantum scalar field in a general static two-dimensional spacetime. We apply this to the dilaton gravity model resulting from the spherical reduction of a massive, non-minimally coupled scalar field in the four-dimensional Schwarzschild geometry. Careful analysis near the event horizon shows the resulting two-dimensional system to be regular in the Hartle-Hawking state for general values of the field mass, coupling, and angular momentum, while at spatial infinity it reduces to a thermal gas at the black-hole temperature.
Quantum wormhole with spinor field
International Nuclear Information System (INIS)
Wang Wenfu; Tao Caide
1994-01-01
Using the Hawking-Page boundary condition, we discuss the quantum wormhole with spinor field. The corresponding Wheeler-De Witt equation is derived, and the wave function of the wormhole calculated. After analysing the wormhole's wave function, the authors found that the probability density of the wormhole appearing at a = 0 is zero, and the minimal radius of the wormhole is on the Planck scale
Quantum fields on the computer
1992-01-01
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.
Energy Technology Data Exchange (ETDEWEB)
Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr [Departamento de Matemática, Universidad de Costa Rica. S.O (Costa Rica); Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu [Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681-5000 (United States)
2015-07-15
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2017-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Quantum mechanics of Proca fields
International Nuclear Information System (INIS)
Zamani, Farhad; Mostafazadeh, Ali
2009-01-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
Paul, Jagannath
Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly
Mathematical aspects of field quantization. Quantum electrodynamics
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1983-01-01
Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
International Nuclear Information System (INIS)
Luescher, M.
1977-12-01
Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
International Nuclear Information System (INIS)
Brard, D.
1982-11-01
In the aim of studying the climatic variations related to the reversal of the geomagnetic field, an analysis has been made of the effects of precipitations of galactic and solar protons, on oxide of nitrogen (NOsub(x) and NO) and ozone. Modifications are introduced into the one- and two-dimensional models which take into account the structure of the magnetic field. In situ measurements after the solar event of August 1972 enable changes due to the solar cycles to be introduced and the use of a 2D model to be justified [fr
Analytic aspects of quantum fields
Bytsenko, A A; Elizalde, E; Moretti, V; Zerbini, S
2003-01-01
One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Pa
Regularization of quantum field theories
International Nuclear Information System (INIS)
Rayski, J.
1985-01-01
General idea of regularization and renormalization in quantum field theory is presented. It is postulated that it is possible not to go to infinity with the auxiliary masses of regularization but to attach to them a certain physical meaning, but it is equivalent with a violation of unitarity of the operator of evolution in time. It may be achieved in two different ways: it might be simply assumed that only the direction but not the length of the state vector possesses a physical meaning and that not all possible physical events are predictable. 3 refs., 1 fig. (author)
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
From classical to quantum fields
Baulieu, Laurent; Sénéor, Roland
2017-01-01
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...
Unstable Systems and Quantum Zeno Phenomena in Quantum Field Theory
Facchi, P.; Pascazio, S.
2003-02-01
We analyze the Zeno phenomenon in quantum field theory. The decay of an unstable system can be modified by changing the time interval between successive measurements (or by varying the coupling to an external system that plays the role of measuring apparatus). We speak of quantum Zeno effect if the decay is slowed and of inverse quantum Zeno (or Heraclitus) effect if it is accelerated. The analysis of the transition between these two regimes requires close scrutiny of the features of the interaction Hamiltonian. We look in detail at quantum field theoretical models of the Lee type.
Two-dimensional atom localization induced by a squeezed vacuum
Wang, Fei; Xu, Jun
2016-10-01
A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).
International Nuclear Information System (INIS)
Manousakis, E.; Salvador, R.
1989-01-01
We study the spin-1/2 quantum ferromagnetic and antiferromagnetic Heisenberg model using Handscomb's Monte Carlo (MC) method on square lattices of various sizes. As the temperature is lowered the calculated correlation length in the antiferromagnetic case grows more rapidly than in the ferromagnetic case. We also obtain the correlation length in the leading order of the high-temperature series expansion which, at high temperatures, agrees very well with the MC results. The correlation length obtained from the MC calculation for the ferromagnetic and antiferromagnetic case is compared with existing theories. Taking the average value for the antiferromagnetic coupling between the values suggested by neutron- and Raman-scattering experiments done on La 2 CuO 4 , we compare our results for the correlation length with those observed by the neutron-scattering experiments. We find that our results for the correlation lengths away from the three-dimensional (3D) Neel temperature T/sub N/∼200 K are consistent with the experimental findings. In order to obtain agreement close to the Neel temperature, however, we need to introduce an interlayer coupling between the CuO 2 planes. The effect on a 3D coupling is only discussed in the framework of the quantum mechanical nonlinear σ model in three space dimensions. For the case of La 2 CuO 4 we find that close to T/sub N/ the σ model in 3+1 dimensions reduces to the classical 3D Heisenberg model whose critical properties are known and fit the neutron-scattering data for T∼T/sub N/
International Nuclear Information System (INIS)
Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander
2016-01-01
Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Quantum fields and processes a combinatorial approach
Gough, John
2018-01-01
Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists,...
