WorldWideScience

Sample records for two-dimensional quantum field

  1. Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory

    International Nuclear Information System (INIS)

    Ito, K.R.

    1976-01-01

    We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)

  2. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  3. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  4. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  5. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    International Nuclear Information System (INIS)

    Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks

  6. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Morales, A.L. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-11-15

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks.

  7. Extensions of conformal symmetry in two-dimensional quantum field theory

    International Nuclear Information System (INIS)

    Schoutens, C.J.M.

    1989-01-01

    Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs

  8. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    Science.gov (United States)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  9. Massive quantum field theory in two-dimensional Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Bunch, T.S.; Christensen, S.M.; Fulling, S.A.

    1978-01-01

    The stress tensor of a massive scalar field, as an integral over normal modes (which are not mere plane waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormalization ansatz suggested by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees with the explicit results of Bernard and Duncan for a special model, and (3) has a nonzero vacuum expectation value in the two-dimensional ''Milne universe'' (flat space in hyperbolic coordinates). Following Wald, we prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the renormalization procedure. The general approach of this paper is applicable to four-dimensional models

  10. Infinite additional symmetries in two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1986-01-01

    This paper investigates additional symmetries in two-dimensional conformal field theory generated by spin s = 1/2, 1,...,3 currents. For spins s = 5/2 and s = 3, the generators of the symmetry form associative algebras with quadratic determining relations. ''Minimal models'' of conforma field theory with such additional symmetries are considered. The space of local fields occurring in a conformal field theory with additional symmetry corresponds to a certain (in general, reducible) representation of the corresponding algebra of the symmetry

  11. Quantum theory of longitudinal dielectric response properties of a two-dimensional plasma in a magnetic field

    International Nuclear Information System (INIS)

    Horing, N.J.M.; Yildiz, M.M.

    1976-01-01

    An analysis of dynamic and nonlocal longitudinal dielectric response properties of a two-dimensional Landau-quantized plasma is carried out, using a thermodynamic Green's function formulation of the RPA with a two-dimensional thermal Green's function for electron propagation in a magnetic field developed in closed form. The longitudinal-electrostatic plasmon dispersion relation is discussed in the low wave-number regime with nonlocal corrections, and Bernstein mode structure is studied for arbitrary wavenumber. All regimes of magnetic field strength and statistics are investigated. The class of integrals treated here should have broad applicability in other two-dimensional and finite slab plasma studies.The two-dimensional static shielding law in a magnetic field is analyzed for low wavenumber, and for large distances we find V (r) approx. = Q/k 2 2 r 3 . The inverse screening length k 0 =2πe 2 partial rho/ partialxi (rho= density, xi= chemical potential) is evaluated in all regimes of magnetic field strength and all statistical regimes. k 0 exhibits violent DHVA oscillatory behavior in the degenerate zero-temperature case at higher field strengths, and the shielding is complete when xi =r'hω/subc/ but there is no shielding when xi does not = r'hω/subc/. A careful analysis confirms that there is no shielding at large distances in the degenerate quantum strong field limit h3π/subc/>xi. Since shielding does persist in the nondegenerate quantum strong field limit hω/subc/>KT, there should be a pronounced change in physical properties that depend on shielding if the system is driven through a high field statistical transition. Finally, we find that the zero field two-dimensional Friedel--Kohn ''wiggle'' static shielding phenomenon is destroyed by the dispersal of the zero field continuum of electron states into the discrete set of Landau-quantized orbitals due to the imposition of the magnetic field

  12. Infinite additional symmetries in the two-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Apikyan, S.A.

    1987-01-01

    Additional symmetries in the two-dimensional conformal field theory, generated by currents (2,3/2,5/2) and (2,3/2,3) have been studied. It has been shown that algebra (2,3/2,5/2) is the direct product of algebras (2,3/2) and (2,5/2), and algebra (2,3/2,3) is the direct product of algebras (2,3/2) and (2,3). Associative algebra, formed by multicomponent symmetry generators of spin 3 for SO(3) has also been found

  13. Combined effects of external electric and magnetic fields on electromagnetically induced transparency of a two-dimensional quantum dot

    International Nuclear Information System (INIS)

    Rezaei, Gh.; Shojaeian Kish, S.; Avazpour, A.

    2012-01-01

    In this article effects of external electric and magnetic fields on the electromagnetically induced transparency of a hydrogenic impurity confined in a two-dimensional quantum dot are investigated. To do this the probe absorption, group velocity and refractive index of the medium in the presence of external electric and magnetic fields are discussed. It is found that, electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields. In comparison with atomic system, one may control the electromagnetically induced transparency and the group velocity of light in nano structures with the dot size and confinement potential.

  14. Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM

    2007-12-15

    For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)

  15. Mass spectrum of the two dimensional lambdaphi4-1/4phi2-μphi quantum field model

    International Nuclear Information System (INIS)

    Imbrie, J.Z.

    1980-01-01

    It is shown that r-particle irreducible kernels in the two-dimensional lambdaphi 4 -1/4phi 2 -μphi quantum field theory have (r+1)-particle decay for vertical stroke μ vertical stroke 2 << 1. As a consequence there is an upper mass gap and, in the subspace of two-particle states, a bound state. The proof extends Spencer's expansion to handle fluctuations between the two wells of the classical potential. A new method for resumming the low temperature cluster expansion is introduced. (orig.)

  16. Functional techniques in quantum field theory and two-dimensional models

    International Nuclear Information System (INIS)

    Souza, C. Farina de.

    1985-03-01

    Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)

  17. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  18. Vortex pair production and decay of a two-dimensional supercurrent by a quantum-field-theory approach

    International Nuclear Information System (INIS)

    Iengo, R.; Jug, G.

    1995-01-01

    We investigate the phenomenon of the decay of a supercurrent through homogeneous nucleation of vortex-antivortex pairs in a two-dimensional (2D) like superconductor or superfluid by means of a quantum electrodynamic formulation for the decay of the 2D vacuum. The case in which both externally driven current and Magnus force are present is treated exactly, taking the vortex activation energy and its inertial mass as independent parameters. Quantum dissipation is included through the formulation introduced by Caldeira and Leggett. The most relevant consequence of quantum dissipation is the elimination of the threshold for vortex production due to the Magnus force. In the dissipation-dominated case, corresponding formally to the limit of zero intertial mass, an exact formula for the pair production rate is given. If however the inertial mass is strictly zero we find that vortex production is inhibited by a quantum effect related to the Magnus force. The possibility of including vortex pinning is investigated by means of an effective harmonic potential. While an additional term in the vortex activation energy can account for the effect of a finite barrier in the direction perpendicular to the current, pinning along the current depresses the role of the Magnus force in the dissipation-dominated dynamics, except for the above-mentioned quantum effect. A possible description of vortex nucleation due to the combined effects of temperature and externally driven currents is also presented along with an evaluation of the resulting voltage drop

  19. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  20. Remarks on the paper ''Two-dimensional quantum field theories involving massless particles'' by N.Nakanishi

    International Nuclear Information System (INIS)

    Stoyanov, D.Ts.

    1978-01-01

    Some critical remarks on the paper by N.Nakanishi ''Tso-Dimensional Quantum Field Theories Involving Massless Particles'' are presented. It is stated that because of the obtained commutation relations the massless scalar fields of the theory connot have the asymptotic behaviour assumed by N.Nakanishi. The contradiction, appearing in the proof of the irreducibility of the scalar field, is demonstrated. Therefore, the theory constructed by Nakanishi, in which an attempt is made to formulate it with the help of one scalar field and correspondingly with one topological charge, is contradictory. It is shown that the statistics of the solutions is not fixed and the solutions satisfying Bose or Fermi statistics differ by constant operator factors

  1. Atom-field interaction in the single-quantum limit in a two dimensional travelling-wave cavity

    International Nuclear Information System (INIS)

    Youn, Sun Hyun; Chough, Young Tak; An, Kyung Won

    2003-01-01

    We analyze the interaction of an atom with two dimensional travelling-wave cavity modes in the strong coupling region, with the quantized atomic center of mass motion taken into account. Analytic and numerical calculation shows that the atom in two independent pairs of travelling wave modes can be made to interact only with a particular travelling mode by matching the initial momentum and the detuning of the cavities. We also numerically investigate the atomic momentum deflection in the cavities

  2. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  3. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  4. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  5. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  6. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  7. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  8. Two dimensional electron systems for solid state quantum computation

    Science.gov (United States)

    Mondal, Sumit

    Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional

  9. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  10. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  11. Two dimensional topological insulator in quantizing magnetic fields

    Science.gov (United States)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  12. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  13. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  14. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  15. Two-dimensional color-code quantum computation

    International Nuclear Information System (INIS)

    Fowler, Austin G.

    2011-01-01

    We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.

  16. Coding for Two Dimensional Constrained Fields

    DEFF Research Database (Denmark)

    Laursen, Torben Vaarbye

    2006-01-01

    a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....

  17. Entropic Barriers for Two-Dimensional Quantum Memories

    Science.gov (United States)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  18. Unruly topologies in two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)

  19. Decay of homogeneous two-dimensional quantum turbulence

    Science.gov (United States)

    Baggaley, Andrew W.; Barenghi, Carlo F.

    2018-03-01

    We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.

  20. Mixing times in quantum walks on two-dimensional grids

    International Nuclear Information System (INIS)

    Marquezino, F. L.; Portugal, R.; Abal, G.

    2010-01-01

    Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.

  1. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.

  2. Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1982-01-01

    The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs

  3. Analytic computation of the quantum levels of a two-dimensional hydrogenic donor in the presence of a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Victor M.; Pino, Ramiro [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    In this article we review different techniques for computing the energy spectrum of 2 D hydrogenic donors and two-electron quantum dots in the presence of a constant, magnetic field perpendicular to the plane of the electron. We compute the 1S, 2P- and 3D- energy levels via a scaled variational mixed-bases method. We compare our results with those obtained with the shifted 1/N method. [Spanish] En el presente articulo se exhiben distintos metodos para calcular el espectro de energia de donores hidrogenicos y puntos cuanticos con dos electrones en presencia de un campo magnetico constante perpendicular al plano del electron. Se calculan los niveles de energia 1S, 2P- y 3D- con ayuda del metodo variacional de bases mixtas con escalamiento. Comparamos nuestro resultados con los obtenidos con ayuda del metodo 1/N con corrimiento.

  4. Gibbs perturbations of a two-dimensional gauge field

    International Nuclear Information System (INIS)

    Petrova, E.N.

    1981-01-01

    Small Gibbs perturbations of random fields have been investigated up to now for a few initial fields only. Among them there are independent fields, Gaussian fields and some others. The possibility for the investigation of Gibbs modifications of a random field depends essentially on the existence of good estimates for semiinvariants of this field. This is the reason why the class of random fields for which the investigation of Gibbs perturbations with arbitrary potential of bounded support is possible is rather small. The author takes as initial a well-known model: a two-dimensional gauge field. (Auth.)

  5. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  6. Quantum diffusion in two-dimensional random systems with particle–hole symmetry

    International Nuclear Information System (INIS)

    Ziegler, K

    2012-01-01

    We study the scattering dynamics of an n-component spinor wavefunction in a random environment on a two-dimensional lattice. If the particle–hole symmetry of the Hamiltonian is spontaneously broken the dynamics of the quantum particles becomes diffusive on large scales. The latter is described by a non-interacting Grassmann field, indicating a special kind of asymptotic freedom on large scales in d = 2. (paper)

  7. Two-dimensional quantum gravity - a laboratory for fluctuating graphs and quenched connectivity disorder

    Directory of Open Access Journals (Sweden)

    W.Janke

    2006-01-01

    Full Text Available This paper gives a brief introduction to using two-dimensional discrete and Euclidean quantum gravity approaches as a laboratory for studying the properties of fluctuating and frozen random graphs in interaction with "matter fields" represented by simple spin or vertex models. Due to the existence of numerous exact analytical results and predictions for comparison with simulational work, this is an interesting and useful enterprise.

  8. Covariance problem in two-dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1979-01-01

    The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered. Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved) current operator. The question of covariance is thus seen to reduce in all cases to a determination as to whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the non-Abelian theory, but one which is identical to that found for the U(1) case

  9. Quantum critical singularities in two-dimensional metallic XY ferromagnets

    Science.gov (United States)

    Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.

    2018-02-01

    An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.

  10. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br

    2008-04-14

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.

  11. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.

    2008-01-01

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them

  12. Topological field theories and two-dimensional instantons

    International Nuclear Information System (INIS)

    Schaposnik, F.A.

    1990-01-01

    In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model

  13. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  14. Introduction to two dimensional conformal and superconformal field theory

    International Nuclear Information System (INIS)

    Shenker, S.H.

    1986-01-01

    Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed

  15. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  16. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  17. Quantum of optical absorption in two-dimensional semiconductors.

    Science.gov (United States)

    Fang, Hui; Bechtel, Hans A; Plis, Elena; Martin, Michael C; Krishna, Sanjay; Yablonovitch, Eli; Javey, Ali

    2013-07-16

    The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be ∼1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, AQ = πα/nc for each set of interband transitions in a 2D semiconductor, where α is the fine structure constant and nc is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene.

  18. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  19. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    Science.gov (United States)

    Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu

    2012-07-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  20. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    International Nuclear Information System (INIS)

    Stepina, N P; Koptev, E S; Pogosov, A G; Dvurechenskii, A V; Nikiforov, A I; Zhdanov, E Yu

    2012-01-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  1. Two-dimensional conformal field theory and beyond. Lessons from a continuing fashion

    International Nuclear Information System (INIS)

    Todorov, I.

    2000-01-01

    Two-dimensional conformal field theory (CFT) has several sources: the search for simple examples of quantum field theory, tile description of surface critical phenomena, the study of (super)string vacua (which made it particularly fashionable). In the present overview of tile subject we emphasize the role of CFT in bridging the gap between mathematics and quantum field theory and discuss some new physical concepts that emerged in the study of CFT models: anomalous dimensions, rational CFT, braid group statistics. In an aside, at tile end of the paper, we share tile misgivings, recently expressed by Penrose, about some dominant trends in fundamental theoretical physics. (author)

  2. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  3. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  4. Laterally coupled jellium-like two-dimensional quantum dots

    NARCIS (Netherlands)

    Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.

    2003-01-01

    Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within

  5. Ion distributions in a two-dimensional reconnection field geometry

    International Nuclear Information System (INIS)

    Curran, D.B.; Goertz, C.K.; Whelan, T.A.

    1987-01-01

    ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987

  6. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  7. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-01-01

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix

  8. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  9. Vector current scattering in two dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Fleishon, N.L.

