A Global Solution to a Two-dimensional Riemann Problem Involving Shocks as Free Boundaries
Institute of Scientific and Technical Information of China (English)
Yuxi Zheng
2003-01-01
We present a global solution to a Riemann problem for the pressure gradient system of equations.The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.
The problem of friction in two-dimensional relative motion
Grech, D K; Grech, Dariusz; Mazur, Zygmunt
2000-01-01
We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem
Tarwidi, Dede
2016-01-01
Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.
De Armas, Jesica; Leon, Coromoto; Miranda, Gara; Segura, Carlos
2010-01-01
Abstract This paper considers a real-world Two-Dimensional Strip Packing Problem involving specific machinery constraints and actual cutting production industry requirements. To suit the problem to a wider range of machinery characteristics, the design objective contemplates the minimisation of material length and the total number of cuts for guillotinable-type patterns. The number of cuts required for the cutting process is crucial for the life of the industrial machines and...
Boundary-value problems for two-dimensional canonical systems
Hassi, Seppo; De Snoo, H; Winkler, Henrik
2000-01-01
The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess
A Hybrid Demon Algorithm for the Two-Dimensional Orthogonal Strip Packing Problem
Directory of Open Access Journals (Sweden)
Bili Chen
2015-01-01
Full Text Available This paper develops a hybrid demon algorithm for a two-dimensional orthogonal strip packing problem. This algorithm combines a placement procedure based on an improved heuristic, local search, and demon algorithm involved in setting one parameter. The hybrid algorithm is tested on a wide set of benchmark instances taken from the literature and compared with other well-known algorithms. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm.
Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem
De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo
2012-01-01
The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…
Two-Dimensional Rectangular Stock Cutting Problem and Solution Methods
Institute of Scientific and Technical Information of China (English)
Zhao Hui; Yu Liang; Ning Tao; Xi Ping
2001-01-01
Optimal layout of rectangular stock cutting is still in great demand from industry for diversified applications. This paper introduces four basic solution methods to the problem: linear programming, dynamic programming, tree search and heuristic approach. A prototype of application software is developed to verify the pros and cons of various approaches.
The compressible Gortler problem in two-dimensional boundary layers
Dando, Andrew H.; Seddougui, Sharon O.
1993-01-01
In this paper the authors investigate the growth rates of Gortler vortices in a compressible flow in the inviscid limit of large Gortler number. Numerical solutions are obtained for O(1) wavenumbers. The further limits of (i) large Mach number and (ii) large wavenumber with O(1) Mach number are considered. It is shown that two different types of disturbance mode can appear in this problem. The first is a wall layer mode, so named as it has its eigenfunctions trapped in a thin layer near the wall. The other mode investigated is confined to a thin layer away from the wall and termed a trapped-layer mode for large wavenumbers and an adjustment-layer mode for large Mach numbers, since then this mode has its eigenfunctions concentrated in the temperature adjustment layer. It is possible to investigate the near crossing of the modes which occurs in each of the limits mentioned. The inviscid limit does not predict a fastest growing mode, but does enable a most dangerous mode to be identified for O(1) Mach number. For hypersonic flow the most dangerous mode depends on the size of the Gortler number.
PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM
Institute of Scientific and Technical Information of China (English)
ZHOU WANG-MIN; FAN TIAN-YOU
2001-01-01
The plane elasticity theory of two-dimensional octagonal quasicrystals is developed in this paper. The plane elasticity problem of quasicrystals is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the exact analytic solution of a Mode I Griffith crack in the material is obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate can be calculated. The physical significance of the results relative to the phason and the difference between the mechanical behaviours of the crack problem in crystals and quasicrystals are figured out.These provide important information for studying the deformation and fracture of the new solid phase.
A Numerical Solution of the Two-Dimensional Fusion Problem with Convective Boundary Conditions
Gülkaç, Vildan
2010-01-01
In this paper, we present an LOD method for solving the two-dimensional fusion problem with convective boundary conditions. In this study, we extend our earlier work [1] on the solution of the two-dimensional fusion problem by considering a class of time-split finite-difference methods, namely locally one-dimensional (LOD) schemes. In addition, following the idea of Douglas [2, 3], a Douglas-like splitting scheme is presented. A stability analysis by Fourier series method (von Neumann stability) of the scheme is also investigated. Computational results obtained by the present method are in excellent agreement with the results reported previously by other research.
On t-local solvability of inverse scattering problems in two-dimensional layered media
Baev, A. V.
2015-06-01
The solvability of two-dimensional inverse scattering problems for the Klein-Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier-Stokes equation is solvable.
Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem
J.B.G. Frenk (Hans); G. Galambos
1987-01-01
textabstractWe present a new approximation algorithm for the two-dimensional bin-packing problem. The algorithm is based on two one-dimensional bin-packing algorithms. Since the algorithm is of next-fit type it can also be used for those cases where the output is required to be on-line (e. g. if we
A two-dimensional embedded-boundary method for convection problems with moving boundaries
Hassen, Y.J.; Koren, B.
2010-01-01
In this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes in the imme
Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem
J.B.G. Frenk (Hans); G. Galambos
1987-01-01
textabstractWe present a new approximation algorithm for the two-dimensional bin-packing problem. The algorithm is based on two one-dimensional bin-packing algorithms. Since the algorithm is of next-fit type it can also be used for those cases where the output is required to be on-line (e. g. if we
TWO-DIMENSIONAL RIEMANN PROBLEMS:FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS
Institute of Scientific and Technical Information of China (English)
Li Jiequan; Sheng Wancheng; Zhang Tong; Zheng Yuxi
2009-01-01
In this paper we survey the authors' and related work on two-dimensional Rie-mann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
T, M P Ramirez
2012-01-01
Using a conjecture that allows to approach separable-variables conductivity functions, the elements of the Modern Pseudoanalytic Function Theory are used, for the first time, to numerically solve the Dirichlet boundary value problem of the two-dimensional Electrical Impedance Equation, when the conductivity function arises from geometrical figures, located within bounded domains.
Institute of Scientific and Technical Information of China (English)
Xu Zhang; En-min Feng
2004-01-01
This paper studies the two-dimensional layout optimization problem.An optimization model with performance constraints is presented.The layout problem is partitioned intofinite subproblems in terms of graph theory,in such a way of that each subproblem overcomes its on-o inature optimal variable.A minimax problem is constructed that is locally equivalent to each subproblem.By using this minimax problem,we present the optimality function for every subproblem and prove that the first order necessary optimality condition is satisfied at a point if and only if this point is a zero of optimality function.
Energy Technology Data Exchange (ETDEWEB)
Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering
1997-09-01
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.
A new complex variable element-free Galerkin method for two-dimensional potential problems
Institute of Scientific and Technical Information of China (English)
Cheng Yu-Min; Wang Jian-Fei; Bai Fu-Nong
2012-01-01
In this paper,based on the element-free Galerkin (EFG) method and the improved complex variable moving least-square (ICVMLS) approximation,a new meshless method,which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems,is presented. In the method,the integral weak form of control equations is employed,and the Lagrange multiplier is used to apply the essential boundary conditions.Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained.Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng,the functional in the ICVMLS approximation has an explicit physical meaning.Furthermore,the ICVEFG method has greater computational precision and efficiency.Three numerical examples are given to show the validity of the proposed method.
Institute of Scientific and Technical Information of China (English)
Yang Xiu-Li; Dai Bao-Dong; Zhang Wei-Wei
2012-01-01
Based on the complex variable moving least-square (CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin (CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square (MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local PetrovGalerkin (MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
Preliminary evaluation capability for some two-dimensional groundwater contamination problems
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.W.; Schur, J.A.
1978-06-01
There are a variety of two-dimensional groundwater pollution problems where a preliminary evaluation of containment tansport is needed. A common difficulty in making this first assessment is the meager field data usually available. A preliminary evaluation capability has been developed for two-dimensional contamination problems that is consistent with the limited data initially available. Idealizations and simplifications have been introduced with special care so that worst-case final estimates will be provided. The preliminary evaluation results are produced using interactive computer programs that utilize self-help or coaching features for the user's convenience. The self-help programs aid the user by asking for the necessary input parameters and by guiding the user, in selecting the options needed to obtain the required results.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-08-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Sarwono, A. A.; Ai, T. J.; Wigati, S. S.
2017-01-01
Vehicle Routing Problem (VRP) is a method for determining the optimal route of vehicles in order to serve customers starting from depot. Combination of the two most important problems in distribution logistics, which is called the two dimensional loading vehicle routing problem, is considered in this paper. This problem combines the loading of the freight into the vehicles and the successive routing of the vehicles along the route. Moreover, an additional feature of last-in-first-out loading sequencesis also considered. In the sequential two dimensional loading capacitated vehicle routing problem (sequential 2L-CVRP), the loading must be compatible with the trip sequence: when the vehicle arrives at a customer i, there must be no obstacle (items for other customers) between the item of i and the loading door (rear part) of the vehicle. In other words, it is not necessary to move non-i’s items whenever the unloading process of the items of i. According with aforementioned conditions, a program to solve sequential 2L-CVRP is required. A nearest neighbor algorithm for solving the routing problem is presented, in which the loading component of the problem is solved through a collection of 5 packing heuristics.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
Stochastic domain decomposition for the solution of the two-dimensional magnetotelluric problem
Bihlo, Alexander; Haynes, Ronald D; Loredo-Osti, J Concepcion
2016-01-01
Stochastic domain decomposition is proposed as a novel method for solving the two-dimensional Maxwell's equations as used in the magnetotelluric method. The stochastic form of the exact solution of Maxwell's equations is evaluated using Monte-Carlo methods taking into consideration that the domain may be divided into neighboring sub-domains. These sub-domains can be naturally chosen by splitting the sub-surface domain into regions of constant (or at least continuous) conductivity. The solution over each sub-domain is obtained by solving Maxwell's equations in the strong form. The sub-domain solver used for this purpose is a meshless method resting on radial basis function based finite differences. The method is demonstrated by solving a number of classical magnetotelluric problems, including the quarter-space problem, the block-in-half-space problem and the triangle-in-half-space problem.
EXACT SOLUTION FOR A TWO-DIMENSIONAL LAMB'S PROBLEM DUE TO A STRIP IMPULSE LOADING
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves,including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail.A few new conclusions have been drawn from currently available integral results or computational results.
TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.
Chan, B. C.
1986-05-01
A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.
Alzahrani, Faris S.; Abbas, Ibrahim A.
2016-08-01
The present paper is devoted to the study of a two-dimensional thermal shock problem with weak, normal and strong conductivity using the eigenvalue approach. The governing equations are taken in the context of the new consideration of heat conduction with fractional order generalized thermoelasticity with the Lord-Shulman model (LS model). The bounding surface of the half-space is taken to be traction free and subjected to a time-dependent thermal shock. The Laplace and the exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. Numerical computations have been done for copper-like material for weak, normal and strong conductivity and the results are presented graphically to estimate the effects of the fractional order parameter.
A meron cluster solution for the sign problem of the two-dimensional O(3) model
Brechtefeld, F
2002-01-01
The two-dimensional O(3) model at a vacuum angle theta=pi is investigated. This model has a severe sign problem. By a Wolff cluster algorithm an integer or half-integer topological charge is assigned to each cluster. The meron clusters (clusters with half-integer topological charge) are used to construct an improved estimator for the correlation function of two spins at theta=pi. Only configurations with 0 and 2 merons contribute to this correlation function. An algorithm, that generates configurations with only 0 and 2 merons, is constructed and numerical simulations at theta=pi are performed. The numerical results indicate the presence of long range correlations at theta=pi.
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems
Institute of Scientific and Technical Information of China (English)
Bai Fu-Nong; Li Dong-Ming; Wang Jian-Fei; Cheng Yu-Min
2012-01-01
In this paper,the improved complex variable moving least-squares (ICVMLS) approximation is presented.The ICVMLS approximation has an explicit physics meaning.Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren,the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation,the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems,and the corresponding formulae are obtained.Compared with the conventional EFG method,the ICVEFG method has a great computational accuracy and efficiency.For the purpose of demonstration,three selected numerical examples are solved using the ICVEFG method.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
Two-dimensional lift-up problem for a rigid porous bed
Chang, Y.; Huang, L. H.; Yang, F. P. Y.
2015-05-01
The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu ["Lifting of a large object from a porous seabed," J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy's law, and the slip-flow condition proposed by Beavers and Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang's ["Laminar poroelastic media flow," J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei's experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei's model are revealed, and the theoretical breakout times obtained using Mei's model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.
CHAOS-REGULARIZATION HYBRID ALGORITHM FOR NONLINEAR TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM
Institute of Scientific and Technical Information of China (English)
王登刚; 刘迎曦; 李守巨
2002-01-01
A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regalarization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.
Luukko, P. J. J.; Räsänen, E.
2013-03-01
We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy. Catalogue identifier: AENR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 11310 No. of bytes in distributed program, including test data, etc.: 97720 Distribution format: tar.gz Programming language: C++ and Python. Computer: Tested on x86 and x86-64 architectures. Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice. Has the code been vectorised or parallelized?: Yes, with OpenMP. RAM: 1 MB or more, depending on system size. Classification: 7.3. External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/) Nature of problem: Numerical calculation
A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer
Directory of Open Access Journals (Sweden)
Xu Shu
2015-01-01
Full Text Available In this work, the local fractional variational iteration method is employed to obtain approximate analytical solution of the two-dimensional diffusion equation in fractal heat transfer with help of local fractional derivative and integral operators.
Two-dimensional lift-up problem for a rigid porous bed
Energy Technology Data Exchange (ETDEWEB)
Chang, Y.; Huang, L. H.; Yang, F. P. Y. [Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (China)
2015-05-15
The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu [“Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy’s law, and the slip-flow condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang’s [“Laminar poroelastic media flow,” J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei’s experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei’s model are revealed, and the theoretical breakout times obtained using Mei’s model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.