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Relativistic quantum mechanics of leptons and fields
International Nuclear Information System (INIS)
Grandy, W.T. Jr.
1991-01-01
This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory
International Nuclear Information System (INIS)
Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua
2014-01-01
In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P
2015-06-11
Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.
Relativistic quantum mechanics and field theory
Gross, Franz
1999-01-01
An accessible, comprehensive reference to modern quantum mechanics and field theory.In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field.
Attenberger, Ulrike I; Rathmann, Nils; Sertdemir, Metin; Riffel, Philipp; Weidner, Anja; Kannengiesser, Stefan; Morelli, John N; Schoenberg, Stefan O; Hausmann, Daniel
2016-06-01
Spatially-tailored (RF) excitation pulses in echo-planar imaging (EPI), combined with a decreased FOV in the phase-encoding direction, enable a reduction of k-space acquisition lines, which shortens the echo train length (ETL) and reduces susceptibility artifacts. The purpose of this study was to evaluate the image quality of a zoomed EPI (z-EPI) sequence in diffusion-weighted imaging (DWI) of the prostate in comparison to a conventional single-shot EPI using single-channel (c-EPI1) and multi-channel (c-EPI2) RF excitation, with and without use of an endorectal coil. 33 consecutive patients (mean age: 61 +/- 9 years; mean PSA: 8.67±6.23 ng/ml) with examinations between 10/2012 and 02/2014 were analyzed in this retrospective study. In 26 of 33 patients the initial multiparametric (mp)-MRI was performed on a whole-body 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) using an endorectal coil (c (conventional)-EPI1). Zoomed-EPI (Z-EPI) examinations of these patients and a complete mp-MRI protocol including c-EPI2 of 7 additional patients were carried out on another 3T wb MR scanner with two-channel dynamic parallel transmit capability (Magnetom Skyra with TimTX TrueShape, Siemens). For z-EPI, the one-dimensional spatially selective RF excitation pulse was replaced by a two-dimensional RF pulse. Degree of image blur and susceptibility artifacts (0=not present to 3= non-diagnostic), maximum image distortion (mm), apparent diffusion coefficient (ADC) values, as well as overall scan preference were evaluated. SNR maps were generated to compare c-EPI2 and z-EPI. Overall image quality of z-EPI was preferred by both readers in all examinations with a single exception. Susceptibility artifacts were rated significantly lower on z-EPI compared to both other methods (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01) as well as image blur (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01). Image distortion was not statistically significantly reduced with z-EPI (z-EPI vs c
Patil, Prasanna Dnyaneshwar
Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from
Dark Matter, Elko Fields and Weinberg's Quantum Field Theory Formalism
Gillard, Adam; Martin, Benjamin
2012-02-01
The Elko quantum field was introduced by Ahluwalia and Grumiller, who proposed it as a candidate for dark matter. We study the Elko field in Wemberg's formalism for quantum field theory. We prove that if one takes the symmetry group to be the full Pomcaré group then the Elko field is not a quantum field in the sense of Weinberg. This confirms results of Ahluwalia, Lee and Schritt, who showed using a different approach that the Elko field does not transform covariantly under rotations and hence has a preferred axis.
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Magnetoelectronic transport of the two-dimensional electron gas in ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 72; Issue 2 ... CdSe quantum wells; 2D electron gas; magneto-electronic transport. Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are ...
Functional representations for quantized fields
International Nuclear Information System (INIS)
Jackiw, R.
1988-01-01
This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Classical field approach to quantum weak measurements.
Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco
2014-03-21
By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.
A new way of visualising quantum fields
Linde, Helmut
2018-05-01
Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.
[Studies in quantum field theory]: Progress report
International Nuclear Information System (INIS)
Polmar, S.K.
1988-01-01
The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations
Circuit complexity in quantum field theory
Jefferson, Robert A.; Myers, Robert C.
2017-10-01
Motivated by recent studies of holographic complexity, we examine the question of circuit complexity in quantum field theory. We provide a quantum circuit model for the preparation of Gaussian states, in particular the ground state, in a free scalar field theory for general dimensions. Applying the geometric approach of Nielsen to this quantum circuit model, the complexity of the state becomes the length of the shortest geodesic in the space of circuits. We compare the complexity of the ground state of the free scalar field to the analogous results from holographic complexity, and find some surprising similarities.
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
An introduction to relativistic quantum field theory
Schweber, Silvan S
1961-01-01
Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.
Moessbauer neutrinos in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.
Two dimensional image correlation processor
Yao, Shi-Kai
1992-06-01
Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Wedge-local quantum fields and interaction
International Nuclear Information System (INIS)
Lechner, G.
2007-01-01
In the construction of relativistic quantum field theories, field operators which are not point-localized, but rather localized in wedge-shaped regions of d-dimensional Minkowski space, are a novel tool. We present a family of concrete examples of such wedge-local quantum fields in 4-dimensional spacetime by making use of a correspondence between wedges and noncommutativity parameters. It is then discussed to which degree models formulated in terms of wedge-local fields comply with the principle of locality. One of our examples is closely related to the free field on non-commutative Minkowski space, which can also be understood as a wedge-local quantum field. (author)
Conformal quantum field theory: From Haag-Kastler nets to Wightman fields
International Nuclear Information System (INIS)
Joerss, M.