    1979-04-01

    The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references

  10. Two-dimensional Ising physics in quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.; Rezayi, E. H.

    2002-01-01

    Roč. 12, - (2002), s. 1-7 ISSN 1386-9477 R&D Projects: GA ČR GA202/01/0754; GA MŠk OC 514.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * higher Landau levels * domain walls Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002

  11. Quantum hall fluid on fuzzy two dimensional sphere

    International Nuclear Information System (INIS)

    Luo Xudong; Peng Dantao

    2004-01-01

    After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)

  12. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    International Nuclear Information System (INIS)

    Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang

    2016-01-01

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  13. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-08-15

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  14. Effective mass theory of a two-dimensional quantum dot

    Indian Academy of Sciences (India)

    ... parameter proportional to 220, where 0 represents the barrier height. ... We also study the system in the presence of magnetic field . ... Electrical Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, ...

  15. Exotic ferromagnetism in the two-dimensional quantum material C3N

    Science.gov (United States)

    Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong

    2018-04-01

    The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.

  16. Experiments on melting in classical and quantum two dimensional electron systems

    International Nuclear Information System (INIS)

    Williams, F.I.B.

    1991-01-01

    ''Two dimensional electron system'' (2DES) here refers to electrons whose dynamics is free in 2 dimensions but blocked in the third. Experiments have been performed in two limiting situations: the classical, low density, limit realised by electrons deposited on a liquid helium surface and the quantum, high density, limit realised by electrons at an interface between two epitaxially matched semiconductors. In the classical system, where T Q c so that the thermodynamic state is determined by the competition between the temperature and the Coulomb interaction, melting is induced either by raising the temperature at constant density or by lowering the density at finite temperature. In the quantum system, it is not possible to lower the density below about 100n W without the Coulomb interaction losing out to the random field representing the extrinsic disorder imposed by the semiconductor host. Instead one has to induce crystallisation with the help of the Lorentz force, by applying a perpendicular magnetic field B [2] . As the quantum magnetic length l c = (Planck constant c/eB) 1/2 is reduced with respect to the interelectronic spacing a, expressed by the filling factor ν 2l c 2 /a 2 , the system exhibits the quantum Hall effect (QHE), first for integer then for fractional values of ν. The fractional quantum Hall effect (FQHE) is a result of Coulomb induced correlation in the quantum liquid, but as ν is decreased still further the correlations are expected to take on long-range crystal-like periodicity accompanied by elastic shear rigidity. Such a state can nonetheless be destroyed by the disordering effect of temperature, giving rise to a phase boundary in a (T, B) plane. The aim of experiment is first to determine the phase diagram and then to help elucidate the mechanism of the melting. (author)

  17. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  18. Two-dimensional hole systems in indium-based quantum well heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Loher, Josef

    2016-08-01

    The complex spin-orbit interaction (SOI) of two-dimensional hole gas (2DHG) systems - the relativistic coupling of the hole spin degree of freedom to their movement in an electric field - is of fundamental interest in spin physics due to its key role for spin manipulation in spintronic devices. In this work, we were able to evaluate the tunability of Rashba-SOI-related parameters in the 2DHG system of InAlAs/InGaAs/InAs:Mn quantum well heterostructures experimentally by analyzing the hole density evolution of quantum interference effects at low magnetic fields. We achieved to cover a significant range of hole densities by the joint action of the variation of the manganese modulation doping concentration during molecular beam epitaxy and external field-effect-mediated manipulation of the 2D carrier density in Hall bar devices by a metallic topgate. Within these magnetotransport experiments, a reproducible phenomenon of remarkable robustness emerged in the transverse Hall magnetoresistivity of the indium 2DHG systems which are grown on a special InAlAs step-graded metamorphic buffer layer structure to compensate crystal lattice mismatch. As a consequence of the strain relaxation process, these material systems are characterized by anisotropic properties along different crystallographic directions. We identify a puzzling offset phenomenon in the zero-field Hall magnetoresistance and demonstrate it to be a universal effect in systems with spatially anisotropic transport properties.

  19. Critical behavior in two-dimensional quantum gravity and equations of motion of the string

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Wadia, S.R.

    1990-01-01

    The authors show how consistent quantization determines the renormalization of couplings in a quantum field theory coupled to gravity in two dimensions. The special status of couplings corresponding to conformally invariant matter is discussed. In string theory, where the dynamical degree of freedom of the two-dimensional metric plays the role of time in target space, these renormalization group equations are themselves the classical equations of motion. Time independent solutions, like classical vacuua, correspond to the situation in which matter is conformally invariant. Time dependent solutions, like tunnelling configurations between vacuua, correspond to special trajectories in theory space. The authors discuss an example of such a trajectory in the space containing the c ≤ 1 minimal models. The authors also discuss the connection between this work and the recent attempts to construct non-pertubative string theories based on matrix models

  20. Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.

    Science.gov (United States)

    Song, Juntao; Liu, Haiwen; Jiang, Hua

    2012-05-30

    A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.

  1. String vacuum backgrounds with covariantly constant null Killing vector and two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1993-01-01

    We consider a two-dimensional sigma model with a (2+N)-dimensional Minkowski signature target space metric having a covariantly constant null Killing vector. We study solutions of the conformal invariance conditions in 2+N dimensions and find that generic solutions can be represented in terms of the RG flow in N-dimensional 'transverse space' theory. The resulting conformal invariant sigma model is interpreted as a quantum action of the two-dimensional scalar ('dilaton') quantum gravity model coupled to a (non-conformal) 'transverse' sigma model. The conformal factor of the two-dimensional metric is identified with a light-cone coordinate of the (2+N)-dimensional sigma model. We also discuss the case when the transverse theory is conformal (with or without the antisymmetric tensor background) and reproduce in a systematic way the solutions with flat transverse space known before. (orig.)

  2. Two-dimensional electron gas in monolayer InN quantum wells

    International Nuclear Information System (INIS)

    Pan, W.; Wang, G. T.; Dimakis, E.; Moustakas, T. D.; Tsui, D. C.

    2014-01-01

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10 15  cm −2 (or 1.25 × 10 14  cm −2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES

  3. Effective field theory and integrability in two-dimensional Mott transition

    International Nuclear Information System (INIS)

    Bottesi, Federico L.; Zemba, Guillermo R.

    2011-01-01

    Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.

  4. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    Science.gov (United States)

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  5. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

    NARCIS (Netherlands)

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-01-01

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to

  6. Efficient construction of two-dimensional cluster states with probabilistic quantum gates

    International Nuclear Information System (INIS)

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-01-01

    We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers

  7. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  8. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  9. The quantum spectral analysis of the two-dimensional annular billiard system

    International Nuclear Information System (INIS)

    Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

  10. Electromagnetic quantum waves and their effect on the low temperature magnetoacoustic response of a quasi-two-dimensional metal

    International Nuclear Information System (INIS)

    Zimbovskaya, Natalya A

    2011-01-01

    We theoretically analyze weakly attenuated electromagnetic waves in quasi-two-dimensional (Q2D) metals in high magnetic fields. Within the chosen geometry, the magnetic field is directed perpendicular to the conducting layers of a Q2D conductor. We have shown that longitudinal collective modes could propagate along the magnetic field provided that the Fermi surface is moderately corrugated. The considered wave speeds strongly depend on the magnetic field magnitude. Also, we have analyzed interactions of these quantum waves with sound waves of suitable polarization and propagation direction, and we have shown that such interaction may bring significant changes to the low temperature magnetoacoustic response of Q2D conductors.

  11. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  12. The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system

    Science.gov (United States)

    Akbari, M.; Rezaei, G.; Khordad, R.

    2017-01-01

    We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.

  13. Entropy Bounds for Constrained Two-Dimensional Fields

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Justesen, Jørn

    1999-01-01

    The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived.......The maximum entropy and thereby the capacity of 2-D fields given by certain constraints on configurations are considered. Upper and lower bounds are derived....

  14. Lattice formulation of a two-dimensional topological field theory

    International Nuclear Information System (INIS)

    Ohta, Kazutoshi; Takimi, Tomohisa

    2007-01-01

    We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)

  15. Nonequilibrium chemical potential in a two-dimensional electron gas in the quantum-Hall-effect regime

    Energy Technology Data Exchange (ETDEWEB)

    Pokhabov, D. A., E-mail: pokhabov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Bakarov, A. K. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2016-08-15

    The nonequilibrium state of a two-dimensional electron gas in the quantum-Hall-effect regime is studied in Hall bars equipped with additional inner contacts situated within the bar. The magnetic-field dependence of the voltage drop between different contact pairs are studied at various temperatures. It was found that the voltage between the inner and outer contacts exhibits peaks of significant amplitude in narrow magnetic-field intervals near integer filling factors. Furthermore, the magnetic-field dependence of the voltage in these intervals exhibits a hysteresis, whereas the voltage between the outer contacts remains zero in the entire magnetic-field range. The appearance of the observed voltage peaks and their hysteretic behavior can be explained by an imbalance between the chemical potentials of edge and bulk states, resulting from nonequilibrium charge redistribution between the edge and bulk states when the magnetic field sweeps under conditions of the quantum Hall effect. The results of the study significantly complement the conventional picture of the quantum Hall effect, explicitly indicating the existence of a significant imbalance at the edge of the two-dimensional electron gas: the experimentally observed difference between the electrochemical potentials of the edge and bulk exceeds the distance between Landau levels by tens of times.

  16. On the exact spectra of two electrons confined by two-dimensional quantum dots

    International Nuclear Information System (INIS)

    Soldatov, A.V.; Bogolubov Jr, N.N.

    2005-12-01

    Applicability of the method of intermediate problems to investigation of the energy spectrum and eigenstates of a two- electron two-dimensional quantum dot (QD) formed by a parabolic confining potential is discussed. It is argued that the method of intermediate problems, which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic variational method thus providing an efficient tool of verification of the results obtained so far by various analytical and numerical methods being of current usage for studies of quantum dot models. (author)

  17. Two-dimensional frustrated spin systems in high magnetic fields

    International Nuclear Information System (INIS)

    Schmidt, B; Shannon, N; Thalmeier, P

    2006-01-01

    We discuss our numerical results on the properties of the S = 1/2 frustrated J 1 -J 2 Heisenberg model on a square lattice as a function of temperature and frustration angle φ = tan -1 (J 2 /J 1 ) in an applied magnetic field. We cover the full phase diagram of the model in the range π ≤ φ ≤ π. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally

  18. First-principles engineering of charged defects for two-dimensional quantum technologies

    Science.gov (United States)

    Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan

    2017-12-01

    Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.

  19. Types of two-dimensional N = 4 superconformal field theories

    Indian Academy of Sciences (India)

    Abstract. Various types of N = 4 superconformal symmetries in two dimensions are considered. It is proposed that apart from the well-known cases of SU(2) and SU(2)¢SU(2)¢U(1), their Kac–. Moody symmetry can also be SU(2) ¢(U(1))4. Operator product expansions for the last case are derived. A complete free field ...

  20. Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas

    International Nuclear Information System (INIS)

    Ali, S; Moslem, W M; Kourakis, I; Shukla, P K

    2008-01-01

    The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted

  1. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  2. Quantum entanglement and phase transition in a two-dimensional photon-photon pair model

    International Nuclear Information System (INIS)

    Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze

    2013-01-01

    We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.

  3. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  4. Classification of the quantum two dimensional superintegrable systems with quadratic integrals and the Stackel transforms

    International Nuclear Information System (INIS)

    Dakaloyannis, C.

    2006-01-01

    Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed

  5. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  6. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  7. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    Science.gov (United States)

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology.

  8. A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background

    Energy Technology Data Exchange (ETDEWEB)

    Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)

    2016-10-15

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)

  9. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  10. Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact

    International Nuclear Information System (INIS)

    Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.

    1998-01-01

    We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance (ωapproximately0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region

  11. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System

    International Nuclear Information System (INIS)

    Wang Bo; Kou Su-Peng; Huang Hai-Lin; Sun Zhao-Yu

    2012-01-01

    We investigate the ability of quantum fidelity in detecting the classical phase transitions (CPTs) in a two-dimensional Heisenberg—Ising mixed spin model, which has a very rich phase diagram and is exactly soluble. For a two-site subsystem of the model, the reduced fidelity (including the operator fidelity and the fidelity susceptibility) at finite temperatures is calculated, and it is found that an extreme value presents at the critical temperature, thus shows a signal for the CPTs. In some parameter region, the signal becomes blurred. We propose to use the 'normalized fidelity susceptibility' to solve this problem

  12. The background-quantum split symmetry in two-dimensional σ-models

    International Nuclear Information System (INIS)

    Blasi, A.; Delduc, F.; Sorella, S.P.

    1989-01-01

    A generic, non-linear, background-quantum split is translated into a BRS symmetry. The renormalization of the resulting Slavnov-Taylor identity is analyzed in the class of two-dimensional σ-models with Wess-Zumino term which suggests the adoption of a regularization independent method. We discuss the cohomology of the linearized nilpotent operator derived from the Slavnov-Taylor identity. In particular, the cohomology class with zero Faddeev-Popov charge ensures the stability of the action, while the fact that the cohomology class with one unit of Faddeev-Popov charge is empty ensures the absence of anomalies. (orig.)

  13. Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections

    International Nuclear Information System (INIS)

    Banin, A.T.; Shapiro, I.L.

    1993-12-01

    We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs

  14. Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems

    Science.gov (United States)

    Bachsoliani, N.; Platonov, S.; Wieck, A. D.; Ludwig, S.

    2017-12-01

    Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs /(Al ,Ga )As heterostructure enable a large variety of applications ranging from fundamental research to high-speed transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates, and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric-field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. We present a first exploration of this method pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and coherent properties.

  15. Zakharov-Shabat-Mikhailov scheme of construction of two-dimensional completely integrable field theories

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Columbia Univ., New York; Chudnovsky, G.V.; Columbia Univ., New York

    1980-01-01

    General algebraic and analytic formalism for derivation and solution of general two dimensional field theory equations of Zakharov-Shabat-Mikhailov type is presented. The examples presented show that this class of equations covers most of the known two-dimensional completely integrable equations. Possible generalizations for four dimensional systems require detailed analysis of Baecklund transformation of these equations. Baecklund transformation is presented in the form of Riemann problem and one special case of dual symmetry is worked out. (orig.)

  16. Analysis of the two dimensional Datta-Das Spin Field Effect Transistor

    OpenAIRE

    Bandyopadhyay, S.

    2010-01-01

    An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  17. Analysis of the two-dimensional Datta-Das spin field effect transistor

    Science.gov (United States)

    Agnihotri, P.; Bandyopadhyay, S.

    2010-03-01

    An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  18. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    Science.gov (United States)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  19. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Christensen, Jesper Bjerge; Usuga Castaneda, Mario A.

    2016-01-01

    10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak......Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last...... coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable....