An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint
Garcia, Christopher; Rabadi, Ghaith
2010-01-01
Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.
De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process
Czarna, Irmina
2009-01-01
Consider two insurance companies (or two branches of the same company) that have the same claims and they divide premia in some specified proportions. We model the occurrence of claims according to a Poisson process. The ruin is achieved if the corresponding two-dimensional risk process first leave the positive quadrant. We consider different kinds of linear barriers. We will consider two scenarios of controlled process. In first one when two-dimensional risk process hits the barrier the minimal amount of dividends is payed out to keep the risk process within the region bounded by the barrier. In the second scenario whenever process hits horizontal line, the risk process is reduced by paying dividend to some fixed point in the positive quadrant and waits there for the first claim to arrive. In both models we calculate discounted cumulative dividend payments until the ruin time.
Luukko, P J J
2013-01-01
We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy.
2013-01-01
We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. ...
Energy Technology Data Exchange (ETDEWEB)
Birzvalk, Yu.A.
1977-10-01
The peculiarities of averaging of a function with respect to one of its coordinates are studied, resulting in the formulation of two-dimensional MHD problems in the zero-induction approximation. The transition to the two-dimensional approximation is achieved by averaging all of the functions analyzed with respect to one of the coordinates. It is shown that when there is symmetry in the Poisson equation for the potential, components of the scalar product v.rot B appear, as a result of the fact that rot B = O. However, their appearance can also be explained by a clearer, though less strict, method. The importance of consideration of these components must be estimated in each specific problem. An elementary modeling problem is solved allowing the relative significance of the current density component in the direction with respect to which averaging is performed to be estimated. 2 references, 4 figures.
Directory of Open Access Journals (Sweden)
Singh R.
2016-02-01
Full Text Available In this study an eigen value approach has been employed to examine the mechanical force applied along with a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space. Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain. Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical analysis has been done to described the study.
Energy Technology Data Exchange (ETDEWEB)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Marco Pedro Ramirez-Tachiquin; Cesar Marco Antonio Robles Gonzalez; Rogelio Adrian Hernandez-Becerril; Ariana Guadalupe Bucio Ramirez
2013-01-01
Based upon the elements of the modern pseudoanalytic function theory, we analyze a new method for numerically solving the forward Dirichlet boundary value problem corresponding to the two-dimensional electrical impedance equation. The analysis is performed by introducing interpolating piecewise separable-variables conductivity functions in the unit circle. To warrant the effectiveness of the posed method, we consider several examples of conductivity functions, whose boundary condi...
Energy Technology Data Exchange (ETDEWEB)
Filho, J. F. P. [Institute de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Av. Italia, s/n, 96203-900 Rio Grande, RS (Brazil); Barichello, L. B. [Institute de Matematica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91509-900 Porto Alegre, RS (Brazil)
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
Two dimensional heat transfer problem in flow boiling in a rectangular minichannel
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2015-01-01
Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Initial and Boundary Value Problems for Two-Dimensional Non-hydrostatic Boussinesq Equations
Institute of Scientific and Technical Information of China (English)
沈春; 孙梅娜
2005-01-01
Based on the theory of stratification, the weU-posedness of the initial and boundary value problems for the system of twodimensional non-hydrostatic Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for some representative initial and boundary value problems. Several special cases were discussed.
Institute of Scientific and Technical Information of China (English)
Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min
2006-01-01
Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].
An accurate predictor-corrector HOC solver for the two dimensional Riemann problem of gas dynamics
Gogoi, Bidyut B.
2016-10-01
The work in the present manuscript is concerned with the simulation of twodimensional (2D) Riemann problem of gas dynamics. We extend our recently developed higher order compact (HOC) method from one-dimensional (1D) to 2D solver and simulate the problem on a square geometry with different initial conditions. The method is fourth order accurate in space and second order accurate in time. We then compare our results with the available benchmark results. The comparison shows an excellent agreement of our results with the existing ones in the literature. Being a finite difference solver, it is quite straight-forward and simple.
Pellegrini, Yves-Patrick
2015-01-01
The two-dimensional elastodynamic Green tensor is the primary building block of solutions of linear elasticity problems dealing with nonuniformly moving rectilinear line sources, such as dislocations. Elastodynamic solutions for these problems involve derivatives of this Green tensor, which stand as hypersingular kernels. These objects, well defined as distributions, prove cumbersome to handle in practice. This paper, restricted to isotropic media, examines some of their representations in the framework of distribution theory. A particularly convenient regularization of the Green tensor is introduced, that amounts to considering line sources of finite width. Technically, it is implemented by an analytic continuation of the Green tensor to complex times. It is applied to the computation of regularized forms of certain integrals of tensor character that involve the gradient of the Green tensor. These integrals are fundamental to the computation of the elastodynamic fields in the problem of nonuniformly moving d...
Federico, Salvatore
2012-01-01
This paper studies an irreversible investment problem where a social planner aims to control its capacity production in order to fit optimally the random demand of a good. Our model allows for general diffusion dynamics on the demand as well as general cost functional. The resulting optimization problem leads to a degenerate two-dimensional singular stochastic control problem, for which explicit solution is not available in general and the standard verification approach can not be applied a priori. We use a direct viscosity solutions approach for deriving some features of the optimal free boundary function, and for displaying the structure of the solution. In the quadratic cost case, we are able to prove a smooth-fit $C^2$ property, which gives rise to an explicit identification of the optimal policy and value function.
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
present an efficient block Gauss– Seidel method , which may be written as follows: given ðuð0Þ1 ; ;u ð0Þ n Þ>, define ðuðkÞ1 ; . . . ;u ðkÞ n Þ>; k P...well-posed single cavity scattering problems (5.5)–(5.7) for the block Gauss– Seidel method at each iteration. 5.2. Transparent boundary condition... Seidel method for two consecutive approx- imations again the number of iterations for all three types of cavities. It can be seen from Fig. 10 that
MARG2D code. 1. Eigenvalue problem for two dimensional Newcomb equation
Energy Technology Data Exchange (ETDEWEB)
Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko
1997-10-01
A new method and a code MARG2D have been developed to solve the 2-dimensional Newcomb equation which plays an important role in the magnetohydrodynamic (MHD) stability analysis in an axisymmetric toroidal plasma such as a tokamak. In the present formulation, an eigenvalue problem is posed for the 2-D Newcomb equation, where the weight function (the kinetic energy integral) and the boundary conditions at rational surfaces are chosen so that an eigenfunction correctly behaves as the linear combination of the small solution and the analytical solutions around each of the rational surfaces. Thus, the difficulty on solving the 2-D Newcomb equation has been resolved. By using the MARG2D code, the ideal MHD marginally stable state can be identified for a 2-D toroidal plasma. The code is indispensable on computing the outer-region matching data necessary for the resistive MHD stability analysis. Benchmark with ERATOJ, an ideal MHD stability code, has been carried out and the MARG2D code demonstrates that it indeed identifies both stable and marginally stable states against ideal MHD motion. (author)
Three disks in a row a two-dimensional scattering analog of the double-well problem
Wirzba, A; Wirzba, Andreas; Rosenqvist, Per E
1996-01-01
We investigate the scattering off three non-overlapping disks equidistantly spaced along a line in the two-dimensional plane with the radii of the outer disks equal and the radius of the inner disk varied. This system is a two-dimensional scattering analog to the double-well-potential (bound state) problem in one dimension. In both systems the symmetry-splittings between symmetric and anti-symmetric states or resonances, respectively, have to be traced back to tunneling effects, as semiclassically the geometrical periodic orbits have no contact with the vertical symmetry axis. We construct the leading semiclassical ``creeping'' orbits which are responsible for the symmetry-splitting of the resonances in this system. The collinear three-disk-system is not only one of the simplest but also one of the most effective systems for detecting creeping phenomena. While in symmetrically placed n-disk systems creeping corrections affect the sub-leading resonances, they here alone determine the symmetry splitting of the ...
Bachher, M.; Sarkar, N.
2016-11-01
An electromagneto-thermoelastic coupled problem for a homogeneous, isotropic, thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock is considered in two-dimensional space. The equations of the theory of generalized electromagneto-thermoelasticity with fractional derivative heat transfer allowing the second sound effects are considered. An initial magnetic field acts parallel to the plane boundary of the half-space. The normal mode analysis and the eigenvalue approach techniques are used to solve the resulting nondimensional coupled field equations for the three theories. Numerical results for the temperature, displacements and thermal stresses distributions are presented graphically and discussed. A comparison is made with the results obtained in the presence and absence of the magnetic field.
T., M P Ramirez; Hernandez-Becerril, R A
2012-01-01
Based upon elements of the modern Pseudoanalytic Function Theory, we analyse a new method for numerically approaching the solution of the Dirichlet boundary value problem, corresponding to the two-dimensional Electrical Impedance Equation. The analysis is performed by interpolating piecewise separable-variables conductivity functions, that are eventually used in the numerical calculations in order to obtain finite sets of orthonormal functions, whose linear combinations succeed to approach the imposed boundary conditions. To warrant the effectiveness of the numerical method, we study six different examples of conductivity. The boundary condition for every case is selected considering one exact solution of the Electrical Impedance Equation. The work intends to discuss the contributions of these results into the field of the Electrical Impedance Tomography.
Energy Technology Data Exchange (ETDEWEB)
Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica
2014-04-15
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lavrent' ev, I.V.; Sidorenkov, S.I.
1988-01-01
To establish the limits of applicability of two-dimensional mathematical models describing induced electromagnetic field distribution in an annular MHD channel, it is necessary to solve a three-dimensional problem. By reducing the number of dimensions of the problem (using, for example, the axial symmetry of MHD flow), the solution can be derived in some approximation. This paper proposes and demonstrates this method by studying the motion of a conducting medium in an annular channel with a two-pole ferromagnetic system under various assumptions for the field, channel and liquid, among them the superconductivity of the working medium. The work performed by the Lorentz force in the channel, equal to the Joule losses in the current-carrying boundary layer, was determined. It was concluded that the current-carrying boundary layer begins to develop at the wall of the channel when the flow enters the magnetic field and that its thickness grows with the length of the region of MHD interaction. The problem was solved numerically and asymptotically.
Institute of Scientific and Technical Information of China (English)
SONG; Yuquan(宋玉泉); LIU; Shumei(刘术梅)
2002-01-01
Superplastic forming has been extensively applied to manufacture parts and components with complex shapes or high-precisions. However, superplastic formation is in multi-stress state. In a long time, uniaxial tensile constitutive equation has been directly generalized to deal with multi-stress state. Whether so doing is feasible or not needs to be proved in theory. This paper first summarizes the establishing processes of superplastic tensile and bulging constitutive equation with variable m, and, using the analytical expressions of equivalent stress ? and equivalent strain rateof free bulge based on the fundamentals of continuum medium plastic mechanics, derives the analytical expressions of optimum loading rules for superplastic free bulge. By comparing the quantitative results on typical superplastic alloy ZnAl22, it is shown that one-dimensional tensile constitutive equations cannot be directly generalized to deal with two-dimensional bulging quantitative mechanical problems; only superplastic bulging constitutive equation based on bulging stress state can be used to treat the quantitative mechanical problems of bulge.
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Directory of Open Access Journals (Sweden)
Frishter Ljudmila Jur'evna
2012-10-01
Full Text Available The article represents the results of the evaluation of the strain-stress distribution in the area of concentrated tensions in the two-dimensional angle-shaped area of the border. Solutions to the nonsingular homogeneous two-dimensional elastic problem may be evaluated through their extrapolation onto sections located in the vicinity of an irregular point of the border by taking the account of the experimental data and the practical accuracy of measurements taken through the application of the photoelasticity method.
Energy Technology Data Exchange (ETDEWEB)
Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada
2015-05-15
A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Because of the strong structural sensitivity of superplasticity, the deformation rule must be affected by stress-state. It is necessary to prove whether one-dimensional tensile constitutive equation can be directly generalized to deal with the two-dimensional mechanical problems or not. In this paper, theoretical results of fill-forming bulge have been derived from both one-dimensional tensile and two-dimensional bulging constitutive equation with variable m value. By comparing theoretical analysis and experimental results made on typical superplastic alloy Zn-wt22%Al, it is shown that one-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional mechanical questions. A method to correct deviation between theoretical and experimental results is also proposed.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Energy Technology Data Exchange (ETDEWEB)
Maita, S.; Ando, J.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1996-10-01
A simple panel method, the source and quasi continuous vortex lattice method (SQCM) was expanded to two-dimensional non-steady hydrofoil problems. Discussions were given on the results of calculations on two-dimensional hydrofoils making a simple non-steady motion. In calculating hydrofoils which move suddenly from a still state with angle of elevation {alpha} at a velocity U, the following results were obtained: the time differential item in a pressure equation gives a considerably strong effect on lifting power; and the lifting power converges to a steady state with lapse of time, and the lifting power coefficient in that state shows that the lifting power increases as hydrofoil thickness increases. This result agrees with the hydrofoil thickness effect in the two-dimensional steady problem, proving the reasonability of this calculation method. In the calculations of time history of the lifting power acting on hydrofoils passing a sinusoidal gust and hydrofoils in a pitching motion, the calculated values from the SQCM were found to approach analysis solution to thin hydrofoils as the hydrofoil thickness becomes thinner for both cases. This result also proves the result of calculations on non-steady state by using the SQCM reasonable. 11 refs., 10 figs.