1996-07-01
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
An introduction to some mathematical aspects of scattering theory in models of quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1974-01-01
An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Optimizing separations in online comprehensive two-dimensional liquid chromatography
Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular
Quantum processes: A Whiteheadian interpretation of quantum field theory
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Exact integrability in quantum field theory and statistical systems
International Nuclear Information System (INIS)
Thacker, H.B.
1981-01-01
The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The nature of exact integrability as a physical phenomenon and various aspects of the mathematical formalism are explored by discussing several examples, including detailed treatments of the nonlinear Schroedinger (delta-function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schroedinger model, and the integral equation method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the classical inverse scattering method, the quantum inverse method for the nonlinear Schroedinger model is introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method, an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long (free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions) correspond to the quantized scattering data and have a special significance. One of them creates the Bethe eigenstates, while the other is the generating function for an infinite number of conservation laws. The analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links (arrows). The relationship between the quantum inverse method and the transfer matrix formalism is exhibited
Dual gauge field theory of quantum liquid crystals in two dimensions
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan
2017-04-01
We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Quantum field theory in topology changing spacetimes
International Nuclear Information System (INIS)
Bauer, W.
2007-03-01
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Kawecka-Magiera, B; Maksymowicz, A Z
2000-01-01
Small cluster approximation and Monte Carlo Metropolis algorithm are applied to demonstrate that field cooling induces a unidirectional magnetic anisotropy of small clusters of Cu in Rb sub 2 Cu sub 1 sub - sub x Co sub x F sub 4. Within the Ising model, this anisotropy appears as a net magnetization at zero magnetic field. The effect is due to a coupling between the orbital ordering within clusters of Cu impurities and the antiferromagnetic ordering of Co matrix.
Constructions of quantum fields with anyonic statistics
International Nuclear Information System (INIS)
Plaschke, M.
2015-01-01
From the principles of algebraic quantum field theory it follows that in low dimensions particles are not necessarily bosons or fermions, but their statistics can in general be governed by the braid group. Such particles are called anyons and their possible statistics is intimately related to their localization properties and their covariance with respect to rotations. This work is concerned with the explicit construction of quantum fields with anyonic statistics which are localized in various different regions on two- and three-dimensional Minkowski space, and we will analyze the connection between localization, statistics and spin. The reason why this is considerably more difficult than for bosons or fermions is the no-go theorem regarding free cone-localized anyons in d=2+1. This problem is approached in this work from different directions leaving out some of the underlying assumptions one makes in the abstract algebraic quantum field theory. Despite a similar no-go theorem for free local anyons, it is in two dimensions possible to construct compactly localized quantum field nets with anyonic commutation relations for every mass m ≥ 0 and every statistics parameter by using the theory of loop groups and implementable Bogoliubov transformations. This does not work in higher dimensions so in d=2+1 we will first construct polarization free generators, which are only wedge-local, using a recent work about multiplicative deformations of free quantum fields on the Fock space. By generalizing this procedure to the charged case it is possible to extend the set of admissible deformations and end up with fields satisfying anyonic commutation relations, which are covariant w.r.t a Poincaré group representation with arbitrary real-valued spin. Another approach, which further demonstrates the connection between localization, statistics and spin of quantum field nets, is to focus first only on the rotational degrees of freedom and construct field operators on the circle
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Sznajd, J.
2016-12-01
The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Magnetoelectronic transport of the two-dimensional electron gas in ...
Indian Academy of Sciences (India)
Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of. CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal ...
Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system
International Nuclear Information System (INIS)
Wang, Zhiping; Yu, Benli
2014-01-01
We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)
Partition function of the two-dimensional nearest neighbour Ising ...
Indian Academy of Sciences (India)
Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...
Mean Field Analysis of Quantum Annealing Correction.
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A
2016-06-03
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.
Sakhratov, Yu. A.; Kweon, J. J.; Choi, E. S.; Zhou, H. D.; Svistov, L. E.; Reyes, A. P.
2018-03-01
The magnetic phase diagram of CuCrO2 was studied with an alternative method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that, regardless of cooling history of the sample, the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. [Phys. Rev. B 94, 094410 (2016), 10.1103/PhysRevB.94.094410] that the high-field low-temperature phase is in fact a three-dimensional (3D) polar phase characterized by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D spiral to the 3D polar phase.
Cui, Peng; Lin, Zhaojun; Fu, Chen; Liu, Yan; Lv, Yuanjie
2017-10-01
Taking into consideration the resistance variation in the free-contact area versus the gate bias, an applicable method to determine the electron mobility in AlGaN/GaN heterostructure field-effect transistors was presented. Based on the measured capacitance-voltage and current-voltage curves, the new method employed iteration calculation with different scattering mechanisms. Compared to the electron mobility calculated by the traditional method, the electron mobility calculated by the new method shows an apparent difference, especially for the device with a larger gate length. This difference originates from the device with a larger gate length that has a stronger polarization Coulomb field scattering. At last, the correctness and necessity of this method was demonstrated by the comparison between the experimental and calculated transconductance values.