  20. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  1. Rashba and Dresselhaus spin-orbit interactions effects on electronic features of a two dimensional elliptic quantum dot

    Science.gov (United States)

    Mokhtari, P.; Rezaei, G.; Zamani, A.

    2017-06-01

    In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.

  2. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  3. Coulomb interactions in dense two-dimensional electron systems in a magnetic field

    International Nuclear Information System (INIS)

    Cheng, Szucheng.

    1988-01-01

    The simplest model of a two-dimensional system ignores the Coulomb interactions between the electrons. In this approximation, the electrons occupy the Landau levels, broadened by impurities and irregularities in the lattice. This independent electron approximation has usually been used to discuss observations for electron densities ρ and magnetic fields B where bar ν > 1 (bar ν triple-bond the number of Landau levels occupied). The most famous example is the theory of the integral Quantum Hall effect. However, when bar ν 1, electron-electron interactions should become important through the mixing of Landau levels. This thesis describes calculations for bar ν > 1 on phenomena which should be sensitive to electron-electron interactions: Wigner crystallization, the stability of the Landau levels under electron-electron interactions, the existence of quasiparticles and quasiholes, and the densities of states. The main results obtained concern: (1) The values of ρ and B where crystallization should occur when bar ν > 1. (2) The effect of electron-electron interactions in broadening the individual Landau levels, and in distributing the amplitudes for the excitation of independent electrons over many Landau levels. (3) The existence of quasiparticles and quasiholes whose lifetime is infinite near the Fermi level

  4. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    Science.gov (United States)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  5. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  6. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  7. Multichannel scattering amplitudes of microparticles in a quantum well with two-dimensional -potential

    International Nuclear Information System (INIS)

    Sedrakian, D.M.; Badalyan, D.H.; Sedrakian, L.R.

    2015-01-01

    Quasi-one-dimensional quantum particle scattering on two-dimensional δ-potential is considered. Analytical expressions for the amplitudes of the multi-channel transmission and reflection are given. The problem for the case when the number of channels is finite and equal N, and the particle falls on the potential moving through the channel l is solved. The case of a three channel scattering is studied in details. It is shown that under conditions k 2 → 0 and k 3 → 0 'overpopulation' of particles on the second and third channels occurs. The points of δ-potential location which provide a full 'overpopulation' of particles is also found

  8. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  9. Explicit expressions for masses and bindings of multibaryons in two dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Frishman, Y.; Zakrewski, W.J.

    1989-07-01

    We derive explicit expressions for the masses and the binding energies of k-baryons states in two dimensional (one space and one time) Quantum Chromodynamics (QCD(2)). The expressions are given using the parameters n 1 ,n 2 ,...,nN f -1 which characterize the representation of SU(N f ), where N f is the number of flavours, in terms of its Young tableau description. We find that the difference between the mass of the k-baryon state and the sum of masses of any combination of its constituents, is independent of the value N f (ie the number of flavors). These results hold within a certain bosonized form of QCD(2) and within the strong coupling limit of (G/m) → ∞, where G is the gauge coupling constant and m the quark mass. (authors)

  10. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Science.gov (United States)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  11. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  12. Series expansion of two-dimensional fields produced by iron-core magnets

    International Nuclear Information System (INIS)

    Satoh, Kotaro.

    1997-02-01

    This paper discusses the validity of a series expansion of two-dimensional magnetic fields with harmonic functions, and suggests that the series may not converge outside of the pole gap. It also points out that this difficulty may appear due to a slow convergence of the series near to the pole edge, even within the convergent area. (author)

  13. Second order phase transition in two dimensional sine-Gordon field theory - lattice model

    International Nuclear Information System (INIS)

    Babu Joseph, K.; Kuriakose, V.C.

    1978-01-01

    Two dimensional sine-Gordon (SG) field theory on a lattice is studied using the single-site basis variational method of Drell and others. The nature of the phase transition associated with the spontaneous symmetry breakdown in a SG field system is clarified to be of second order. A generalisation is offered for a SG-type field theory in two dimensions with a potential of the form [cossup(n)((square root of lambda)/m)phi-1].(author)

  14. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  15. Alternate two-dimensional quantum walk with a single-qubit coin

    International Nuclear Information System (INIS)

    Di Franco, C.; Busch, Th.; Mc Gettrick, M.; Machida, T.

    2011-01-01

    We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the nonlocalized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of x-y spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.

  16. Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation

    International Nuclear Information System (INIS)

    Filgueiras, Cleverson; Rojas, Moises; Aciole, Gilson; Silva, Edilberto O.

    2016-01-01

    Highlights: • We derive the Schrödinger equation for an electron around a screw dislocation in the presence of an external magnetic field. • We consider the electron confined on an interface. • Modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. - Abstract: We investigate the influence of a screw dislocation on the energy levels and the wavefunctions of an electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an external magnetic field inside a dot and Aharonov–Bohm field inside a pseudodot. The exact solutions for energy eigenvalues and wavefunctions are computed as functions of applied uniform magnetic field strength, Aharonov–Bohm flux, magnetic quantum number and the parameter characterizing the screw dislocation, the Burgers vector. We investigate the modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. Two scenarios are possible, depending on if singular effects either manifest or not. We found that as the Burgers vector increases, the curves of frequency are pushed up towards of the growth of it. One interesting aspect which we have observed is that the Aharonov–Bohm flux can be tuned in order to cancel the screw effect of the model.

  17. Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, Cleverson, E-mail: cleverson.filgueiras@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, MG (Brazil); Rojas, Moises, E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, MG (Brazil); Aciole, Gilson [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, POB 10071, 58109-970, Campina Grande, PB (Brazil); Silva, Edilberto O., E-mail: edilberto.silva@ufma.br [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, MA (Brazil)

    2016-11-25

    Highlights: • We derive the Schrödinger equation for an electron around a screw dislocation in the presence of an external magnetic field. • We consider the electron confined on an interface. • Modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. - Abstract: We investigate the influence of a screw dislocation on the energy levels and the wavefunctions of an electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an external magnetic field inside a dot and Aharonov–Bohm field inside a pseudodot. The exact solutions for energy eigenvalues and wavefunctions are computed as functions of applied uniform magnetic field strength, Aharonov–Bohm flux, magnetic quantum number and the parameter characterizing the screw dislocation, the Burgers vector. We investigate the modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. Two scenarios are possible, depending on if singular effects either manifest or not. We found that as the Burgers vector increases, the curves of frequency are pushed up towards of the growth of it. One interesting aspect which we have observed is that the Aharonov–Bohm flux can be tuned in order to cancel the screw effect of the model.

  18. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    Science.gov (United States)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  19. In-plane g factor of low-density two-dimensional holes in a Ge quantum well.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tzu-Ming [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Shih-Hsien [National Taiwan Univ., Taipei (Taiwan); Chuang, Yen [National Taiwan Univ., Taipei (Taiwan); Li, Jiun-Yun [National Taiwan Univ., Taipei (Taiwan); Liu, CheeWee [National Taiwan Univ., Taipei (Taiwan)

    2017-12-01

    High-mobility two-dimensional (2D) holes residing in a Ge quantum well are a new electronic system with potentials in quantum computing and spintronics. Since for any electronic material, the effective mass and the g factor are two fundamental material parameters that determine the material response to electric and magnetic fields, measuring these two parameters in this material system is thus an important task that needs to be completed urgently. Because of the quantum confinement in the crystal growth direction (z), the biaxial strain of epitaxial Ge on SiGe, and the valance band nature, both the effective mass and the g factor can show very strong anisotropy. In particular, the in-plane g factor (gip) can be vanishingly small while the perpendicular g factor (gz) can be much larger than 2. Here we report the measurement of gip at very low hole densities using in-plane magneto-resistance measurement performed at the NHMFL.

  20. Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra

    Science.gov (United States)

    Mcleod, M. G.

    1983-01-01

    Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.

  1. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo; Li, Xiaoming; Gu, Yu; Harb, Moussab; Li, Jianhai; Xie, Meiqiu; Cao, Fei; Song, Jizhong; Zhang, Shengli; Cavallo, Luigi; Zeng, Haibo

    2017-01-01

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  2. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo

    2017-09-07

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  3. Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells

    Science.gov (United States)

    Kunrugsa, Maetee

    2018-06-01

    Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.

  4. Hall field-induced magnetoresistance oscillations of a two-dimensional electron system

    International Nuclear Information System (INIS)

    Kunold, A.; Torres, M.

    2008-01-01

    We develop a model of the nonlinear response to a dc electrical current of a two-dimensional electron system (2DES) placed on a magnetic field. Based on the exact solution to the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the dc current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments

  5. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  6. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  7. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...... on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation. © 1994 The American Physical Society...

  8. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    Science.gov (United States)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  9. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  10. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  11. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  12. Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.

    2011-08-12

    Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.

  13. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  14. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  15. The area distribution of two-dimensional random walks and non-Hermitian Hofstadter quantum mechanics

    International Nuclear Information System (INIS)

    Matveenko, Sergey; Ouvry, Stéphane

    2014-01-01

    When random walks on a square lattice are biased horizontally to move solely to the right, the probability distribution of their algebraic area can be obtained exactly (Mashkevich and Ouvry 2009 J. Stat. Phys. 137 71). We explicitly map this biased classical random system onto a non-Hermitian Hofstadter-like quantum model where a charged particle on a square lattice coupled to a perpendicular magnetic field hops only to the right. For the commensurate case, when the magnetic flux per unit cell is rational, an exact solution of the quantum model is obtained. The periodicity of the lattice allows one to relate traces of the Nth power of the Hamiltonian to probability distribution generating functions of biased walks of length N. (paper)

  16. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  17. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    Science.gov (United States)

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.

  18. Wave dispersion relation of two-dimensional plasma crystals in a magnetic field

    International Nuclear Information System (INIS)

    Uchida, G.; Konopka, U.; Morfill, G.

    2004-01-01

    The wave dispersion relation in a two-dimensional strongly coupled plasma crystal is studied by theoretical analysis and molecular dynamics simulation taking into account a constant magnetic field parallel to the crystal normal. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz force acting on the dust particles. The high-frequency and the low-frequency branches are found to belong to right-hand and left-hand polarized waves, respectively

  19. Beam alignment based on two-dimensional power spectral density of a near-field image.

    Science.gov (United States)

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  20. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  1. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  2. Outline of a theory of the two-dimensional hall effect in the quantum limit

    Energy Technology Data Exchange (ETDEWEB)

    Tosatti, E. (Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy); Consiglio Nazionale delle Ricerche, Trieste (Italy). Gruppo Nazionale di Struttura della Materia); Parrinello, M. (International Centre for Theoretical Physics, Trieste (Italy); Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Consiglio Nazionale delle Ricerche, Trieste (Italy). Gruppo Nazionale di Struttura della Materia)

    1983-03-05

    The ground state of two-dimensional electrons of density N/L/sup 2/ in a strong transverse magnetic field B is discussed in terms of localized magnetic functions. For all ''commensurate'' fractional fillings of the n=0 Landau level, occurring at Bsub(st)=(s/sup 2/+t/sup 2/+st)2..pi..(h/2..pi..)cN/eL/sup 2/, with s, t integers, it is found that the ground state is a triangular lattice. This lattice has unusual properties, because it is tied to the magnetic functions. In particular, it has a finite Hall conductivity sigmasub(xy)=e/sup 2//2..pi..(h/2..pi..)(s/sup 2/+t/sup 2/+st) and it also exhibits perfect diamagnetism relative to Bsub(st). It does, however, display no proper Meissner effect, because the London depth is macroscopically large. The excess field B-Bsub(st) gives rise instead to defects in the lattice, where the extra electrons (holes) become ''interstitials'' (''vacancies''). If the defects are free to move, the Hall conductivity will not stay quantized. On the other hand, if all defects are pinned by inhomogeneities, Hall plateaux are expected around each Bsub(st). This picture, while providing a natural explanation for the quantized Hall effect at both integer and fractional filling, leads to a simple understanding of the plateau width vs. temperature and simple quality, and can also explain, at finite temperatures, the behaviour of the longitudinal conductivity sigmasub(yy) and its observed asymmetry for integer filling.

  3. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  4. Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data

    Directory of Open Access Journals (Sweden)

    J. Dedkova

    2012-09-01

    Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.

  5. Two-dimensional quantum-corrected black hole in a finite size cavity

    International Nuclear Information System (INIS)

    Zaslavskii, O.B.

    2004-01-01

    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability

  6. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  7. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  8. Asymptotic behavior of the elastic form factor in two-dimensional scalar field theory of the bag model

    International Nuclear Information System (INIS)

    Krapchev, V.

    1976-01-01

    In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory

  9. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  10. Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-03-01

    The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description

  11. Correlation effects in two-dimensional electron systems realized in quantum well structures and on the surface of liquid helium

    International Nuclear Information System (INIS)

    Vilk, Y.M.

    1992-01-01

    This thesis is concerned with theoretical studies of various manybody correlation effects in two-dimensional electron systems, with application to electrons in quantum well structures (QW) and electrons on the surface of liquid helium. The author investigates the influence of correlation effects on escape rates of electrons from the 2D electron liquid and crystal on the helium surface. Within the framework of a harmonic lattice model the effective potential for the escaping electron as a function of the electron density and the external pressing or pulling electric field is found. This approach takes into account the deformation effects in the electron system. It is shown that under realistic experimental conditions the correlation correction can completely dominate the physics of the escaping electrons. The calculated concentration dependence of the escape rate of surface electrons is in excellent agreement with experiments in both thermal-activated and tunneling regimes. The thesis describes studies of the optical luminescence spectra of two types of magnetoplasma realized in QW: a charged electron plasma and a neutral electron-hole plasma, in the context of a mean field approximation. It is shown that strong enhancements in oscillator strengths are associated with excitons between different Landau levels. The strongest effect is found near the chemical potential and is analogous to the x-ray singularities well known in metals. The theory also predicts the existence of plateaus in the concentration dependence of transition energies in the sufficiently strong magnetic field. These plateaus are associated with the change in the filling factor: at the strongest field, while the filling of the level is varied, the transition energy between Landau levels i e - i h (i e = i h = i) remains constant. With decreasing magnetic fields, the plateau disappears and the transition energy increases with the filling of the Landau level

  12. Rashba and Dresselhaus spin-orbit coupling effects on tunnelling through two-dimensional magnetic quantum systems

    International Nuclear Information System (INIS)

    Xu Wen; Guo Yong

    2005-01-01

    We investigate the influence of the Rashba and Dresselhaus spin-orbit coupling interactions on tunnelling through two-dimensional magnetic quantum systems. It is showed that not only Rashba spin-orbit coupling but also Dresselhaus one can affect spin tunnelling properties greatly in such a quantum system. The transmission possibility, the spin polarization and the conductance are obviously oscillated with both coupling strengths. High spin polarization, conductance and magnetic conductance of the structure can be obtained by modulating either Rashba or Dresselhaus coupling strength

  13. Quantum mechanical treatment of a constrained particle on two dimensional sphere

    Energy Technology Data Exchange (ETDEWEB)

    Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com; Panahi, H., E-mail: t-panahi@guilan.ac.ir

    2016-12-15

    In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen–Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky–Winternitz potential model.