The Team Orienteering Problem with Two-dimensional Loading Constraint%带二维装载约束的团队定向问题
Institute of Scientific and Technical Information of China (English)
宋其勤
2014-01-01
The team orienteering problem with two-dimensional loading constraint is a special logistics distributions problem. This problem under the influences of limited vehicle service resources, loading requirements of special goods and other factors, get the maximizing profit. To solve the problem, two-dimensional bin packing algorithm that is based on IBL (improved bottom-left)algorithm were presented after an explicit problem definition. GA was using in Chao's instances .%在车辆服务资源有限、货物的特殊装载要求和其他因数影响下，为获得最大效益，而采取特殊物流配送的问题，即带二维装箱约束的团队定向问题。针对这个问题，在对其进行明确定义的基础之上，提出了基于IBL （improved bottom-left）算法二维装箱算法，使用遗传算法，在Chao测试算例中进行验算求解。
Indian Academy of Sciences (India)
Ibrahim A Abbas
2011-06-01
The theory of thermoelasticity with energy dissipation is employed to study plane waves in a ﬁbre-reinforced anisotropic thermoelastic half-space. We apply a thermal shock on the surface of the half-space which is taken to be traction free. The problem is solved numerically using a ﬁnite element method. Moreover, the numerical solutions of the non-dimensional governing partial differential equations of the problem are shown graphically. Comparisons are made with the results predicted by Green–Naghdi theory of the two types (GNII without energy dissipation) and (GNIII with energy dissipation). We found that the reinforcement has great effect on the distribution of ﬁeld quantities. Results carried out in this paper can be used to design various ﬁbre-reinforced anisotropic thermoelastic elements under thermal load to meet special engineering requirements.
Ashirbayev, Nurgali; Ashirbayeva, Zhansaya; Sultanbek, Turlybek; Bekmoldayeva, Raina
2016-08-01
In this work we consider the problem of the propagation of non stationary stress waves in an elastic body with a rectangular hole in the linear formulation. The wave process is caused by applying an external dynamic load on the front boundary of the rectangular region and the lateral boundaries are free of the stress. The lower boundary of the rectangular region is rigidly fixed, and the contour of the rectangular hole is free from the stress. The problem is solved by using the difference method of the spatial characteristics. On the basis of the developed numerical methods it is obtained the computational finite - difference relations of the dynamic problems at the corner points of the rectangular hole, where the first and second derivatives of the unknown functions have a discontinuity of the first kind. We analyze the dynamic stress fields in an elastic body with a rectangular hole and we studied the concentration of dynamic stresses in the vicinity of the corner points of the rectangular opening.
Uppu, Santosh C; Shah, Amee; Weigand, Justin; Nielsen, James C; Ko, H Helen; Parness, Ira A; Srivastava, Shubhika
2015-06-01
The presence of myocardial late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) imaging in concert with electrocardiography and elevated biomarkers helps support the diagnosis of acute myocarditis. Two-dimensional echocardiography is limited to global and qualitative regional function assessment and may not contribute to the diagnosis, especially in the presence of normal LV systolic function. Two-dimensional speckle-tracking (2D-STE)-derived segmental peak systolic (pkS) longitudinal strain (LS) may identify segmental myocardial involvement in myocarditis. We sought to identify an association between segmental pkS, LGE, and troponin levels in patients with myocarditis. Retrospective analysis of myocardial segmental function by 2D-STE segmental strain was compared to the presence of LGE and admission peak troponin levels in patients with acute myocarditis and preserved global LV systolic function. American Heart Association 17-segment model was used for comparison between imaging modalities. Global function was assessed by m-mode-derived shortening fraction (SF). Descriptive statistics and regression analysis were utilized. Forty-four CMRs performed to evaluate for myocarditis were identified. Of the 44, 10 patients, median age 17.5 years (14-18.5 years) and median SF 35 % (28-44 %), had paired CMR and 2D-STE data for analysis, and 161/170 segments could be analyzed by both methods for comparison. PkS LS was decreased in 51 % of segments that were positive for LGE with average pkS of -14.7 %. Segmental pkS LS abnormalities were present in all but one patient who had abnormal pkS circumferential strain. Global pkS LS was decreased in patients with myocarditis. There is a moderate correlation between decreased pkS LS and the presence of LGE by CMR, 2D-STE for myocardial involvement in acute myocarditis can serve as an useful noninvasive adjunct to the existing tests used for the diagnosis of acute myocarditis and might have a role in prognostication.
Energy Technology Data Exchange (ETDEWEB)
Muir, D.W.; Davidson, J.W.; Dudziak, D.J.; Davierwalla, D.M.; Higgs, C.E.; Stepanek, J.
1988-01-01
The lack of suitable benchmark problems makes it difficult to test sensitivity codes with a covariance library. A benchmark problem has therefore been defined for one- and two-dimensional sensitivity and uncertainity analysis codes and code systems. The problem, representative of a fusion reactor blanket, has a simple, three-zone )tau)-z geometry containing a D-T fusion neutron source distributed in a central void region surrounded by a thick /sup 6/LiH annulus. The response of interest is the /sup 6/Li tritium production per source neutron, T/sub 6/. The calculation has been performed with SENSIBL using other codes from the AARE code system as a test of both SENSIBL and the linked, modular system. The caluclation was performed using the code system in the standard manner with a covariance data library in the COVFILS-2 format but modified to contain specifically tailored covariance data for H and /sup 6/Li (Path A). The calculation was also performed by a second method which uses specially perturbed H and Li cross sections (Path B). This method bypasses SENSIBL and allows a hand calculation of the benchmark T/sub 6/ uncertainties. The results of Path A and Path B were total uncertainties in T/sub 6/ of 0.21% and 0.19%, respectively. The closeness of the results for this challenging test gives confidence that SENSIBL and the AARE system will perform well for realistic sensitivity and uncertainty analyses
Energy Technology Data Exchange (ETDEWEB)
Monsefi, Farid [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Väs (Sweden); Carlsson, Linus; Silvestrov, Sergei [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås (Sweden); Rančić, Milica [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and Department of Theoretical Electrical Engineering, Faculty of Electronic Engineering, University (Serbia); Otterskog, Magnus [School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Västerås (Sweden)
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2014-03-01
Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Directory of Open Access Journals (Sweden)
Jorge Rodolfo Silva Zabadal
2006-06-01
Full Text Available Neste trabalho são apresentados métodos híbridos para solução de problemas difusivos relativos à dispersão de poluentes em meio aquático. Estes métodos aplicam variáveis complexas a fim de executar mapeamentos sobre a equação diferencial a ser resolvida bem como sobre o domínio considerado. O mapeamento sobre a equação diferencial converte o operador laplaciano bidimensional em uma derivada cruzada de segunda ordem na variável espacial. O mapeamento do domínio transforma regiões de formato complexo em regiões retangulares. Ambos mapeamentos são usados a fim de reduzir o tempo total requerido de processamento para solução de problemas difusivos não-homogêneos. Resultados numéricos são apresentados.In this work hybrid methods for solving diffusion problems related to pollutants dispersion in water bodies are presented. These methods employ complex variables in order to perform mappings over the differential equation to be solved as well as over the considered domain. The mapping over the differential equation converts the two dimensional laplacian operator into a second order mixed derivative in the complex variables. The mapping of the domain transforms complex-shaped regions into rectangular ones. Both mappings are used in order to reduce the total time proccessing required for solving non-homogeneous diffusion problems. Numerical results are reported.
Institute of Scientific and Technical Information of China (English)
沈春; 孙梅娜
2005-01-01
Based on the theory of stratification, the well-posedness of the initial and boundary value problems for the system of two-dimensional non-hydrostatic Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for some representative initial and boundary value problems. Several special cases were discussed.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Bruning, J.; Dobrokhotov, S.Y.; Katsnelson, M.I.; Minenkov, D.S.
2016-01-01
We consider the two-dimensional stationary Schrodinger and Dirac equations in the case of radial symmetry. A radially symmetric potential simulates the tip of a scanning tunneling microscope. We construct semiclassical asymptotic forms for generalized eigenfunctions and study the local density of st
Multiple Solutions Involving Geoboard Problems.
Smith, Lyle R.
1993-01-01
Illustrates various methods to determine the perimeter and area of triangles and polygons formed on the geoboard. Methods utilize algebraic techniques, trigonometry, geometric theorems, and analytic geometry to solve problems and connect a variety of mathematical concepts. (MDH)
Adam, Frédérick; Vendeuvre, Colombe; Bertoncini, Fabrice; Thiébaut, Didier; Espinat, Didier; Hennion, Marie-Claire
2008-01-18
A new column association using comprehensive two-dimensional gas chromatography for the detailed molecular analysis of hydrocarbon mixtures is reported in this paper. In order to compare the impact of two different secondary columns, a novel column combination relying on a GC x 2GC system was used. This system is based on a non-polar first column (PONA) combined with both a permethylated beta-cyclodextrin (beta-Dex 120) stationary phase and a polysilphenylensiloxane (BPX 50) in the second dimension. Compared to BPX 50 stationary phase, the implementation of beta-cyclodextrin columns as the second dimension was found to improve the resolution between paraffins and naphthenes in the naphtha range but not in the middle distillate range. Attempts to improve the results and to understand the interaction mechanism remained unsuccessful. Therefore, the benefits of the beta-Dex 120-column are only demonstrated on heavy naphtha cut for the quantitation of hydrocarbons.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Galvez, Richard; Joseph, Anosh; Mehta, Dhagash
2012-01-01
Recently there has been some controversy in the literature concerning the existence of a fermion sign problem in the $\\mathcal{N}=(2,2)$ supersymmetric Yang--Mills (SYM) theories on the lattice. In this work, we address this issue by conducting Monte Carlo simulations not only for $\\mathcal{N}=(2,2)$ but also for $\\mathcal{N}=(8,8)$ SYM in two dimensions for the U(N) theories with N=2, using the new ideas derived from topological twisting followed by geometric discretization. Our results from simulations provide the evidence that these theories do {\\it not} suffer from a sign problem as the continuum limit is approached. These results thus boost confidence that these new lattice formulations can be used successfully to explore the nonperturbative aspects of the four-dimensional $\\mathcal{N}=4$ SYM theory.
Institute of Scientific and Technical Information of China (English)
Li Wu; Fan Tian You
2011-01-01
The fundamental plastic nature of the quasicrystalline materials remains an open problem due to its essential complicacy. By developing the proposed generalized cohesive force model, the plastic deformation of crack in point group 10,10 decagonal quasicrystals is analysed strictly and systematically. The crack tip opening displacement (CTOD) and the size of the plastic zone around the crack tip are determined exactly. The quantity of the crack tip opening displacement can be used as a parameter of nonlinear fracture mechanics of quasicrystalline material. In addition, the present work may provide a way for the plastic analysis of quasicrystals.
Directory of Open Access Journals (Sweden)
Maciejewska Beata
2012-04-01
Full Text Available The aim of this paper is to determine the boiling heat transfer coefficient for the cooling liquid flow in a rectangular minichannel with asymmetric heating. The main part of the test section is made up of a vertical minichannel of 1.0 mm depth. The heating foil on the side of the fluid flowing in the minichannel is singlesided enhanced on the selected area. The experiment is carried out with FC-72. The investigations focus on the transition from single-phase forced convection to nucleate boiling, that is, from the zone of boiling incipience further to developed boiling. Owing to the liquid crystal layer located on the heating surface contacting the glass, it is possible to measure the heating wall temperature distribution while increasing the heat flux transferred to the liquid flowing in the minichannel. The objective of the calculations is to evaluate a heat transfer model and numerical approach to solving the inverse boundary problem, and to calculate the heat transfer coefficient. This problem has been solved by means the finite element method in combination with Trefftz functions (FEMT. Trefftz functions are used to construct base functions in Hermite space of the finite element.