Kinetics of two-dimensional electron plasma, interacting with fluctuating potential
International Nuclear Information System (INIS)
Boiko, I.I.; Sirenko, Y.M.
1990-01-01
In this paper, from the first principles, after the fashion of Klimontovich, the authors derive quantum kinetic equation for electron gas, inhomogeneous in z-direction and homogeneous in XY-plane. Special attention is given to the systems with quasi-two-dimensional electron gas (2 DEG), which are widely explored now. Both interaction between the particles of 2 DEG (in general, of several sorts), and interaction with an external system (phonons, impurities, after change carries etc.) are considered. General theory is used to obtain energy and momentum balance equations and relaxation frequencies for 2 DEG in the basis of plane waves. The case of crossed electric and magnetic fields is also treated. As an illustration the problems of 2 DEG scattering on semibounded three-dimensional electron gas and on two-dimensional hole gas are considered; transverse conductivity of nondegenerate 2 DEG, scattered by impurities in ultraquantum magnetic field, is calculated
Classical Fields Derived from Quantum Sources.
Morris, Fred Gordon
The Clifford algebra C(,4) is shown to be a suitable formalism for classical and quantum physics, and enables classical electromagnetic and gravitational field equations to be derived from the quantum conservation laws for electric charge and energy-momentum. The resulting linear theory of gravitation is shown to make predictions in agreement with the results of the classic weak field tests of gravitation theories. The C(,4) formalism is a physically intuitive, unifying, and mathematically powerful formalism. It can be developed as a geometric algebra in which its elements and operations have direct geometrical interpretations. The Dirac algebra of 4 x 4 matrices is a matrix representation of C(,4). C(,4) also contains the Pauli algebra, the generators of the Lorentz group, tensors, and differential forms. Because of these features C(,4) is both unifying, effectively merging tensor formulations of classical physics with the Dirac and Pauli algebras of quantum physics, and mathematically powerful, as its simple rules allow a wide variety of mathematical operations and structures to be defined. The unified treatment of classical and quantum physics permits a straightforward discussion of the classical limit of quantum field equations and conservation laws. Electromagnetic and gravitational field equations are derived from the local conservation laws for electric charge and energy-momentum by using the Poincare lemma from differential forms theory. The electromagnetic field equations thereby obtained are the usual Maxwell equations. The gravitational field equations obtained have an analogous mathematical form to the Maxwell equations and describe a linear gravitational field. The resulting theory provides a relativistic treatment of the motion of particles in a central gravitational field. The theory makes predictions in agreement with the predictions of general relativity for the classic weak field tests so can be considered a valid theory in problems in which the
Negative power spectra in quantum field theory
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Wu, Chun-Hsien; Ford, L.H.
2011-01-01
We consider the spatial power spectra associated with fluctuations of quadratic operators in field theory, such as quantum stress tensor components. We show that the power spectrum can be negative, in contrast to most fluctuation phenomena where the Wiener-Khinchin theorem requires a positive power spectrum. We show why the usual argument for positivity fails in this case, and discuss the physical interpretation of negative power spectra. Possible applications to cosmology are discussed. -- Highlights: → Wiener-Khinchin theorem usually implies a positive power spectrum of fluctuations. → We show this is not always the case in quantum field theory. → Quantum stress tensor fluctuations can have a negative power spectrum. → Negative power interchanges correlations and anticorrelations.
Atomic focusing by quantum fields: Entanglement properties
Energy Technology Data Exchange (ETDEWEB)
Paz, I.G. da [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI (Brazil); Frazão, H.M. [Universidade Federal do Piauí, Campus Profa. Cinobelina Elvas, CEP 64900-000, Bom Jesus, PI (Brazil); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Peixoto de Faria, J.G. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675, Belo Horizonte, MG 30510-000 (Brazil)
2014-04-01
The coherent manipulation of the atomic matter waves is of great interest both in science and technology. In order to study how an atom optic device alters the coherence of an atomic beam, we consider the quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially quantum property present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic coherence and purity are affected by the entanglement. The dynamics of this process is obtained in closed form. We calculate the beam quality factor and the trace of the square of the reduced density matrix as a function of the average photon number in order to analyze the coherence and purity of the atomic beam during the focusing process.
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
Introductory lectures on quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Vasquez-Mozo, M.A.
2011-01-01
In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Gate-induced superconductivity in two-dimensional atomic crystals
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-09-01
Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1-2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.
International Nuclear Information System (INIS)
Ljung, G.; Haeggman, M.; Hansson, H.; Holmberg, L.; Nilsson, S.