  14. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas

    NARCIS (Netherlands)

    Houten, H. van; Beenakker, C.W.J.; Williamson, J.G.; Broekaart, M.E.I.; Loosdrecht, P.H.M. van; Wees, B.J. van; Mooij, J.E.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    Transverse electron focusing in a two-dimensional electron gas is investigated experimentally and theoretically for the first time. A split Schottky gate on top of a GaAs-AlxGa1–xAs heterostructure defines two point contacts of variable width, which are used as injector and collector of ballistic

  15. Relative entropy of excited states in two dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology,Budapest, H-1521 (Hungary); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California,Santa Barbara,CA 93106 (United States)

    2016-07-21

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  16. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  17. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  18. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  19. Operator coproduct-realization of quantum group transformations in two dimensional gravity, 1

    CERN Document Server

    Cremmer, E; Schnittger, J; Cremmer, E; Gervais, J L; Schnittger, J

    1996-01-01

    A simple connection between the universal R matrix of U_q(sl(2)) (for spins \\demi and J) and the required form of the co-product action of the Hilbert space generators of the quantum group symmetry is put forward. This gives an explicit operator realization of the co-product action on the covariant operators. It allows us to derive the quantum group covariance of the fusion and braiding matrices, although it is of a new type: the generators depend upon worldsheet variables, and obey a new central extension of U_q(sl(2)) realized by (what we call) fixed point commutation relations. This is explained by showing that the link between the algebra of field transformations and that of the co-product generators is much weaker than previously thought. The central charges of our extended U_q(sl(2)) algebra, which includes the Liouville zero-mode momentum in a nontrivial way are related to Virasoro-descendants of unity. We also show how our approach can be used to derive the Hopf algebra structure of the extended quant...

  20. On the Aharonov-Casher system and the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.

    2012-01-01

    We study the quantum dynamics of a neutral particle in the Aharonov-Casher system and in the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring, a quantum dot, and a quantum anti-dot potentials described by the Tan-Inkson model [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)]. We show, in the Aharonov-Casher system, that bound states can be achieved when the neutral particle is confined to the two-dimensional quantum ring and the quantum dot and discuss the appearance of persistent currents. In the Landau-Aharonov-Casher system, we show that bound states can be achieved when the neutral particle is confined to the quantum anti-dot, quantum dot, and the two-dimensional quantum ring, but there are no persistent currents.

  1. Exactly solvable models of two-dimensional dilaton cosmology with quantum backreaction

    International Nuclear Information System (INIS)

    Zaslavskii, O B

    2003-01-01

    We consider a general approach to exactly solvable 2D dilaton cosmology with one-loop backreaction from conformal fields taken into account. It includes as particular cases previous models discussed in the literature. We list different types of solutions and investigate their properties for simple models, typical for string theory. We find a rather rich class of everywhere-regular solutions, which exist practically in every type of analysed solution. They exhibit different kinds of asymptotic behaviour in the past and future, including inflation, superinflation, deflation, power expansion or contraction. In particular, for some models the dS spacetime with a time-dependent dilaton field is the exact solution of the field equations. For some kinds of solution the weak-energy condition is violated independently of a specific model. We also find the solutions with a singularity which is situated in an infinite past (or future), so at any finite moment of a comoving time the universe is singularity-free. It is pointed out that for some models the spacetime may be everywhere regular even in spite of infinitely large quantum backreaction in an infinite past

  2. Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zhang Fulin; Song Ci; Chen Jingling

    2009-01-01

    The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed

  3. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  4. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  5. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  6. Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression

    KAUST Repository

    Bressloff, Paul C.

    2011-01-01

    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.

  7. Graphene-based field effect transistor in two-dimensional paper networks

    Energy Technology Data Exchange (ETDEWEB)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Hu, Jie; Xu, Feng [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); Luo, Zhengtang, E-mail: keztluo@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2016-04-21

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm{sup 2} V{sup −1} s{sup −1} and ∼2298 cm{sup 2} V{sup −1} s{sup −1} respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  8. Graphene-based field effect transistor in two-dimensional paper networks

    International Nuclear Information System (INIS)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek; Hu, Jie; Xu, Feng; Lu, Tian Jian; Luo, Zhengtang

    2016-01-01

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm 2  V −1  s −1 and ∼2298 cm 2  V −1  s −1 respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  9. Q-deformed Grassmann field and the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Shadura, V.N.

    1994-01-01

    In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs

  10. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  11. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  12. Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity

    NARCIS (Netherlands)

    Westra, W.

    2007-01-01

    Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical

  13. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  14. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    Science.gov (United States)

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  15. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  16. Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals

    International Nuclear Information System (INIS)

    Leon, H; Estevez-Rams, E

    2009-01-01

    A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.

  17. Investigations on field-effect transistors based on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Finge, T.; Riederer, F.; Grap, T.; Knoch, J. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Mueller, M.R. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Infineon Technologies, Villach (Austria); Kallis, K. [Intelligent Microsystems Chair, TU Dortmund University (Germany)

    2017-11-15

    In the present article, experimental and theoretical investigations regarding field-effect transistors based on two-dimensional (2D) materials are presented. First, the properties of contacts between a metal and 2D material are discussed. To this end, metal-to-graphene contacts as well to transition metal dichalcogenides (TMD) are studied. Whereas metal-graphene contacts can be tuned with an appropriate back-gate, metal-TMD contacts exhibit strong Fermi level pinning showing substantially limited maximum possible drive current. Next, tungsten diselenide (WSe{sub 2}) field-effect transistors are presented. Employing buried-triple-gate substrates allows tuning source, channel and drain by applying appropriate gate voltages so that the device can be reconfigured to work as n-type, p-type and as so-called band-to-band tunnel field-effect transistor on the same WSe{sub 2} flake. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  19. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-01-01

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems

  20. Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime

    International Nuclear Information System (INIS)

    Hashimoto, K; Hirayama, Y; Wiebe, J; Wiesendanger, R; Inaoka, T; Morgenstern, M

    2011-01-01

    By using scanning tunnelling spectroscopy, we study the influence of potential disorder on an adsorbate-induced two-dimensional electron system in the integer quantum Hall regime. The real-space imaged local density of states exhibits transition from localized drift states encircling the potential minima to another type of localized drift states encircling the potential maxima. While the former states show regular round shapes, the latter have irregular-shaped patterns. This difference is induced by different sources for the potential minima and maxima, i.e., substrate donors and an inhomogeneous distribution of the adsorbates, respectively.

  1. Giant Andreev Backscattering through a Quantum Point Contact Coupled via a Disordered Two-Dimensional Electron Gas to Superconductors

    International Nuclear Information System (INIS)

    den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.

    1997-01-01

    We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society

  2. Embedding Approach to Modeling Electromagnetic Fields in a Complex Two-Dimensional Environment

    Directory of Open Access Journals (Sweden)

    Anton Tijhuis

    2018-01-01

    Full Text Available An approach is presented to combine the response of a two-dimensionally inhomogeneous dielectric object in a homogeneous environment with that of an empty inhomogeneous environment. This allows an efficient computation of the scattering behavior of the dielectric cylinder with the aid of the CGFFT method and a dedicated extrapolation procedure. Since a circular observation contour is adopted, an angular spectral representation can be employed for the embedding. Implementation details are discussed for the case of a closed 434 MHz microwave scanner, and the accuracy and efficiency of all steps in the numerical procedure are investigated. Guidelines are proposed for choosing computational parameters such as truncation limits and tolerances. We show that the embedding approach does not increase the CPU time with respect to the forward problem solution in a homogeneous environment, if only the fields on the observation contour are computed, and that it leads to a relatively small increase when the fields on the mesh are computed as well.

  3. Deep learning the quantum phase transitions in random two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-01-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed. (author)

  4. Towards canonical quantum gravity for 3+1 geometries admitting maximally symmetric two-dimensional surfaces

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2010-01-01

    The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.

  5. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    International Nuclear Information System (INIS)

    Schroer, Bert

    2005-04-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  6. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  7. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-12-01

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  8. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.

    Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  9. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  10. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    International Nuclear Information System (INIS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-01-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background

  11. Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    International Nuclear Information System (INIS)

    Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre

    2007-01-01

    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram

  12. Anomalous behavior of a confined two-dimensional electron within an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)

    2001-10-01

    An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.

  13. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yuchen Du

    2014-09-01

    Full Text Available Layered two-dimensional (2D semiconducting transition metal dichalcogenides (TMDs have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future thin film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.

  14. Microbunching instability in a chicane: Two-dimensional mean field treatment

    Directory of Open Access Journals (Sweden)

    Gabriele Bassi

    2009-08-01

    Full Text Available We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case.

  15. Two-dimensional receptive-field organization in striate cortical neurons of the cat.

    Science.gov (United States)

    Sun, M; Bonds, A B

    1994-01-01

    The two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.

  16. High-precision two-dimensional atom localization via quantum interference in a tripod-type system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)

  17. Understanding quantum scattering properties in terms of purely classical dynamics: Two-dimensional open chaotic billiards

    Czech Academy of Sciences Publication Activity Database

    Méndez-Bermúdez, J. A.; Luna-Acosta, G. A.; Šeba, Petr; Pichugin, K. N.

    2002-01-01

    Roč. 66, č. 4 (2002), 046207/1-046207/7 ISSN 1063-651X Grant - others:CONACyT(MX) 26163-E Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum transport * resonance Subject RIV: BE - Theoretical Physics Impact factor: 2.397, year: 2002

  18. Is there a delocalization transition in a two-dimensional model for quantum percolation

    International Nuclear Information System (INIS)

    Dasgupta, I.; Saha, T.; Mookerjee, A.; Chakrabarti, B.K.

    1992-01-01

    In this paper, the authors estimate the transmittance of the quantum percolation model of Eggarter and Kirkpatrick on the square lattice of various sizes using the vector recursion method. The authors note from finite size scaling that there is no delocalization transition for any degree of disorder in two dimensions

  19. Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.

    2010-01-01

    The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.

  20. Quantum transport of atomic matter waves in anisotropic two-dimensional and three-dimensional disorder

    International Nuclear Information System (INIS)

    Piraud, M; Pezzé, L; Sanchez-Palencia, L

    2013-01-01

    The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)

  1. Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity

    Science.gov (United States)

    Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo

    2018-05-01

    We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.

  2. Two-dimensional quantum key distribution (QKD) protocol for increased key rate fiber-based quantum communications

    DEFF Research Database (Denmark)

    da Lio, Beatrice; Bacco, Davide; Ding, Yunhong

    2017-01-01

    We experimentally prove a novel two-dimensional QKD scheme, relying on differential phasetime shifting (DPTS) of strongly attenuated weak coherent pulses. We demonstrate QKD transmission up to 170 km standard fiber, and even include a classical channel up to 90 km.......We experimentally prove a novel two-dimensional QKD scheme, relying on differential phasetime shifting (DPTS) of strongly attenuated weak coherent pulses. We demonstrate QKD transmission up to 170 km standard fiber, and even include a classical channel up to 90 km....

  3. Research in string theory and two dimensional conformal field theory: Progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Friedan, D.H.; Martinec, E.J.; Shenker, S.H.

    1988-12-01

    The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics

  4. Numerical study of two dimensional disordered systems in an external magnetic field

    International Nuclear Information System (INIS)

    Jana, Debnarayan

    2000-01-01

    We study here 2d tight-binding disordered model in an external magnetic field. By numerically diagonalizing the Hamiltonian, we characterize the eigenstates by Generalized Inverse Participation Ratio (GIPR). The properties of the eigenstates have been studied in case of random flux model as well as with the strength of disorder. Simple theoretical arguments are given in support of the numerical observation. Finally, we have also studied the multifractality of the eigenstates. All these study may shed light on the eigenstates in the center of the band in case of Integer Quantum Hall Effect (IQHE). (author)

  5. Evidence of a field-induced Berezinskii-Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system.

    Science.gov (United States)

    Tutsch, U; Wolf, B; Wessel, S; Postulka, L; Tsui, Y; Jeschke, H O; Opahle, I; Saha-Dasgupta, T; Valentí, R; Brühl, A; Remović-Langer, K; Kretz, T; Lerner, H-W; Wagner, M; Lang, M

    2014-10-27

    Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex-antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.

  6. Hidden Uq (sl(2)) Uq (sl(2)) Quantum Group Symmetry in Two Dimensional Gravity

    Science.gov (United States)

    Cremmer, Eugène; Gervais, Jean-Loup; Schnittger, Jens

    1997-02-01

    In a previous paper, the quantum-group-covariant chiral vertex operators in the spin 1/2 representation were shown to act, by braiding with the other covariant primaries, as generators of the well known Uq(sl(2)) quantum group symmetry (for a single screening charge). Here, this structure is transformed to the Bloch wave/Coulomb gas operator basis, thereby establishing for the first time its quantum group symmetry properties. A Uq(sl(2)) otimes Uq(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (Vermamodules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of the operator product. This hidden symmetry possesses a novel Hopf-like structure compatible with these conditions. At roots of unity it gives the right truncation. Its (non-linear) connection with the Uq(sl(2)) previously discussed is disentangled.

  7. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    Science.gov (United States)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  8. Energy dispersion of charged particles decelerated in a two-dimensional electrostatic field of the type x1/n

    International Nuclear Information System (INIS)

    Zashkvara, V.V.; Bok, A.A.

    1992-01-01

    Two components of the spatial dispersion of particles with respect to kinetic energy can be distinguished of the motion of charged particle beams in electrostatic mirros with a two-dimensional field φ(x,y) ans xz symmetry plane. The first is the longitudinal dispersion, which is along the z axis perpendicular to the field; the second is the transverse dispersion, along the x axis parallel to the field vector in the plane of symmetry. The longitudinal dispersion is a basic characteristic of electrostatic mirrors used as energy analyzers. It has been shown that for first-order angular focusing, the longitudinal dispersion, divided by the focal length, is independent of the structure of the two-dimensional field and is a function only of the angle at which the charged particle beam enters the mirror. The transverse dispersion stems from the energy dependence of the penetration depth of the beam as it is decelerated, and it plays an important role when the energy of a charged particle beam is analyzed by the filtering principle, making use of the property of an electrostatic mirror to transmit or reflect charged particles with kinetic energy in a specified interval. This type of dispersion in electrostatic mirrors with two-dimensional fields has not been analyzed systematically. In the present note the authors consider a particular type of two-dimensional electrostatic field which is characterized by a large transverse dispersion, many times larger than in existing electrostatic reflecting filters employing planar and cylindrical fields

  9. Universal behaviour of magnetoconductance due to week localization in two-dimensional systems - example of GaInAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W. [Groupe d`Etudes des Semiconducteurs, Universite de Montpellier II, Montpellier (France)

    1995-12-31

    Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B{sub tr} where B is the magnetic field, B{sub tr}=h/4e{tau}D, D is the diffusion constant and {tau} is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B{sup -1/2}) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author). 5 refs, 2 figs.