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1994-01-01
A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Directory of Open Access Journals (Sweden)
Horacio Hideki Yanasse
2013-01-01
Full Text Available Neste trabalho revemos alguns modelos lineares e não lineares inteiros para gerar padrões de corte bidimensionais guilhotinados de 2 estágios, incluindo os casos exato e não exato e restrito e irrestrito. Esses problemas são casos particulares do problema da mochila bidimensional. Apresentamos também novos modelos para gerar esses padrões de corte, baseados em adaptações ou extensões de modelos para gerar padrões de corte bidimensionais restritos 1-grupo. Padrões 2 estágios aparecem em diferentes processos de corte, como, por exemplo, em indústrias de móveis e de chapas de madeira. Os modelos são úteis para a pesquisa e o desenvolvimento de métodos de solução mais eficientes, explorando estruturas particulares, a decomposição do modelo, relaxações do modelo etc. Eles também são úteis para a avaliação do desempenho de heurísticas, já que permitem (pelo menos para problemas de tamanho moderado uma estimativa do gap de otimalidade de soluções obtidas por heurísticas. Para ilustrar a aplicação dos modelos, analisamos os resultados de alguns experimentos computacionais com exemplos da literatura e outros gerados aleatoriamente. Os resultados foram produzidos usando um software comercial conhecido e mostram que o esforço computacional necessário para resolver os modelos pode ser bastante diferente.In this work we review some linear and nonlinear integer models to generate two stage two-dimensional guillotine cutting patterns, including the constrained, non constrained, exact and non exact cases. These problems are particular cases of the two dimensional knapsack problems. We also present new models to generate these cutting patterns, based on adaptations and extensions of models that generate one-group constrained two dimensional cutting patterns. Two stage patterns arise in different cutting processes like, for instance, in the furniture industry and wooden hardboards. The models are useful for the research and
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Aumelas, A; Chiche, L; Kubo, S; Chino, N; Tamaoki, H; Kobayashi, Y
1995-04-11
Addition of the Lys(-2)-Arg(-1) dipeptide, present in the precursor protein, to the N-terminus of endothelin-1 (ET-1), to form a 23-residue peptide (KR-ET-1) has been shown to greatly improve formation of native disulfide bridges and to dramatically decrease biological activity. Conformational analysis was carried out on this peptide. During protonation of the carboxyl groups, CD spectra showed a decrease in the helical contribution, and NMR spectra displayed strong chemical shift modifications, suggesting the importance of electrostatic interactions in the KR-ET-1 conformation. CD spectra and two-dimensional NMR experiments were performed to investigate the KR-ET-1 three-dimensional structure in water in the carboxylic acid and carboxylate states. Distance and angle constraints were used as input for distance geometry calculations. The KR-ET-1 carboxylic acid conformation was found to be very similar to ET-1, with a helix spanning residues 9-15 and an unconstrained C-terminal part. In contrast, in the carboxylate state, large changes in Arg(-1) and Phe14 chemical shifts and long-range NOEs were consistent with a conformation characterized by a helix extension to Leu17 and a stabilized C-terminal section folded back toward the N-terminus. In addition, thanks to NOEs with Cys11 and Phe14, the Arg(-1) side chain appeared well-defined. Simulated annealing and molecular dynamics calculations, supported an Arg(-1)-Glu10 salt bridge and an electrostatic network involving the charged groups of Trp21, Asp18, and Lys(-2). Moreover, stabilization of the KR-ET-1 C-terminal part is probably reinforced by hydrophobic interactions involving the Val12, Tyr13, Phe14, Leu17, Ile19, Ile20, and Trp21 side chains. In vitro, native disulfide bond formation improvement observed for KR-ET-1 could be ascribed to electrostatic interactions and more specifically to the Arg(-1)-Glu10 salt bridge. In vivo, similar interactions could play an important role in the native folding of the ET-1
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation
Indian Academy of Sciences (India)
N Sabu
2003-08-01
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Graphene as a Prototypical Model for Two-Dimensional Continuous Mechanics
Directory of Open Access Journals (Sweden)
Philippe Lambin
2017-08-01
Full Text Available This paper reviews a few problems where continuous-medium theory specialized to two-dimensional media provides a qualitatively correct picture of the mechanical behavior of graphene. A critical analysis of the parameters involved is given. Among other results, a simple mathematical description of a folded graphene sheet is proposed. It is also shown how the graphene–graphene adhesion interaction is related to the cleavage energy of graphite and its C 33 bulk elastic constant.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Vehicle routing problem in distribution with two-dimensional loading constraint%带二维装箱约束的物流配送车辆路径问题
Institute of Scientific and Technical Information of China (English)
王征; 胡祥培; 王旭坪
2011-01-01
In real distributions, there is a great amount of transportation problems called vehicle routing problem with two-dimensional loading constraint, in which items demanded by customers are usually fragile and needed to be packed into vehicles. This is a new problem that combines the two classical problems of vehicle routing problem and bin packing problem. To solve the problem, a mathematical model and a Memetic algorithm were presented after an explicit problem definition. The key modules of the algorithm, such as a depth-first based heuristic loading method, an encoding and splitting method of chromosomes, an initial solution generation method, crossover and local search methods, were explained in details. Based on some preliminary experiments, the best combination of parameters' values in Memetic algorithm was given. Finally, the robustness and the effectiveness of the Memetic algorithm were tested on Iori's 30 instances whose numbers of customers are from 20 to 199 and a comparison with other algorithm in the literature was made, which shows that the memetic algorithm greatly surpasses the algorithm on aspects of solving capacity and solution quality.%现实物流活动中大量存在的易损、易碎物品的运输问题属于带二维装箱约束的物流配送问题,该问题是二维装箱问题与车辆路径问题这两个经典难题融合之后的一个新问题.针对这一问题,在对其进行明确定义的基础上,建立了数学模型,提出了解决该问题一个Memetic算法,对算法中的几个关键算子:深度优先的启发式装箱方法、染色体的编码方式及其路径分割程序、初始解的生成方法、交叉算子、局部搜索算子,进行了详细的阐述.通过初步的实验,确定了Memetic算法的最佳参数配置；然后在Iori提出的30个顾客数在20 199个标准算例上对算法的鲁棒性、求解的质量、以及求解性能等几项指标进行了测试,并与文献中的求解结果进行了比
Problems involving salaried managers in Russia
Directory of Open Access Journals (Sweden)
Nelyubina Maria Alexandrovna
2011-10-01
Full Text Available The article is devoted relationships between owners of the company and top-managers. Problems of top-management motivation, shareholders` control, liability of infringement of the rights and interests of shareholders are investigated.
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Instability of two-dimensional heterotic stringy black holes
Azreg-Ainou, M
1999-01-01
We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Cryptography Using Multiple Two-Dimensional Chaotic Maps
Directory of Open Access Journals (Sweden)
Ibrahim S. I. Abuhaiba
2012-08-01
Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.
Directory of Open Access Journals (Sweden)
A. Aghili
2011-12-01
Full Text Available In this work,we present new theorems on two-dimensional Laplace transformation. We also develop some applications based on these results. The two-dimensional Laplace transformation is useful in the solution of non-homogeneous partial differential equations. In the last section a boundary value problem is solved by using the double Laplace-Carson transform.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam
2017-05-01
The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Problems and Challenges for Cosmology involving Massive Neutrinos
Krauss, L M
1996-01-01
I review the challenges and problems facing the standard cosmological model, involving an $\\Omega=1$ Universe dominated by non-baryonic dark matter, which arise due to: age estimates of the universe, estimates of the baryon fraction of the universe, and structure formation. Certain of these problems are exacerbated, and certain of these are eased, by the inclusion of some component to the energy density of matter from massive neutrinos. I conclude with a comparison of the two favored current cosmological models, involving either a mixture of cold dark matter and hot dark matter, or the inclusion of a cosmological constant.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Solution of adsorption problems involving steep moving profiles
DEFF Research Database (Denmark)
Kiil, Søren; Bhatia, Suresh K.
1998-01-01
The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures...... methods fail or require a prohibitive number of collocation points. The technique is general in nature and may also be applied to a large variety of multiphase transient heat or mass transfer problems involving steep gradients........ Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation...
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
LaPlante, Debi A; Nelson, Sarah E; Gray, Heather M
2014-06-01
The "involvement effect" refers to the finding that controlling for gambling involvement often reduces or eliminates frequently observed game-specific associations with problem gambling. In other words, broader patterns of gambling behavior, particularly the number of types of games played over a defined period, contribute more to problem gambling than playing specific games (e.g., lottery, casino, Internet gambling). This study extends this burgeoning area of inquiry in three primary ways. First, it tests independently and simultaneously the predictive power of two gambling patterns: breadth involvement (i.e., the number of games an individual plays) and depth involvement (i.e., the number of days an individual plays). Second, it includes the first involvement analyses of actual betting activity records that are associated with clinical screening information. Third, it evaluates and compares the linearity of breadth and depth effects. We conducted analyses of the actual gambling activity of 1,440 subscribers to the bwin.party gambling service who completed an online gambling disorder screen. In all, 11 of the 16 games we examined had a significant univariate association with a positive screen for gambling disorder. However, after controlling for breadth involvement, only Live Action Internet sports betting retained a significant relationship with potential gambling-related problems. Depth involvement, though significantly related to potential problems, did not impact game-based gambling disorder associations as much as breadth involvement. Finally, breadth effects appeared steeply linear, with a slight quadratic component manifesting beyond four games played, but depth effects appeared to have a strong linear component and a slight cubic component.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
The encoding complexity of two dimensional range minimum data structures
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Brodnik, Andrej; Davoodi, Pooya
2013-01-01
In the two-dimensional range minimum query problem an input matrix A of dimension m ×n, m ≤ n, has to be preprocessed into a data structure such that given a query rectangle within the matrix, the position of a minimum element within the query range can be reported. We consider the space complexity...... of the encoding variant of the problem where queries have access to the constructed data structure but can not access the input matrix A, i.e. all information must be encoded in the data structure. Previously it was known how to solve the problem with space O(mn min {m,logn}) bits (and with constant query time...
The solution of the two-dimensional sine-Gordon equation using the method of lines
Bratsos, A. G.
2007-09-01
The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor-corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.
A TCAM-based Two-dimensional Prefix Packet Classification Algorithm
Institute of Scientific and Technical Information of China (English)
王志恒; 刘刚; 白英彩
2004-01-01
Packet classification (PC) has become the main method to support the quality of service and security of network application. And two-dimensional prefix packet classification (PPC) is the popular one. This paper analyzes the problem of ruler conflict, and then presents a TCAMbased two-dimensional PPC algorithm. This algorithm makes use of the parallelism of TCAM to lookup the longest prefix in one instruction cycle. Then it uses a memory image and associated data structures to eliminate the conflicts between rulers, and performs a fast two-dimensional PPC.Compared with other algorithms, this algorithm has the least time complexity and less space complexity.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Capillary-driven two-dimensional buoyancy in vertical soap films
Adami, N.; Caps, H.
2014-05-01
The present study aims to investigate the capillary-driven buoyant effects in nearly two-dimensional systems. The case of rising rings in vertical soap films is studied both experimentally and theoretically. Since the pioneering works of Mysels and coworkers, the thickness differences and related two-dimensional densities are considered as the motor leading to two-dimensional buoyancy. We show how this effect can be re-interpreted in terms of the surface tension profiles present at the film interfaces. We propose a model involving surface tension profiles, as well as an adapted expression for the mass of the rising rings, and compare it to experimental data.
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
On a shock problem involving a nonlinear viscoelastic bar
Directory of Open Access Journals (Sweden)
Tran Ngoc Diem
2005-11-01
Full Text Available We treat an initial boundary value problem for a nonlinear wave equation uttÃ¢ÂˆÂ’uxx+K|u|ÃŽÂ±u+ÃŽÂ»|ut|ÃŽÂ²ut=f(x,t in the domain 0
Experimental quantum annealing: case study involving the graph isomorphism problem.
Zick, Kenneth M; Shehab, Omar; French, Matthew
2015-06-08
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu
1997-09-17
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Two Dimensional Connectivity for Vehicular Ad-Hoc Networks
Farivar, Masoud; Ashtiani, Farid
2008-01-01
In this paper, we focus on two-dimensional connectivity in sparse vehicular ad hoc networks (VANETs). In this respect, we find thresholds for the arrival rates of vehicles at entrances of a block of streets such that the connectivity is guaranteed for any desired probability. To this end, we exploit a mobility model recently proposed for sparse VANETs, based on BCMP open queuing networks and solve the related traffic equations to find the traffic characteristics of each street and use the results to compute the exact probability of connectivity along these streets. Then, we use the results from percolation theory and the proposed fast algorithms for evaluation of bond percolation problem in a random graph corresponding to the block of the streets. We then find sufficiently accurate two dimensional connectivity-related parameters, such as the average number of intersections connected to each other and the size of the largest set of inter-connected intersections. We have also proposed lower bounds for the case ...
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low-frequency bur......In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...... to the mean component of the flow. Bursting can also result from the quasi-linear modification of the linear instability drive which is the mean pressure gradient. For each bursting process the relevant zero-dimensional model equations are given. These are finally coupled in a minimal model of convection...
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Nonlinear transport in a two dimensional holographic superconductor
Zeng, Hua Bi; Tian, Yu; Fan, Zhe Yong; Chen, Chiang-Mei
2016-06-01
The problem of nonlinear transport in a two-dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both the near- and nonequilibrium regimes. The limit of weak electric field corresponds to the near-equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting nonequilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Increasing the amplitude of the applied electric field results in a far-from-equilibrium nonsuperconducting steady state with a universal linear conductivity of one. In the lower temperature regime we also find chaotic behavior of the superconducting gap, which results in a nonmonotonic field-dependent nonlinear conductivity.
Two-dimensional static deformation of an anisotropic medium
Indian Academy of Sciences (India)
Kuldip Singh; Dinesh Kumar Madan; Anita Goel; Nat Ram Garg
2005-08-01
The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular case of a normal line-load acting inside an orthotropic elastic half-space has been considered in detail and closed form expressions for the displacements and stresses are obtained. Further, the results for the displacements for a transversely isotropic as well as for an isotropic medium have also been derived in the closed form. The use of matrix notation is straightforward and avoids unwieldy mathematical expressions. To examine the effect of anisotropy, variations of dimensionless displacements for an orthotropic, transversely isotropic and isotropic elastic medium have been compared numerically and it is found that anisotropy affects the deformation signiﬁcantly.
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... the methods developed in the literature specifically for matching protein spot patterns, the focus is on a method based on neighbourhood relations. These methods are applied to a range of 2DGE protein spot data in a comparative study. The point pattern matching requires segmentation of the gel images...... and since the correct image segmentation can be difficult, a new alternative approach, exploiting prior knowledge from a reference gel about the protein locations to segment an incoming gel image, is proposed....
Nonlinear Transport in a Two Dimensional Holographic Superconductor
Zeng, Hua Bi; Fan, Zhe Yong; Chen, Chiang-Mei
2016-01-01
The problem of nonlinear transport in a two dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both near- and non-equilibrium regimes. The limit of weak electric field corresponds to the near equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting non-equilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Keeping increasing the amplitude of applied electric field results in a far-from-equilibrium non-superconducting steady state with a universal linear conductivity of one. In lower temperature regime we also find chaotic behavior of superconducting gap, which results in a non-monotonic field dependent nonlinear conductivity.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Molecular-dynamics simulation of two-dimensional thermophoresis
Paredes; Idler; Hasmy; Castells; Botet
2000-11-01
A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics
Institute of Scientific and Technical Information of China (English)
WANG Zhimin; XU Bei; ZHOU Yaoqi; XU Hehua; HUANG Shaoying
2004-01-01
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.
Dielectric-barrier discharges in two-dimensional lattice potentials
Sinclair, Josiah
2011-01-01
We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. The patterns that appear when filaments either overfill or under-fill the lattice are reminiscent of those observed in other physical systems involving 2d lattices. We suggest that the connection between lattice-driven DBDs and other areas of physics may benefit from the further development of models that treat plasma filaments as interacting particles.
Pattern Coarsening in a Two Dimensional Hexagonal System
Chaikin, Paul
2008-03-01
We have been studying the ordering, annealing, coarsening and alignment of two dimensional periodically ordered structures in thin films of diblock copolymers*. Coarsening by dislocation and disclination annihilation is clearly observed in AFM studies of monolayer films of cylindrical patterns with a time dependence given by t^α, with α about 1/4. However in hexagonal structures the mechanism is less well defined and appears to involve the collapse of small grains entrained in the grain boundaries of larger domains. Remarkably the exponent of α about 1/4 remains. We also report on shear aligned samples and samples quenched in a gradient after alignment. * Harrison C, Angelescu DE, Trawick M, Cheng ZD, Huse DA, Chaikin PM, Vega DA, Sebastian JM, Register RA, Adamson DH, EUROPHYSICS LETTERS 67 800-806 (2004)
Two-dimensional spatial patterning in developmental systems.