1996-01-01
Adverse effects were assessed after definitive limited field, 2-dimensional CT-planned radiation treatment of localized prostatic adenocarcinoma. In 66 surviving patients, out of a total of 176 treated patients, personal interviews were performed and self-administered questionnaires distributed. The average follow-up was 6.6 years. Adverse effects with regard to bowel function and micturition were investigated, and graded 0-4 with increasing severity and impact on performance status, essentially according to the RTOG toxicity scoring system. Sexual functions were registered on visual analogue scales. The majority of adverse effects were considered minor (grade 1) and did not require any treatment. Late adverse effects on bowel and bladder or urethra that required treatment (grade 2-4) were reported in up to 8% (n=5) of cases respectively. Late bowel side-effects that interfered with life style (grade 3-4) occurred in up to 3% (n=2) of patients; the majority were rectal complications. Corresponding urinary side-effects were registered in up to 6% (n=4) of the patients. Major surgical interventions were not required. Sexual functions were substantially affected in 60% of cases not administered endocrine treatment. Multivariate analyses could not identify patient or treatment risk factors related to complications. (orig.)
Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M
2015-09-30
Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.
Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You
2017-12-01
The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.
Quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Gibbons, G.W.
1978-04-01
The purpose of this article is to outline what the extension of such a treatment to curved space entails and to discuss what essentially new features arise when one takes into account the quantum mechanical nature of gravitating systems. I shall throughout assume a classical, unquantized gravitational field and confine the discussion to matter fields although similar techniques and ideas may be applied to 'gravitons' - that is linearized perturbations of the metric propagating on some fixed, unperturbed, background. (orig./WL) [de
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
International Nuclear Information System (INIS)
Baumjohann, W.; Untiedt, J.; Greenwald, R.A.
1980-01-01
Two-dimensional distributions of ground magnetic and ionospheric electric fields in the evening sector auroral oval have been simultaneously observed by the Scandinavian Magnetometer Array and the Scandinavian Twin Auroral Radar Experiment (Stare) radars, respectively, on February 15, 1977. They were associated with varying, substorm-intensified, eastward electrojet current systems of the western, middle, and eastern segment of the eastward electrojet. We conclude that the substorm-intensified eastward electroject was a nearly pure Hall current driven by northward electric fields. The observed eastward increase of the current in the western segment of the electrojet was due to a gradual enhancement of the Hall conductivity. Here, the electrojet was fed by a broad sheet of net downward field-aligned current. During one period, the eastern-terminating part of the eastward electrojet diverged up the field lines in a rather local area because of a strong longitudinal decrease in the northward-directed electric field. On another occasion, it diverged northward within the ionosphere and joined the westward-flowing current because of a rotation of the northward electric field with increasing latitude through west- to southward. These two observed mechanisms of current divergence in the region where eastward and westward electrojects coexist may shed some new light on the controversy over the existence of upward field-aligned current flow in the Harang discontinuity
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Non standard analysis, polymer models, quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1984-01-01
We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)
Gallilei covariant quantum mechanics in electromagnetic fields
Directory of Open Access Journals (Sweden)
H. E. Wilhelm
1985-01-01
Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.
Majd, Samira Mansouri; Salimi, Abdollah; Ghasemi, Foad
2018-05-15
MicroRNAs (miRNAs), critical biomarkers of acute and chronic diseases, play key regulatory roles in many biological processes. As a result, robust assay platforms to enable an accurate and efficient detection of low-level miRNAs in complex biological samples are of great significance. In this work, a label-free and direct hybridization assay using molybdenum disulfide (MoS 2 ) field-effect transistor (FET) biosensor has been developed for ultrasensitive detection of miRNA-155 as a breast cancer biomarker in human serum and cell-line samples. MoS 2 , the novel 2D layered material with excellent physical and chemical properties, was prepared through sequential solvent exchange method and was used as an active channel material. MoS 2 was comprehensively characterized by spectroscopic and microscopic methods and it was applied for fabrication of FET device by drop-casting MoS 2 flacks suspension onto the FET surface. MoS 2 FET device showed a relatively low subthreshold swing of 48.10mV/decade and a high mobility of 1.98 × 10 3 cm 2 V -1 s -1 . Subsequently, probe miRNA-155 strands were immobilized on the surface of the MoS 2 FET device. Under optimized conditions detection limit of 0.03fM and concentration range 0.1fM to 10nM were achieved. The developed biosensor not only was capable to identification of fully matched versus one-base mismatch miRNA-155 sequence, but also it could detect target miRNA-155 in spiked real human serum and extracts from human breast cancer cell-line samples. This approach paves a way for label-free, early detection of miRNA as a biomarker in cancer diagnostics with very high sensitivity and good specificity, thus offering a significant potential for clinical application. Copyright © 2018 Elsevier B.V. All rights reserved.
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Integrable structures in quantum field theory
International Nuclear Information System (INIS)
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
Geophysical field disturbances and quantum mechanics
Kuznetsov, Vladimir
2017-10-01
Quantum processes impact into physics of geophysical field disturbances is discussed here in examples of phenomena such as an earthquake with processes preceding and accompanying it, volcanoes eruptions and diamond exploding pipes. Physics of shock waves generation in ionosphere and atmosphere, mechanism of atmosphere phenomena in supercooled clouds recorded by a stormglass is considered. The report treats of physics of ball and dark lightning, of generating in atmosphere the high-energy particles involved in sprites occurrence, and so on. Geophysical phenomena considered here have no clear and consistent interpretation in the context of classical physics. We attempt to involve the recent achievements of quantum physics namely the quantum entanglement between elementary particles implicated in considered phenomena.
Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.
Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro
2015-04-08
We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.
Light and electric field control of ferromagnetism in magnetic quantum structures.
Boukari, H; Kossacki, P; Bertolini, M; Ferrand, D; Cibert, J; Tatarenko, S; Wasiela, A; Gaj, J A; Dietl, T
2002-05-20
A strong influence of illumination and electric bias on the Curie temperature and saturation value of the magnetization is demonstrated for semiconductor structures containing a modulation-doped p-type Cd(0.96)Mn(0.04)Te quantum well placed in various built-in electric fields. It is shown that both light beam and bias voltage generate an isothermal and reversible crossover between the paramagnetic and ferromagnetic phases, in the way that is predetermined by the structure design. The observed behavior is in quantitative agreement with the expectations for systems, in which ferromagnetic interactions are mediated by the weakly disordered two-dimensional hole liquid.
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Energy Technology Data Exchange (ETDEWEB)
Lu, Anh Khoa Augustin [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Pourtois, Geoffrey [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Agarwal, Tarun [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Afzalian, Aryan [TSMC, Kapeldreef 75, B-3001 Leuven (Belgium); Radu, Iuliana P. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Houssa, Michel [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)
2016-01-25
The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.
International Nuclear Information System (INIS)
Lu, Anh Khoa Augustin; Pourtois, Geoffrey; Agarwal, Tarun; Afzalian, Aryan; Radu, Iuliana P.; Houssa, Michel
2016-01-01
The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Novel effects of strains in graphene and other two dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Amorim, B., E-mail: amorim.bac@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Department of Physics and Center of Physics, University of Minho, P-4710-057, Braga (Portugal); Cortijo, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Juan, F. de [Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Grushin, A.G. [Max-Planck-Institut fur Physik komplexer Systeme, 01187 Dresden (Germany); Guinea, F. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Gutiérrez-Rubio, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Ochoa, H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Parente, V. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Roldán, R.; San-Jose, P.; Schiefele, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Sturla, M. [IFLP-CONICET. Departamento de Física, Universidad Nacional de La Plata, (1900) La Plata (Argentina); Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)
2016-03-03
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin–orbit coupling, the formation of Moiré patterns and optics. There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the transition metal dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.
Quantum fields in curved space-times
International Nuclear Information System (INIS)
Ashtekar, A.; Magnon, A.
1975-01-01
The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)
Undergraduate Lecture Notes in Topological Quantum Field Theory
Ivancevic, Vladimir G.; Ivancevic, Tijana T.
2008-01-01
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Spectral methods in quantum field theory and quantum cosmology
Esposito, Giampiero; Fucci, Guglielmo; Kamenshchik, Alexander Yu; Kirsten, Klaus
2012-09-01
We review the application of the spectral zeta function to the one-loop properties of quantum field theories on manifolds with boundary, with emphasis on Euclidean quantum gravity and quantum cosmology. As was shown in the literature some time ago, the only boundary conditions that are completely invariant under infinitesimal diffeomorphisms on metric perturbations suffer from a drawback, i.e. lack of strong ellipticity of the resulting boundary-value problem. Nevertheless, at least on the Euclidean 4-ball background, it remains possible to evaluate the ζ(0) value, which describes in this case a universe which, in the limit of small 3-geometry, has vanishing probability of approaching the cosmological singularity. An assessment of this result is performed here, discussing its physical and mathematical implications. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Classical gravity and quantum matter fields in unified field theory
von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen
1996-01-01
The Einstein-Schrödinger purely affine field theory of the non-symmetric field provides canonical field equations without constraints. These equations imply the Heisenberg-Pauli commutation rules of quantum field theory. In the Schrödinger gauging of the Einstein field coordinatesU {/kl i }=Γ{/kl i }-δ{/l i }Γ{/km m }, this unified geometric field theory becomes a model of the coupling between a quantized Maxwellian field in a medium and classical gravity. Therefore, independently of the question as to the physical truth of this model, its analysis performed in the present paper demonstrates that, in the framework of a quantized unified field theory, gravity can appear as a genuinely classical field.
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Quantum tunneling of electron snake states in an inhomogeneous magnetic field.
Hoodbhoy, Pervez
2018-05-10
In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z = 0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.
Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy
Directory of Open Access Journals (Sweden)
Ehud Altman
2015-02-01
Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.
Fault-tolerance in Two-dimensional Topological Systems
Anderson, Jonas T.
This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Quantum field theory of photon—Dirac fermion interacting system in graphene monolayer
International Nuclear Information System (INIS)
Nguyen, Bich Ha; Nguyen, Van Hieu
2016-01-01
The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields. (paper)
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Modified black holes in two dimensional gravity
International Nuclear Information System (INIS)
Mohammedi, N.
1991-11-01
The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Raman scattering in a two-dimensional Fermi liquid with spin-orbit coupling
Maiti, Saurabh; Maslov, Dmitrii L.