  10. Universal behaviour of magnetoconductance due to week localization in two-dimensional systems - example of GaInAs quantum wells

    International Nuclear Information System (INIS)

    Zduniak, A.; Dyakonov, M.I.; Litwin-Staszewska, E.; Knap, W.

    1995-01-01

    Week localization corrections to conductivity of two-dimensional electron gas are studied by measurements of magnetic field dependence of the conductivity in GaInAs quantum wells. We observed that, when presented as a function of the normalized magnetic field (x=B/B tr where B is the magnetic field, B tr =h/4eτD, D is the diffusion constant and τ is momentum relaxation time), different samples show very similar high field behaviour. A theoretical description is developed that allows one to describe in a consistent way and low field behaviour. The theory predicts universal (B -1/2 ) behaviour of the conductivity correction for all 2D systems in high field limit (x>1). Low field behaviour depends strongly on spin and phase relaxation mechanisms. Comparison of the theory with experiment confirms the universal behaviour in the high field limit and allows one to estimate the spin and phase relaxation times for different GaInAs quantum wells. (author)

  11. Rapidly converging bound state eigenenergies for the two dimensional quantum dipole

    International Nuclear Information System (INIS)

    Handy, C R; Vrinceanu, D

    2013-01-01

    We examine the effectiveness of a new spectral method in solving the two dimensional dipole problem (DP), as originally formulated by Dasbiswas et al (2010 Phys. Rev. B: At. Mol. Opt. Phys. 81 064516), and recently analysed by Amore and Fernandez (AF, 2012 Phys. Rev. B: At. Mol. Opt. Phys. 45 235004), through a large, non-orthogonal basis, Rayleigh–Ritz (RR) analysis. This deceptively simple problem has a long history of poorly approximated energy values, particularly for the ground state, until the recent work by AF. In contrast to their approach, we implement an orthogonal polynomial projection quantization (OPPQ) analysis (Handy and Vrinceanu 2013 J. Phys. A: Math. Theor. 46 135202), involving expanding the wavefunction in terms of a complete basis, Ψ( r-vector )=∑ n Ω n P n ( r-vector )R( r-vector ), where P n are the orthogonal polynomials relative to the weight R. For systems transformable into a moment equation, such as DP, the projection coefficients are determinable in closed form, yielding an efficient quantization procedure, particularly when the weight assumes the asymptotic form of the physical solutions. There are several theoretical reasons why the OPPQ should be more effective than the above RR approach. Indeed, comparable results are achieved with significantly fewer OPPQ variational parameters as compared to RR-variational parameters. For instance, with regards to the delicate ground state energy, 130 OPPQ variables are required to achieve E gr = −0.137 7614 (E gr = −0.137 7514 after a Shanks transform) as opposed to the 821 required within the RR formulation: E gr = −0.137 7478. Despite this, the relative slow convergence for low lying even parity states, within both the OPPQ and RR formulations, suggests that significant logarithmic contributions to the wavefunction, at the origin, have been ignored by all previous investigators. Modifying the RR variational analysis to include log-dependent basis, affirms this through an

  12. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  13. Two-dimensional macroscopic quantum tunneling in multi-gap superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Asai, Hidehiro; Kawabata, Shiro; Ota, Yukihiro; Machida, Masahiko

    2014-01-01

    Low-temperature characters of superconducting devices yield definite probes for different superconducting phenomena. We study the macroscopic quantum tunneling (MQT) in a Josephson junction, composed of a single-gap superconductor and a two-gap superconductor. Since this junction has two kinds to the superconducting phase differences, calculating the MQT escape rate requires the analysis of quantum tunneling in a multi-dimensional configuration space. Our approach is the semi-classical approximation along a 1D curve in a 2D potential- energy landscape, connecting two adjacent potential (local) minimums through a saddle point. We find that this system has two plausible tunneling paths; an in-phase path and an out-of-phase path. The former is characterized by the Josephson-plasma frequency, whereas the latter is by the frequency of the characteristic collective mode in a two-band superconductor, Josephson- Leggett mode. Depending on external bias current and inter-band Josephson-coupling energy, one of them mainly contributes to the MQT. Our numerical calculations show that the difference between the in-phase path and the out-of-phase path is manifest, with respect to the bias- current-dependence of the MQT escape rate. This result suggests that our MQT setting be an indicator of the Josephson-Leggett mode

  14. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    Science.gov (United States)

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  15. Two-dimensional massless quantum electrodynamics in the Landau-gauge formalism and the Higgs mechanism

    International Nuclear Information System (INIS)

    Ito, K.R.

    1975-01-01

    The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world. (author)

  16. Hamiltonian formalism at light front for two-dimensional quantum electrodynamics equivalent to lorentz-covariant approach

    CERN Document Server

    Paston, S A; Prokhvatilov, E V

    2002-01-01

    The Hamiltonian, reproducing the results of the two-dimensional quantum electrodynamics in the Lorentz coordinates, is constructed on the light front. The procedure of bosonization and analysis of the boson perturbation theory in all the orders by the fermions mass are applied for this purpose. Besides the common terms, originating by the naive quantization on the light front, the obtained Hamiltonian contains an additional counterterm. It is proportional to the linear combination of the fermion zero modes (multiplied by a certain factor compensating the charge and fermion number). The coefficient before this counterterm has no ultraviolet divergence, depends on the value of the fermion condensate in the theta-vacuum and by the small fermion mass is linear by it

  17. Pairing in a two-dimensional two-band very anisotropic model in the mean field approximation

    International Nuclear Information System (INIS)

    Fazakas, A.B.; Pitis, R.

    1993-09-01

    A two-dimensional model is proposed: there are two kinds of sites, with one electronic state per site; tunneling takes place only in one direction; the interaction involves only electrons on different sites. The existence of a phase transition involving interband pairing of electrons is discussed in the mean field approximation. (author)

  18. TWO-DIMENSIONAL LOCALIZATION OF ATOMIC POPULATIONS IN FOUR-LEVEL QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    E. A. Efremova

    2014-07-01

    Full Text Available The paper deals with investigation of one aspect of fundamental problem of laser radiation interaction with the matter. This problem is spatial localization of atomic populations due to fields impact of few running waves. We are the first to propose in our work two–dimensional spatial localization of atomic populations in medium with tripod–like configuration of levels under the field influence of running waves only. Three running waves, propagating along one plane 120o angle-wise to each other, form the system of standing waves in this plane. Atomic populations can be localized in the field of these standing waves. Moreover, the degree of such localization can make up hundredth parts of the wavelength of the incident optical radiation. It is shown that an excitation of the central transition of the tripod-like system using a field of multidirectional linearly polarized running waves is the necessary condition of the population dependence from spatial coordinates in the XY – plane. The two–dimensional shapes that appear in this system can have very complicated structure such as “double – craters”.

  19. Mean-field description of ultracold bosons on disordered two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Buonsante, Pierfrancesco; Massel, Francesco; Penna, Vittorio; Vezzani, Alessandro

    2007-01-01

    In the present communication, we describe the properties induced by disorder on an ultracold gas of bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centred on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence. (fast track communication)

  20. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  1. Growth optimization and characterization of high mobility two-dimensional electron systems in AlAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Shivaji

    2009-02-15

    In this work two-dimensional electron systems (2DESs) based on AlAs/AlGaAs heterostructures doped with Si are investigated. The electrons are confined in AlAs quantum wells (QWs) sandwiched between AlGaAs buffers. Analytical calculations and simulations for AlAs QWs are presented in the first chapter. The results show a cross-over width, above which the wide (001)-oriented QWs show double valley occupancy and wide (110)-oriented QWs show single valley occupancy. We solve the Schroedinger equation analytically for anisotropic masses. The solution shows the orientation dependence of the elliptical cyclotron orbit due to the anisotropic mass. We also present an introduction to the Landau level crossings based on g{sup *}m{sup *} product. In the next chapter, we present experimental results for the double-valley (001)-oriented AlAs QWs. We present the different structures of the deep AlAs QWs along with the low temperature magnetotransport data for these QWs. Thereafter, we present the results on shallow AlAs QWs. We achieved a mobility of 4.2 x 10{sup 5} cm{sup 2}/Vs at 330 mK for the deep backside doped AlAs QW. For the shallow QWs, we achieved a mobility of2.3 x 10{sup 5} cm{sup 2}/Vs at 330 mK, for a density of 2.9 x 10{sup 11} cm{sup -2}. From the magneto-transport data, we see evidence of the double-valley occupation for the (001)-oriented AlAs wide QWs. In the next chapter, we present experimental results for the single-valley (110)-oriented AlAs QWs. We deduced the donor binding energy and the doping efficiency for this facet from a doping series of double-sided doped QWs. Thereafter, we designed different structures for the (110)-oriented AlAs QWs, which we present along with their respective low temperature magneto-transport data. We measured one of the double-sided doped AlAs QWs at very high magnetic fields and low temperatures, down to 60 mK. At the end of the chapter, we present a spike feature observed in the magneto-transport data of these QWs. This

  2. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  3. Quantum-size effects in the energy loss of charged particles interacting with a confined two-dimensional electron gas

    International Nuclear Information System (INIS)

    Borisov, A. G.; Juaristi, J. I.; Muino, R. Diez; Sanchez-Portal, D.; Echenique, P. M.

    2006-01-01

    Time-dependent density-functional theory is used to calculate quantum-size effects in the energy loss of antiprotons interacting with a confined two-dimensional electron gas. The antiprotons follow a trajectory normal to jellium circular clusters of variable size, crossing every cluster at its geometrical center. Analysis of the characteristic time scales that define the process is made. For high-enough velocities, the interaction time between the projectile and the target electrons is shorter than the time needed for the density excitation to travel along the cluster. The finite-size object then behaves as an infinite system, and no quantum-size effects appear in the energy loss. For small velocities, the discretization of levels in the cluster plays a role and the energy loss does depend on the system size. A comparison to results obtained using linear theory of screening is made, and the relative contributions of electron-hole pair and plasmon excitations to the total energy loss are analyzed. This comparison also allows us to show the importance of a nonlinear treatment of the screening in the interaction process

  4. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  5. Two-dimensional transient far-field analysis for the excess temperature from an arbitrary source

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.J.; Long, E.C.

    1978-07-01

    An analytic solution is presented for the two-dimensional time-dependent advective diffusion equation governing the distribution of excess temperature in a river of uniform width, depth, and downstream flow. The solution is also applicable to a straight coastline with uniform longshore flow. Exact solutions are obtained for a point heat source and a particular line heat source, while an approximate representation is given for an arbitrary time-varying heat source. These solutions are incorporated into a computer program which calculates excess temperature and time rate-of-change of excess temperature in a river or coast as a result of waste heat discharged from various transient sources.

  6. The far field migration of radionuclides in two dimensional groundwater flows though geologic media

    International Nuclear Information System (INIS)

    Ting, D.K.S.; Chambre, P.

    1985-01-01

    An analytical method to model the radionuclides migration in a two dimensional groundwater flor through geologic media has been developed and implemented into the computer code UCBNE21. Using this method, the potential hazard to the biosphere posed by the accidental release of radionuclides from a candidate repository site (WIPP) is determined. I-129 and Ra-226 are potentially the most hazardous nuclides in these sites but their discharge into the biosphere will not result in concentrations larger than their maximum permissible concentrations. (Author) [pt

  7. Elementary excitations and quasi-two-dimensional behaviour in a GaAs field effect transistor

    International Nuclear Information System (INIS)

    Tomak, M.; Sernelius, B.E.; Berggren, K.F.

    1983-09-01

    The elementary excitation modes in a narrow channel of conducting electrons in a special GaAs FET are evaluated within the RPA-approximation. The system is found to be quasi-two-dimensional when the width of the channel is small, i.e. there are collective excitations with a dispersion very close to the strictly 2D form. In addition to the low-lying quasi-2D-mode there are higher collective modes associated with the sub-band structure of the device. (author)

  8. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...... except for the case where p for the inner magnet is one minus p for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet p is equal to minus the outer magnet p. Thus there can never be a force and a torque in the same system....

  9. Slip-line field analysis of metal flow during two dimensional forging

    International Nuclear Information System (INIS)

    Fenton, R.G.; Khataan, H.A.

    1981-01-01

    A method of computation and a computer software package were developed for solving problems of two dimensional plastic flow between symmetrical dies of any specified shape. The load required to initiate plastic flow, the stress and velocity distributions in the plastic region of the metal, and the pressure distribution acting on the die are determined. The method can be used to solve any symmetrical plane strain flow problem regardless of the complexity of the die. The accurate solution obtained by this efficient method can provide valuable help to forging die designers. (Author) [pt

  10. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of size O(1). Our first result concerns the optimal scaling of the distance d with the linear size of the lattice L. We prove an upper bound d=O(L D-1 ) which is tight for D=1, 2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1, 2, different logical states can be mapped into each other by a sequence of single-qubit Pauli errors such that the energy of all intermediate states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as 'gauge qubits'. It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1, 2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional (2D) ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.

  11. Field in field technique in two-dimensional planning for whole brain irradiation; Tecnica field in field em planejamentos bidimensionais para irradiacao de cerebro total

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2016-11-01

    Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)

  12. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  13. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  14. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  15. Effect of disorder on the density of states of a two-dimensional electron gas under magnetic field

    International Nuclear Information System (INIS)

    Bonifacie, S.; Meziani, Y.M.; Chaubet, C.; Jouault, B.; Raymond, A.

    2004-01-01

    We have calculated the density of states (DOS) of a two-dimensional electron gas in a perpendicular magnetic field, using a multiple scattering method, in the ultraquantum limit. We have considered doped and disordered 2D systems. The results of the scattering method are compared with direct simulations of disordered samples. Using the DOS, we have studied the metal-insulator transition and the magnetic freeze-out including a comparison with experimental results

  16. Dynamics of two-dimensional vortex system in a strong square pinning array at the second matching field

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qing-Bao [Department of Physics, Lishui University, Lishui 323000 (China); Luo, Meng-Bo, E-mail: Luomengbo@zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2013-10-30

    We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.

  17. Calculation of nonstationary two-dimensional temperature field in a tube wall in burnout

    International Nuclear Information System (INIS)

    Kashcheev, V.M.; Pykhtina, T.V.; Yur'ev, Yu.S.