Torii, Keiko U
2012-08-01
Multicellular organisms produce complex tissues with specialized cell types. During animal development, numerous cell-cell interactions shape tissue patterning through mechanisms involving contact-dependent cell migration and ligand-receptor-mediated lateral inhibition. Owing to the presence of cell walls, plant cells neither migrate nor undergo apoptosis as a means to correct for mis-specified cells. How can plants generate functional tissue patterns? This review aims to deduce fundamental principles of pattern formation through examining two-dimensional (2-D) spatial tissue patterning in plants and animals. Turing's mathematical framework will be introduced and applied to classic examples of de novo 2-D patterning in both animal and plant systems. By comparing their regulatory circuits, new insights into the similarities and differences of the basic principles governing tissue patterning will be discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geotechnical applications of a two-dimensional elastodynamic displacement discontinuity method
CSIR Research Space (South Africa)
Siebrits, E
1993-12-01
Full Text Available A general two-dimensional elastodynamic displacement discontinuity method is used to model a variety of application problems. The plane strain problems are: the elastodynamic motions induced on a cavity by shear slip on a nearby crack; the dynamic...
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization.
Kissel, Patrick; Murray, Daniel J; Wulftange, William J; Catalano, Vincent J; King, Benjamin T
2014-09-01
In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers-single-layered polymers that form a tiling network in exactly two dimensions-have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 10(13) pores cm(-2). Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.
Stationary states of the two-dimensional nonlinear Schrödinger model with disorder
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Hendriksen, D.; Christiansen, Peter Leth
1998-01-01
Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder. In the discr......Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder...
Directory of Open Access Journals (Sweden)
Andreev V.I.
2016-01-01
Full Text Available The article discusses the use of a numerical method the calculation of finite cylinders into account the dependence of physical and mechanical properties of the material on temperature. If we have two-dimensional temperature field characteristics of the material depends on two coordinates. - r and z from which follows that the problem of thermoelasticity is also a two-dimensional. Using the numerical method allows to solve the problem for any state of the cylinder (plane stress or plane strain and consider arbitrary boundary conditions at its ends.
Isoperimetry in two-dimensional percolation
Biskup, Marek; Louidor, Oren; Procaccia, Eviatar B.; Rosenthal, Ron
2012-01-01
We consider the unique infinite connected component of supercritical bond percolation on the square lattice and study the geometric properties of isoperimetric sets, i.e., sets with minimal boundary for a given volume. For almost every realization of the infinite connected component we prove that, as the volume of the isoperimetric set tends to infinity, its asymptotic shape can be characterized by an isoperimetric problem in the plane with respect to a particular norm. As an application we t...
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
Institute of Scientific and Technical Information of China (English)
Hussein A.H. Salem
2011-01-01
In this article, we investigate the existence of Pseudo solutions for some frac- tional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.
Screening in two-dimensional gauge theories
Korcyl, Piotr
2012-01-01
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED2 as a warm-up for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Screening in two-dimensional gauge theories
Energy Technology Data Exchange (ETDEWEB)
Korcyl, Piotr [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koren, Mateusz [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki
2012-12-15
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED{sub 2} as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
a charge transfer process between graphene and BN when the exposure of visible light is introduced. We show this photo-induced doping in graphene resembles the modulation doping technique in traditional semiconductor heterojunctions, where a charge doping is introduced while the high mobility is maintained. This work reveals importance of interactions between stacked 2D materials on the overall properties and demonstrate a repeatable and convenient way of fabricating high quality graphene devices with active control of doping patterning. Along this direction, we did further STM experiment to visualize and manipulate charged defects in boron nitride with the help of graphene. The last theme is about the interesting properties of bilayer graphene, which is to some extent more interesting than monolayer graphene due to its electric-field dependent band structures. Firstly, we visualized the stacking boundary within exfoliated bilayer graphene by near field infrared microscopy. In dual-gated field-effect-transistor devices fabricated on the boundaries, we demonstrated the existence of topologically protected one dimensional conducting channels at the boundary through electric transport measurement. The 1D boundary states also demonstrated the first graphene-based valleytronic device. The topics we are going to talk about in this thesis are quite diversified. Just like the versatile nature of optical spectroscopy, we never limit ourself to a specific technique and do incremental things. Most of the experiments are driven by the important and interesting problems in the two dimensional materials field and we chose the right tool and conceive the right experiment to answer that question. Both pure optical methods and combinations with electric transport and STM measurements were used. I believe the flexibility of optical spectroscopy and its compatibility with other experimental techniques provide a powerful toolbox to explore many possibilities beyond the reach of a
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Improvement in two-dimensional barcode
Indian Academy of Sciences (India)
SONAM WASULE; SHILPA METKAR
2017-07-01
Barcode is one of the existing systems which is very fast in scanning and more accurate when compared with other coding systems. It is extensively used because speed of scanning the barcode is very high as compared with manual data entry. To increase the capacity of 2D monochrome QR code to 3 fold, 2D colour QR code is developed. The challenge in the development of colour barcode is in its decoding, since the intensity and depth of colours vary during the printing and scanning process. We need to understand the decoding process and make it insensitive to such variations. A lot of work has been already done to deal with such variations but acceptable results have not yet been achieved. The objective behind colour barcode is to increase the capacity to 3 fold as compared with 2D monochrome barcode. In this paper we proposed a novel approach that will increase the capacity of barcode beyond 3 fold and deals with decoding problem of intensity variation. In the proposed technique, quantization of grey levels is specified to handle the problem of intensity variation.
Renormalization of two-dimensional quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Casana S, Rodolfo; Dias, Sebastiao A
1997-12-01
The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence on a parameter {alpha} (the Jackiw-Rajaraman parameter) in a way which is analogous to the case involving chiral fermions (the chiral Schwinger model). For all values of a {alpha}1, there are divergences in the fermionic Green`s functions. We propose a regularization of the generating functional Z [{eta}, {eta}, J] and we use it to renormalize the theory to one loop level, in a semi-perturbative sense. At the end of the renormalization procedure we find an implicit dependence of {alpha} on the renormalization scale {mu}. (author) 26 refs.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach
Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang
2016-01-01
Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer
Peng, Xiaohui; Protas, Bartosz
2013-01-01
This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the sol...
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
ON AN ELLIPTIC PROBLEM INVOLVING CRITICAL AND SUBLINEAR GROWTH
Institute of Scientific and Technical Information of China (English)
YANG Haitao
2002-01-01
In this paper, the author considers an elliptic problem with critical and sublinear growth. Some results about the multiplicity and uniqueness of the positive solutions are given by making use of variational method and bifurcation theory.
Adaptive Algorithm for Estimation of Two-Dimensional Autoregressive Fields from Noisy Observations
Directory of Open Access Journals (Sweden)
Alimorad Mahmoudi
2014-01-01
Full Text Available This paper deals with the problem of two-dimensional autoregressive (AR estimation from noisy observations. The Yule-Walker equations are solved using adaptive steepest descent (SD algorithm. Performance comparisons are made with other existing methods to demonstrate merits of the proposed method.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for twodimensional flow of Chaplygin gases.
Analytic Solution for Two-Dimensional Heat Equation for an Ellipse Region
Directory of Open Access Journals (Sweden)
Nurcan Baykus Savasaneril
2016-01-01
Full Text Available In this study, an altenative method is presented for the solution of two-dimensional heat equation in an ellipse region. In this method, the solution function of the problem is based on the Green, and therefore on elliptic functions. To do this, it is made use of the basic consepts associated with elliptic integrals, conformal mappings and Green functions.
Energy Technology Data Exchange (ETDEWEB)
Mota, R.D. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, Mexico DF (Mexico)]. E-mail: mota@gina.esfm.ipn.mx; ravelo@esfm.ipn.mx; Granados, V.D.; Queijeiro, A.; Garcia, J. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Mexico DF (Mexico)
2002-03-29
For the quantum two-dimensional isotropic harmonic oscillator we show that the Infeld-Hull radial operators, as well as those of the supersymmetric approach for the radial equation, are contained in the constants of motion of the problem. (author)
DEFINITION STRESS INTENSITY COEFFICIENT TWO-DIMENSIONAL BODIES UNDER THERMAL LOAD
Directory of Open Access Journals (Sweden)
Shkril’ А.
2014-12-01
Full Text Available On the basis of the finite element scheme of the moment method (FEM implemented method of determining the coefficients of stress intensity (K in two-dimensional bodies under the action of temperature load. Results of test problems showed that the methods for determining the energy of K are more effeciency compared with the.
Bound states of two-dimensional Schr\\"{o}dinger-Newton equations
Stubbe, Joachim
2008-01-01
We prove an existence and uniqueness result for ground states and for purely angular excitations of two-dimensional Schr\\"{o}dinger-Newton equations. From the minimization problem for ground states we obtain a sharp version of a logarithmic Hardy-Littlewood-Sobolev type inequality.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Marcus, K.A.; Barends, M.; Morava, E.; Feuth, T.; Korte, C.L. de; Kapusta, L.
2011-01-01
BACKGROUND: Myocardial dysfunction in children diagnosed with mitochondrial disease is an ominous sign and has been associated with substantial increased mortality rates. Early detection of cardiac involvement would therefore be desirable. Two dimensional strain echocardiography (2DSTE) has proven t
Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians
Portugal, R.; Fernandes, T. D.
2017-04-01
Quantum search on the two-dimensional lattice with one marked vertex and cyclic boundary conditions is an important problem in the context of quantum algorithms with an interesting unfolding. It avails to test the ability of quantum walk models to provide efficient algorithms from the theoretical side and means to implement quantum walks in laboratories from the practical side. In this paper, we rigorously prove that the recent-proposed staggered quantum walk model provides an efficient quantum search on the two-dimensional lattice, if the reflection operators associated with the graph tessellations are used as Hamiltonians, which is an important theoretical result for validating the staggered model with Hamiltonians. Numerical results show that on the two-dimensional lattice staggered models without Hamiltonians are not as efficient as the one described in this paper and are, in fact, as slow as classical random-walk-based algorithms.
Proton transport in a membrane protein channel: two-dimensional infrared spectrum modeling.
Liang, C.; Knoester, J.; Jansen, T.L.Th.A.
2012-01-01
We model the two-dimensional infrared (2DIR) spectrum of a proton channel to investigate its applicability as a spectroscopy tool to study the proton transport process in biological systems. Proton transport processes in proton channels are involved in numerous fundamental biochemical reactions. How
Bullying involvement in primary school and common health problems
Wolke, D; Woods, S; Bloomfield, L; Karstadt, L
2001-01-01
AIMS—To examine the association of direct (e.g. hitting) and relational (e.g. hurtful manipulation of peer relationships) bullying experience with common health problems. METHODS—A total of 1639 children (aged 6-9 years) in 31 primary schools were studied in a cross sectional study that assessed bullying with a structured child interview and common health problems using parent reports. Main outcome measures were common physical (e.g. colds/coughs) and psychosomatic (e.g. ...
DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS
Institute of Scientific and Technical Information of China (English)
Qicheng Sun
2003-01-01
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.
Two dimensional discriminant neighborhood preserving embedding in face recognition
Pang, Meng; Jiang, Jifeng; Lin, Chuang; Wang, Binghui
2015-03-01
One of the key issues of face recognition is to extract the features of face images. In this paper, we propose a novel method, named two-dimensional discriminant neighborhood preserving embedding (2DDNPE), for image feature extraction and face recognition. 2DDNPE benefits from four techniques, i.e., neighborhood preserving embedding (NPE), locality preserving projection (LPP), image based projection and Fisher criterion. Firstly, NPE and LPP are two popular manifold learning techniques which can optimally preserve the local geometry structures of the original samples from different angles. Secondly, image based projection enables us to directly extract the optimal projection vectors from twodimensional image matrices rather than vectors, which avoids the small sample size problem as well as reserves useful structural information embedded in the original images. Finally, the Fisher criterion applied in 2DDNPE can boost face recognition rates by minimizing the within-class distance, while maximizing the between-class distance. To evaluate the performance of 2DDNPE, several experiments are conducted on the ORL and Yale face datasets. The results corroborate that 2DDNPE outperforms the existing 1D feature extraction methods, such as NPE, LPP, LDA and PCA across all experiments with respect to recognition rate and training time. 2DDNPE also delivers consistently promising results compared with other competing 2D methods such as 2DNPP, 2DLPP, 2DLDA and 2DPCA.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
SOME EXTENDED KNAPSACK PROBLEMS INVOLVING JOB PARTITION BETWEEN TWO PARTIES
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Some novel applications and pragmatic variations of knapsack problem (KP) are presented and constructed, which are formulated and developed from a model initiated in this paper on profit allocation from partition of jobs in terms of two-person discrete cooperation game.
Scattering problems involving electrons, photons, and Dirac fermions
Snyman, Izak
2008-01-01
The theoretical foundation for the work reported here is provided by Landauer's scattering theory of electron transport. The three main ingredients of a scattering problem are (1) a set of reservoirs that emit and absorb particles, (2) the particles themselves, that propagate as waves between the re
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhao, Jijun; Zhang, Shengbai
2017-03-01
Recent experimental synthesis of two-dimensional (2D) heterostructures opens a door to new opportunities in tailoring the electronic properties for novel 2D devices. Here, we show that a wide range of lateral 2D heterostructures could have a prominent advantage over the traditional three-dimensional (3D) heterostructures, because their band alignments are insensitive to the interfacial conditions. They should be at the Schottky-Mott limits for semiconductor-metal junctions and at the Anderson limits for semiconductor junctions, respectively. This fundamental difference from the 3D heterostructures is rooted in the fact that, in the asymptotic limit of large distance, the effect of the interfacial dipole vanishes for 2D systems. Due to the slow decay of the dipole field and the dependence on the vacuum thickness, however, studies based on first-principles calculations often failed to reach such a conclusion. Taking graphene/hexagonal-BN and MoS2/WS2 lateral heterostructures as the respective prototypes, we show that the converged junction width can be order of magnitude longer than that for 3D junctions. The present results provide vital guidance to high-quality transport devices wherever a lateral 2D heterostructure is involved.