2017-04-01
We present a microscopic theory of Raman scattering in a two-dimensional Fermi liquid (FL) with Rashba and Dresselhaus types of spin-orbit coupling and subject to an in-plane magnetic field (B ⃗). In the long-wavelength limit, the Raman spectrum probes the collective modes of such a FL: the chiral spin waves. The characteristic features of these modes are a linear-in-q term in the dispersion and the dependence of the mode frequency on the directions of both q ⃗ and B ⃗. All of these features have been observed in recent Raman experiments on Cd1 -xMnxTe quantum wells.
Beyond Quantum Fields: A Classical Fields Approach to QED
Directory of Open Access Journals (Sweden)
Chafin C.
2015-07-01
Full Text Available A classical field theory is introduced that is defined on a tower of dimensionally in- creasing spaces and is argued to be equivalent to QED. The domain of dependence is discussed to show how an equal times picture of the many coordinate space gives QED results as part of a well posed initial value formalism. Identical particle symmetries are not, a priori, required but when introduced are clearly propagated. This construc- tion uses only classical fields to provide some explanation for why quantum fields and canonical commutation results have been successful. Some old and essential questions regarding causality of propagators are resolved. The problem of resummation, gener- ally forbidden for conditionally convergent series, is dis cussed from the standpoint of particular truncations of the infinite tower of functions an d a two step adiabatic turn on for scattering. As a result of this approach it is shown that the photon inherits its quantization ~ ω from the free lagrangian of the Dirac electrons despite the fact that the free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for the canonical commutation relations for quantum operators , [ ˆ P , ˆ Q ] = i ~ , without ever needing to invoke such a quantum postulate. The form of the equal times conservation laws in this many particle field theory suggests a simplification of the radiation reaction process for fields that allows QED to arise from a sum of path integrals in the various particle time coordinates. A novel method of unifying this theory with gravity, but that has no obvious quantum field theoretic computational scheme , is introduced.
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
On space of integrable quantum field theories
Directory of Open Access Journals (Sweden)
F.A. Smirnov
2017-02-01
Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
Quantum Fields, Dark Matter and Non-Standard Wigner Classes
Gillard, A. B.; Martin, B. M. S.
2010-12-01
The Elko field of Ahluwalia and Grumiller is a quantum field for massive spin-1/2 particles. It has been suggested as a candidate for dark matter. We discuss our attempts to interpret the Elko field as a quantum field in the sense of Weinberg. Our work suggests that one should investigate quantum fields based on representations of the full Poincaré group which belong to one of the non-standard Wigner classes.
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Quantum electrodynamical corrections in critical fields
International Nuclear Information System (INIS)
Soff, G.
1990-09-01
We investigate field-theoretical corrections, such as vacuum polarization and self energy to study their influence on strongly bound electrons in heavy and superheavy atoms. In critical fields (Z≅170) for spontaneous e + e - pair creation the coupling constant of the external field Zα exceeds 1 thereby preventing the ordinary perturbative approach of quantum electrodynamical correction which employs an expansion in Zα. For heavy and superheavy elements radiative corrections have to be treated to all orders in Zα. The dominant effect is provided by the Uehling contribution being visualized by the first diagram on the right hand side. It is linear in the external field and thus of order α(Zα). (orig./HSI)
Quantum curves and conformal field theory
Manabe, Masahide; Sułkowski, Piotr
2017-06-01
To a given algebraic curve we assign an infinite family of quantum curves (Schrödinger equations), which are in one-to-one correspondence with, and have the structure of, Virasoro singular vectors. For a spectral curve of a matrix model we build such quantum curves out of an appropriate representation of the Virasoro algebra, encoded in the structure of the α /β -deformed matrix integral and its loop equation. We generalize this construction to a large class of algebraic curves by means of a refined topological recursion. We also specialize this construction to various specific matrix models with polynomial and logarithmic potentials, and among other results, show that various ingredients familiar in the study of conformal field theory (Ward identities, correlation functions and a representation of Virasoro operators acting thereon, Belavin-Polyakov-Zamolodchikov equations) arise upon specialization of our formalism to the multi-Penner matrix model.
Non equilibrium quantum fields in cosmology
International Nuclear Information System (INIS)
Paz, J.P.
1991-01-01
The authors discuss the general framework used to construct a quantum mechanical model of the inflationary phase transition. The emer-gence of classical behavior in the longwavelength modes of the inflation is one of the facts that these models should address. For some toy examples (in which the inflation interacts with an environment consti-tuted by other fields) decoherence is shown of the modes with physical wavelength greater than the horizon. The authors use an approach based on a master equation. They take advantage of the similarities that exist between the master equation for the toy cosmological models and the one for the simple Quantum Brownian Motion. Recent results are discussed obtained for the general QBM problem (in which the environment has a generic spectral density). (author). 10 refs
Basu, A.; Middya, T. R.; Bhattacharya, D. P.