    1977-01-01

    Numerically solved is a nonstationary two-dimensional equation of heat conduction for a tube wall of fuel element simulator with arbitrary energy release. The tube is heat-insulated from the outside. The vapour-liquid mixture flows inside the tube. The burnout is realized, when the heat transfer coefficient corresponds to the developed boiling in one part of the tube, and to the deteriorated regime in the other part of it. The thermal losses are regarded on both ends of the tube. Given are the statement of the problem, the algorithm of the solution, the results of the test adjusting problem. Obtained is the satisfactory agreement of calculated fixed temperature with experimental one

  18. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  19. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    Science.gov (United States)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0    U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  20. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    Science.gov (United States)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  1. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls

    OpenAIRE

    Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-01-01

    We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, w...

  2. Luminescence of two-dimensional ordered array of the ZnO quantum nanodots, obtained by means of the synthetic opal

    International Nuclear Information System (INIS)

    Gruzintsev, A.N.; Volkov, V.T.; Emelchenko, G.A.; Karpov, I.A.; Maslov, W.M.; Michailov, G.M.; Yakimov, E.E.

    2004-01-01

    The luminescence properties of ZnO films of different thickness obtained on a synthetic opal were investigated. Several narrow peaks in the exciton emission region related to the size quantum effect of the electron wave functions were detected. Two-dimensional ordered array of ZnO quantum dots formed inside the opal pores on the second sphere layer were found by the atomic force microscopy (AFM) and angle dependence of the luminescence spectra

  3. Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well.

    Science.gov (United States)

    Khouri, T; Zeitler, U; Reichl, C; Wegscheider, W; Hussey, N E; Wiedmann, S; Maan, J C

    2016-12-16

    We report a high-field magnetotransport study of an ultrahigh mobility (μ[over ¯]≈25×10^{6}  cm^{2} V^{-1} s^{-1}) n-type GaAs quantum well. We observe a strikingly large linear magnetoresistance (LMR) up to 33 T with a magnitude of order 10^{5}% onto which quantum oscillations become superimposed in the quantum Hall regime at low temperature. LMR is very often invoked as evidence for exotic quasiparticles in new materials such as the topological semimetals, though its origin remains controversial. The observation of such a LMR in the "simplest system"-with a free electronlike band structure and a nearly defect-free environment-excludes most of the possible exotic explanations for the appearance of a LMR and rather points to density fluctuations as the primary origin of the phenomenon. Both, the featureless LMR at high T and the quantum oscillations at low T follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1 that likely originate from a different transport mechanism for the composite fermions.

  4. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  5. One-and two-dimensional topological charge distributions in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-06-01

    Full Text Available The presentation on topological charge distributions in stochastic optical fields concludes that by using a combination of speckle fields one can produce inhomogeneous vortex distributions that allow both analytical calculations and numerical...

  6. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  7. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru [Russian Academy of Sciences, Institute for Problems in Mechanics (Russian Federation)

    2017-03-15

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  8. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  9. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  10. Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity

    CERN Document Server

    Cremmer, E; Schnittger, J

    1997-01-01

    In a previous paper, we proposed a construction of U_q(sl(2)) quantum group symmetry generators for 2d gravity, where we took the chiral vertex operators of the theory to be the quantum group covariant ones established in earlier works. The basic idea was that the covariant fields in the spin 1/2 representation themselves can be viewed as generators, as they act, by braiding, on the other fields exactly in the required way. Here we transform this construction to the more conventional description of 2d gravity in terms of Bloch wave/Coulomb gas vertex operators, thereby establishing for the first time its quantum group symmetry properties. A U_q(sl(2))\\otimes U_q(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (bra/ket Verma-modules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of...

  11. High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets

    Science.gov (United States)

    Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida

    2017-01-01

    High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.

  12. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  13. Spin dynamics in high-mobility two-dimensional electron systems embedded in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael

    2012-11-22

    Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.

  14. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  15. Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs

    Science.gov (United States)

    Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.

    1986-01-01

    Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.

  16. Two dimensional analytical considerations of large magnetic and electric fields in laser produced plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Loeb, A.

    1985-08-01

    A simple model in two dimensions is developed and solved analytically taking into account the electric and magnetic fields in laser procuded plasmas. The electric potential in this model is described by a nonlinear differential equation. The stationary solution of this model is consistent for -0.1 less than or equal to psi 6 v/cm]/[B/MGauss] approx. 1

  17. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  18. Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2018-01-15

    Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  20. Adiabatic, chaotic and quasi-adiabatic charged particle motion in two-dimensional magnetic field reversals

    International Nuclear Information System (INIS)

    Buechner, J.M.

    1989-01-01

    For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab

  1. Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field

    International Nuclear Information System (INIS)

    Avellaneda, M.; Apelian, C.; Elliott, F. Jr.

    1993-01-01

    The authors analyze the advection of particles in a velocity field with Hamiltonian H(x,y) = bar V 1 y-bar V 2 x + W 1 (y) - W 2 (x), where W i , i=1,2, are random functions with stationary, independent increments. In the absence of molecular diffusion, the particle dynamics are sensitive to the streamline topology, which depends on the mean-to-fluctuations ratio p=max(|bar V 1 |/bar U;|bar V 2 |/bar U), with bar U = [|W' 1 | 2 ] 1/2 = rms fluctuations. The model is exactly solvable for p≥1 and well suited for Monte Carlo simulations for all p. Statistics are considered of streamlines for p=0, deriving power laws for the escape probability and the length of escaping trajectories for a box of size L much-gt 1. Also obtained is a characterization of the statistical topography of the Hamiltonian. The large-scale transport is studied of advected particles with p > 0. For 0 -v/2 [x(t) - (x(t))] and t -v/2 [y(t) - (y(t))]. The large-scale motions are Fickian (v=1) or superdiffusive (v=3/2) with a non-Gaussian coarse-grained probability, according to the direction of the mean velocity relative to the underlying lattice. These results are obtained analytically for p≥1 and extended to the regime 0 1 , bar V 2 ) for which stagnation regions in the flow exist. The results are compared with existing predictions on the topology of streamlines based on percolation theory and with mean-field calculations of effective diffusivities. 29 refs., 15 figs., 7 tabs

  2. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  3. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.

    Science.gov (United States)

    Noda, Naoki; Kamimura, Shinji

    2008-02-01

    With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.

  4. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  5. A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling

    International Nuclear Information System (INIS)

    Hwang, Moonkyu; Jeong, Jaejoon

    2007-07-01

    The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme

  6. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  7. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Dvoretsky, S. A.; Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Teppe, F.; Knap, W. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  8. The inversion layer of electric fields and electron phase-space-hole structure during two-dimensional collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.

    2011-01-01

    Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.

  9. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  10. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  11. Self-running and self-floating two-dimensional actuator using near-field acoustic levitation

    Science.gov (United States)

    Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping

    2016-09-01

    Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.

  12. An Al₂O₃ Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials.

    Science.gov (United States)

    Yang, Hang; Qin, Shiqiao; Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Peng, Gang; Zhang, Xueao

    2017-09-22

    We fabricated 70 nm Al₂O₃ gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al₂O₃/Si substrate is superior to that on a traditional 300 nm SiO₂/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al₂O₃/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS₂, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices.

  13. Hyperfunction quantum field theory

    International Nuclear Information System (INIS)

    Nagamachi, S.; Mugibayashi, N.

    1976-01-01

    The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de

  14. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  15. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  16. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  17. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  18. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  19. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    Science.gov (United States)

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  20. Elementary quantum field theory

    International Nuclear Information System (INIS)

    Thirring, W.; Henley, E.M.

    1975-01-01

    The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de

  1. Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Kwon, Y.; Ceperley, D.M.; Martin, R.M.

    1994-01-01

    Excitations of the two-dimensional electron gas, including many-body effects, are calculated with a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy differences between different excitations. The usual pair-product (Slater-Jastrow) trial wave function is found to lack certain correlations entirely so that backflow correlation is crucial. From the excitation energies calculated here, we determine Fermi-liquid parameters and related physical quantities such as the effective mass and the Lande g factor of the system. Our results for the effective mass are compared with previous analytic calculations

  2. Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates

    Science.gov (United States)

    Li, Yongyao; Luo, Zhihuan; Liu, Yan; Chen, Zhaopin; Huang, Chunqing; Fu, Shenhe; Tan, Haishu; Malomed, Boris A.

    2017-11-01

    We study two-dimensional (2D) matter-wave solitons in spinor Bose-Einstein condensates under the action of the spin-orbit coupling and opposite signs of the self- and cross-interactions. Stable 2D two-component solitons of the mixed-mode type are found if the cross-interaction between the components is attractive, while the self-interaction is repulsive in each component. Stable solitons of the semi-vortex type are formed in the opposite case, under the action of competing self-attraction and cross-repulsion. The solitons exist with the total norm taking values below a collapse threshold. Further, in the case of the repulsive self-interaction and inter-component attraction, stable 2D self-trapped modes, which may be considered as quantum droplets (QDs), are created if the beyond-mean-field Lee-Huang-Yang terms are added to the self-repulsion in the underlying system of coupled Gross-Pitaevskii equations. Stable QDs of the mixed-mode type, of a large size with an anisotropic density profile, exist with arbitrarily large values of the norm, as the Lee-Huang-Yang terms eliminate the collapse. The effect of the spin-orbit coupling term on characteristics of the QDs is systematically studied. We also address the existence and stability of QDs in the case of SOC with mixed Rashba and Dresselhaus terms, which makes the density profile of the QD more isotropic. Thus, QDs in the spin-orbit-coupled binary Bose-Einstein condensate are for the first time studied in the present work.

  3. Cyclotron resonance study of the two-dimensional electron layers and double layers in tilted magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Kučera, Jan

    2004-01-01

    Roč. 22, - (2004), s. 590-593 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : single layer * double layer * two-dimensional electron system * cyclotron resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  4. Two-dimensional spatial survey of the plasma potential and electric field in a pulsed bipolar magnetron discharge

    International Nuclear Information System (INIS)

    Vetushka, A.; Karkari, S.K.; Bradley, J.W.

    2004-01-01

    Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given

  5. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction.

    Science.gov (United States)

    Liu, Xiaochi; Qu, Deshun; Li, Hua-Min; Moon, Inyong; Ahmed, Faisal; Kim, Changsik; Lee, Myeongjin; Choi, Yongsuk; Cho, Jeong Ho; Hone, James C; Yoo, Won Jong

    2017-09-26

    Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS 2 ) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS 2 junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.

  6. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  7. Quantum fields in curved space

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.

    1982-01-01

    The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)

  8. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    Science.gov (United States)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  9. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  10. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate

    Science.gov (United States)

    Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun

    2018-03-01

    We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.

  11. Experimental study of multilayer solid epitaxy: two-dimensional critical behavior of a quantum solid/superfluid interface

    International Nuclear Information System (INIS)

    Ramesh, S.

    1985-01-01

    This thesis constitutes the first precise, quantitative experimental study of layering transitions, two-dimensional critical temperatures, and their relation to surface roughening. The experiments used superfluid fourth sound to probe the liquid solid 4 He interface, by coupling with surface waves unique to this interface. An annular resonator with electric transducers was used to measure the fourth sound velocity c 4 in an exfoliated graphite (Grafoil) superleak. Measurements of the pressure dependence of the fourth sound resonance frequencies (and attenuation) from ∼6 bar to ∼26 bar were made along eight isotherms from 1.0 K to 1.7 K. Plots of fourth sound resonance frequency versus coverage clearly indicate layer-by-layer solid nucleation and epitaxal growth of hcp solid 4 He on the basal plane of graphite. Further analysis yielded solid adsorption isotherms and a kinetic growth coefficient for the 4 He crystal surface and also indicated the existence of a critical temperature region and also indicated the existence of a critical temperature region around 1.0-1.2 K (the region of a bulk roughening transition). The acoustical theory for the experimental system was worked out using a parallel waveguide model; Landau's thermohydrodynamic equations were reformulated by including the mass- and heat-exchange effects occurring in the system; the equations were solved to obtain expressions for the velocity of sound propagation and attenuation

  12. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  13. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  14. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  15. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  16. Sensitivity of quantum walks to a boundary of two-dimensional lattices: approaches based on the CGMV method and topological phases

    International Nuclear Information System (INIS)

    Endo, Takako; Konno, Norio; Obuse, Hideaki; Segawa, Etsuo

    2017-01-01

    In this paper, we treat quantum walks in a two-dimensional lattice with cutting edges along a straight boundary introduced by Asboth and Edge (2015 Phys. Rev . A 91 022324) in order to study one-dimensional edge states originating from topological phases of matter and to obtain collateral evidence of how a quantum walker reacts to the boundary. Firstly, we connect this model to the CMV matrix, which provides a 5-term recursion relation of the Laurent polynomial associated with spectral measure on the unit circle. Secondly, we explicitly derive the spectra of bulk and edge states of the quantum walk with the boundary using spectral analysis of the CMV matrix. Thirdly, while topological numbers of the model studied so far are well-defined only when gaps in the bulk spectrum exist, we find a new topological number defined only when there are no gaps in the bulk spectrum. We confirm that the existence of the spectrum for edge states derived from the CMV matrix is consistent with the prediction from a bulk-edge correspondence using topological numbers calculated in the cases where gaps in the bulk spectrum do or do not exist. Finally, we show how the edge states contribute to the asymptotic behavior of the quantum walk through limit theorems of the finding probability. Conversely, we also propose a differential equation using this limit distribution whose solution is the underlying edge state. (paper)

  17. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  18. Thermal field theory in a layer: Applications of thermal field theory methods to the propagation of photons in a two-dimensional electron sheet

    International Nuclear Information System (INIS)

    Nieves, Jose F.

    2010-01-01

    We apply the thermal field theory methods to study the propagation of photons in a plasma layer, that is a plasma in which the electrons are confined to a two-dimensional plane sheet. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.

  19. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  20. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.

    Science.gov (United States)

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-11-05

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.

  1. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    KAUST Repository

    Gan, Liyong

    2015-10-07

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  2. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    KAUST Repository

    Gan, Liyong; Zhang, Qingyun; Guo, Chun-Sheng; Schwingenschlö gl, Udo; Zhao, Yong

    2015-01-01

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  3. On the scaling limits in the Euclidean (quantum) field theory

    International Nuclear Information System (INIS)

    Gielerak, R.

    1983-01-01

    The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)

  4. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  5. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  6. Two-dimensional massless quantum electrodynamics in the Landau-gauge formalism and the Higgs mechanism. [Schwinger model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K R [Kyoto Univ. (Japan). Research Inst. for Mathematical Sciences

    1975-03-01

    The Schwinger model is considered in the Landau-gauge formalism of quantum electrodynamics. This model can be solved exactly on the assumption of no radiative corrections to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson which is constructed from a pair of two-component massless fermions. This would-be Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge invariance of the first kind, and it becomes unphysical through the Higgs mechanism. However, as all the fermions themselves decouple from photons, they cannot appear as real particles in our world.