Low-cost two-dimensional gel densitometry.
Levenson, R M; Maytin, E V; Young, D A
1986-11-01
A major obstacle to full utilization of the powerful technique of two-dimensional (2-D) gel electrophoresis is the expense and complexity of quantifying the results. Using an analog-to-digital converter already present in the widely available Commodore 64 or Commodore 128 microcomputer, we have developed a 2-D gel densitometer (GELSCAN) which adds only $20.00 to the cost of the Commodore system (currently around $700.00). The system is designed to work with autoradiograms of 2-D gels. Spots of interest are identified visually and then positioned manually over a light source. A pinhole photoelectric sensor mounted in a hand-held, Plexiglas holder, or "mouse," is briefly rubbed over each spot. Maximum density of the spot is determined and its value is converted to counts per minute via an internal calibration curve which corrects for the nonlinear response of film to radiation. Local spot backgrounds can be subtracted and values can be normalized between gels to adjust for variation in amount of radioactivity applied or in exposure time. Reproducibility is excellent and the technique has some practical as well as theoretical advantages over other more complicated approaches to 2-D gel densitometry. In addition, the GELSCAN system can also be used for scanning individual bands in 1-D gels, quantitation of "dot-blot" autoradiograms and other tasks involving transmission densitometry.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Vides, Jeaniffer; Nkonga, Boniface; Audit, Edouard
2015-01-01
We derive a simple method to numerically approximate the solution of the two-dimensional Riemann problem for gas dynamics, using the literal extension of the well-known HLL formalism as its basis. Essentially, any strategy attempting to extend the three-state HLL Riemann solver to multiple space dimensions will by some means involve a piecewise constant approximation of the complex two-dimensional interaction of waves, and our numerical scheme is not the exception. In order to determine closed form expressions for the involved fluxes, we rely on the equivalence between the consistency condition and the use of Rankine-Hugoniot conditions that hold across the outermost waves. The proposed scheme is carefully designed to simplify its eventual numerical implementation and its advantages are analytically attested. In addition, we show that the proposed solver can be applied to obtain the edge-centered electric fields needed in the constrained transport technique for the ideal magnetohydrodynamic (MHD) equations. We present several numerical results for hydrodynamics and magnetohydrodynamics that display the scheme's accuracy and its ability to be applied to various systems of conservation laws.
Quadrature-free spline method for two-dimensional Navier-Stokes equation
Institute of Scientific and Technical Information of China (English)
HU Xian-liang; HAN Dan-fu
2008-01-01
In this paper,a quadrature-free scheme of spline method for two-dimensional Navier-Stokes equation is derived,which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally,the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.
Applications of two-dimensional code in academic journals%科技期刊二维码的应用情况分析
Institute of Scientific and Technical Information of China (English)
杨郁霞
2013-01-01
Applications of two-dimensional code in academic journals are explored from two aspects:reading and being read.Meanwhile the possible problems and solutions involved in editors,authors and readers,technology and standard drafting in the applications of two-dimensional code in academic journals are put forward.%二维码的应用分为主读和被读2类.从这2个方面分析二维码在科技期刊中的应用情况,并从编辑、作者、读者以及技术、标准的制订等方面指出二维码应用中存在的问题,提出解决问题的途径.
Zhan, Qin; Yuan, Yuan; Fan, Xiangtao; Huang, Jianyong; Xiong, Chunyang; Yuan, Fan
2016-06-01
Digital image correlation (DIC) is essentially implicated in a class of inverse problem. Here, a regularization scheme is developed for the subset-based DIC technique to effectively inhibit potential ill-posedness that likely arises in actual deformation calculations and hence enhance numerical stability, accuracy and precision of correlation measurement. With the aid of a parameterized two-dimensional Butterworth window, a regularized subpixel registration strategy is established, in which the amount of speckle information introduced to correlation calculations may be weighted through equivalent subset size constraint. The optimal regularization parameter associated with each individual sampling point is determined in a self-adaptive way by numerically investigating the curve of 2-norm condition number of coefficient matrix versus the corresponding equivalent subset size, based on which the regularized solution can eventually be obtained. Numerical results deriving from both synthetic speckle images and actual experimental images demonstrate the feasibility and effectiveness of the set of newly-proposed regularized DIC algorithms.
Scale Adjustments to Facilitate Two-Dimensional Measurements in OCT Images.
Directory of Open Access Journals (Sweden)
Marina Garcia Garrido
Full Text Available To address the problem of unequal scales for the measurement of two-dimensional structures in OCT images, and demonstrate the use of intra¬ocular objects of known dimensions in the murine eye for the equal calibration of axes.The first part of this work describes the mathematical foundation of major distortion effects introduced by X-Y scaling differences. Illustrations were generated with CorelGraph X3 software. The second part bases on image data obtained with a HRA2 Spectralis (Heidelberg Engineering in SV129 wild-type mice. Subretinally and intravitreally implanted microbeads, alginate capsules with a diameter of 154±5 μm containing GFP-marked mesenchymal stem cells (CellBeads, were used as intraocular objects for calibration.The problems encountered with two-dimensional measurements in cases of unequal scales are demonstrated and an estimation of the resulting errors is provided. Commonly, the Y axis is reliably calibrated using outside standards like histology or manufacturer data. We show here that intraocular objects like dimensionally stable spherical alginate capsules allow for a two-dimensional calibration of the acquired OCT raw images by establishing a relation between X and Y axis data. For our setup, a correction factor of about 3.3 was determined using both epiretinally and subretinally positioned beads (3.350 ± 0.104 and 3.324 ± 0.083, respectively.In this work, we highlight the distortion-related problems in OCT image analysis induced by unequal X and Y scales. As an exemplary case, we provide data for a two-dimensional in vivo OCT image calibration in mice using intraocular alginate capsules. Our results demonstrate the need for a proper two-dimensional calibration of OCT data, and we believe that equal scaling will certainly improve the efficiency of OCT image analysis.
Problems of engineering education and their decision involving industry
Directory of Open Access Journals (Sweden)
R. P. Simonyants
2014-01-01
Full Text Available In Russia, the problems of engineering education are connected with political and economic upheavals of the late last century. At the same time, some leading engineering universities in Russia, such as the Bauman Moscow State Technical University (BMSTU were resistant to the damaging effects of the crisis. But the methodology and experience of their effective work are insufficiently known.The problems of international engineering school development are also known. The first UNESCO World Report on Engineering (2010 assesses the state of engineering education as follows: worldwide shortage of engineers is a threat to the development of society.Based on the analysis of the current state of engineering education in the world and tendencies of development an urgency of its modernization with the focus on the enhancement of practical component has been shown.Topical problems associated with innovations and modernization in engineering education in the field of aerospace technology were discussed at the first international forum, which was held in Beijing Beyhanskom University (BUAA on 8 - 9 September 2012. The author attended this forum and presented his impressions of its work. It was noted that the role of Russia in the global process to form and develop engineering education is ignored. This opinion sounded, generally, in all speakers' reports, apart from ours.The President BUAA, a Professor Jinpeng Huai, and a Professor Qiushi Li. talked about the problems of building the engineering education system in China. It was emphasized that in China a study of engineering education techniques was motivated by the fact that quality assurance of engineering education at U.S. universities does not meet requirements.Attention is drawn to Dr. David Wisler's report who is a representative of the U.S. aerospace industry (General Electric Aviation corporation, actively promoting networking technology "initiative CDIO».The assessment of the engineering education
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Two-dimensional silicon: the advent of silicene
Grazianetti, Carlo; Cinquanta, Eugenio; Molle, Alessandro
2016-03-01
Silicene is sometimes thought of as the Si alter ego of graphene. However, experimental evidence indicates that silicene is substantially different from graphene in terms of its stability, atomic structure, electronic properties, and device process issues. Some of these aspects hamper the feasibility of silicene for practical application, but at the same time they may offer routes to engineer or functionalize silicene as a complementary material to graphene if a good control of the material can be achieved. As such, the research on silicene runs along the cutting edge between unsurmountable limitation and pioneering opportunities. In the present review, we examine the issues that are representative of this dual edge and try to make a preliminary balance of the state-of-the-art features of this material. Each relevant topic will be explored in a dedicated section. We start with the introduction of ‘experimental’ silicene in the so-called ’flatland’ from the point of view of technology drivers and of its conceptual precursor, freestanding silicene. We then explore the following: specific aspects of the silicene on substrates; the tendency of silicene to have multiple structural forms (what we call the polymorphic nature of silicene) the role of the strong hybridization with the substrate in the electronic band structure of silicene; the Raman spectrum of silicene, and silicene processing and integration into a transistor. Finally we conclude by proposing an investigation into silicene’s emerging contemporaries in the realm of elementary two-dimensional materials. Mindful of ongoing discussions and current issues, we try to go to the heart of the problems by treating each topic objectively and scientifically and we then provide our personal views in the discussion.
Sakuma, Ryusuke; Gunji, Atsuko; Goto, Takaaki; Kita, Yosuke; Koike, Toshihide; Kaga, Makiko; Inagaki, Masumi
2012-07-01
The current study sought to develop a new behavioral analysis methods to evaluate the effects of social skills training (SST). SST is known to be an effective method to improve the social skills of children with behavioral problems. However, current evaluation methods involve behavioral rating scales that are heavily dependent on evaluators' particular experiences they have had. To quantitatively examine the behavioral effects of SST, we examined subjects' head-movements related to social behavior, using a two-dimensional motion capture system (Kissei Comtec, Japan). Four children (three male, one female, 7-8 years of age) with pervasive developmental disorder (PDD) or attention deficit/hyperactivity disorder (AD/HD) participated in 16 sessions of SST. Before and after SST, head-coordinates on a two-dimensional plane were calculated using their behavior during a pair task, measured by four digital cameras. After SST, the number of communication behaviors was increased compared to before SST. In addition, children looked longer at another child within 30 degrees of the central visual field. Time-series analysis of the visual field during the detection of another child revealed significant auto-correlation from about -1.12 second. before to the beginning of communication behavior (p<0.05). The results suggested that our method can provide a quantitative index of characteristics related to skilled social behaviors. We conclude that a two-dimensional motion capture system would be useful for visualization of the interventional effects of SST, which would supplement assessments by the conventional observational strategies.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling
Energy Technology Data Exchange (ETDEWEB)
Hwang, Moonkyu; Jeong, Jaejoon
2007-07-15
The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme.
Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation
Lannes, David
2007-01-01
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \\cite{matsuno3} and Choi \\cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equati...
Energy Technology Data Exchange (ETDEWEB)
Mann, B.S. [Corporate R and D Division, Hyderabad (India). Materials Science Lab.
1998-04-15
Erosive wear of complicated water pump and hydro turbine blades is a complex problem. This is due mainly to the many variables involved in the erosive wear. These depend upon type and erodant, base material and flow conditions. In this paper, visualisation and prevention of erosive wear on two dimensional forged 12Cr and 13Cr-4Ni cast steel hydrofoils under flow conditions similar to that of hydroturbines and water pumps is described. An experimental study was taken using a rotating disc apparatus. From the study, it was observed that the erosion of complicated hydrofoils depends on the flow conditions, especially flow separation, reattachment and boundary layer growth. The visualisation of wear on the hydrofoils was obtained from the wear replicas which were etched on the aluminium rotating disc. Further, to control the wear of these hydrofoils, these were given a hard diffused layer based on boronizing. The performance of these hard diffused layers along with wear prediction on 12Cr and 13Cr-4Ni steel hydrofoils are reported in this paper. (orig.)
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Multi-Objective Two-Dimensional Truss Optimization by using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Harun Alrasyid
2011-05-01
Full Text Available During last three decade, many mathematical programming methods have been develop for solving optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design variables that best describe the behavior and performance of the particular problem while satisfying the requirements and specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA into the field of structural optimization has opened new avenues for research because they have been successful applied while traditional methods have failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on “survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization. The results were obtained by using a GA with relative ease (computationally and these results are very competitive compared to those obtained from other methods of truss optimization.
Two-dimensional Green`s function Poisson solution appropriate for cylindrical-symmetry simulations
Energy Technology Data Exchange (ETDEWEB)
Riley, M.E.
1998-04-01
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional (r,z) cylindrical coordinates. The procedure can determine the solution to a problem with any or all of the applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. This report is a stand-alone supplement to the previous Sandia Technical Report SAND98-0537 presenting the two-dimensional Cartesian Poisson solver.
New Approach for Segmentation and Quantification of Two-Dimensional Gel Electrophoresis Images
DEFF Research Database (Denmark)
Anjo, Antonio dos; Laurell Blom Møller, Anders; Ersbøll, Bjarne Kjær;
2011-01-01
Motivation: Detection of protein spots in two-dimensional gel electrophoresis images (2-DE) is a very complex task and current approaches addressing this problem still suffer from significant shortcomings. When quantifying a spot, most of the current software applications include a lot of backgro......Motivation: Detection of protein spots in two-dimensional gel electrophoresis images (2-DE) is a very complex task and current approaches addressing this problem still suffer from significant shortcomings. When quantifying a spot, most of the current software applications include a lot....... Results: Five sections from different gels are used to test the performance of the presented method concerning the detection of protein spots, and three gel sections are used to test the quantification of sixty protein spots. Comparisons with a state-of-the-art commercial software and an academic state...