2017-09-01
The field-effect mobility characteristics of a non-degenerate ensemble of a two dimensional electron gas for interaction with acoustic mode lattice vibrations in the Si-SiO2 MOS structure at the high surface electric fields are calculated here for the low and high temperature cases. The calculation takes due account of some features which are usually neglected. These include the effects of (i) the transverse component of the phonon wave vector, (ii) the realistic model of the infinite triangular potential well along the transverse direction, while applying the momentum conservation approximation, and (iii) the full form of the phonon distribution function at low temperatures. The results seem to be interesting in that they are significantly different from what follows from other theories that neglect the effects of the above features. Moreover, the agreement between the results which are obtained here with the experimental data seems to be significantly better. The scope for further refinement of the present theory has been discussed.
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio
2018-02-01
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
A relativistic theory for continuous measurement of quantum fields
International Nuclear Information System (INIS)
Diosi, L.
1990-04-01
A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs
A general field-covariant formulation of quantum field theory
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)
2002-07-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Torres del Castillo, G.F.; Tepper G, T.
2002-01-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Boundaries immersed in a scalar quantum field
International Nuclear Information System (INIS)
Actor, A.A.; Bender, I.
1996-01-01
We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)
On the construction of quantum field theories with factorizing S-matrices
Energy Technology Data Exchange (ETDEWEB)
Lechner, G.
2006-05-24
The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. Employing the algebraic framework of quantum field theory, it is shown under which conditions an algebra of observables localized in a wedge-shaped region of spacetime can be used to construct model theories. A crucial input in this context is the modular nuclearity condition for wedge algebras, which implies the existence of local observables. As an application of the new method, a rigorous construction of a large family of models with factorizing S-matrices is obtained. In an inverse scattering approach, a given factorizing scattering operator is used to define certain semi-localized Wightman fields associated to it. With the help of these fields, a wedge algebra can be defined, which determines the local observable content of a well-defined quantum field theory. In this approach, the modular nuclearity condition translates to certain analyticity and boundedness conditions on the formfactors of wedge-local observables. These conditions are shown to hold for a large class of underlying S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples. The so constructed models are investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the underlying S-matrices, and a proof of asymptotic completeness for these models is given. (orig.)
Bilinear covariants and spinor fields duality in quantum Clifford algebras
Energy Technology Data Exchange (ETDEWEB)
Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)
2014-10-15
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.
Relativistic quantum information in detectors–field interactions
International Nuclear Information System (INIS)
Hu, B L; Lin, Shih-Yuin; Louko, Jorma
2012-01-01
We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)
International Nuclear Information System (INIS)
Luescher, M.
1975-11-01
Let phi 1 (x) and phi 2 (y) be two local fields in a conformal quantum field theory (CQFT) in two-dimensional spacetime. It is then shown that the vector-valued distribution phi 1 (x) phi 2 (y) /0 > is a boundary value of a vector-valued holomorphic function which is defined on a large conformally invariant domain. By group theoretical arguments alone it is proved that phi 1 (x) phi 2 (y) /0 > can be expanded into conformal partial waves. These have all the properties of a global version of Wilson's operator product expansions when applied to the vacuum state /0 >. Finally, the corresponding calculations are carried out more explicitly in the Thirring model. Here, a complete set of local conformally covariant fields is found, which is closed under vacuum expansion of any two of its elements (a vacuum expansion is an operator product expansion applied to the vacuum). (orig.) [de
Linking topological quantum field theory and nonperturbative quantum gravity
Smolin, Lee
1995-11-01
Quantum gravity is studied nonperturbatively in the case in which space has a boundary with finite area. A natural set of boundary conditions is studied in the Euclidean signature theory in which the pullback of the curvature to the boundary is self-dual (with a cosmological constant). A Hilbert space which describes all the information accessible by measuring the metric and connection induced in the boundary is constructed and is found to be the direct sum of the state spaces of all SU(2) Chern-Simon theories defined by all choices of punctures and representations on the spatial boundary S. The integer level k of Chern-Simons theory is found to be given by k=6π/G2Λ+α, where Λ is the cosmological constant and α is a CP breaking phase. Using these results, expectation values of observables which are functions of fields on the boundary may be evaluated in closed form. Given these results, it is natural to make the conjecture that the quantum states of the system are completely determined by measurements made on the boundary. One consequence of this is the Bekenstein bound, which says that once the two metric of the boundary has been measured, the subspace of the physical state space that describes the further information that may be obtained about the interior has finite dimension equal to the exponent of the area of the boundary, in Planck units, times a fixed constant. Finally, these results confirm both the categorical-theoretic ``ladder of dimensions'' picture of Crane and the holographic hypothesis of Susskind and 't Hooft.
An invitation to quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A.
2012-01-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
An invitation to quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Gaume, Luis [CERN, Geneva (Switzerland). Physics Dept.; Vazquez-Mozo, Miguel A. [Salamanca Univ. (Spain). Dept. de Fisica Fundamental
2012-07-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
Quantum field theory lectures of Sidney Coleman
Derbes, David; Griffiths, David; Hill, Brian; Sohn, Richard; Ting, Yuan-Sen
2018-01-01
Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the ancient Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
International Nuclear Information System (INIS)
Frohlich, J.
1976-01-01
We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models
Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John
1991-01-01
We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.