  7. Quantum field theory

    International Nuclear Information System (INIS)

    Mancini, F.

    1986-01-01

    Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)

  8. The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?

    International Nuclear Information System (INIS)

    Kurzmann, A.; Beckel, A.; Lorke, A.; Geller, M.; Ludwig, A.; Wieck, A. D.

    2015-01-01

    We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scattering on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility

  9. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  10. Properties of the quantum Hall effect of the two-dimensional electron gas in the n-inversion layer of InSb grain boundaries under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Kraak, W.; Nachtwei, G.; Herrmann, R.; Glinski, M.

    1988-01-01

    The magnetotransport properties of the two-dimensional electron gas (2DEG) confined at the interface of the grain boundary in p-type InSb bicrystals are investigated. Under high hydrostatic pressures and in high magnetic fields (B > 5 T) the integral quantum Hall regime is reached, where the Hall resistance ρ xy is quantized to h/e 2 j (j is the number of filled Landau levels of the 2DEG). In this high field regime detailed measurements are given of the resistivity ρ xx and the Hall resistance ρ xy as function of temperature T and current density j x . An unexpected high accuracy of the Hall resistance ρ xy at magnetic field values close to a fully occupied Landau level is found, despite the high value of the diagonal resistivity ρ xx . At high current densities j x in the quantum Hall regime (j = 1) a sudden breakdown of the quantized resistance value associated with a jump-like switching to the next lower quantized value h/2e 2 is observed. A simple macroscopic picture is proposed to account for these novel transport properties associated with the quantum Hall effect. (author)

  11. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  12. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  13. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  14. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  15. Particles and quantum fields

    CERN Document Server

    Kleinert, Hagen

    2016-01-01

    This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...

  16. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip M., E-mail: philip.campbell@gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Tarasov, Alexey; Joiner, Corey A.; Vogel, Eric M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Ready, W. Jud [Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States)

    2016-01-14

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  17. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    Science.gov (United States)

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.

    2016-01-01

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  18. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  19. In praise of quantum fields

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1989-08-01

    A comprehensive discussion of several topics vital for the structure of a modern Quantum Field Theory are discussed, namely: physical content of the notion of a Quantum Field; meaning of infinite renormalization; renormalizability as quantizability; the influence of several principles of quantum nature (quantizability, gauge dynamics, supersymmetry) on quantum fields dynamics; main trends of QFT evolution; present status of QFT and its frontier role in physics. (author). 15 refs, 1 fig

  20. Nonactivated transport of ultradilute two-dimensional hole systems in GaAs field-effect transistors: Interaction versus disorder

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2012-01-01

    Very strongly interacting high-purity two-dimensional (2D) electron systems at temperatures T→0 demonstrate certain nonactivated insulating behaviors that are absent in more disordered systems. By measuring in dark the T dependence of the conductivity of ultrahigh-quality 2D holes with charge densities down to 7×108 cm-2, an approximate power-law behavior is identified. Moreover, the exponent exhibits a linearly decreasing density dependence which suggests an interaction-driven nature. Such an electron state is fragile to even a slight increase of disorder, which causes a crossover from nonactivated to activated conduction. The nonactivated conduction may well be a universal interaction-driven signature of an electron state of strongly correlated (semiquantum) liquid.

  1. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  2. 电场、磁场对二维无序系统电子输运的影响%Influence of Electric Field and Magnetic Field on Transport Properties of Two-dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    刘龙; 孙素涛; 白志明

    2017-01-01

    研究了电场、磁场作用下,二维无序杂质系统电导的物理性质.电场的作用削弱了系统电导的“台阶”量子效应,随着中间散射区域尺寸的增大,系统电导随电子能量的变化振荡加剧;系统电导随着磁场的变化表现出周期性振荡行为,其振荡的剧烈程度随外部电压的增大而变小;受杂质散射的影响,系统电导随无序杂质质量分数的增大而减小.%On the action of electric field and magnetic field,the phenomenon of quantized conductance in a two-dimensional system with disordered impurities is investigated.The electric field decreases the conductance and reduced its"step"quantum effect.The increase of the size of the intermediate scattering area intensifies the oscillation of the conductance varying with the electron energy.The conductance exhibits periodic oscillation with the external magnetic field,and the intensity of the oscillation becomes smaller with the increase of the electric field.With the increase of the impurity concentration,the conductance decreases.

  3. Monrelativistic particle in a magnetic field in two-dimensional Lobachevsky space, the cylindrical coordinates and the Poincare half-plane

    International Nuclear Information System (INIS)

    Ovsiyu, E.M.

    2012-01-01

    Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)

  4. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  5. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  6. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  7. The Interplay of Rashba Spin-Orbit Interaction and Landau Level Broadening on a Two-Dimensional Electron Gas Under a Tilted Magnetic Field

    International Nuclear Information System (INIS)

    Gammag, Rayda; Villagonzalo, Cristine

    2012-01-01

    A two-dimensional electron gas in a tilted magnetic field with Rashba spin-orbit interaction (RSOI) was studied. The RSOI is accredited to the asymmetry of the heterostructure where the two-dimensional electron gas is found. The effects of the disorder-attributed Landau level broadening and the RSOI on the spin splitting were identified by simulating the density of states which was assumed to take a Gaussian shape. Increased Landau level broadening obscures the spin splitting and increases the overlap between spin states resulting to stout Gaussian peaks. On the other hand, stronger RSOI amplifies the splitting and lessens the overlap between spin states of the Landau levels. The splitting, however, results to stouter peaks. The similarity in the RSOI and Landau level broadening effects can be explained by recognizing that the asymmetry of the heterostructure is in itself a form of structural disorder.

  8. Hadrons in two-dimensional quantum chromodynamics: Construction and study of bound states by means of perturbative and non-perturbative methods

    International Nuclear Information System (INIS)

    Zeppenfeld, D.

    1984-01-01

    The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de

  9. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  10. Digestible quantum field theory

    CERN Document Server

    Smilga, Andrei

    2017-01-01

    This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...

  11. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  12. Quantum fields and dissipation

    International Nuclear Information System (INIS)

    Henning, P.

    1996-06-01

    The description of thermal or non-equilibrium systems necessitates a quantum field theory which differs from the usual approach in two aspects: 1. The Hilbert space is doubled; 2. Stable quasi-particles do not exist in interacting systems. A mini-review of these two aspects is given from a practical viewpoint including two applications. For thermal states it is shown how infrared divergences occuring in perturbative quasi-particle theories are avoided, whereas for non-equilibrium states a memory effect is shown to arise in the thermalization. (orig.)

  13. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO 6O 17

    Science.gov (United States)

    Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  14. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO{sub 6}O{sub 17}

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-04-30

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo{sub 6}O{sub 17} . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.

  15. High magnetic field studies of the charge density wave state of the quasi-two-dimensional conductor KMO6O17

    International Nuclear Information System (INIS)

    Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire

    2004-01-01

    Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations

  16. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  17. Studies in quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Mandula, J.E.; Shrauner, J.E.

    1982-01-01

    Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD

  18. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography

  19. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  20. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  1. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  2. Quantum Ising chains with boundary fields

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea

    2015-01-01

    We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)

  3. Study of Landau spectrum for a two-dimensional random magnetic field; Etude du spectre de Landau pour un champ magnetique aleatoire en dimension deux

    Energy Technology Data Exchange (ETDEWEB)

    Furtlehner, C. [Paris-6 Univ., 75 (France)

    1997-09-24

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of `strong` mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author) 78 refs.

  4. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields

    International Nuclear Information System (INIS)

    Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi

    2009-01-01

    The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced

  5. Visualization and quantification of four steps in magnetic field induced two-dimensional ordering of superparamagnetic submicron particles

    DEFF Research Database (Denmark)

    Gajula, Gnana Prakash; Neves Petersen, Teresa; Petersen, Steffen B.

    2010-01-01

    , resolved growth steps (condensation, polarization, co-linearity and concatenation), the average chain growth rate, and inter-particle interaction length were calculated in the presence of a 120 G external magnetic field using optical microscopy and ‘in-house' developed image analysis software......We hereby report a methodology that permits a quantitative investigation of the temporal self-organization of superparamagnetic nanoparticles in the presence of an external magnetic field. The kinetics of field-induced self-organization into linear chains, time-dependent chain-size distribution...

  6. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  7. Commensurability oscillations in a quasi-two-dimensional electron gas subject to strong in-plane magnetic field

    Czech Academy of Sciences Publication Activity Database

    Smrčka, Ludvík

    2016-01-01

    Roč. 77, Mar (2016), s. 108-113 ISSN 1386-9477 Institutional support: RVO:68378271 Keywords : lateral superlattices * commensurability oscillations * in-plane magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 2.221, year: 2016

  8. A new perturbative approximation applied to supersymmetric quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.

    1988-01-01

    We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  9. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  10. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  11. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  12. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  13. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1965-12-01

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given

  14. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-12-15

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given.

  15. Analytical solutions of the Schrödinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-01-01

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schrödinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  16. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model

    NARCIS (Netherlands)

    Velazco, Julio G.; Rodríguez-Álvarez, María Xosé; Boer, Martin P.; Jordan, David R.; Eilers, Paul H.C.; Malosetti, Marcos; Eeuwijk, van Fred A.

    2017-01-01

    Key message: A flexible and user-friendly spatial method called SpATS performed comparably to more elaborate and trial-specific spatial models in a series of sorghum breeding trials. Abstract: Adjustment for spatial trends in plant breeding field trials is essential for efficient evaluation and

  17. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model

    NARCIS (Netherlands)

    J.G. Velazco (Julio G.); M.X. Rodríguez-Álvarez (María Xosé); M.P. Boer (Martin); D.R. Jordan (David R.); P.H.C. Eilers (Paul); M. Malosetti (Marcos); F. van Eeuwijk (Fred)

    2017-01-01

    markdownabstract_Key message: A flexible and user-friendly spatial method called SpATS performed comparably to more elaborate and trial-specific spatial models in a series of sorghum breeding trials._ __Abstract:__ Adjustment for spatial trends in plant breeding field trials is essential for

  18. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  19. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  20. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    Science.gov (United States)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  1. Quantum Yang-Mills theory of Riemann surfaces and conformal field theory

    International Nuclear Information System (INIS)

    Killingback, T.P.

    1989-01-01

    It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)

  2. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation

    International Nuclear Information System (INIS)

    Lan, Haiqiang; Zhang, Zhongjie

    2011-01-01

    The finite-difference (FD) method is a powerful tool in seismic wave field modelling for understanding seismic wave propagation in the Earth's interior and interpreting the real seismic data. The accuracy of FD modelling partly depends on the implementation of the free-surface (i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary condition approximate schemes (such as one-sided, centred finite-difference, composed, new composed, implicit and boundary-modified approximations) have been developed in FD second-order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and lateral heterogeneous models using these free-surface boundary condition approximate schemes and evaluate their stability and applicability by comparing with corresponding analytical solutions, and then quantitatively evaluate the accuracies of different approximate schemes from the misfit of the amplitude and phase between the numerical and analytical results. Our results confirm that the composed scheme becomes unstable for the V s /V p ratio less than 0.57, and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2) the new composed, implicit and boundary-modified schemes are stable even when the V s /V p ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical solution (which means larger errors in travel-time and reflection strength), the other five approximate schemes show better performance in travel-time (phase) than strength (amplitude)

  3. STM/STS Measurements of Two-Dimensional Electronic States in Magnetic Fields at Epitaxially Grown InAs(111)A Surfaces

    International Nuclear Information System (INIS)

    Niimi, Y; Kanisawa, K; Kojima, H; Kambara, H; Hirayama, Y; Tarucha, S; Fukuyama, Hiroshi

    2007-01-01

    The local density of states (LDOS) at the epitaxially grown InAs surface on a GaAs substrate was studied at very low temperatures in magnetic fields up to 6 T by scanning tunneling microscopy and spectroscopy. We observed a series of peaks, associated with Landau quantization of the two-dimensional electron system (2DES), in the tunnel spectra just above the subband energy (-80 meV) of the 2DES. The intervals between the peaks are consistent with the estimation from the effective mass of the 2DES at the InAs surface. In a wider energy range, another type of oscillation which was independent of magnetic field was also observed. This oscillation can be explained by the energy dependence of the transmission probability of the tunneling current through the Schottky barrier formed at the interface between the InAs film and GaAs substrate

  4. Orbital effect for the Fulde-Ferrell-Larkin-Ovchinnikov phase in a quasi-two-dimensional superconductor in a parallel magnetic field

    Science.gov (United States)

    Lebed, A. G.

    2018-04-01

    We theoretically study the orbital destructive effect against superconductivity in a parallel magnetic field in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) phase at zero temperature in a quasi-two-dimensional (Q2D) conductor. We demonstrate that at zero temperature a special parameter, λ =l⊥(H ) /d , is responsible for strength of the orbital effect, where l⊥(H ) is a typical "size" of the quasiclassical electron orbit in a magnetic field and d is the interplane distance. We discuss applications of our results to the existing experiments on the FFLO phase in the organic Q2D conductors κ -(ET) 2Cu (NCS) 2 and κ -(ET) 2Cu [N (CN) 2] Cl .

  5. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor.

    Science.gov (United States)

    Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun

    2017-06-28

    β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

  6. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  7. Models of Quantum Space Time: Quantum Field Planes

    OpenAIRE

    Mack, G.; Schomerus, V.

    1994-01-01

    Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.

  8. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Pu Qiurong; Chen Yuan

    2013-01-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  9. Quantum principles in field interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1986-01-01

    The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions

  10. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  11. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    Science.gov (United States)

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  12. Dirac, Jordan and quantum fields

    International Nuclear Information System (INIS)

    Darrigol, O.

    1985-01-01

    The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr

  13. Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field

    Science.gov (United States)

    Ertaş, Mehmet

    2015-09-01

    Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.

  14. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  15. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  16. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  17. X-ray and visible light transmission as two-dimensional, full-field moisture-sensing techniques: A preliminary comparison

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Glass, R.J.

    1992-01-01

    Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project

  18. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  19. Topics in quantum field theory

    International Nuclear Information System (INIS)

    Svaiter, N.F.

    2006-11-01

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method

  20. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  1. Effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well by Shubnikov-de Haas oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kawamata, Shuichi, E-mail: s-kawamata@riast.osakafu-u.ac.jp; Kawamura, Yuichi [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai 599-8570 (Japan); Hibino, Akira; Tanaka, Sho [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)

    2016-10-14

    In order to develop optical devices for 2–3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.