New two-dimensional fuzzy C-means clustering algorithm for image segmentation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation,a novel two-dimensional FCM clustering algorithm for image segmentation was proposed.In this method,the image segmentation was converted into an optimization problem.The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixcls described by the improved two-dimensional histogram.By making use of the global searching ability of the predator-prey particle swarm optimization,the optimal cluster center could be obtained by iterative optimization,and the image segmentation could be accomplished.The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%.The proposed algorithm has strong anti-noise capability,high clustering accuracy and good segment effect,indicating that it is an effective algorithm for image segmentation.
On the origins of vortex shedding in two-dimensional incompressible flows
Boghosian, M. E.; Cassel, K. W.
2016-12-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards
Fel, Leonid G.
2002-05-01
The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).
Specification of a Two-Dimensional Test Case
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
Exact two-dimensional superconformal R symmetry and c extremization.
Benini, Francesco; Bobev, Nikolay
2013-02-08
We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Two Dimensional F(R) Horava-Lifshitz Gravity
Kluson, J
2016-01-01
We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.
Localization of Tight Closure in Two-Dimensional Rings
Indian Academy of Sciences (India)
Kamran Divaani-Aazar; Massoud Tousi
2005-02-01
It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.
Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
Directory of Open Access Journals (Sweden)
Bart Preneel
2005-07-01
Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.
New directions in science and technology: two-dimensional crystals
Energy Technology Data Exchange (ETDEWEB)
Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2011-08-15
Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Dislocation climb in two-dimensional discrete dislocation dynamics
Davoudi, K.M.; Nicola, L.; Vlassak, J.J.
2012-01-01
In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r
SAR Processing Based On Two-Dimensional Transfer Function
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Spontaneous emission in two-dimensional photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas
2000-01-01
The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Phase conjugated Andreev backscattering in two-dimensional ballistic cavities
Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.
1997-01-01
We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects
Two-dimensional manifold with point-like defects
Gani, Vakhid A; Rubin, Sergei G
2014-01-01
We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Montgomery, R. C.; Sundararajan, N.
1984-01-01
It is doubtful whether the dynamics of large space structures (LSS) can be predicted well enough for control system design applications. Hence, dynamic modeling from on-orbit measurements followed by a modification of the control system is of interest, taking into account the utilization of adaptive control concepts. The present paper is concerned with the model determination phase of the adaptive control problem. Using spectral decoupling to determine mode shapes, mode frequency and damping data can be obtained with the aid of an equation error parameter identification method. This method employs a second-order auto-regressive moving average (ARMA) model to represent the natural mode amplitudes. The discussed procedure involves an extension of the application of the least square lattice filter in system identification to a nonintegral, two-dimensional grid structure made of overlapping bars.
Directory of Open Access Journals (Sweden)
Sohrab Bazm
2016-02-01
Full Text Available In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficiency and accuracy of the method.
STABILITY OF SYSTEM OF TWO-DIMENSIONAL NON-HYDROSTATIC REVOLVING FLUIDS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Applying the theory of stratification, it is proved that the system of the two-dimensional non-hydrostatic revolving fluids is unstable in the two-order continuous function class. The construction of solution space is given and the solution approach is offered. The sufficient and necessary conditions of the existence of formal solutions are expressed for some typical initial and boundary value problems and the calculating formulae to formal solutions are presented in detail.
Scattering of Fexural Gravity Waves by a Two-Dimensional Thin Plate
Directory of Open Access Journals (Sweden)
Sudeshna Banerjee
2017-01-01
Full Text Available An approximate analysis based on standard perturbation technique together with an application of Green’s integral theorem is used in this paper to study the problem of scattering of water waves by a two dimensional thin plate submerged in deep ocean with ice cover. The reﬂection and transmission coefﬁcients upto ﬁrst order are obtained in terms of the shape function describing the plate and are studied graphically for different shapes of the plate.
Modeling of the optical properties of a two-dimensional system of small conductive particles.
Kondikov, A. A.; Tonkaev, P. A.; Chaldyshev, V. V.; Vartanyan, T. A.
2016-08-01
Software was developed for quick numerical calculations and graphic display of the absorption, reflection and transmittance spectra of two-dimensional systems of small conductive particles. It allowed us to make instant comparison of calculation results and experimental data. A lattice model was used to simulate nearly distributed particles, and the coherent-potential approximation was applied to obtain a solution to the problem of interacting particles. The Delphi programming environment was used.
A Multi-Resolution Data Structure for Two-Dimensional Morse Functions
Energy Technology Data Exchange (ETDEWEB)
Bremer, P-T; Edelsbrunner, H; Hamann, B; Pascucci, V
2003-07-30
The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.
Design of two-dimensional recursive filters by using neural networks.
Mladenov, V M; Mastorakis, N E
2001-01-01
A new design method for two-dimensional (2-D) recursive digital filters is investigated. The design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by the convergence of an appropriate neural network. The method is tested on a numerical example and compared with previously published methods when applied to the same example. Advantages of the proposed method over the existing ones are discussed as well.
Determination of two-dimensional magnetostatic equilibria and analogous Euler flows
Linardatos, D.
1993-01-01
A modified computational procedure with an improved time-stepping algorithm for two-dimensional magnetic relaxation is developed. The procedure is used to determine a family of flows in a closed (square) domain with a single elliptic stagnation point. In addition, the problem of saddle point collapse is investigated, and the tendency to form discontinuities is confirmed in the manner described by Bajer (1989).
A Comparative Study of Stability Testing Approaches of Two-Dimensional Recursive Digital Filters
K. R. Santhi; M.Ponnavaikko; N. Gangatharan
2008-01-01
There are many problems in science and engineering whose solution is applied in the design of Multi-Dimensional (MD) digital filters. Digital filtering finds an important position in the field of digital signal and image processing. Recently there had been a great deal of interest in the design and stability analysis of Two-Dimensional (2-D) recursive digital filters. The design techniques for stable One Dimensional (1-D) digital filters are relatively well developed; but their extension to 2...
Observation of two-dimensional Faraday waves in extremely shallow depth.
Li, Xiaochen; Yu, Zhengyue; Liao, Shijun
2015-09-01
A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.
Jouriles, Ernest N.; Rosenfield, David; McDonald, Renee; Mueller, Victoria
2014-01-01
This study examined whether child involvement in interparental conflict predicts child externalizing and internalizing problems in violent families. Participants were 119 families (mothers and children) recruited from domestic violence shelters. One child between the ages of 7 and 10 years in each family (50 female, 69 male) completed measures of involvement in their parents’ conflicts, externalizing problems, and internalizing problems. Mothers completed measures of child externalizing and i...
On two-dimensional large-scale primitive equations in oceanic dynamics(Ⅰ)
Institute of Scientific and Technical Information of China (English)
HUANG Dai-wen; GUO Bo-ling
2007-01-01
The initial boundary value problem for the two-dimensional primitive equations of large scale oceanic motion in geophysics is considered.It is assumed that the depth of the ocean is a positive constant.Firstly,if the initial data are square integrable,then by Fadeo-Galerkin method,the existence of the global weak solutions for the problem is obtained.Secondly, if the initial data and their vertical derivatives axe all square integrable,then by Faedo-Galerkin method and anisotropic inequalities,the existerce and uniqueness of the giobal weakly strong solution for the above initial boundary problem axe obtained.
On two-dimensional large-scale primitive equations in oceanic dynamics(Ⅱ)
Institute of Scientific and Technical Information of China (English)
HUANG Dai-wen; GUO Bo-ling
2007-01-01
The initial boundary value problem for the two-dimensional primitive equations of largescale oceanic motion in geophysics is considered sequetially.Here the depth of the ocean is positive but not always a constant.By Faedo-Galerkin method and anisotropic inequalities,the existence and uniqueness of the global weakly strong solution and global strong solution for the problem are obtained.Moreover,by studying the asymptotic behavior of solutions for the above problem,the energy is exponential decay with time is proved.
Solution of the two- dimensional heat equation for a rectangular plate
Directory of Open Access Journals (Sweden)
Nurcan BAYKUŞ SAVAŞANERİL
2015-11-01
Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.
Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites.
Cieśla, Lukasz; Waksmundzka-Hajnos, Monika
2009-02-13
Drugs, derived from medicinal plants, have been enjoying a renaissance in the last years. It is due to a great pharmacological potential of herbal drugs, as many natural compounds have been found to exhibit biological activity of wide spectrum. The introduction of whole plants, plant extracts, or isolated natural compounds has led to the need to create the analytical methods suitable for their analysis. The identification of isolated substances is relatively an easy task, but the analysis of plant extracts causes a lot of problems, as they are usually very complex mixtures. Chromatographic methods are one of the most popular techniques applied in the analysis of natural mixtures. Unfortunately the separation power of traditional, one-dimensional techniques, is usually inadequate for separation of more complex samples. In such a case the use of multidimensional chromatography is advised. Planar chromatography gives the possibility of performing two-dimensional separations with the use of one adsorbent with two different eluents or by using bilayer plates or graft thin-layer chromatography (TLC) technique; combinations of different multidimensional techniques are also possible. In this paper, multidimensional planar chromatographic methods, commonly applied in the analysis of natural compounds, were reviewed. A detailed information is given on the methodology of performing two-dimensional separations on one adsorbent, on bilayer plates, with the use of graft TLC and hyphenated methods. General aspects of multidimensionality in liquid chromatography are also described. Finally a reader will find a description of variable two-dimensional methods applied in the analysis of compounds, most commonly encountered in plant extracts. This paper is aimed to draw attention to the potential of two-dimensional planar chromatography in the field of phytochemistry. It may be useful for those who are interested in achieving successful separations of multicomponent mixtures by means
Error compensation of IQ modulator using two-dimensional DFT
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K.; Van Vorhis, R.L. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States)
1996-03-01
Wrist posture and rapid wrist movements are risk factors for work related musculoskeletal disorders. Measurement studies frequently involve optoelectronic methods in which markers are placed on the subject`s hand and wrist and the trajectories of the markers are tracked in three dimensional space. A goal of wrist posture measurements is to quantitatively establish wrist posture orientation. Accuracy and fidelity of the measurement data with respect to kinematic mechanisms are essential in wrist motion studies. Fidelity with the physical kinematic mechanism can be limited by the choice of kinematic modeling techniques and the representation of motion. Frequently, ergonomic studies involving wrist kinematics make use of two dimensional measurement and analysis techniques. Two dimensional measurement of human joint motion involves the analysis of three dimensional displacements in an obersver selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors that result from measuring joint motion about an arbitrary axis using two dimensional methods.
Lin, Shih-Yin; Singh, Chandralekha
2015-12-01
It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra
Jouriles, Ernest N; Rosenfield, David; McDonald, Renee; Mueller, Victoria
2014-01-01
This study examined whether child involvement in interparental conflict predicts child externalizing and internalizing problems in violent families. Participants were 119 families (mothers and children) recruited from domestic violence shelters. One child between the ages of 7 and 10 years in each family (50 female, 69 male) completed measures of involvement in their parents' conflicts, externalizing problems, and internalizing problems. Mothers completed measures of child externalizing and internalizing problems, and physical intimate partner violence. Measures were completed at three assessments, spaced 6 months apart. Results indicated that children's involvement in their parents' conflicts was positively associated with child adjustment problems. These associations emerged in between-subjects and within-subjects analyses, and for child externalizing as well as internalizing problems, even after controlling for the influence of physical intimate partner violence. In addition, child involvement in parental conflicts predicted later child reports of externalizing problems, but child reports of externalizing problems did not predict later involvement in parental conflicts. These findings highlight the importance of considering children's involvement in their parents' conflicts in theory and clinical work pertaining to high-conflict families.
Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume
2009-01-01
In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
The separation of whale myoglobins with two-dimensional electrophoresis.
Spicer, G S
1988-10-01
Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
On Dirichlet eigenvectors for neutral two-dimensional Markov chains
Champagnat, Nicolas; Miclo, Laurent
2012-01-01
We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Topological states in two-dimensional hexagon lattice bilayers
Zhang, Ming-Ming; Xu, Lei; Zhang, Jun
2016-10-01
We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
A Two-Dimensional MagnetoHydrodynamics Scheme for General Unstructured Grids
Livne, E; Burrows, A; Meakin, C A; Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-01-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of $div(\\bB)$ by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for...
Two-dimensional model of elastically coupled molecular motors
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei
2012-01-01
A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS
Institute of Scientific and Technical Information of China (English)
何吉欢
2001-01-01
A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Extraction of plant proteins for two-dimensional electrophoresis
Granier, Fabienne
1988-01-01
Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
Two-dimensional hydrogen negative ion in a magnetic field
Institute of Scientific and Technical Information of China (English)
Xie Wen-Fang
2004-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
Chronology Protection in Two-Dimensional Dilaton Gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1994-01-01
The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
SU(1,2) invariance in two-dimensional oscillator
Krivonos, Sergey
2016-01-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Thermal diode from two-dimensional asymmetrical Ising lattices.
Wang, Lei; Li, Baowen
2011-06-01
Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Spirals and Skyrmions in two dimensional oxide heterostructures.
Li, Xiaopeng; Liu, W Vincent; Balents, Leon
2014-02-14
We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Tricritical behavior in a two-dimensional field theory
Hamber, Herbert
1980-05-01
The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.
Quantum entanglement in a two-dimensional ion trap
Institute of Scientific and Technical Information of China (English)
王成志; 方卯发
2003-01-01
In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.
Coll Positioning systems: a two-dimensional approach
Ferrando, J J
2006-01-01
The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Interior design of a two-dimensional semiclassic black hole
Levanony, Dana; 10.1103/PhysRevD.80.084008
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.
Towards a two dimensional model of surface piezoelectricity
Monge Víllora, Oscar
2016-01-01
We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...
Velocity Statistics in the Two-Dimensional Granular Turbulence
Isobe, Masaharu
2003-01-01
We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...
Statistical study of approximations to two dimensional inviscid turbulence
Energy Technology Data Exchange (ETDEWEB)
Glaz, H.M.
1977-09-01
A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.