  2. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  3. Bosonization in a two-dimensional Riemann Cartan geometry

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1987-01-01

    We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)

  4. Quantum groups, quantum categories and quantum field theory

    CERN Document Server

    Fröhlich, Jürg

    1993-01-01

    This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

  5. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  6. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS

    Directory of Open Access Journals (Sweden)

    Liming He

    2015-09-01

    Full Text Available Mapping deformation field time-series, including vertical and horizontal motions, is vital for landslide monitoring and slope safety assessment. However, the conventional differential synthetic aperture radar interferometry (DInSAR technique can only detect the displacement component in the satellite-to-ground direction, i.e., line-of-sight (LOS direction displacement. To overcome this constraint, a new method was developed to obtain the displacement field time series of a slope by coupling DInSAR based small baseline subset approach (DInSAR-SBAS with multiple-aperture InSAR (MAI based small baseline subset approach (MAI-SBAS. This novel method has been applied to a set of 11 observations from the phased array type L-band synthetic aperture radar (PALSAR sensor onboard the advanced land observing satellite (ALOS, spanning from 2007 to 2011, of two large-scale north–south slopes of the largest Asian open-pit mine in the Northeast of China. The retrieved displacement time series showed that the proposed method can detect and measure the large displacements that occurred along the north–south direction, and the gradually changing two-dimensional displacement fields. Moreover, we verified this new method by comparing the displacement results to global positioning system (GPS measurements.

  7. Protected gates for topological quantum field theories

    International Nuclear Information System (INIS)

    Beverland, Michael E.; Pastawski, Fernando; Preskill, John; Buerschaper, Oliver; Koenig, Robert; Sijher, Sumit

    2016-01-01

    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group

  8. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  9. Quantum theory of noncommutative fields

    International Nuclear Information System (INIS)

    Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.

    2003-01-01

    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)

  10. Exact Landau levels in two-dimensional electron systems with Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field

    International Nuclear Information System (INIS)

    Zhang Degang

    2006-01-01

    We study a two-dimensional electron system in the presence of both Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field. Defining two suitable boson operators and using the unitary transformations we are able to obtain the exact Landau levels in the range of all the parameters. When the strengths of the Rashba and Dresselhaus spin-orbit interactions are equal, a new analytical solution for the vanishing Zeeman energy is found, where the orbital and spin wavefunctions of the electron are separated. It is also shown that in this case the Zeeman and spin-orbit splittings are independent of the Landau level index n. Due to the Zeeman energy, new crossing between the eigenstates vertical bar n, k, s = 1, σ) and vertical bar n + 1, k, s' = -1, σ') is produced at a certain magnetic field for larger Rashba spin-orbit coupling. This degeneracy leads to a resonant spin Hall conductance if it happens at the Fermi level. (letter to the editor)

  11. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    International Nuclear Information System (INIS)

    Brualla-González, Luis; Vicedo, Aurora; Roselló, Joan V; Gómez, Faustino; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Pardo-Montero, Juan

    2012-01-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development. (paper)

  12. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  13. [Studies in quantum field theory

    International Nuclear Information System (INIS)

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity

  14. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri

    2016-01-01

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  15. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)

    2016-07-15

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  16. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  17. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  18. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  19. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  20. Application of adjustment calculus in the nodeless Trefftz method for a problem of two-dimensional temperature field of the boiling liquid flowing in a minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.

  1. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  2. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  3. Observer dependence of quantum states in relativistic quantum field theories

    International Nuclear Information System (INIS)

    Malin, S.

    1982-01-01

    Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems

  4. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  5. Nonlocality, Correlations, and Magnetotransport in a Spatially Modulated Two-Dimensional Electron Gas

    Science.gov (United States)

    Raichev, O. E.

    2018-04-01

    It is shown that the classical commensurability phenomena in weakly modulated two-dimensional electron systems is a manifestation of the intrinsic properties of the correlation functions describing a homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in such systems.

  6. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  7. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  8. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  10. Topics in quantum field theory

    NARCIS (Netherlands)

    Dams, C.J.F.

    2006-01-01

    In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and

  11. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  12. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  13. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  14. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  15. Tsallis’ quantum q-fields

    Science.gov (United States)

    Plastino, A.; Rocca, M. C.

    2018-05-01

    We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.

  16. Introduction into a two-dimensional model of the photochemistry of the stratosphere of precipitations of galactic and solar protons: case of the present terrestrial magnetic field and of field reversal

    International Nuclear Information System (INIS)

    Brard, D.

    1982-11-01

    In the aim of studying the climatic variations related to the reversal of the geomagnetic field, an analysis has been made of the effects of precipitations of galactic and solar protons, on oxide of nitrogen (NOsub(x) and NO) and ozone. Modifications are introduced into the one- and two-dimensional models which take into account the structure of the magnetic field. In situ measurements after the solar event of August 1972 enable changes due to the solar cycles to be introduced and the use of a 2D model to be justified [fr

  17. Phase diagram of a two-dimensional liquid in GaAs/AlxGa1-xAs biased double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Larionov, A. V.; Alessi, M. G.

    2000-01-01

    Photoluminescence (PL) and PL excitation (PLE) measurements have been performed in GaAs/AlxGa1-xAs biased double quantum well heterostructures. The recombination of electrons, e, with holes, h, located in the same or in two adjacent wells, has been investigated for different exciting power...

  18. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  19. Buckled two-dimensional Xene sheets.

    Science.gov (United States)

    Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji

    2017-02-01

    Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

  20. Modular groups in quantum field theory

    International Nuclear Information System (INIS)

    Borchers, H.-J.

    2000-01-01

    The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)

  1. Growth patterns of self-assembled InAs quantum dots near the two-dimensional to three-dimensional transition

    Science.gov (United States)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Rosa-Clot, M.; Taddei, S.

    1997-06-01

    Self-assembled InAs quantum dots have been grown by molecular beam epitaxy in such a way as to obtain a continuous variation of InAs coverages across the wafer. Structured photoluminescence spectra are observed after excitation of a large number of dots; deconvolution into Gaussian components yields narrow emission bands (full width at half-maximum 20-30 meV) separated in energy by an average spacing of 30-40 meV. We ascribe the individual bands of the photoluminescence spectra after low excitation to families of dots with similar shapes and with heights differing by one monolayer, as strongly supported by numerical calculations of the fundamental electronic transitions in quantum dot structures.

  2. Two-dimensional calculation by finite element method of velocity field and temperature field development in fast reactor fuel assembly. II

    International Nuclear Information System (INIS)

    Schmid, J.

    1985-11-01

    A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)

  3. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  4. Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program.

    Science.gov (United States)

    Caumo, Francesca; Zorzi, Manuel; Brunelli, Silvia; Romanucci, Giovanna; Rella, Rossella; Cugola, Loredana; Bricolo, Paola; Fedato, Chiara; Montemezzi, Stefania; Houssami, Nehmat

    2018-04-01

    Purpose To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography compared with those after full-field digital mammography (FFDM). Materials and Methods This prospective study included 16 666 asymptomatic women aged 50-69 years who were recruited in April 2015 through March 2016 for DBT plus synthetic 2D screening in the Verona screening program. A comparison cohort of women screened with FFDM (n = 14 423) in the previous year was included. Screening detection measures for the two groups were compared by calculating the proportions associated with each outcome, and the relative rates (RRs) were estimated with multivariate logistic regression. Results Cancer detection rate (CDR) for DBT plus synthetic 2D imaging was 9.30 per 1000 screening examinations versus 5.41 per 1000 screening examinations with FFDM (RR, 1.72; 95% confidence interval [CI]: 1.30, 2.29). CDR was significantly higher in patients screened with DBT plus synthetic 2D imaging than in those screened with FFDM among women classified as having low breast density (RR, 1.53; 95% CI: 1.13, 2.10) or high breast density (RR, 2.86; 95% CI: 1.42, 6.25). The positive predictive value (PPV) for recall was almost doubled with DBT plus synthetic 2D imaging: 23.3% versus 12.9% of recalled patients who were screened with FFDM (RR, 1.81; 95% CI: 1.34, 2.47). The recall rate was similar between groups (RR, 0.95; 95% CI: 0.84, 1.06), whereas the recall rate with invasive assessment was higher for DBT plus synthetic 2D imaging than for FFDM (RR, 1.93; 95% CI: 1.31, 2.03). The mean number of screening studies interpreted per hour was significantly lower for screening examinations performed with DBT plus synthetic 2D imaging (38.5 screens per hour) than with FFDM (60 screens per hour) (P < .001). Conclusion DBT plus synthetic 2D imaging increases CDRs with recall rates comparable to those of FFDM. DBT plus synthetic 2D imaging

  5. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  6. Quantum fields on the computer

    CERN Document Server

    1992-01-01

    This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.

  7. Quantum mechanics of Proca fields

    International Nuclear Information System (INIS)

    Zamani, Farhad; Mostafazadeh, Ali

    2009-01-01

    We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.

  8. Learning quantum field theory from elementary quantum mechanics

    International Nuclear Information System (INIS)

    Gosdzinsky, P.; Tarrach, R.

    1991-01-01

    The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem

  9. A philosophical approach to quantum field theory

    CERN Document Server

    Öttinger, Hans Christian

    2015-01-01

    This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

  10. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    Science.gov (United States)

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  11. Mathematical aspects of field quantization. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1983-01-01

    Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)

  12. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  13. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  14. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  15. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  16. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  17. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H2O)2SO4 and Cu(tn)Cl2

    International Nuclear Information System (INIS)

    Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander

    2016-01-01

    Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  18. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  19. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  20. A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Chao; Zhang Jin-Cheng; Zhang Jin-Feng; Liu Hong-Xia; Yang Lin-An; Zhang Kai; Zhao Sheng-Lei; Chen Yong-He; Zheng Xue-Feng; Hao Yue; Yang Cui; Ma Xiao-Hua

    2014-01-01

    In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, AlGaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco—Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Optical studies of 2DEGs in Zinc Selenide quantum wells in high magnetic fields

    International Nuclear Information System (INIS)

    Ossau, Wolfgang J.; Astakhov, G.V.; Yakovlev, D.R.; Crooker, Scott A.; Waag, A.

    2002-01-01

    Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.

  2. Optical studies of 2DEGs in ZnSe quantum wells in high magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Ossau, Wolfgang J.; Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Waag, A.

    2002-01-01

    Optical properties of a two-dimensional electron gas in ZnSe/(Zn,Be,Mg)Se quantum well structures have been examined by means of photoluminescence and reflectivity techniques in external magnetic fields up to 50 T. For these structures the Fermi energy of the two-dimensional electron gas is falling in the range between the trion binding energy and the exciton binding energy, which keeps the dominating role of Coulombic interaction between electrons and photoexcited holes. Characteristic peculiarities of optical spectra are discussed.

  3. Analytic aspects of quantum fields

    CERN Document Server

    Bytsenko, A A; Elizalde, E; Moretti, V; Zerbini, S

    2003-01-01

    One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Pa

  4. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  5. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  6. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  7. Covariance operator of functional measure in P(φ)2-quantum field theory

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1988-01-01

    Functional integration measure in the Euclidean quantum field theory with polynomial interactions of boson fields with zero spin in two-dimensional space-time is investigated. The representation for the kernal of the measure covariance operator is obtained in the form of expansion over the eigenfunctions of some boundary problem for the heat equation. Two cases of the integration domains with different configurations are considered. Some trends and perspectives of employing the functional integration method in quantum field theory are also discussed. 43 refs

  8. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  9. Investigation of Electronic and Opto-Electronic Properties of Two-Dimensional (2D) Layers of Copper Indium Selenide Field Effect Transistors

    Science.gov (United States)

    Patil, Prasanna Dnyaneshwar

    Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from

  10. Quantum measurement and algebraic quantum field theories

    International Nuclear Information System (INIS)

    DeFacio, B.

    1976-01-01

    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories

  11. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  12. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  13. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  14. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  15. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  16. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  17. Tensor categories and endomorphisms of von Neumann algebras with applications to quantum field theory

    CERN Document Server

    Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning

    2015-01-01

    C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).

  18. Quantum field theory of universe

    International Nuclear Information System (INIS)

    Hosoya, Akio; Morikawa, Masahiro.

    1988-08-01

    As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)

  19. Quantum fields and processes a combinatorial approach

    CERN Document Server

    Gough, John

    2018-01-01

    Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson-Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom-Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson-Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists, quant...

  20. Quantum fields and processes a combinatorial approach

    CERN Document Server

    Gough, John

    2018-01-01

    Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists,...

  1. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  2. Nonlocal quantum field theory and stochastic quantum mechanics

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)

  3. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  4. Soliton mass and surface tension in the(lambda/phi/4)2quantum field model

    International Nuclear Information System (INIS)

    Bellissard, J.; Froehlich, J.; Gidas, B.

    1978-01-01

    The spectrum of the mass operator on the soliton sectors of the anisotropic (lambda/phi 4 ) 2 - and the (lambda phi 4 ) 2 -quantum field models in the two phase region is analyzed. It is proven that, for small enough lambda>O, the mass gap m(lambda) on the soliton sector is positive, and m(lambda) = O(lambda -1 ). In principle, our methods apply to any two dimensional quantum field model with a spontaneously broken, internal symmetry group. (orig.) [de

  5. Periodic electromagnetic vacuum in the two-dimensional Yang-Mills theory with the Chern-Simons mass

    International Nuclear Information System (INIS)

    Skalozub, V.V.; Vilensky, S.A.; Zaslavsky, A.Yu.

    1993-06-01

    The periodic vacuum structure formed from magnetic and electric fields is derived in the two-dimensional Yang-Mills theory with the Chern-Simons term. It is shown that both the magnetic flux quantization in the fundamental sell and conductivity quantization inherent to the vacuum. Hence, the quantum Hall effect gets its natural explanation. (author). 10 refs

  6. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  7. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  8. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  9. Resonant spin Hall effect in two dimensional electron gas

    Science.gov (United States)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  10. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  11. Neutrix calculus and finite quantum field theory

    International Nuclear Information System (INIS)

    Ng, Y Jack; Dam, H van

    2005-01-01

    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)

  12. Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2CoSi2O7 crystal

    Science.gov (United States)

    Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.

    2009-05-01

    We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.

  13. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  14. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  15. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  16. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.

  17. Field theoretical construction of an infinite set of quantum commuting operators related with soliton equations

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru

    1987-01-01

    The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie a certain class of quantum integrable systems. (orig.)

  18. Field theoretical construction of an infinite set of quantum commuting operators related with soliton equations

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru.

    1986-08-01

    The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie certain class of quantum integrable systems. (author)

  19. A new way of visualising quantum fields

    Science.gov (United States)

    Linde, Helmut

    2018-05-01

    Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.

  20. Quantum fields and Poisson processes. Pt. 2

    International Nuclear Information System (INIS)

    Bertrand, J.; Gaveau, B.; Rideau, G.

    1985-01-01

    Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)