Static Structure of Two-Dimensional Granular Chain
Institute of Scientific and Technical Information of China (English)
WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan
2010-01-01
@@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.
Logarithmic discretization and systematic derivation of shell models in two-dimensional turbulence.
Gürcan, Ö D; Morel, P; Kobayashi, S; Singh, Rameswar; Xu, S; Diamond, P H
2016-09-01
A detailed systematic derivation of a logarithmically discretized model for two-dimensional turbulence is given, starting from the basic fluid equations and proceeding with a particular form of discretization of the wave-number space. We show that it is possible to keep all or a subset of the interactions, either local or disparate scale, and recover various limiting forms of shell models used in plasma and geophysical turbulence studies. The method makes no use of the conservation laws even though it respects the underlying conservation properties of the fluid equations. It gives a family of models ranging from shell models with nonlocal interactions to anisotropic shell models depending on the way the shells are constructed. Numerical integration of the model shows that energy and enstrophy equipartition seem to dominate over the dual cascade, which is a common problem of two-dimensional shell models.
On the existence of two-dimensional nonlinear steady states in plane Couette flow
Rincon, Francois
2007-01-01
The problem of two-dimensional steady nonlinear dynamics in plane Couette flow is revisited using homotopy from either plane Poiseuille flow or from plane Couette flow perturbed by a small symmetry-preserving identity operator. Our results show that it is not possible to obtain the nonlinear plane Couette flow solutions reported by Cherhabili and Ehrenstein [Eur. J. Mech. B/Fluids, 14, 667 (1995)] using their Poiseuille-Couette homotopy. We also demonstrate that the steady solutions obtained by Mehta and Healey [Phys. Fluids, 17, 4108 (2005)] for small symmetry-preserving perturbations are influenced by an artefact of the modified system of equations used in their paper. However, using a modified version of their model does not help to find plane Couette flow solution in the limit of vanishing symmetry-preserving perturbations either. The issue of the existence of two-dimensional nonlinear steady states in plane Couette flow remains unsettled.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
a First Cryptosystem for Security of Two-Dimensional Data
Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen
In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Augmented reality simulator for training in two-dimensional echocardiography.
Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A
2000-02-01
In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Two-dimensional oxides: multifunctional materials for advanced technologies.
Pacchioni, Gianfranco
2012-08-13
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fission-gas release at extended burnups: effect of two-dimensional heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K
2000-09-01
To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)
An efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes
Duan, Hong-Guang; Nalbach, Peter; Thorwart, Michael
2015-01-01
We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasi-adiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath couplin...
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
Ming, Fangfei; Mulugeta, Daniel; Tu, Weisong; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Huang, Ying-Tzu; Diehl, Renee D.; Snijders, Paul C.; Weitering, Hanno H.
2017-03-01
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.
Odkhuu, Dorj
2016-08-01
Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.
Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System
Chechkin, Gregory A.; Ratiu, Tudor S.; Romanov, Maxim S.; Samokhin, Vyacheslav N.
2016-09-01
In this paper we study the two dimensional Ericksen-Leslie equations for the nematodynamics of liquid crystals if the moment of inertia of the molecules does not vanish. We prove short time existence and uniqueness of strong solutions for the initial value problem in two situations: the space-periodic problem and the case of a bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its time derivative. We also show that the speed of propagation of the director field is finite and give an upper bound for it.
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION
Energy Technology Data Exchange (ETDEWEB)
Casini, R.; Judge, P. G. [High Altitude Observatory, NCAR P.O. Box 3000, Boulder, CO 80307-3000 (United States); Schad, T. A. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)
2012-09-10
We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.
Institute of Scientific and Technical Information of China (English)
Guangwei Yuan; Longjun Shen
2003-01-01
In this paper we are going to discuss the difference schemes with intrinsic parallelismfor the boundary value problem of the two dimensional semilinear parabolic systems. Theunconditional stability of the general finite difference schemes with intrinsic parallelismis justified in the sense of the continuous dependence of the discrete vector solution ofthe difference schemes on the discrete data of the original problems in the discrete W2(2,1)norms. Then the uniqueness of the discrete vector solution of this difference scheme followsas the consequence of the stability.
Wetting of two-dimensional physically patterned surfaces
Bell, Michael Scott
An understanding of wetting phenomena is important, in part, due to the many practical applications of controlled wetting. Some of the most exciting applications involve superhydrophobic surfaces, on which water droplets exhibit contact angles larger than 150° and contact angle hysteresis less than 10°. These surfaces are notable for their low-drag, antifouling, and self-cleaning properties, among others. Wetting is known to be affected by both the chemistry and the physical patterning of a surface, with the chemistry affecting what is called the intrinsic contact angle, which is the contact angle displayed by a droplet on a smooth flat surface made of the given material. To date, the largest intrinsic contact angle observed for any material is only about 120°, which does not confer superhydrophobicity. Thus, physical patterning is a crucial component of any superhydrophobic surface. Interestingly, many natural examples of superhydrophobic surfaces exist, with one of the most notable being the lotus leaf. In designing such surfaces, scientists have turned to the natural examples for inspiration, and have found that most natural examples have multiple (usually two) scales of roughness, commonly referred to as hierarchical roughness. Though hierarchical roughness is ubiquitous in the superhydrophobic surfaces of the natural world, its precise role in conferring superhydrophobicity has so far remained elusive. In this work, we develop a thermodynamic model to study the wetting of two-dimensional physically patterned surfaces. Past models that have been developed for this purpose often make several assumptions: the drop must be much larger than the surface features while simultaneously being small enough that the effects of gravity are negligible. Many of these models ultimately rely on the older Cassie and Wenzel models, which themselves make assumptions about the drop size relative to the surface features--namely that the drop is again much larger than the surface
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2009-01-01
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.
Lin, Shih-Yin
2016-01-01
It is well-known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles but for which the problem solving process i...
Family Involvement in Preschool Education: Rationale, Problems and Solutions for the Participants
Kocyigit, Sinan
2015-01-01
This aim of this study is to examine the views of teachers, administrators and parents about the problems that emerge during family involvement in preschool activities and solutions for these problems. The participants were 10 teachers, 10 parents and 10 administrators from 4 preschools and 6 kindergartens in the Palandöken and Yakutiye districts…
The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2005-01-01
The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.
Message-passing algorithm for two-dimensional dependent bit allocation
Sagetong, Phoom; Ortega, Antonio
2003-05-01
We address the bit allocation problem in scenarios where there exist two-dimensional (2D) dependencies in the bit allocation, i.e., where the allocation involves a 2D set of coding units (e.g., DCT blocks in standard MPEG coding) and where the rate-distortion (RD) characteristics of each coding unit depend on one or more of the other coding units. These coding units can be located anywhere in 2D space. As an example we consider MPEG-4 intra-coding where, in order to further reduce the redundancy between coefficients, both the DC and certain of the AC coefficients of each block are predicted from the corresponding coefficients in either the previous block in the same line (to the left) or the one above the current block. To find the optimal solution may be a time-consuming problem, given that the RD characteristics of each block depend on those of the neighbors. Greedy search approaches are popular due to their low complexity and low memory consumption, but they may be far from optimal due to the dependencies in the coding. In this work, we propose an iterative message-passing technique to solve 2D dependent bit allocation problems. This technique is based on (i) Soft-in/Soft-out (SISO) algorithms first used in the context of Turbo codes, (ii) a grid model, and (iii) Lagrangian optimization techniques. In order to solve this problem our approach is to iteratively compute the soft information of a current DCT block (intrinsic information) and pass the soft decision (extrinsic information) to other nearby DCT block(s). Since the computational complexity is also dominated by the data generation phase, i.e., in the Rate-Distortion (RD) data population process, we introduce an approximation method to eliminate the need to generate the entire set of RD points. Experimental studies reveal that the system that uses the proposed message-passing algorithm is able to outperform the greedy search approach by 0.57 dB on average. We also show that the proposed algorithm requires
On the solution of heat conduction problems involving heat sources via boundary-fitted grids
Grandi, G. M.; Ferreri, J. C.
1989-01-01
It is shown that codes employing boundary-fitted grids (BFG) in heat conduction problems involving heat sources must be implemented in strictly numerically conservative form if accurate results are to be obtained. It is demonstrated that, for one-dimensional problems, nonconservative form imply errors originated in grid nonuniformity that cause a spurious increase in the heat source. This in turn leads to significant errors in the computed solution. Therefore, the implementation of BFG codes using nonconservative forms should be avoided. An application to an unsteady, axisymmetric benchmark problem involving a spherical, time-decaying heat source is presented.
Gorshkov, V. N.; Navadeh, N.; Fallah, A. S.
2017-09-01
Phononic metamaterials are synthesised materials in which locally resonant units are arranged in a particular geometry of a substratum lattice and connected in a predefined topology. This study investigates dispersion surfaces in two-dimensional anisotropic acoustic metamaterials involving mass-in-mass units connected by massless springs in K3 topology. The reasons behind the particular choice of this topology are explained. Two sets of solutions for the eigenvalue problem | {\\boldsymbol{D}}({ω }2,{\\boldsymbol{k}})| =0 are obtained and the existence of absolutely different mechanisms of gap formation between acoustic and optical surface frequencies is shown as a bright display of quantum effects like strong coupling, energy splitting, and level crossings in classical mechanical systems. It has been concluded that a single dimensionless parameter i.e. relative mass controls the order of formation of gaps between different frequency surfaces. If the internal mass of the locally resonant mass-in-mass unit, m, increases relative to its external mass, M, then the coupling between the internal and external vibrations in the whole system rises sharply, and a threshold {μ }* is reached so that for m/M> {μ }* the optical vibrations break the continuous spectrum of ‘acoustic phonons’ creating the gap between them for any value of other system parameters. The methods to control gap parameters and polarisation properties of the optical vibrations created over these gaps were investigated. Dependencies of morphology and width of gaps for several anisotropic cases have been expounded and the physical meaning of singularity at the point of tangential contact between two adjacent frequency surfaces has been provided. Repulsion between different frequency band curves, as planar projections of surfaces, has been explained. The limiting case of isotropy has been discussed and it has been shown that, in the isotropic case, the lower gap always forms, irrespective of the value
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Institute of Scientific and Technical Information of China (English)
ZHU Xue-qiong; WU Jie-li; YU Li-rong; LIN Yi; L(U) Jie-qiang; ZOU Shuang-wei; HU Yue
2008-01-01
Objective:To establish and optimize the two-dimensional gel electrophoresis(2-DE)maps of squamous carcinoma of the cervix and to study the protein difference between squamous carcinoma of the cervix(SCC)and normal cervical tissue.Methods:Using Two-dimensional gel electrophoresis followed by computer-assisted image analysis,the differential proteins between squamous carcinoma of the cervical tissue and normal cervical tissue were compared.Then using matrix-assisted laser desorption/ionization-time of flight mass spectrometry,the differential proteins were identified.Results:The well-resolved and reproducible two-dimensional gel electrophoresis patterns of squamous carcinoma of the cervix tissue and normal cervical tissue were obtained.After silver staining.the average matching ratio of squamous carcinoma of the cervix was 86.1%.There was a good reproducibility of spot position in 2-DE map,with average deviation in IEF direction of 0.95±0.13 mm,while in SDS-PAGE direction it was 1.20±0.18 mm.Ten protein spots were identified by mass spectrometry,some of which were involved in cell proliferation,cell apoptosis,intracellular enzymes,structural proteins,cycle regulation,and tumor occurrence.Conclusion:The differentially expressed proteins provide a fundamental basis for further study of human squamous carcinoma of the cervix and screening of its specific markers.
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
The Rare Two-Dimensional Materials with Dirac Cones
Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong
2014-01-01
Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Theories on Frustrated Electrons in Two-Dimensional Organic Solids
Directory of Open Access Journals (Sweden)
Chisa Hotta
2012-08-01
Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.
Wake-induced bending of two-dimensional plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)
2014-07-15
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Wake-induced bending of two-dimensional plasma crystals
Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E
2014-01-01
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Corner wetting transition in the two-dimensional Ising model
Lipowski, Adam
1998-07-01
We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.
Dynamic Multiscaling in Two-dimensional Fluid Turbulence
Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul
2011-01-01
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Kinetic analysis of two dimensional metallic grating Cerenkov maser
Energy Technology Data Exchange (ETDEWEB)
Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-08-15
The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Duality, Monodromy and Integrability of Two Dimensional String Effective Action
Das, A; Melikyan, A; Das, Ashok
2002-01-01
The monodromy matrix, ${\\hat{\\cal M}}$, is constructed for two dimensional tree level string effective action. The pole structure of ${\\hat{\\cal M}}$ is derived using its factorizability property. It is found that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effective action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, ${\\hat{\\cal M}}$ for the exactly solvable Nappi-Witten model, both when B=0 and $B\
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Electronic Transmission Properties of Two-Dimensional Quasi-Lattice
Institute of Scientific and Technical Information of China (English)
侯志林; 傅秀军; 刘有延
2002-01-01
In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.
Two-dimensional conformal field theory and the butterfly effect
Roberts, Daniel A
2014-01-01
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.
Two-Dimensional Gel Electrophoresis: A Reference Protocol.
Saia-Cereda, Veronica M; Aquino, Adriano; Guest, Paul C; Martins-de-Souza, Daniel
2017-01-01
Two-dimensional gel electrophoresis (2DE) has been a mainstay of proteomic techniques for more than four decades. It was even in use for several years before the term proteomics was actually coined in the early 1990s. Over this time, it has been used in the study of many diseases including cancer, diabetes, heart disease, and psychiatric disorders through the proteomic analysis of body fluids and tissues. This chapter presents a general protocol which can be applied in the study of biological samples such as blood serum or plasma and multiple tissues including the brain.
Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis
2014-01-01
Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559
Size-dispersity effects in two-dimensional melting.
Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu
2005-01-01
In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
The XY model coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
Two-dimensional chiral topological superconductivity in Shiba lattices
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-07-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.